
User’s guide of the MSSO-BlockIP package for multistage

stochastic optimization ∗

Jordi Castro1 Laureano F. Escudero2 Juan F. Monge3

1 Dept. of Statistics and Operations Research,
Universitat Politècnica de Catalunya, Barcelona, Catalonia

e-mail: jordi.castro@upc.edu
2 Area of Statistics and Operations Research,

Universidad Rey Juan Carlos, Móstoles (Madrid), Spain
e-mail: laureano.escudero@urjc.es
3 Center of Operations Research,

Universidad Miguel Hernández, Elche (Alicante), Spain
e-mail: monge@umh.es

Abstract

MSSO-BlockIP is a solver for continuous MultiStage Stochastic Optimization (MSSO)
problems which relies on the specialized interior-point algorithm implemented in the
BlockIP package. The class of MSSO problems dealt with by the solver includes
those with either only strategical or both strategical and operational decisions, and
with either linear or separable convex quadratic (i.e., with diagonal Hessian) objective
functions. This short document presents the formulation and input format of MSSO
problems solved by MSSO-BlockIP.

Key words: Multistage stochastic optimization, Interior-point methods, Strategic
and tactical uncertainties, Large-scale optimization

1 Formulation of MSSO problems solved by MSSO-BlockIP

MSSO-BlockIP solves continuous (linear or separable convex quadratic) MultiStage Stochas-
tic Optimization (MSSO) problems using an extension of the specialized interior-point
method of [2, 1] for MSSO problems. MSSO-BlockIP nontrivially extends the approach
initially introduced in [3] for two-stage stochastic optimization.

∗This research has been supported by the projects RTI2018-097580-B-I00 (J. Castro), RTI2018-094269-
B-I00 (L.F. Escudero) and MTM2016-79765-P (J.F. Monge)

1

a

b

c

d

i

j

k

l

g

h

m

n

f

e

1

2

3

4

5

6

7

t=2 t=3t=1

Figure 1: Strategic multistage scenario tree with operational two-stage scenario trees

We briefly introduce below the formulation of MSSO problems considered by the solver.
A complete description of the formulation, algorithm and applications can be found in [4].

A MSSO problem with operational two-stage models, and its associated multistage
scenario tree—as the one of Figure 1, which will be used for illustrative purposes—can be
described by the following sets and parameters:

T , set of stages (T = {1, 2, 3} in Figure 1).

N , set of nodes in the scenario tree (N = {1, . . . , 7} in Figure 1).

Nt, set of nodes in stage t, where Nt ⊂ N , for t ∈ T . By construction, |N1| = {1}. For
instance, N3 = {4, 5, 6, 7} in Figure 1.

Ω, set of scenarios. Each one is made by the nodes in the Hamiltonian path from the root
node 1 to a node, say, ω in the last stage, through the stages in set T ; so, ω ∈ N|T |.
For convenience, a scenario has traditionally been denoted by its last node in the
path. For instance, Ω = {4, 5, 6, 7} in Figure 1.

Ωn ⊆ Ω, scenarios containing node n in the path from root node 1 to ω. Note that Ω1 = Ω.

Sn, strategical successor nodes of node n, for n ∈ N . Note that Sn = ∅, for n ∈ N|T |;
and S1 = N \ {1}.

2

Sn1 ⊆ Sn, immediate strategical successor nodes of node n, for n ∈ N . For instance,
S3 = S3

1 = {6, 7} and S1
1 = {2, 3} in Figure 1.

wn, weight factor representing the likelihood that is associated with node n, for n ∈ N .
Note that wn =

∑
ω∈Ωn w

ω, where wω gives the modeler-driven likelihood associated
with scenario ω, such that

∑
ω∈Ωw

ω = 1.

tn, stage to which node n belongs to, so, n ∈ Ntn . For instance, t7 = 3 in Figure 1.

σn, immediate ancestor node of node n, for n ∈ N . Note: It is assumed that σ1 = ∅. For
instance, σ6 = 3 in Figure 1.

s(1), first strategical node in set Sn1 : tn < |T |, for n ∈ N . For instance, for node 1 of
Figure 1, s(1) = 2.

s(`), last strategical node in set Sn1 : tn < |T |, for n ∈ N (where ` is the number of child
nodes for every node). For instance, ` = 2 in Figure 1; and for node 1, s(2) = 3.

s(i), i-th strategical node in set Sn1 : tn < |T |, for n ∈ N , i = 1, . . . `.

