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Abstract

We consider the problem of nonparametrically predicting a scalar response variable
y from a functional predictor y. We have n observations (x;,y;) and we assign a
weight w; o< K (d(x, xi)/h) to each x;, where d( -, -) is a semi-metric, K is a kernel
function and h is the bandwidth. Then we fit a Weighted (Linear) Distance-Based
Regression, where the weights are as above and the distances are given by a possibly
different semi-metric. This approach can be extended to nonparametric predictions
from other kind of explanatory variables (e.g., data of mixed type) in a natural way.

Key words: Distance-based prediction, functional data analysis, local linear
regression, nonparametric regression, weighted regression.

1 Introduction

Observing and saving complete functions as results of random experiments is
nowadays possible by the development of real-time measurement instruments
and data storage resources. For instance, continuous-time clinical monitoring
is a common practice today. Functional Data Analysis (FDA) deals with the
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statistical description and modelization of samples of random functions. Func-
tional versions for a wide range of statistical tools (ranging from exploratory
and descriptive data analysis to linear models to multivariate techniques) have
been recently developed. See Ramsay and Silverman [1] for a general perspec-
tive on FDA and Ferraty and Vieu [2] for a nonparametric approach. Special
issues recently dedicated to this topic by several journals ([3], [4], [5]) bear
witness to the interest on this topic in the Statistics community.

In this paper we consider the problem of predicting a scalar response using a
functional predictor. Let us give an example. Spectrometric Data are described
in Chapter 2 of [2]. This dataset includes information about 215 samples of
chopped meat. For each of them, the function y, relating absorbance versus
wavelength, has been recorded for 100 values of wavelength in the range 850-
1050 nm. An additional response variable is observed: y, the sample fat content
obtained by analytical chemical processing. Given that obtaining a spectro-
metric curve is less expensive that determining the fat content by chemical
analysis, it is important to predict the fat content y from the spectromet-
ric curve x. In Section 3.1 the Spectrometric Data are used to illustrate the
methods we propose in this work.

In technical terms, the problem is stated as follows. Let (x,Y) be a random
element where the first component 'y is a random element of a functional space
(typically a real function x from [a,b] C R to R) and Y is a real random vari-
able. We consider the problem of predicting the scalar response variable y from
the functional predictor y. We assume that we are given n i.i.d. observations
(Xi,¥i),i = 1,...,n, from (x,Y) as a training set. Let m(x) = E(Y|x = x)
be the regression function. Then an estimate of m(y) is a good prediction of
y. The linear functional regression model, considered in [1], assumes that

m(x) = a+ /ab x()B(t)dt, and y; = m(x;) + &,

g; having zero expectation. The parameter ( is a function and o« € R. The
authors propose to estimate 3 and a by penalized least squares:
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where L([3) is a linear differential operator giving a penalty to avoid too much

rough 3 functions and A > 0 acts as a smoothing parameter.

Ferraty and Vieu [2] consider this linear regression as a parametric model
because only a finite number of functional elements is required to describe it
(in this case only one is needed: (). They consider a nonparametric functional
regression model where few regularity assumptions are made on the regression



function m(x). They propose the following kernel estimator for m(x):

A i K(d(x, xa) /Ry "
) = S Rl o)) ; :

where w;(x) = K(d(x, xi)/h)/ >Xj=1 K(d(x, x;)/h), K is a kernel function with
support [0, 1], the bandwidth h is the smoothing parameter (depending on

X)Yis

n), and d(-,-) is a semi-metric (d(x,x) = 0, d(x,y) = d(v,x), d(x,7) <
d(x,v) + d(¢,7)) in the functional space F = {x : [a,b] — R} to which
the data Xi belong. Examples of semi-metrics in F are Lo distances between
derivatives,

A (x, ) = ( / ’ (X"t =y (t))2 dt) . :

and the Ly distance in the space of the first ¢ functional principal components
of the functional data set x;,i =1,...,n: dP9(x,~) = (Sio, (v — ¥1)H)Y2,
where ¢ is the score of the function y in the k-th principal component.
See Chapters 8 and 9 in [1] or Chapter 3 in [2] for more information about
functional principal component analysis.

In [2] it is proved that mg(x) is a consistent estimator (in the sense of almost
complete convergence) of m(y) under regularity conditions on m, x (involving
small balls probability), Y and K. Moreover, Ferraty et al. [6] prove the mean
squared convergence and asymptotic distribution of M (x).

