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Tighter Approximated MILP Formulations
for Unit Commitment Problems

Antonio Frangioni, Claudio Gentile, and Fabrizio Lacalandra

Abstract—The short-term unit commitment (UC) problem in
hydrothermal power generation is a large-scale, mixed-integer
nonlinear program, which is difficult to solve efficiently, espe-
cially for large-scale instances. It is possible to approximate the
nonlinear objective function of the problem by means of piece-
wise-linear functions, so that UC can be approximated by an
mixed-integer linear program (MILP); applying the available
efficient general-purpose MILP solvers to the resulting formula-
tions, good quality solutions can be obtained in a relatively short
amount of time. We build on this approach, presenting a novel
way to approximating the nonlinear objective function based on
a recently developed class of valid inequalities for the problem,
called “perspective cuts.” At least for many realistic instances
of a general basic formulation of UC, an MILP-based heuristic
obtains comparable or slightly better solutions in less time when
employing the new approach rather than the standard piecewise
linearizations, while being not more difficult to implement and
use. Furthermore, “dynamic” formulations, whereby the approxi-
mation is iteratively improved, provide even better results if the
approximation is appropriately controlled.

Index Terms—Hydrothermal unit commitment, mixed-integer
linear program formulations, valid inequalities.

NOMENCLATURE

The notation used throughout this paper is stated below. For
unit consistency, note that hourly intervals are considered.

Constants:

Quadratic term of power cost function of
thermal unit at period [euro/ ].

Power-to-discharged-water efficiency of hydro
unit .

Linear term of power cost function of thermal
unit at period [euro/ ].

Set of the immediate predecessors of hydro
unit .

Constant term of power cost function of
thermal unit at period [euro/ ].
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Forecasted load to be satisfied at period
[MWh].

Maximum ramp-up rate of thermal unit
[MW/h].

Maximum ramp-down rate of thermal unit
[MW/h].

Linear term of power cost function of a
(unspecified) thermal unit within the th
subinterval in which the feasible range is
subdivided [euro/ ].

Set of hydro cascades, each comprising one or
more basin units.

Set of individual hydro units cascade .

Maximum power output of thermal unit at
the first hour of a commitment period, i.e., if
the unit was off the previous hour [MW] (also
referred to as startup ramp limit).

Number of time intervals [ ].

Set of thermal units.

Left extreme of the th subinterval in which
the feasible range of a (unspecified) thermal
unit is subdivided [MW].

Minimum power output of thermal unit when
operating in steady state [MW].

Maximum power output of thermal unit
when operating in steady state [MW].

Technical maximum of discharged water of
hydro unit (the technical minimum is
assumed to be zero).

Water time delay from plant to the
basin feeding hydro unit [h].

Set of all time periods.

Minimum up-time of thermal unit [h].

Minimum down-time of thermal unit [h].

Maximum power output of thermal unit at
the last hour of a commitment period, i.e., if
the unit is going to be off the next hour [MW]
(also referred to as shutdown ramp limit).

Minimum volume for the reservoir of hydro
unit .
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Maximum volume for the reservoir of hydro
unit .

Natural inflows of the reservoir of hydro unit
at time period .

Variables:

Power output of a (unspecified) thermal unit
belonging to the th subinterval in which the
feasible range is subdivided [MW].

Power output of thermal unit at end of period
[MW].

Discharged water of hydro unit at time
period .

Status of thermal unit at period .

Volume of the reservoir of hydro unit at time
period .

Spilled water of hydro unit at time period
.

Auxiliary variable for expressing the objective
function cost of thermal unit at time period
[euro].

Functions:

Total power production cost function of
thermal unit [euro].

Start-up costs of thermal unit (possibly
time-dependent) [euro].

I. INTRODUCTION

T HE short-term unit commitment (UC) problem in
hydrothermal power generation systems requires to opti-

mally operate a set of hydro—possibly cascade connected—and
thermal generating units, over a given time horizon (typically
one day or one week), in order to satisfy a forecasted energy
demand at minimum total cost. The generating units are subject
to some technical restrictions, depending on their type and
characteristics; for hydro units typical constraints concern
the discharge rate, spillage limits, reservoir storage and effect
on downstream units. As for the thermal units, they must
usually satisfy minimum up- and down-time constraints and
upper and lower bounds over the produced power when the
unit is operational, besides having complex power production
and start-up costs. Closely representing the actual operating
behavior of generating units within mathematical optimization
models is crucial for being able to effectively coordinate the
production of the generating system taking into account each
unit’s characteristics [1], which is of increasing importance
in the ongoing liberalization of the electricity market in many
countries [2]. Indeed, while UC, in the form treated in this
paper originated from the era of monopolistic producers, it has
numerous applications even in the liberalized regime; further-
more, algorithmic approaches developed for the “classical” UC

can usually be easily extended to forms of the problem arising
in a market environment [2]–[4].