Πn, set of operational scenarios for strategic node n ∈ N . The number of operational
scenarios |Πn| is the same for all n ∈ N , and it will be named |Π|. In Figure 1
operational nodes are in squared boxes, and we have two per strategic node: for
instance, Π1 = {a,b}, Π7 = {m, n}.

π(i), i-th operational node in set Πn, for n ∈ N , i = 1, . . . , |Πn|. For instance, for node
1, π(1) = a and π(2) = b.

wπ, weight or probability of operational scenario π, for π ∈ Πn, such that
∑

π∈Πn w
π = 1,

for t ∈ T .

Using the above definition of sets and parameters, the compact version of the strategic
multistage operational two-stage meta model to consider can be formulated as

min
xn,zn,yπn

∑
n∈N

wn
[
anxn +

1

2
xn>Qnxx

n + bnzn +
1

2
zn>Qnz z

n +
∑
π∈Πn

(
wπcπny

π
n+

1

2
yπn

>Qπny
π
n

)]
(1a)

s.to Tnxσ
n

+Wnxn +Mnzn = hn ∀n ∈ N (1b)

T πn x
n +W π

n y
π
n = hπn ∀π ∈ Πn, n ∈ N (1c)

0 ≤ xn ≤ unx, 0 ≤ zn ≤ unz ∀n ∈ N (1d)

0 ≤ yπn ≤ uπy,n ∀π ∈ Πn, n ∈ N , (1e)

where an, bn, cπn and Qnx, Qnz , Qπn are the vectors and diagonal matrices of the linear and
quadratic terms of the objective function for the variables xn, zn and yπn, respectively; Tn

and Wn are the constraint matrices of the state strategic variables xσ
n

in the first stage and

3

xn in the second stage strategic node n, respectively; Mn is the constraint matrix of the
local strategic variables zn; T πn and W π

n are the constraint matrices of the state strategic
variables xn in the first stage and the operational variables yπn in the second stage of the
two-stage operational scenario π in the related embedded operational two-stage submodels,
respectively; hn and hπ are the rhs of the two-stage strategic and operational constraints,
resp., unx, unz and uπy,n are the upper bounds of the variables in the vectors xn, zn and yπn,
resp.

MSSO-BlockIP, see [4] for details, uses a variable splitting formulation with the fol-
lowing copies of the variables:

xsn, copy of xn in strategic node s, where n is the strategic node that roots the strategic
two-stage tree, and s is a second stage node, for s ∈ Sn1 , n ∈ N : tn < T .

xπn, copy of xn in operational node π, where n is the strategic node that roots the opera-
tional two-stage tree and π is a second stage node, for π ∈ Πn.

Thus, the splitting variable formulation of meta model (1), needed by MSSO-BlockIP is:

min
xn,zn,yπn

∑
n∈N

wn
[
anxn +

1

2
xn>Qnxx

n+ bnzn +
1

2
zn>Qnz z

n +
∑
π∈Πn

(
wπcπny

π
n+

1

2
yπn

>Qπny
π
n

)]
(2a)

s.to xn − xs(1)
n = 0 ∀n ∈ Nt : t < T (2b)

xs(i)n − xs(i+1)
n = 0 ∀i = 1, . . . , `− 1, n ∈ N : tn < T (2c)

Tnxnσn +Wnxn +Mnzn = hn ∀n ∈ N (2d)

xs(`)n − xπ(1)
n = 0 ∀n ∈ N (2e)

xπ(i)
n − xπ(i+1)

n = 0 ∀i = 1, . . . , |Πn| − 1, n ∈ N (2f)

T πn x
π
n +W π

n y
π
n = hπ ∀π ∈ Πn, n ∈ N (2g)

0 ≤ xn ≤ unx, 0 ≤ zn ≤ unz ∀n ∈ N (2h)

0 ≤ xs(i)n ≤ unx, ∀i = 1, . . . , `, n ∈ N (2i)

0 ≤ xπ(i)
n ≤ unx, ∀i = 1, . . . , |Πn|, n ∈ N (2j)

0 ≤ yπn ≤ uπy,n ∀π ∈ Πn, n ∈ N . (2k)

Since MSSO-BlockIP relies on the BlockIP solver, problem (2) must be recast in the

4

standard primal block angular form of BlockIP:

min
x1,...,xk

k∑
i=1

(
(ci)>xi + (xi)>Qixi

)

s. to


N1

N2

. . .