The book of Ferraty and Vieu [2] lists several interesting open problems con-
cerning nonparametric functional regression. In particular, their Open Ques-
tion 5 addresses the transfer of local polynomial regression ideas to an infinite
dimensional setting in order to extend the estimator mg(x), that is a kind of
Nadaraya-Watson regression estimator.

A first answer to this question is given in Baillo and Grané [7]. They propose
a natural extension of the finite dimensional local linear regression, by solving
the problem

mingwi(x) (yl —a— /T (xi(t) — X(t))ﬁ(t)dt)2 ;

where local weights w;(x) = K(||x — xill/h)/ >j=1 K(||x — x;l|/h) are defined
by means of Ly distances (it is assumed that all the functions are in Ly([a, b])).
Their estimator of m(x) is mrr(x) = &. Closely related approaches can be
seen in [8] and [9].

In this work we give an alternative response to the same open question. Our
proposal rests on Distance-Based Regression (DBR), a prediction tool based on
inter-individual distances including Ordinary Least Squares Regression (OLS)



as a particular case (see Section 2). Specifically, we use Weighted Distance-
Based Regression, the weighted version of DBR, where each case (x;,y;) has a
weight w; o< K (d(x, x:)/h). Subsection 2.2 presents all the formulas needed to
implement the Weighted DBR. We name our proposal Local Linear Distance-
Based Regression, and Section 3 is devoted to introduce it with detail, includ-
ing the analysis of Spectrometric Data. Section 4 contains some concluding
remarks.

2 Weighted Distance-Based Regression: Definition and results

Distance-Based Regression was introduced by Cuadras [10] in 1989 and has
been developed in [11], [12] and [13]. Let Q@ = {Oy,...,0,} be a set of n
objects (or individuals or cases) randomly drawn from a population. For in-
dividual O; we have observed the value y; of a continuous one-dimensional
response variable. We assume that a distance function § (being a metric or
semi-metric) is defined between the elements of €2, usually based on predic-
tors Z observed for every O; € € as z;. Let A = (dij)izlnwzlnn be the
inter-individual squared distances matrix. The available information Z for
the elements of €2 can be a mixture of quantitative and qualitative variables
or, possibly, other nonstandard quantities, such as character strings, functions
or other kind of non-numerical explanatory variables. The aim of the DBR is
to predict the response variable for a new individual O,,,; from the same pop-
ulation, using (d2,,,,...,dz ), the vector of squared distances from Op 44
to the remaining individuals, as the only available information.

DBR operates as follows. We say that a n x r matrix X, » < n, is a Euclidean
configuration for A if X verifies that the Euclidean distance between its rows
i and j is equal to d;;. It is assumed (Euclidean condition) that such a config-
uration exists for A. We denote R” by £, the Euclidean space where the rows
of X belong. Metric Multidimensional Scaling (see, e.g., [14]) can be used to
obtain X from A. Then the linear regression of y = (yi,...,y,)” on X is
estimated by OLS, giving a r-dimensional estimated regression coefficient B.
It can be proven ([13]) that § = X B is an intrinsic quantity, meaning that
it can alternatively be expressed directly as a function of A. Therefore ¢ is
independent of the particular choice of X, that is never explicitly computed,
and neither is ,3

In this paper we present the weighted version of DBR, where each response
y; has a weight w; < 0. In principle, this extension requires no more work
than replacing OLS by Generalized (Weighted) Least Squares (WLS) in the
well-known DBR formulae. Nevertheless, since the derivations require some
tricky algebraic details it is worth writing them in full. Subsection 2.1 is a
review of Weighted Metric Multidimensional Scaling concepts, with formulae



adapted to our case. Subsection 2.2 contains the derivations and formulae for
Weighted DBR.

2.1 Weighted Metric Multidimensional Scaling

In this section we review concepts, notations and formulae of Weighted Metric
Scaling, an extension of the usual Metric Multidimensional Scaling, designed
to take into account a weight for each individual, either because it has an
intrinsic observed multiplicity or due to heteroscedasticity in the response in
a DBR (see Section 2.2).