Despite having attracted the interest of researchers for over 30
years, UC still cannot be considered a well-solved problem for
all practical sizes and operating environments; this should not
be surprising, since it is a large-scale mixed-integer nonlinear
program. In spite of the ever-increasing availability of cheap
computing power and the advances in off-the-shelf software for
mixed-integer nonlinear programs, solving UC by general-pur-
pose software, even using the most advanced approaches avail-
able, is not feasible when the number of units [5] and/or the
length of the time horizon [6] grows large.

Recently, approximated mixed-integer linear program
(MILP) formulations of UC have been proposed [7]–[10]
which exploit the efficient general-purpose available MILP
solvers to compute good quality solutions in relatively small
time, especially for low- to mid-size instances, although spe-
cialized approaches, e.g., based on Lagrangian relaxation, are
still competitive for very-large-scale instances and/or when
very fast running times are required by the operational environ-
ment [11].

In [5], it has been shown that the efficiency and effectiveness
of approaches using an MIQP solver can be consistently im-
proved by adding to the MIQP formulation a properly chosen
set of valid inequalities for the UC problem, called “perspective
cuts,” which “tighten” the formulation by cutting away parts of
the feasible region of the continuous relaxation which do not
belong to the convex hull of the integer feasible solutions. This
amounts in practice to a piecewise linearization of the nonlinear
part of the objective function of the problem, where the number
of pieces need not to be chosen a priori. While the resulting
formulations are thus reminiscent of the previously-mentioned
ones [7]–[10], they differ in some relevant details, as discussed
later on.

We show that, at least for one “classical” formulation of ramp-
constrained hydrothermal UC and on a set of realistic instances,
heuristics based on the new linearization obtain comparable or
slightly better solutions in less time than analogous approaches
using the classical linearization. This is particularly interesting
in view of the fact that the new linearization is not more diffi-
cult to implement and use than the previously proposed ones,
given the same underlying MILP solver. Furthermore, the new
approach is better suited to exploit the tools made available by
all current MILP solvers in order to construct dynamic formu-
lations where the approximation is improved as needed during
the solution process, leading to further improvements in the ef-
fectiveness and efficiency of the approach.

The structure of the paper is the following. In Section II, we
present the mixed-integer nonlinear program formulation of the
specific form of UC problem we consider; while we focus, for
our results, on a quite “classical” formulation, the idea could
easily be applied to a number of other UC problems, e.g., taking
into account market constraints [3], [12]. In Section III, we
present the MILP approximation akin to those used, e.g., in
[7], [10], and our alternative linearization based on “perspective
cuts” [5]. Finally, in Section IV, we compare the linearizations
within heuristic approaches to UC, and we draw some conclu-
sions.
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II. UC MODEL

Given the constants and variables defined in the Nomencla-
ture section, the objective function of UC, representing the total
power production cost to be minimized, has the form

(1)
That is, the power production cost at each hour is customarily
represented by a convex quadratic separable form
in the power variables , neglecting for instance the so called
valve points [1]; fixed production costs are represented by the
term . We do not dwell further upon the specific form of the
(possibly time-dependent) start-up costs function , only
assuming that it can be properly represented within an MILP;
the interested reader is referred to [7] and [13] for details.

The constraints of UC can be partitioned into three sets: local
constraints for thermal units, local constraints for hydro units,
and global (system wide) constraints.

• Local constraints for thermal units: for each

(2)

(3)

(4)

(5)

(6)

(7)

Constant indicates how many further periods after a
startup period unit must remain online, in order to avoid
excessive mechanical stress due to too frequent startup/
shutdown procedures that would in the long term deteri-
orate the unit’s conditions; analogously, indicates how
many further periods after a shutdown period unit must
remain offline. The time period “0” is used for indicating
the initial conditions of the power system; note that we as-
sume knowledge of the complete state of each unit prior
to the beginning of the current operation, that is, its com-
mitment and its generated power . For the sake of
minimum up- and down-time constraints (5), (6), as well
as for the computation of time-dependent startup costs (if
any), it is also necessary to know for how long each unit
has been on or off prior to time period 0.

