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Universitat Politècnica de Catalunya,

Jordi Girona 1–3, 08034 Barcelona, Catalonia
jordi.castro@upc.edu

http://www-eio.upc.edu/~jcastro

Abstract. Minimum distance controlled tabular adjustment (CTA) is a
recent perturbative technique of statistical disclosure control for tabular
data. Given a table to be protected, CTA looks for the closest safe table,
using some particular distance. We focus on the continuous formulation
of CTA, without binary variables, which results in a convex optimization
problem for distances L1, L2 and L∞. We also introduce the L0-CTA
problem, which results in a combinatorial optimization problem. The two
more practical approaches, L1-CTA (linear optimization problem) and
L2-CTA (quadratic optimization problem) are empirically compared on
a set of public domain instances. The results show that, depending on
the criteria considered, each of them is a better option.

Keywords: statistical disclosure control, controlled tabular adjustment,
linear optimization, quadratic optimization.

1 Introduction

Controlled tabular adjustment methods (CTA) [1,7] are considered an emerging
technology for tabular data [10]. In terms of efficiency and quality of the solution,
they usually perform well compared to other techniques [2,3].

CTA was initially [7] only formulated for L1 norms and binary variables for
deciding the sense of protection for the sensitive cells, i.e., whether to perturb
up or down the original cell value. In [1] L2 and L∞ were also considered in
continuous formulations, i.e., the protection sense was a priori fixed without
paying attention to infeasibility issues [4]. Results for the two most practical
distances, L1 and L2, were presented in [1,3], but without a detailed comparison
of the reported solutions. In addition, the same cell weights were used for L1

and L2 in the empirical results of [1,3]; as it will be stated later in this work,
the comparison was unfair, since the weights used favored L1. This work tries to
fill this void by performing a more exhaustive empirical evaluation of L1-CTA
versus L2-CTA. A new variant L0-CTA, closer to L1-CTA than to L2-CTA, will
also be formulated.
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The paper is organized as follows. Section 2 formulates the continuous CTA
problem (i.e., a priory fixing the value of binary variables) for L0, L1, L2 and
L∞. Section 3 introduces the criteria considered in the comparison of L1-CTA
and L2-CTA. Finally, Section 4 reports the computational comparison.

2 Formulations of CTA for Several Distances

Any CTA instance can be represented by the following parameters:

– A set of cells ai, i ∈ N = {1, . . . , n}, that satisfy some linear relations Aa = b
(a being the vector of ai’s). The particular structure of the table is defined
by equations Aa = b. Each tabular constraint imposes that the inner cells
have to be equal to the total or marginal cell. Any type of table can be
modeled by these equations.

– A lower and upper bound for each cell i ∈ N , respectively lai and uai , which
are considered to be known by any attacker. If no previous knowledge is
assumed for cell i lai = 0 (lai = −∞ if a ≥ 0 is not required) and uai = +∞
can be used.

– A set S = {i1, i2, . . . , is} ⊆ N of indices of confidential cells.
– Nonnegative lower and upper protection levels for each confidential cell i ∈

S, respectively lpli and upli, such that the released values satisfy either
xi ≥ ai + upli or xi ≤ ai − lpli.

CTA attempts to find the closest safe values xi, i = 1, . . . , n, according to some
distance L, that makes the released table safe. This involves the solution of the
following optimization problem:

min
x

||x− a||L
s. to Ax = b

lai ≤ xi ≤ uai i ∈ N
(xi ≤ ai − lpli) or (xi ≥ ai + upli) i ∈ S.

(1)

Introducing a vector of binary variables y ∈ R
s to model the disjunctive con-

straints (either “upper protection sense”xi ≥ ai + upli when yi = 1 or “lower
protection sense” xi ≤ ai − lpli when yi = 0), the above problem can be for-
mulated as a mixed integer linear optimization problem (MILP), which can be
time consuming for medium-large instances.

A more efficient alternative for the real-time protection in on-line tabular data
servers —or in other situations where processing time matters (like when pro-
tecting very large sets of linked tables)— would be to a priori fix the binary
variables, thus obtaining a CTA formulation with only continuous variables
[5]. Possible infeasibilities in the resulting problem could be dealt with the ap-
proaches exposed in [6], some of them already used in the context of CTA [4]. For-
mulating problem (1) in terms of cell deviations z = x−a, and fixing the binary
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variables, the resulting continuous CTA problem can be, in general, formulated
as the following convex optimization problem:

min
z

||z||L
s. to Az = 0

l ≤ z ≤ u,

(2)

where

li =

{
upli if i ∈ S and yi = 1
lai − ai if (i ∈ N \ S) or (i ∈ S and yi = 0)

ui =

{−lpli if i ∈ S and yi = 0
uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1).