Assume given a set, Q = {Oy,...,0,}, of n individuals where each O; is
described by an observable z;. Moreover, each individual will have a set of
Euclidean coordinates, a vector a; in some Euclidean space R" —precise rela-
tionship between both coordinate sets is described below. These vectors are
written as 1 X r row vectors, in order to stack them as an n x r matrix X,
a Euclidean configuration. In classical applications, Multidimensional Scaling
aims at visualizing data, which translates into a requirement that computa-
tion of X should be followed by a dimensional reduction (rows of X in R,
k < r), attaining a plane representation (k = 2). This constraint needs not be
enforced for DBR, where k is usually decided by model stability (bias-variance
tradeoff) criteria. We deal with this issue at the end of the next subsection.

The initial step is to compute an n x n matrix of squared distances:
A =5 =06%(zi,25),1<i,j <n,

where 9, the distance function, is a semi-metric in 2. Additionally, each
individual O; has a positive weight w; € (0,1). The n x 1 weight vector
w = (wy, ..., w,)" is standardized to unit sum, i.e., 1’ - w = 1, where 1 is the
n X 1 vector of ones.

One of the key concepts to be considered is that of projectors:
K,=1-v
is the n X n projector, along w, on the span (1) of 1, and
Jw=1—K,,

projects along w on (1)L. J . can also be named the centering matriz with
respect to w. These projectors are idempotents but not symmetrical nor or-
thogonal, except in the uniform case, i.e., w = (1/n)1, K = (1/n)1-1’, and
J=1-K.



The n x n inner-products matriz G, is obtained by

Gw:—;Jw-A-Jw’.

A can be recovered from G, as
A=1-g,+7g, 1 —2G,, (1)

where g,, is a 1 X n row vector containing the (necessarily nonnegative) diag-
onal entries of G,. The standardized inner-products matriz is defined as

F,=D!/* .G, DY (2)

where D,, = diag(w) is the diagonal matrix whose diagonal entries are the
weights w.

Let r be the rank of G,. Any n x r matrix X,, such that G, = X, - X,
is a w-centered Fuclidean configuration of A, where w-centered means that
w'- X, = 0. It is worth noting that Euclideanarity is an intrinsic or geometric
concept, that is, equation (1) is the matrix notation for the set of equalities

0 = 2 — ayl|* = (i, i) + (5, 25) — 2(zi, 2),
which mean that the Euclidean distance between x; and «; is equal to 0(z;, z;).

Schoenberg’s Theorem (see, e.g., [15, Theorem 4]) states that such a decompo-
sition exists if and only if G, is a positive semidefinite (psd) matrix, in which
case A is called a Fuclidean distance matriz (in the Multidimensional Scaling
sense). [N.B. G is psd <— G = —%J <A - Jis psd, since J o, - J = Ty
and J - Jo, = J].

There are many w-centered r-dimensional Euclidean configurations of a given
A, but any two of them are related by an orthogonal (bijective) transforma-
tion. Two Euclidean configurations of A with a different centering, X,, and
X, say, where X, is w-centered and X is centered (in the ordinary sense,
i.e.,, 1’ X = 0), are related by a translation:

Xy=X+1-a, wherea=—-w-X,
as is readily checked.

Let S, be the covariances matrix of a w-centered Euclidean configuration
Xow,

Sw=Xu (Dy—w-w) X=Xy Dy Xe.
It is easy to prove that the trace of S, is independent of the choice of X,

and that ]
tr(Sw) = tr(Fy) = §w’ -A - w.



We name this quantity Geometric Variability of A with respect to w. Observe
that S, is nonsingular because X,, is full rank by columns and D,, is a
diagonal matrix.

Assume that a new case O, is available. The only relevant information
from that individual is the 1 x n vector d,; of squared distances from O,,
to the remaining individuals. The next Proposition allows us to represent
this new individual as a r-vector «, 1 in the row space of X,,, giving the
best r-dimensional approximation in the Weighted Least Squares sense to an
exact Euclidean configuration of the whole set of n + 1 individuals with their
distances. This result is the generalization for the weighted case of the Gower’s
interpolation or add-a-point formula ([16]).