• Local constraints for hydro cascade units: for each
and

(8)

(9)

(10)

In order for the balance (10) to be well-defined, we assume
knowledge of the volume of each reservoir at time period

, as well as water discharged and spilled at all time
periods prior to for which the water is still arriving
to one of the downstream basins (i.e., those such
that ).

• Global constraints: the system-wide constraints—linking
the different units among themselves—are

(11)

Note that the power-to-discharged-water efficiency is as-
sumed constant, to avoid nonlinearities.

We refer to UC as the problem of minimizing (1) subject to con-
straints (2)–(11); this is a large-scale mixed-integer nonlinear
program whose nonlinearities are all contained in the objective
function. This formulation is a “basic” one, and it is less accu-
rate than several previously proposed ones in some aspects, e.g.,
related to hydro units modeling [8]–[10]. Also, we only model
start-up and shut-down operations by allowing to limiting the
thermal units output to any prescribed value (greater or equal to

) during the first and last hour of operations (cf. the con-
stants and in (3) and (4), respectively), while more sophis-
ticated models of the so-called start-up and shut-down power
trajectories have been proposed [3], [14].

Our choice of simplifying assumptions appears to strike
a balance between capturing the main aspects of practical
UC problems and simplicity of the model, and is commonly
accepted in the literature. For instance, spinning reserve con-
straints, either in the “standard” formulation (e.g., [15]) or in
the more sophisticated one recently proposed in [7], could be
easily included in the formulation, but they have not been used
in the instances used in Section IV since they are not likely
to have any significant impact on the relative efficiency of the
different approximate formulations tested in this paper. Several
other of the (widely accepted) simplifying assumptions in the
above model can be relaxed without hindering the applicability
of the proposed approach; in particular, more sophisticated
models of hydro cascades, e.g., taking into account nonlinear
effects of the water head on the power-to-discharged-water ef-
ficiency and/or nonzero technical minima for discharged water
[8]–[10], could be used at the cost of more integer variables in
the formulation. Analogously, valve points of thermal units [1]
or cavitation points of hydro units can be easily modeled.

Since the proposed technique is independent from all these
details, it can be easily applied to these and many others UC
formulations; the introduction of these further elements should
not impact on the relative efficiency of the different approximate
formulations tested in this paper.

The UC model here considered, while having been histori-
cally motivated by the centralized decision environments preva-
lent in the past, is well-suited also for being employed in today’s
free market regime, both at the stage where GenCos need to op-
timize their production schedule once that their own load profile
has been established by the market procedures, and within ap-
proaches for computing optimal bidding strategies [2]–[4], [12].
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III. PIECEWISE-LINEAR APPROXIMATIONS

In order to make UC tractable by the efficient MILP solvers
available, the nonlinear part of the objective function need be
linearized. Since the nonlinear structure is identical for each
time period and thermal unit, for notational simplicity in this
section we consider both indices and fixed and we drop them.
The issue is then how to best represent the quadratic objective
function

(12)

by means of a piecewise-linear one. It is well-known that there
are several different ways for doing this; one is represented
in Fig. 1, where points in the interval

are chosen (such that and ),
and a convex, piecewise-linear upper approximation of ,
which coincides with the latter in the chosen points, is used to
replace the original nonlinear objective function. This results in
an MILP which differs from UC (for each and ) only in the
following details (let ).

• new variables are introduced together with constraints

(13)

• The cost coefficient of in the objective function is
changed to .

• Each variable is given a linear cost representing the
linear function with value 0 when and value

when , i.e.,

The MILP approximation of the quadratic function is therefore
obtained by replacing (12) with

subject to the original constraints of the problem plus the extra
constraints (13). We will refer to this approximated MILP for-
mulation of UC as the standard piece-wise formulation (SPWF).
There are different choices for the linearization; for instance, it
is easy to construct a lower approximation which is tight to in
both function and derivative values in points “in the middle”
of the intervals. Most often, the articles where linearization is
touted (e.g., [7]–[10]) do not explicitly state how exactly the
linearization is constructed, although sometimes this may be de-
duced; for instance, [7, Fig. 1] most likely indicates the same
upper approximation as in SPWF. For the purpose of the present
paper, there is no substantial difference between an upper or a
lower approximation, as discussed below. Indeed, both upper

Fig. 1. Piecewise-linear approximation of ���� in the ��� �� space.

and lower approximations constructed in this way only work
in the -space; thus, when represented in the space, as in
Fig. 1, one notices that the objective function of the new problem
is linear along all segments of extremes ( , 0) and ( , 1) for any
feasible production level , always with the same slope (in the
figure, , , , ).