(3)

Problem (2) can be specialized for several norms. For L1, defining z = z+ − z−,
we obtain the following linear optimization problem (LP):

min
z+,z−

n∑
i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
l+ ≤ z+ ≤ u+

l− ≤ z− ≤ u−,

(4)

w ∈ R
n being a vector of nonnegative cell weights, z+ ∈ R

n and z− ∈ R
n the

vector of positive and negative deviations in absolute value, and l+, l−, u+, u− ∈
R

n lower and upper bounds for the positive and negative deviations defined as

l+i =

{
upli if i ∈ S and yi = 1
0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+
i =

{
0 if i ∈ S and yi = 0
uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i =

{
lpli if i ∈ S and yi = 0
0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−
i =

{
0 if i ∈ S and yi = 1
ai − lai if (i ∈ N \ S) or (i ∈ S and yi = 0).

(5)

For L2, problem (2) can be recast as the following quadratic optimization prob-
lem (QP):

min
z

n∑
i=1

wiz
2
i

s. to Az = 0
l ≤ z ≤ u.

(6)
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Although L1 and L2 are the most practical norms, we provide formulations for
two additional ones, L∞ and L0. For L∞, adding an extra auxiliary variable
t ∈ R and considering, as for the L1 distance, z = z+ − z−, we have:

min
z

t

s. to Az = 0
t ≥ z+i + z−i i ∈ N
l+ ≤ z+ ≤ u+

l− ≤ z− ≤ u−,

(7)

l+, l−, u+, u− ∈ R
n defined as above.

The L0 norm is a measure of the sparsity of a vector, and it is defined as
the number of nonzero elements in the vector. In the context of CTA the min-
imization of the L0 norm would provide the vector of deviations that modifies
the smallest number of cells. The main inconvenience of this norm is that, even
if the binary variables y of CTA have been fixed, it results in a combinatorial
optimization problem. L0-CTA is formulated as

min
z

n∑
i=1

di

s. to Az = 0
l ≤ z ≤ u
lidi ≤ zi ≤ uidi i ∈ N
d ∈ {0, 1}n,

(8)

such that di = 1 if cell i changes, and 0 otherwise.
L0-CTA is a difficult combinatorial problem. L1 norms are known to provide

sparse enough solutions in practice [8]. Indeed, since (4) is a LP, its solutions are
basic (i.e., in vertices of the polyhedron), which are sparse. This does not hold
for the quadratic optimization problem (6) of L2-CTA. Therefore, L1-CTA is a
better approximation to L0-CTA than L2-CTA. This assertion will be empirically
observed in Section 4.

3 Criteria for the Comparison of L1-CTA and L2-CTA

L1 and L2 are widely used in regression analysis. L2 regression (ordinary least
squares) is simpler to compute, but L1 regression is known to be more robust
in the presence of outliers. However, there is one main difference between linear
regression and CTA: in linear regression we have observations (possibly with
outliers) and look for the theoretical linear model; on the other hand, in CTA
we already have the “theoretical model” (the original table) and look for the
“observations” (a perturbed safe table). Therefore, by the same reason that L2

regression is more sensitive to outliers than L1 regression, L2-CTA will hardly
provide a table with large cell deviations (“outliers”), compared to L1-CTA.
This is also clear from the different objectives of L2-CTA (quadratic function)
and L1-CTA (linear function).
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However, if we look at the comparison made in [3] between the absolute rel-
ative deviations of L1-CTA and L2-CTA, we note that, unexpectedly, L2-CTA
provided larger absolute relative deviations than L1-CTA. However, this was due
to the use of the weights of (4) in (6). If our purpose is to minimize the over-
all absolute relative deviations, then the cell weights of (4) have to be defined

as wi = 1/ai, and the objective function becomes
∑n

i=1
z+
i +z−

i

ai
. To achieve the

same goal in (6) these weights are no longer valid, and instead we should use

w′
i = 1/a2i , such that the objective function of (6) is

∑n
i=1

(
zi
ai

)2

. The compu-

tational results of Section 4 for L1-CTA and L2-CTA were obtained using these
two different sets of weights for each problem. As it will be shown, using these
correct weights, L2-CTA provides less large relative deviations, as expected.