Proposition 1 The weighted version of the Gower’s add-a-point formula is

1

5 @ —di1) - Do X S0 3)

Tp+1 =

Proof. The derivation of (3) proceeds by equating each i-th entry in d,.; to
the intended vector quantity in terms of the 1 x r vector &,,; and the ¢-th
row of X ,,:

dpv1i = (Ens1 — &) (B — x)
= |Zpea | + il = 2&p40 -2, 1<i<n. (4)
Writing as a row vector the results of multiplying each i-th equation by w;:
o1 Doy = |80 |? W + G- Day — 28011 - X - Dy (5)
Multiplying (5) on the right by X,, and collecting terms:
(G — Ant1) Do X =2&p41 - S

Finally, since S,, is nonsingular, we obtain (3). a

2.2 Weighted Distance-Based Regression

Given a nx 1 weight vector w and an n x 1 w-centered numerical vector y (that
is, w'y = 0), the Weighted DBR of response y with weights w and predictor
matrix A, an n X n square distances matrix, is defined as the WLS regression
of y, on a w-centered Euclidean configuration of A, X,,, with weights w.



A key result, Proposition 2, states that the hat matrix for this regression,
Hy=Xy (X Dy Xo) ' X, (6)

is an intrinsic quantity, meaning that it can be expressed directly as a function
of the distances or, equivalently, the inner products. To prove this result we
will need:

Lemma 1 The Moore-Penrose pseudo-inverse of the standardized inner-pro-
ducts matriz, F.,, defined in (2), can be expressed in terms of a w-centered
Euclidean configuration X ., as:

F,2t=D!/* X, (X4 Dy Xu)2- X,/ D2 (7)
Proof. A direct computation, checking the properties characterizing the Moore-
Penrose pseudo-inverse of a given matrix M: To this end, a matrix IN has to

satisfy: 1) M- N-M = M,2) N-M-N = N, 3) both M- N and N - M

are symmetric. O

Straightforward algebra from Lemma 1, shows:
Proposition 2 The hat matriz (6) is equal to:

Hy, =G, - (Dw1/2 . Fw+ . Dw1/2)
and § = H,, -y is

g =Gy - (Dw1/2 CF,T- Dw1/2> . (8)
The next result allows to evaluate the predicted Y for a new case 0,1, given
its d,, 1 vector, defined above, in the paragraph before Proposition 1.

Proposition 3

Unt1 = 5 (G — dny1) - <Dw1/2 - Foy" - le/z) Y. 9)

N —

Proof. Normal equations for the WLS regression of y on X, yield the esti-
mated 3 as:

B=(Xu Dy X)Xy Dy y=8u "' X Dy y.
The prediction g, for O, is

Yn+1 = Tp41 * ﬂ7



where &,,,1 is the result of Gower’s interpolation (3). That is,

. 1 _
yn+1:§(gw_dn+1)'Dw‘Xw'Sw 2'Xw/'Dw'y-

Comparison with (7) yields (9). O

Equations (8) and (9) are the core of Weighted DBR. Observe that it is a linear
regression in the space £ where the Euclidean configuration X ,, is included.
In practice this configuration is not explicitly calculated.

It is also remarkable that Weighted DBR reproduces the results of WLS: if we
start from a n x r matrix X of r continuous independent variables correspond-
ing to n individuals (with weights given by w) and we define A = (d7;), d;;
being the Euclidean distance between rows ¢ and j of X, then Gy ppr = Uwrs
and Un+1wpBR = Un+1,wLs, because X is trivially a Euclidean configuration
for A. A particular example is when the i-th row of X is (x;, 27, 23), x; € R.

Then doing the cubic weighted regression of y; over z; is equivalent to fitting
Weighted DBR with distances d(z;, 7;) = ||(zi, 27, 27) — (25,23, 23)]|2.

There is a technicality (related with dimensional reduction) worth discussing:
the rank r of the hat-matrix in (8), as in an ordinary linear regression, is
equivalent to the number of linearly independent linear predictors. Since for
n cases, depending on the metric chosen, r can be as high as n — 1, giving
an overdetermined model with unstable predictions, a sensible procedure is
to replace the pseudo-inverse Fy, with a lower-rank approximation. This can
be easily implemented by the Singular Value Decomposition which, by the
Schmidt-Eckart-Young Theorem ([17]), gives the best £ approximation of any
given rank k£, 1 < k < r. A cross-validation statistic can then be used to select
a suitable k. We use a leave-one-out scheme to compute a cross-validation
Mean Square Prediction Error (MSPE):

MSPE =Y " wi(y; — 9; )%,

=1

where ;" is the i-th prediction, as derived from the n — 1 remaining cases.