Although the previous linearization is quite natural, it ar-
guably is not the best possible approximation of the objective
function of UC; indeed, a different possibility is suggested in
[5]. Arbitrarily choosing points in the interval

, a different way for producing an MILP which
approximates UC is (for each and ) as follows.

• Each term of the form (12) is removed from the objective
function and replaced with a corresponding new variable ;
other terms in the objective function not containing and

, e.g., those related to variable startup costs [13], are kept
untouched.

• constraints of the form

(14)

with , , respectively, are added to the
formulation.

We will refer to the above as the perspective-cut (approximate)
formulation (PCF) of UC. This choice is justified by a sophis-
ticated theoretical analysis which for the sake of clarity cannot
be repeated here; the interested reader is referred to [5] for full
details. Here we will just briefly illustrate the basic ideas un-
derlying the construction, in order to clarify in what sense the
above choice is, at least in theory, preferable to others, and what
are its main differences w.r.t. the previous approach.

The function in (12) is in principle only relevant
at points of its (disconnected) domain

; however, standard branch-and-bound
approaches typically solve the continuous relaxation of the
provided formulation, where is allowed to take values in
[0, 1] rather than {0, 1}, in order to derive lower bounds
on the optimal value of the problem. It thus makes sense to
study which formulation provides the best possible (workable)
convex relaxation of UC.

While such a question does not admit any easy answer for the
UC problem in its entirety, it can be answered if one restricts
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Fig. 2. Perspective function of ����.

himself to the “basic blocks” of the problem; in fact, the convex
envelope of over , that is, the convex function with the
smallest (in set-inclusion sense) epigraph containing that of ,
can be shown [5] to be

if and
if
otherwise.

(15)

This function is strongly related with a well-known object in
convex analysis, the perspective function
of . The epigraph of defines a cone pointed in the
origin and having as “lower shape” that of , as depicted in
Fig. 2; is the section of the cone corresponding to .

Since , it is immediate to verify that
for all , that is, is a better objective function,

for a continuous relaxation, than ; indeed, elementary
calculus shows that the maximum of over
is , attained at [ , 1/2]. However, using
as the objective function has a serious drawback: it is even a
“more nonlinear” function than , which we already aim
at making “less nonlinear.”

Yet, it is well-known that every convex function is the point-
wise supremum of affine functions; for our case these can be
easily characterized. Indeed, [5, Theorem 1] shows that the epi-
graph of is composed of all and only triples satis-
fying , and the infinite system
of linear inequalities (14), for all . We refer
to each inequality in (14) as a perspective cut (P/C); as illus-
trated in Fig. 3, it defines the unique supporting hyperplane to
the function passing from (0, 0) and ( , 1). Note that the epi-
graph of is a cone, i.e., differently from the previous case (cf.
Fig. 1) the function is linear along all segments of extremes (0,
0) and ( , 1) for any feasible production level (with varying
slope), as it is easy to verify algebraically. Thus, the PCF formu-
lation corresponds to choosing supporting hyperplanes tangent
to the graph of both in (0, 0) and in the points ( , 1),
and using as objective function the polyhedral function which is
the point-wise maximum of the corresponding linear functions;
this better describes the true behavior of the actual nonconvex
objective function, up to the extent possible to a convex approx-
imation.

Fig. 3. Piecewise-linear approximation of ���� ��.

Given the standard mixed-integer nonlinear program formu-
lation of UC, PCF is even slightly simpler to implement than
SPWF. The differences between SPWF and PCF can be sum-
marized as follows.

• Assuming pieces are constructed for each and , SPWF
has more continuous variables and
more constraints (counting box constraints) than UC,
while PCF has only more continuous variables
and more constraints than UC; thus, PCF has
significantly fewer variables and constraints than SPWF,
especially as grows, although the constraints (14) are
slightly denser than box constraints.