Nk

R1 R2 . . . Rk I




x1

x2

...
xk

x0

 =


b1

b2

...
bk

b0


0 ≤ xi ≤ ui i = 0, . . . , k.

(3)

Matrices Ni and Ri, i = 1, . . . , k are related to block and linking constraints, respectively,
k being the number of blocks. Vector xi contains the variables of block i, for i = 1, . . . , k.
Vector x0 has the slacks of the linking constraints; if they are equalities we set u0 = 0
(in practice 0 is replaced by a very small tolerance). Both linear and convex quadratic
separable costs, defined by vectors ci and (diagonal and positive semidefinite) matrices Qi

are considered.

Model (2) can be rewritten to match the standard form (3) by considering an appropri-
ate reordering of the variables and constraints. This reordering is also instrumental for the
performance of the interior-point algorithm since it avoids fill-in for the linking constraints
(see [4] for details). The order of variables considered is based on a breadth-first-search
(BFS) of the scenario tree (that is, nodes are explored by stages). And for each node n
in the BFS, the first variables considered are those involved in the (nested) two-stage tree
made by node n and its successor nodes s ∈ Sn1 (including all copies xsn, local variables zs,
and state variables xs), followed by the variables in the operational tree made by n and
π ∈ Πn (that is, xπn and yπn). For instance, for the scenario tree of Figure 1 the constraints
matrix in standard form (3) is shown in Figure 2 for only the strategic tree, and in Figure
3 for the strategic and operational tree. In these figures, vertical lines separate the k
blocks of the problem; a double horizontal line separates the diagonal block constraints
Nix

i = bi from the linking constraints, and, within the linking constraints part, a hori-
zontal line separates the constraints of different—nested—two-stage trees. Note that in

general the number of blocks is k =
`|T | − 1

`− 1
(|Π| + 1) (e.g., in Figure 2 we have ` = 2,

|T | = 3 and |Π| = 0, so k = 23 − 1 = 7; while in Figure 3 |Π| = 2 and k = 21).

The MSSO problem must be provided to MSSO-BlockIP in the input format described
in next Section 2.

2 Input format for MSSO problems

The user must provide information about the structure of the scenario tree (stages, number
of strategic and operational nodes, etc), and all the data needed to build problem (3),

5

x1 z1 x21 x2 z2 x31 x3 z3 x42 x4 z4 x52 x5 z5 x63 x6 z6 x73 x7 z7

W 1 M1

T 2 W 2 M2

T 3 W 3 M3

T 4 W 4 M4

T 5 W 5 M5

T 6 W 6 M6

T 7 W 7 M7

I −I
I −I

I −I
I −I

I −I
I −I

Figure 2: Constraints structure for scenario tree of Figure 1 considering only strategic
nodes

that is, block matrices Ni, rhs vectors bi, linear and quadratic costs ci and Qi, and upper
bounds ui for i = 1, . . . , k. The order of the blocks, and the order of the variables within
the blocks, must match the one illustrated in Figures 2 and 3. Vectors and matrices related
to linking constraints (that is, b0, u0 and Ri for i = 1, . . . , k) do not need to be provided,
since they are internally dealt with by MSSO-BlockIP from the information about the tree
of scenarios. This information is provided through a text file with the following format:

#Lines starting with # are not read, and they can be used to comment the file.

#Number of stages |T|

|T |
#Number of strategical successor nodes per node

`

#Number of operational nodes; if 0, no operational tree considered

|Π|
#For each stage t= 1..|T|, number nvstr_t of strategical variables (state variables x

#and local variables z) in the nodes of stage t. The number of variables

#to be copied (the x) must be less or equal than nvstr

nvstr1
nvstr2
...

nvstr|T |
#For each stage t= 1..|T|, number nvsplit_t of state variables x to be splitted

#in nodes of stage t. Note that nvsplit_t <= nvstr_t

nvsplit1
nvsplit2
...

nvsplit|T |
#For each stage t= 1..|T|, number of local variables y in operational nodes of stage t

#If the number of operational nodes is 0, nothing to be read (no line needed)