2.8 Weighted DBR: An example from Insurance

As an illustration, we apply Weighted DBR to a well-known dataset of damage
claim amounts in a car insurance portfolio (Table 1 in [18]). These data have
been studied by many authors using diverse methods (see, e.g. [19], [20], [21]).

This dataset is a cross-tabulation according to risk profiles, which are to be



used as predictors. For each i-th nonempty cell (1 < i < n = 123) the response
variable y; is the average claim amount of the N; individual claims in the cell.

The set z of predictors consists of three risk factors:

e Policyholder’s Age (expressed in years) is a continuous numerical measure-
ment which, already in the original data, has been discretized into 8 classes:
17-20, 21-24, 2529, 30-34, 35-39, 40-49, 50-59, 60+. In order to process
quantitatively this variable, we use the following class marks: 18.5, 22.5,
27.0, 32.0, 37.0, 44.5, 54.5, 65.0.

e Car Group is a categorical variable, with 4 levels, labelled A, B, C, D.

e Vehicle Age (expressed in years) is a continuous numerical measurement,
discretized into 4 classes: 0-3, 4-7, 89, 10+. In order to process quantita-
tively this variable, we use the following class marks: 1.5, 5.5, 8.5, 12.0.

As usual, for these data, the natural weights for all prediction models, in-
cluding Weighted DBR are the cell frequencies N;, which have been used to
compute the average claim amounts ;.

The first step in the treatment of these data by Weighted DBR is the choice
of a suitable metric. In principle it is possible to tailor a metric to reflect
specific information on predictors and on how their proximity relates to the
particular prediction under study. Here it is sufficient to utilize an omnibus
metric function which satisfies the Euclidean condition. One very popular such
metric for mixtures of numerical continuous, categorical and binary predictor
variables is the one based on Gower’s general similarity coefficient (see [22]),
which for two p-dimensional vectors z; and z; is equal to

o — n=t (L= Join — 2l /[Bn) +at o (10)
’ p1+ (p2 — d) + ps ’

where p = p; + ps + p3, p1 is the number of continuous variables, a and d are
the number of positive and negative matches, respectively, for the ps binary
variables, and « is the number of matches for the p3 multi-state categorical
variables. Ry, is the range of the h-th continuous variable. The squared distance
is computed as:

dz(Zi, Zj) =1- Sij- (11)
Gower [22] proves that (11) satisfies the Euclidean condition. In our case,
p1=2,p2=0,ps=1

The next step is to apply the Weighted DBR formulae, taking into account
the technicality on the rank choice explained at the end of Subsection 2.2. The
results of Weighted DBR for our data, with Gower’s metric, are: the maximum
rank is 7 = 13, and the optimal cross-validation MSPE value is 1431.8, for
k = 9. Left panel in Figure 1 shows the MSPE as a function of the rank.

10
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Fig. 1. Cross-validation MSPE statistics for Weighted DBR (left) as a function of
rank k, and for GLM with Gamma response and Box-Cox link family, for several A
values.

In order to compare the Weighted DBR results with those of a more con-
ventional Generalized Linear Model (GLM) treatment, we consider a Gamma
response distribution and a Box-Cox family of link functions, following [19,
p. 377], [21, p. 204-209], but for the sake of a closer parallelism, we have re-
computed the GLM’s treating the predictors Policyholder’s Age and Vehicle
Age as described above, keeping their quantitative character, instead of as
qualitative variables coded with dummy indicators as these authors do. Right
panel in Figure 1 shows the cross-validation MSPE statistic as a function of
the exponent A in the Box-Cox link function (A = 0 corresponds to the loga-
rithmic link). The optimal cross-validation MSPE value is 1687.9, for A = 1.6.
As a final comparison, considering a Gaussian response with identity link, we
obtain MSPE = 1717.0. We observe that for this data set Weighted DBR gives
the best result among the considered alternatives.

3 Local Linear Distance-Based Regression

Let (xi;v:), i =1,...,n, be arandom sample of (x,Y),Y € R, x : [a,b] — R.
We want to estimate m(y) = E(Y|x = x) by a local linear regression around
x and we are doing that using Weighted DBR. We consider the weights

n

wi(x) = K(di(x, x:)/h)/ > K(di(x, x5)/h)

Jj=1

where d; is a semi-metric between functions. Let A, be the matrix of squared
distances between functions defined from a possible different semi-metric ds.