• Since the objective function of PCF underestimates ,
solving the continuous relaxation of PCF provides a valid
lower bound to the optimal value of UC, and therefore
the global lower bound provided by a branch-and-bound
approach using PCF is valid for UC; this is not true for
SPWF if, as in our experiments, its objective function
is constructed to be an upper estimate of . This would
make a difference, in theory, if the stopping criterion of
the branch-and-bound would be computed by evaluating
feasible solutions with the value of the “true” objective
function (1); in this case, in fact, the solution found would
be guaranteed to be optimal to the prescribed accuracy for
PCF, but not for SPWF. This could be easily solved by
using a lower approximation in SPWF, but anyway it is
immaterial for the current approach, that in both cases is a
heuristic one, as discussed below.

• PCF is well-suited to work with a dynamic , the number of
constraints controlling how accurately the objective func-
tion is represented. In fact, one can choose a small set of
initial constraints, solve the continuous relaxation of PCF
and, if , check whether the solution sat-
isfies the P/C (14) for ; if not, the thus obtained
cut can be added to the formulation, using the standard
mechanisms that MILP solvers make available for imple-
menting the so-called “branch-and-cut” approaches with
user-defined cuts. Thus, any required degree of approxi-
mation of the original objective function to UC can be ob-
tained without starting with a formulation with a very large

. A similar process could in theory be implemented for
SPWF; however, while dynamically adding constraints to
a formulation during a Branch&Bound is now possible in
all current MILP solvers, adding variables is not usually
supported. Thus, while a dynamic version of PCF is easily
and effectively implemented with current software, imple-
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menting a dynamic version of SPWF would require a much
larger effort.

Apart from these differences, the two formulations share the
largest part of their variables and constraints, and therefore once
one of the two has been programmed, the other can be quite
easily obtained with a few modifications, especially if using
a high-level algebraic modeling system. Also, because the ap-
proach applies to a “very basic” portion of the UC problem, it
can be easily applied to the numerous variants of the problem de-
veloped in the vast literature on the subject. Finally, the new for-
mulation can be easily applied to the case where the cost func-
tion is piecewise-quadratic but non-convex, like for instance the
case when valve points need to be taken into account; simply,
the approach is applied separately to each segment where the
function is convex.

IV. COMPUTATIONAL EXPERIENCES

In this section we present some numerical results aimed at
testing the effectiveness of the P/C-based formulations within
heuristic approaches to UC. For this, we implemented three dif-
ferent approaches.

• SPWF: the MILP formulation, with equidistant
points, is constructed and passed to an MILP solver.

• PCF: same as before, but the P/C formulation is used.
• : initially, the P/C formulation with only two

pieces, the ones corresponding with and , is
constructed; additional cuts, up to a maximum of (a
user-configurable parameter) per variable are then dynam-
ically generated when needed as described in the previous
paragraph.

The tests have been performed on an Opteron 246 (2 GHz) com-
puter with 2 GigaBytes of RAM, running Linux Fedora Core 3,
and using the highly regarded commercial solver Cplex 9.1.
As all current commercial solvers, Cplex offers mechanisms
(thecut callback functions) allowing easy implementation
of the approach.

A crucial parameter to be tuned for this kind of approaches
is the prescribed relative accuracy obtained which the solver is
allowed to stop: we tested all methods with two settings, a rel-
atively “relaxed” one of 0.5% (the value used in [7], [11]), and
the “tighter” 0.01% (the default value for Cplex, considered
a very high accuracy). We should mention that for none of the
approaches there is an a priori guarantee that the obtained in-
teger solution will in fact be accurate with that precision; this
is because the MILP solver stops when its perceived gap is less
than the given threshold, but that gap does not accurately mea-
sure the true one. In fact, for SPWF the lower bound is not a
priori valid, being the objective function of the MILP an upper
approximation of (1); by the same token, however, the upper
bound is a valid one. The converse obviously happens for PCF,
since in that case the objective function of the MILP is a lower
approximation of (1). All this is immaterial in practice, since the
difference between the actual function value and its (both upper
and lower) approximations was always very small, to the tune
of 0.01%. However, to make the comparison absolutely fair the
gaps reported in the following Tables have been computed by
reevaluating the objective function value of the integer solution

provided by the solver using the “true” quadratic objective func-
tion (1), and comparing it with the best valid lower bound we
know for each instance; since the same lower bound is used for
both formulations (note that SPWF does not provide any valid
lower bound for (1)), any difference in gaps is only due to the
quality of the corresponding feasible solutions.