6

x
1

z
1

x
2 1

x
2

z
2

x
3 1

x
3

z
3

x
a 1

y
a 1

x
b 1

y
b 1

x
4 2

x
4

z
4

x
5 2

x
5

z
5

x
c 2

y
c 2

x
d 2

y
d 2

x
6 3

x
6

z
6

x
7 3

x
7

z
7

x
e 3

y
e 3

x
f 3

y
f 3

x
g 4

y
g 4

x
h 4

y
h 4

x
i 5

y
i 5

x
j 5

y
j 5

x
k 6

y
k 6

x
l 6

y
l 6

x
m 7

y
m 7

x
n 7

y
n 7

W
1

M
1

T
2

W
2

M
2

T
3

W
3

M
3

T
a 1

W
a 1

T
b 1

W
b 1

T
4

W
4

M
4

T
5

W
5

M
5

T
c 2

W
c 2

T
d 2

W
d 2

T
6

W
6

M
6

T
7

W
7

M
7

T
e 3

W
e 3

T
f 3

W
f 3

T
g 4

W
g 4

T
h 4

W
h 4

T
i 5

W
i 5

T
j 5

W
j 5

T
k 6

W
k 6

T
l 6

W
l 6

T
m 7

W
m 7

T
n 7

W
n 7

I
−
I I

−
I I

−
I I

−
I

I
−
I I

−
I I

−
I I

−
I

I
−
I I

−
I I

−
I I

−
I

I
−
I I

−
I

I
−
I I

−
I

I
−
I I

−
I

I
−
I I

−
I

F
ig

u
re

3
:

C
on

st
ra

in
ts

st
ru

ct
u

re
fo

r
sc

en
ar

io
tr

ee
of

F
ig

u
re

1
co

n
si

d
er

in
g

st
ra

te
gi

c
an

d
op

er
at

io
n

al
n

o
d

es

7

nvoper1
nvoper2
...

nvoper|T |
#Number of blocks k

k

#For each block i=1..k, matrix N_i. The structure of N_i depends of block i.

#For instance, N_1= [W^1 M^1], N_j= [T^s W^s M^s] if j is block of strategical node s,

#N_j= [T^p W^p] if j is block of operational node p

#N_1

Here goes N1 (see below input format for matrices)

#N_2

Here goes N2 (see below input format for matrices)
...

#N_k

Here goes Nk (see below input format for matrices)

#Type of objective function: 0=linear 1=quadratic

0 or 1

#For each block i=1..k, linear and quadratic costs c^i and Q^i

#If objective is linear leave empty Q entries

#Ordered by blocks, and by variable within blocks

c11 Q1
11

...

c1n1
Q1

n1,n1
(n1 is the number of variables of block 1)

c21 Q2
11

...

c2n2
Q2

n2,n2
(n2 is the number of variables of block 2)

...

ck1 Qk
11

...

cknk
Qk

nk,nk
(nk is the number of variables of block k)

#For each block i=1..k, upper bounds u^i

#Ordered by blocks, and by variable within blocks

u1
1

...

u1
n1

(n1 is the number of variables of block 1)

u2
1

...

u2
n2

(n2 is the number of variables of block 2)
...

uk
1

8

...

uk
nk

(nk is the number of variables of block k)

#For each block i=1..k, right-hand-sides b^i

#Ordered by blocks, and by variable within blocks

b1
1

...

b1
m1

(m1 is the number of constraints of block 1)

b2
1

...

b2
m2

(m2 is the number of constraints of block 2)
...

bk
1

...

bk
mk

(mk is the number of constraints of block k)

The format for matrices N i, i = 1, . . . , k is as follows:

#Format for a general sparse matrix M.

#First line gives m,n,nnz: number of rows, columns and nonzeros in matrix.

#Next h=1,...,nnz lines provide i(h),j(h),a(h): row, column and value of h entry.