11



We fit a Weighted DBR starting from the initial elements

Ay = (d2(X2'> Xj)Q)izl..n,jzl.‘na Yy= (yi)izl..ru and w = (wi<X>)i:1..n-

We consider a new individual O,,,; where the functional predictor is x and
we compute its squared distances to the other individuals y;:

d2,n+1 = (d2(X7 X1)27 e 7d2(X7 XTL>2)

Then we use equation (9) to obtain the Local Linear DBR estimator of m(y):

mLLDBR(X) = Unt1-

Let us remark some important points. There are two semi-metrics involved in
the local linear distance-based estimation: one of them, dy, is used to com-
pute the weight of observation y; around the function xy where the regression
function is estimated, and the other, ds, defines the distances between obser-
vations for computing the DBR. The semi-metrics d; and dy can coincide or
not. Observe that the local linear distance-based estimator of m(x) is really a
local linear estimator in the space £ where the semi-metric ds is a Euclidean
distance.

Assume that d; and dy coincide and that they are the Euclidean distance in
Lo([a, b]), that is, d; = dy = dd"®. Then the local linear distance-based esti-
mator myrppr(x) coincide with the linear local estimator my () proposed
by Baillo and Grané in [7]. Assume now that ds(x,7) = 0 for all functions x
and . Then the local linear distance-based estimator mp.pgr(x) fits locally
a constant around x and then it coincides with the kernel estimator 7 (x)
introduced by Ferraty and Vieu in [2].

Let K be the uniform kernel and assume that h > max; ;(di(xi, x;)). Then a
(global) DBR is fitted, that is a linear regression fit in the space £ where the
semi-metric ds is a Euclidean distance.

The local linear distance-based estimation is also valid for predictors that
are no functional data. For instance, it is valid for multivariate continuous
data (x; € RP), mixed data (multivariate x; with some components being
continuous and other being qualitative), textual data or any other kind of data
for which we are able to compute distances between individuals. Consider,

for instance, that z; € R, dy(x;, z;) = |v; — x4, do(@i, ) = ||(@i, 22, 23) —
(5,23, 2%)||. Then the estimator .. ppr() coincides with fitting a local cubic

polynomial regression (see the end of Subsection 2.2).
Observe that i ppr is a linear smoother (as defined in [23]) in the sense that

g =Sy, where § = (4;)i=1.» and S, «,, the smoothing matriz, only depends
on distances d; and dy between observed functions y;. This property allows

12



the definition of the effective degrees of freedom of mprppr (as trace(S); see
[24] or [25]), a quantity that could be useful in practice to quantify the degree
of smoothing of myrppr, and the effective kernel for estimating m(y;), the
i-th row of S. In particular, the expression of the i-th row of S can be derived
from the equation (8). Let w;; = K(di(xi, x;)/h)/ a1 K(di(xi, x1)/h), let
w; = (w;;)j=1.» and let Ay be as defined at the beginning of this section. Let
D, = diag(w;), let Joyp, =T — 1w, let Gop, = —35 Ju, - Ay - Ty, let gy,
be the i-th Tow of Gy, let Fy, = D/ - Gy, - D}/ and let Fo, " be the
Moore-Penrose pseudo-inverse of F',,,. Then, the i-th row of S is

Guw. - (Dw_1/2 N Dw_1/2) '
3.1 A real data example: Spectrometric Data

We consider the Spectrometric Data [2] already introduced in Section 1. Re-
member that there are 215 samples of chopped meat and that for each case,
the spectrometric function xy and the sample fat content y are available. The
goal is to predict the fat content y from Y.

Following Section 7.2 in [2] we divide the sample in a training sample (the
first 160 cases) and a test sample (the last 55 cases). The performance of
different functional prediction methods is measured by the empirical mean

square prediction error in the sample test: MSPE = (1/55) S35 6, (9 — ui)2.

Ferraty and Vieu [2] use three functional predictors for this data set: non-
parametric estimators of conditional expectation (functional kernel estimator
as mg(x)), conditional mode and conditional median. The implementation
of these estimators allows a variable bandwidth h based on k-nearest neigh-
bours, where k is locally selected by cross-validation. The authors recommend
to use the semi-metric based on the second order derivatives (d3*’). We have
used the R routines accompanying [2] (the script npfda-specpredRS.txt to
be specific) to recreate the results included in the book. The numbers we have
obtained are shown in Table 1 with the label FV2006.