The particular criteria selected for the comparison of problems (4) and (6)
are the following:

– CPU time, for the efficiency of each model.
– Mean and standard deviation of the absolute relative deviations. They are

included as basic statistics.
– The maximum absolute relative deviation, which according to the previous

discussion, should be in general smaller for L2-CTA than for L1-CTA (as it
will be validated by the computational results of next section). From now
on, “relative deviations” will be used for “absolute relative deviations”.

– The number of cells with “large” relative deviations. This criteria was intro-
duced in [3] as a measure of “data utility”: the smaller the number of cells
with large relative deviations, the higher the data utility. In this work we
considered “large” relative deviations greater than a certain threshold value:
one fourth of the maximum relative deviation provided by L1-CTA (which
was always greater than the maximum relative deviation of L2-CTA in the
tests performed). This particular threshold value was obtained by observing
in the distribution of relative deviations some few very large values, whereas
most of them were concentrated around 0.

– The number of nonzero relative deviations, i.e., the L0 norm of the vector
of relative deviations, or equivalently, the number of cells that change its
value in the protected table. According to the discussion in Section 2, in
theory this number should be smaller for L1-CTA than for L2-CTA. The
computational results of next section validate this assertion.

4 Computational Results

We have considered a set of 36 public instances which can be found in the
literature (e.g., in [1,2]). Table 1 shows the main dimensions of these instances
and the solution time needed to solve the optimization problems (4) and (6)
with the interior-point algorithm of the state-of-the-art optimization package
Cplex [11]. Interior-point algorithms [12] have shown to be, in general, the most
efficient approach for CTA formulations involving only continuous variables [1].
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Table 1. Dimensions and solution time of the test instances

L1 L2

instance n s m nz vars CPU vars CPU

australia ABS 24420 918 274 13224 48840 0.2 24420 0.08
bts4 36570 2260 36310 136912 73140 9.54 36570 4.87
cbs 11163 2467 244 22326 22326 0.04 11163 0.01
dale 16514 4923 405 33028 33028 0.32 16514 0.07
destatis 5940 621 1464 18180 11880 0.31 5940 0.5
five20b 34552 3662 52983 208335 69104 54.31 34552 29.28
five20c 34501 4022 58825 231345 69002 152.88 34501 41.69
hier13d4 18969 2188 47675 143953 37938 809.37 18969 45.23
hier13 2020 112 3313 11929 4040 0.78 2020 0.6
hier13x13x13a 2197 108 3549 11661 4394 0.7 2197 0.67
hier13x13x13b 2197 108 3549 11661 4394 0.88 2197 0.65
hier13x13x13c 2197 108 3549 11661 4394 0.77 2197 0.54
hier13x13x13d 2197 108 3549 11661 4394 0.75 2197 0.58
hier13x13x13e 2197 112 3549 11661 4394 0.68 2197 0.44
hier13x13x7d 1183 75 1443 5369 2366 0.19 1183 0.07
hier13x7x7d 637 50 525 2401 1274 0.06 637 0.03
hier16 3564 224 5484 19996 7128 2.59 3564 2.68
hier16x16x16a 4096 224 5376 21504 8192 2.21 4096 2.3
hier16x16x16b 4096 224 5376 21504 8192 2.12 4096 3.26
hier16x16x16c 4096 224 5376 21504 8192 2.08 4096 2.49
hier16x16x16d 4096 224 5376 21504 8192 2.02 4096 2.52
hier16x16x16e 4096 224 5376 21504 8192 2.07 4096 2.41
nine12 10399 1178 11362 52624 20798 5.99 10399 9.47
nine5d 10733 1661 17295 58135 21466 3.48 10733 4.86
ninenew 6546 858 7340 32920 13092 4.11 6546 6.61
osorio 10201 7 202 20402 20402 0.17 10201 0.07
table1 1584 146 510 4752 3168 0.1 1584 0.03
table3 4992 517 2464 19968 9984 0.39 4992 0.43
table4 4992 517 2464 19968 9984 0.38 4992 0.41
table5 4992 517 2464 19968 9984 0.35 4992 0.79
table6 1584 146 510 4752 3168 0.07 1584 0.02
table7 624 17 230 1872 1248 0.04 624 0.01
table8 1271 3 72 2542 2542 0.02 1271 0
targus 162 13 63 360 324 0 162 0
toy3dsarah 2890 376 1649 9690 5780 0.06 2890 0.04
two5in6 5681 720 9629 34310 11362 1.58 5681 1.71
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The AMPL modeling language was used to implement the L1-CTA and L2-
CTA models (but the CPU time shown in Table 1 only corresponds to the
time spent by Cplex in the optimization process). Columns n, s, m and “nz”
report, respectively, the number of cells, number of sensitive cells, number of
constraints and number of nonzeros of the constraints matrix A. Columns “vars”
and “CPU” provide the number of variables and solution time of, respectively,
the optimization problems (4) and (6) for L1 and L2 distances. All runs were
carried out on a Fujitsu Primergy RX300 server with 3.33GHz Intel Xeon X5680
CPUs and 144 GB of RAM, under a GNU/Linux operating system (Suse 11.4),
without exploitation of parallelism capabilities (these continuous LP problems
can also be solved in a much smaller laptop or desktop PC).