For our tests, we have used two sets of randomly generated re-
alistic pure thermal and hydrothermal instances, with a number
of thermal units ranging from 10 to 200 and a number of hydro
units ranging from 10 to 100, on a daily problem .
These have been generated with a modified version of the pro-
cedure described in [16], which produces a generating set with
“small,” “medium,” and “large” thermal units in realistic pro-
portions; the characteristics of each unit are then randomly gen-
erated within a set of realistic parameters, depending on the
type of the unit. The procedure has only been modified to also
randomly generate realistic ramping restrictions, resulting in
large units to require between two and three hours to ramp from
the technical minimum to the technical maximum. For sim-
plicity, all the instances have time-invariant start-up costs; intro-
ducing time-dependent startup costs in the MILP formulations
is done in the same way for both, and results in the same in-
crease of the number of constraints, thereby it should not mate-
rially impact on the comparison between SPWF and PCF. The
UC instances are freely available at the OR-Library [17], and
have already been used in [6] and [11] for testing Lagrangian
relaxation approaches and MIQP- and MILP-based ones. The
size of the different MILP formulations tested is reported in
Table I; column “ ” reports the total number of thermal gener-
ating units, while column “ ” reports the total number of hydro
units. The first half of the table, with , is therefore com-
posed by “pure thermal” instances; each row reports averaged
results of five instances of the same size. Column “bvar” re-
ports the number of binary variables (equal for all formula-
tions), while columns “cvar” report the number of continuous
variables for, respectively, SPWF and all the P/C-based formu-
lations. Then, columns “const” report the number of (nonbox)
constraints for, respectively, SPWF, PCF, and the for-
mulations; for the latter, this is the initial number, i.e., com-
prising only two P/Cs for each variable. Finally, columns “P/Cs”
report the number of P/Cs dynamically generated by
and , respectively, when the optimality tolerance is set
to the “tight” value of 0.01% (the number is clearly lower with
the “relaxed” tolerance of 0.5%).

A. Comparing Static Formulations at Lower Accuracy

We first analyze the results obtained by comparing SPWF
and PCF with stopping criterion at 0.5%. The results are dis-
played in Table II; columns “SPWF” report results for the SPWF
formulation, while columns “PCF” report results for the PCF
formulation. In both cases, column “time” reports the required
running time (in seconds), column “nd” reports the number of
visited nodes in the enumeration tree, and column “LPs” re-
ports the total number of LP solved; this is much larger than
the number of nodes because Cplex 9.1 employs a sophis-
ticated “branch-and-cut” approach where valid inequalities are
automatically derived and added to the formulation to improve
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TABLE I
DIMENSIONS OF THE DIFFERENT MILP FORMULATIONS

TABLE II
COMPARING SPWF AND PCF FOR LOW ACCURACY

the lower bound. Furthermore, column “gap” reports the ob-
tained gap (in percentage) between the (true) objective function
value of the integer feasible solution reported by the formula-
tion and the best valid lower bound we know for each instance.
Finally, column “rgap” reports the obtained gap (in percentage)
between the lower bound obtained at the root node of the enu-
meration tree (solving the continuous relaxation of the MIP for-
mulation), compared to the best valid upper bound we know for
each instance; since the same upper bound is used for both for-
mulations, the gaps can be compared.

The table shows that both SPWF and PCF obtain good quality
solutions; most often, PCF attains solution of slightly better
quality than SPWF. Furthermore, PCF most often terminates
significantly faster. This is partly due to the fact that solving the
continuous relaxation of PCF is slightly but noticeably faster
than solving that of SPWF (this fact is not reported in the table
due to space reasons), and to a larger extent due to the better root
node gap (cf. column “rgap”). Although the difference may look
minor, the reduction in root node gap is significant enough to
diminish the total number of LPs solved, and often the number
of branch-and-bound nodes, too, finally yielding a consistently
reduced running time. This confirms the better quality of the
lower bound produced by the PCF formulation w.r.t. that pro-
duced by the SPWF formulation, despite the fact that the latter
is not even a guaranteed lower bound since the original objec-
tive function is upper approximated. The table also shows that

TABLE III
COMPARING PCF, ���� , AND ���� FOR LOW ACCURACY

hydrothermal instances typically have smaller gaps than pure
thermal ones; this has always been the case in our experience
(e.g., [11]). Intuitively, the reason is likely to be that hydro units
give the model more flexibility to adapt to the discontinuities
caused by the combinatorial nature of thermal units’ operations.