In order to have results that we can directly compare with our proposals, we
have computed the functional kernel estimators with fixed bandwidth selected
by cross-validation and based on the semi-metrics d%®, r = 1,2,3. We have

used the R function from [2] funopare.kernel.cv. The results are included
in Table 1 with the label Kernel. F'V.

We have implemented the local linear DBR with automatic selection of the
bandwidth by cross-validation. The usual way of implementing cross-validation
has been modified as follows. Usually it is not possible to check the perfor-
mance of a candidate bandwidth h being lower than max; min; di(x;, x;) =

13



min; dy (x;+, X;) because in this case there are not enough data in the ball cen-
tered at y; with radius h to fit the DBR. So for an observation y; having
less than 3 neighbours at distance h, we enlarge h to h; allowing to include 3
neighbours in the ball centered at x;- with radius h;. So our implementation
is with partially variable bandwidth.

When doing Weighted DBR. internal steps, we use full rank Fy;, matrices in
equations (8) and (9) instead of choosing this rank by cross-validation (see
comments on that at the end of Subsection 2.2). We consider that choosing h
minimizing the MSPE is an indirect way to control the rank of F;, because the
value of h determines the number of observations involved in each Weighted
DBR estimation.

An alternative implementation of functional kernel estimators is possible using
local linear DBR by selection d; = d9"™, r = 1,2, 3, and dy = 0. The results
are included in Table 1 with the label Kernel. LLDBR. The results do not
coincide with those obtained using the function funopare.kernel. cv because
the different way of bandwidth selection.

Finally we also show in Table 1 the results obtained by local linear DBR for
different combinations of distances d; and ds, all of them using semi-metrics
based on derivatives. First we fix dy equal to the Euclidean distance between
the original functions (dy = d¢¢"™) and use d; = d%" r = 1,2,3. This way
we do local linear regression in the space of the original functions for different
semi-metrics defining neighborhoods in this space. The case d; = dd"* and
dy = d3¢"™ corresponds to the local linear estimator proposed in [7]. The case
dy = d2*® and dy = dd*"™ represents an improvement on the kernel method
(compare with the row labeled Kernel. LLDBR d4“®) because now a local
linear regression is fitted instead computing a local average. The best fitting
is obtained when using d; = dd*"® and dy = d*"*: local linear regression in
the space of second derivatives. This choice of distances d; and d5 is also the
most natural one taken into account the recommendations of Section 7.2 in

2].

4 Conclusions

We have presented the local linear DBR estimator of m(yx), a nonparametric
method based on Weighted DBR. This method is very flexible, including as
a particular case the local polynomial regression for real predictor variables.
Moreover it gives good results in practice. So we consider that this proposal
is a satisfactory answer to Open question 5 in [2].

There are practical and theoretical matters that deserve further attention.
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Table 1
Mean square prediction error (MSPE) for different functional predictors.

Functional predictor MSPE Functional predictor MSPE

FV2006 Cond. Expect. 1.92 Kernel. LLDBR dge”“ 52.08
FV2006 Cond. Mode. 2.94 Kernel. LLDBR df¢m*  6.85
FV2006 Cond. Median.  4.84 Kernel. LLDBR dgeri 3.52
Kernel. F'V dderiv 139.36 dy = dderiv . dy = dderv 7.94
Kernel. FV dderiv 11.93 dy = dderiv dy = dderiv 2,12
Kernel. FV dger 5.37 dy = dde dy = dderv 1.43

dy = dferiv, dy = dferiv - 2.91
dy = dger™v, dy = dger 103

For instance, it is known that for large samples distance-based methods have
a high computational cost. For a moderately large sample size (n ~ 10%) out-
of-core algorithms analogous to those presented in [26] for DB-PLS regression
provide a workable path of solution. Larger sizes require special subsampling.
On the other way, the asymptotic properties of the local linear DBR should
be studied. Two questions related with the smoothing parameter choice need
to be investigated: we could take advantage of the proposed estimator mpgrr,
being a linear smoother (see Section 7.10 in [24] or Section 5.3 in [25], for
instance); a variable bandwidth estimator could be defined based on k-Nearest
Neighbours following the ideas of Chapter 7 in [2].

In addition to its role underlying Local Linear Functional DBR presented in
this paper, Weighted DBR can be directly applied to linear regression with
heteroscedastic responses and, cast within an iterative weighted least squares
scheme, provides a basis for DB versions of Generalized Linear Models.
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