Tables 2 and 3 report some statistics about the vector of absolute relative
deviations (i.e., |zi|/ai, i ∈ N ) provided by problems (4) and (6), respectively
for all the cells i ∈ N and for nonsensitive cells i ∈ N \ S. This distinction is
made to avoid the possible bias introduced by sensitive cells, which are by its
nature always perturbed. Separate results for sensitive cells are not provided
to avoid an excessive length of the document. Columns “mean” show the mean
relative deviation. Columns “stdev” give the standard deviation of the vector
of relative deviations. Columns “max” show the maximum relative deviation.
Columns “#large” report the number of large relative deviations, computed as
the number of cells with a relative deviation greater than a certain threshold
value; the threshold value considered was one fourth of the maximum relative
deviation obtained with L1. Columns L0 show the L0 norm of the vector of
relative deviations (i.e., the number of nonzero deviations, or, equivalently, the
number of cells that changed their value).

From columns “mean” and “stdev” of tables 2–3 we clearly see that L1 pro-
vides smaller means while L2 provides smaller standard deviations of the relative
adjustments. This is consistent with the behaviour of the linear and quadratic ob-
jectives of the optimization problems (4) and (6): L2 usually adds small changes
to a larger number of cells but the values of deviations are more concentrated
(large values are avoided, as seen below). The rest of information in tables 1–3 is
partly summarized in figures 1–4. Figure 1 shows the difference of the CPU time
needed by L1-CTA and L2-CTA. We observe that problem (4) always required
more CPU time than (6), and in the most difficult instance “hier13d4” about
764 more CPU seconds (809 vs 45 seconds). If efficiency was instrumental, e.g.,
for the (real-time) protection of large tables in on-line servers, L2 may be more
appropriate than L1.

Figure 2 shows the difference of the maximum relative deviations provided
by L1-CTA and L2-CTA. Although this is not guaranteed in theory, in all these
executions the difference was positive (i.e., the maximum deviations reported by
L1-CTA were greater than those of L2-CTA). Looking at the plot of Figure 2 we
also observe that the difference increases with the number of cells of the table. It
is worth to note that for instance “australia ABS” the maximum deviations are
significantly larger than for the other instances. This can be explained because
this (likely frequency) table has some few large sensitive cells (and accordingly,
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Table 2. Results for the relative deviations of all the cells