#One-indexed arrays considered, so 1<=i(h)<=m, 1<=j(h)<=n for h=1,...,nnz.

m n nnz

i1 ji a1
...

innz jnnz annz

3 Usage of MSSO-BlockIP

To solve a problem with MSSO-BlockIP we just run:

MSSO-BlockIP input_file {options}

The parameter input file contains the MSSO problem (in the format described in Section
2). The available options, most of them related to the specialized interior-point algorithm
implemented in BlockIP, are (see [1, 2] for details):

-out {name}

Output file for optimal variables (if not provided, solution is not reported)

-mps {name}

If name is provided, an mps format of the problem is written to filename ’name’

-only_mps {name}

If name is provided, the program stops after writing mps format (problem

9

is not solved)

-inf {value}

Set infinity value to be considered

-ub_slacks_linking {double >0}

Upper bound of slacks of linking constraints of splitted variables, must be close to 0. Default is 1e-6

-m_pw_prec {value}

Set number of terms used as preconditioner of the power series expansion

of (D-C’*B^{-1}*B)^{-1}

-sigma {value}

Set reduction of the centrality parameter at each IP iteration

-rho {value}

Set reduction of the step-length for the primal and dual variables at each

IP iteration

-optim_gap {value}

Set optimality gap tolerance

-optim_pfeas {value}

Set primal feasibility tolerance

-optim_dfeas {value}

Set dual feasibility tolerance

-output_freq {value}

Set output information lines will be printed each output_freq IP iterations

-output {value}

Set type of output. Can take the values: 0= NONE, 1= SCREEN, 2= FILE, 3=BOTH

-maxiter {value}

Set maximum number of IP iterations

-min_pcgtol {value}

Set minimum tolerance for the conjugate gradient

-red_pcgtol {value}

Set reduction of pcg_tol at each IP iteration

-init_pcgtol {value}

Set initial tolerance for the conjugate gradient (by default PCG_TOL_LIN

if linear problem, PCG_TOL_QUAD if quadratic or -convex- nonlinear)

-type_start_point {value}

Set how starting point is computed. Can take the values:

0= SIMPLE, 1= QUAD_EQCONS_PROB

-type_comp_dy {value}

Set how dy direction is computed. Can take the values: 0= CHOL_PWRS_PCG,

1= FULL_CHOL, 2= HYBRID_PCG, 3= CHOL_THETA0_PCG, 4= PWRS_THETA0_PCG,

5=THETA0_PWRS_PCG, 6=AUT_PWRSTHETA0_PCG, 7=DYN_PWRSTHETA0_PCG

-type_direction {value}

Set which direction is computed. Can take the values: 0= NEWTON,

1= SECOND_ORDER, 2= AUTOMATIC

-deactivateLnk {value}

Set flag on deactivation of linking

-type_reg {value}

Set type of regularization performed. Can take the values: 0=NO_REG,

1= QUAD_REG, 2= PROX_REG

-factor_reg {value}

Set initial value for regularization term

10

-show_specrad {y/n}

Whether estimation of spectral radius by Ritz values is shown

at each IP iteration

-show_princ_angles {y/n}

Whether average principal angles between L and N are shown when computed

-threshold_angle {value}

Set threshold principal angle to switch between PWRS and THETA0 preconditioners

-threshold_specrad {value}

Set threshold spectral radius to switch between PWRS and THETA0 preconditioners

-it_Theta0PWRS {value}

Set number of iterations between checks to switch between PWRS and THETA0

-type_comp_angle {value}

Set how principal angles are computed. Possible values are:

0= LINEARCOMB, 1= AVERAGE

-gap_changeChol {value}

Change to Cholesky if duality gap below this value

-zero_pivots {value}

Max number of zero pivots allowed in Cholesky factorization

-show_zero_pivots {y/n}

Show_zero_pivots at each IP iteration

-stop_if_PCG_fails {y/n}

If PCG fails stop, do not switch to Cholesky, useful if instance is large

-freevars {0/1}

How to deal with free variables: 0=SPLIT , 1=REGULARIZE

-threads n

Set number of threads (by default 1; if n<=1, 1; otherwise

min{n,max number of threads})

References

[1] J. Castro (2016). Interior-point solver for convex separable block-angular problems.
Optimization Methods and Software, 31:88-109.

[2] J. Castro & J. Cuesta (2011). Quadratic regularizations in an interior-point method
for primal block-angular problems. Mathematical programming, 130:415-445.

[3] J. Castro & P. de la Lama-Zubirán (2020). A new interior-point approach for
large two-stage stochastic problems. Optimization Methods and Software, doi:
10.1080/10556788.2020.1841190

[4] J. Castro & L.F. Escudero & J.F. Monge (2021). On solving large multistage stochas-
tic problems with a new specialized interior-point approach. Submitted.

11

	Formulation of MSSO problems solved by MSSO-BlockIP
	Input format for MSSO problems
	Usage of MSSO-BlockIP