B. Static versus Dynamic Formulations at Lower Accuracy

Having proven that PCF is a worthy competitor for SPWF, we
now proceed at testing the impact of dynamic versus static gen-
eration of the P/C. For this, we compare PCF with two variants
of , for and , respectively. has the
same maximum size as PCF, but cuts are generated only when
needed, and therefore can “concentrate” on some “critical” vari-
ables, while leaving others (e.g., those that always attain zero
value in the continuous relaxation) with a less accurate, but still
sufficient, approximation of the objective function; furthermore,
the points where the cuts are evaluated are chosen dynamically
by the approach instead of a priori. allows for arbi-
trarily accurate approximations of the objective function, pos-
sibly paying a high price in terms of the size of the linear pro-
grams that need be solved at each node of the enumeration tree.
The results are displayed in Table III, where the meaning of the
columns is the same as in the previous one.

The table shows interesting results. Both dynamic approaches
are competitive with the static one. In particular, it appears that

is remarkably effective for small- to mid-scale in-
stances, while is more effective on the large-scale ones;
for the largest hydrothermal instances it provides slightly better
solutions in half of the time required by PCF. This is probably
due to the fact that for moderate size instances the more accurate
approximation leads to finding a better solution quicker, but as
the size of the instances grows large the increase in the computa-
tional cost of the solution of the linear programs corresponding
to the many more P/C added overbalances the improvements in
accuracy of the objective function. All in all, however, the re-
sults clearly show that an appropriate choice of the parameter
leads to substantially better results w.r.t. the static formulation.

C. Results With Higher Accuracy

Finally, we analyze the impact of the optimality threshold
by presenting the results for all four approaches (SPWF and
the three P/C-based ones) with the “tighter” stopping tolerance
of 0.01%. Since attaining such a high accuracy may require a
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TABLE IV
COMPARING SPWF AND ��� FOR HIGH ACCURACY

very long time, the search is stopped after 10 000 s and the best
solution obtained so far is returned. The results are displayed in
Table IV; the meaning of the columns in this table is the same
as in the previous ones.

As the table shows, allowing the search to continue decreases
the final gap by a significant factor; it does not necessarily bring
it down to 0.01%, even in the (few) instances that are solved
up to the prescribed accuracy, due to the fact that the MILP
formulations are only approximations of the “true” MIQP one.
However, the improvement in accuracy comes at the expense
of a dramatic increase of running times; all but the smallest in-
stances are stopped by the time limit, not a surprising result in
view of the experiments reported in [5]. All the formulations at-
tain similar results; however, for the small-scale instances that
are solved up to the prescribed accuracy within the allotted time
limit the P/C-based formulations are most often (slightly but
noticeably) faster, while providing comparable or better solu-
tions. For the other instances, within the same total running
time the P/C-based formulations are able to attain slightly better
final solutions on large-scale pure thermal instances, and are
competitive on all other cases. The P/C-based formulations are
also competitive for hydro-thermal instances, which however
are solved with a very high degree of accuracy by both methods;
the final gaps are only fractionally larger than 0.01%, and the al-
gorithms cannot stop only because the lower bound computed
by the MILP formulations is not as accurate as the one used
for computing the table, which is based on sophisticated La-
grangian techniques [11]. Among the P/C-based formulations,

appears to be the more “robust,” as it almost always
reports—for a given running time—solutions of equivalent or
(slightly) better quality than all the others.

In general, the results show that the PCF formulation pro-
vides, with the same effort, a better description of the feasible
region (objective function) of the “true” MIQP problem, which
finally leads, ceteris paribus, to shorter running times and/or
better feasible solutions. Allowing the number of P/Cs used, and
the points where they are generated, to be dynamic further sig-
nificantly improves the efficiency of the approach, especially if
the allowed maximum number of cuts is properly managed.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In this paper, we have proposed a new way for constructing
MILP approximated formulations for hydrothermal unit com-
mitment problems. While being not more difficult to implement
than previously proposed formulations, the new approach sig-
nificantly improves the performances of MILP-based heuristics
to the problem, either in terms of required running time, or in
terms of quality of the obtained solutions. With a limited addi-
tional implementation effort dynamic versions of the approach
can be implemented which may lead to further significant im-
provements of the results. While the formulation is tested only
on a “standard” form of the UC problem, the underlying concept
can be applied to many other variants of the problem, where
analogous results should be expected. All in all, these results
show that appropriate formulations of UC problems can be used
to find good-quality solutions in relatively short time by using
off-the-shelf, general-purpose optimization software.
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