L1 L2

instance mean stdev max #large L0 mean stdev max #large L0

australia ABS 1.64 17.55 1305.77 12 1134 2.37 12 364.02 1 6608
bts4 0.74 1.97 11.11 3000 35834 0.78 1.93 11.11 2795 31955
cbs 10.45 19.22 100 2690 2762 10.5 19.19 100 2681 2875
dale 16.87 30.19 100 4021 5284 16.94 30.15 100 4019 14931
destatis 1 4.25 50 95 2380 1.02 4.24 50 95 3841
five20b 1.38 2.28 17.38 4428 34478 1.44 2.18 10 4283 34551
five20c 1.53 2.36 14.77 5247 34473 1.59 2.27 10.85 4996 34500
hier13d4 1.38 2.24 9.98 3541 13018 1.45 2.12 9.98 3155 18968
hier13 0.81 1.72 9.97 194 1523 0.84 1.67 9.97 176 2020
hier13x13x13a 0.72 1.67 9.97 190 1454 0.75 1.63 9.97 176 2020
hier13x13x13b 0.72 1.67 9.97 190 1454 0.75 1.63 9.97 176 2020
hier13x13x13c 0.72 1.67 9.97 190 1454 0.75 1.63 9.97 176 2020
hier13x13x13d 1.44 3.33 19.94 190 1376 1.5 3.25 19.94 176 2020
hier13x13x13e 1.44 3.33 19.94 190 1289 1.5 3.25 19.94 176 2020
hier13x13x7d 0.72 1.78 9.97 109 538 0.75 1.75 9.97 102 1040
hier13x7x7d 0.73 1.88 9.97 63 236 0.77 1.86 9.97 58 519
hier16 0.83 1.84 10 309 2715 0.87 1.8 10 289 3564
hier16x16x16a 0.7 1.74 10 309 3009 0.74 1.71 10 289 3564
hier16x16x16b 0.7 1.74 10 309 3009 0.74 1.71 10 289 3564
hier16x16x16c 0.7 1.74 10 309 3009 0.74 1.71 10 289 3564
hier16x16x16d 1.4 3.48 20 309 2675 1.47 3.42 20 289 3564
hier16x16x16e 1.4 3.48 20 309 2675 1.47 3.42 20 289 3564
nine12 1.35 2.34 12.55 1561 8013 1.43 2.23 10 1452 10398
nine5d 1.67 2.69 10 2497 6336 1.78 2.53 10 2061 10732
ninenew 1.56 2.47 16.16 1056 4406 1.64 2.35 10.3 1020 6545
osorio 0.03 1.15 100 2 16 0.05 1.09 100 2 9997
table1 0.57 1.53 5.02 192 849 0.59 1.52 5 184 962
table3 1.43 3.49 66.19 1 1860 1.45 3.32 11.93 0 2397
table4 1.43 3.49 66.19 1 1860 1.45 3.32 11.93 0 2397
table5 1.43 3.49 66.19 1 1860 1.45 3.32 11.93 0 2397
table6 0.57 1.53 8.39 177 891 0.59 1.52 5 173 962
table7 4.56 25.2 160 20 113 4.63 25.18 160 19 484
table8 0.03 0.52 11.11 3 10 0.03 0.52 11.11 3 1200
targus 2.88 9.32 33.4 14 61 2.89 9.32 33.4 14 115
toy3dsarah 0.62 1.38 4 484 727 0.62 1.37 4 482 727
two5in6 1.46 2.49 10 1071 4451 1.56 2.37 10 957 5680
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Table 3. Results for the relative deviations of nonsensitive cells

L1 L2

instance mean stdev max #large L0 mean stdev max #large L0

australia ABS 0.8 12.59 809.94 24 218 1.42 9.2 267.5 4 5692
bts4 0.31 0.83 11.03 758 33574 0.35 0.75 11.03 546 29695
cbs 0.98 6.01 54.55 231 295 1.04 5.97 54.55 231 408
dale 0.43 4.16 83.33 90 361 0.53 4.13 83.33 88 10008
destatis 0.13 0.85 38.89 3 1759 0.15 0.84 38.89 3 3220
five20b 0.74 1.15 13.71 1228 30816 0.81 0.99 9.91 936 30889
five20c 0.84 1.23 10.5 2103 30451 0.91 1.06 9.89 1638 30478
hier13d4 0.74 1.23 8.68 1667 10830 0.82 1 8.68 1125 16780
hier13 0.49 1.02 8.28 103 1411 0.52 0.95 8.28 80 1908
hier13x13x13a 0.44 1.03 9.36 89 1346 0.47 0.97 9.36 71 1912
hier13x13x13b 0.44 1.03 9.36 89 1346 0.47 0.97 9.36 71 1912
hier13x13x13c 0.44 1.03 9.36 89 1346 0.47 0.97 9.36 71 1912
hier13x13x13d 0.87 2.06 18.72 89 1268 0.94 1.95 18.72 71 1912
hier13x13x13e 0.85 1.97 17.27 92 1177 0.91 1.85 16.56 73 1908
hier13x13x7d 0.35 0.93 8.28 43 463 0.38 0.88 8.28 40 965
hier13x7x7d 0.26 0.74 6.78 21 186 0.29 0.69 6.78 17 469
hier16 0.43 0.78 7.59 138 2491 0.47 0.7 7.59 101 3340
hier16x16x16a 0.34 0.74 7.59 141 2785 0.38 0.67 7.59 105 3340
hier16x16x16b 0.34 0.74 7.59 141 2785 0.38 0.67 7.59 105 3340
hier16x16x16c 0.34 0.74 7.59 141 2785 0.38 0.67 7.59 105 3340
hier16x16x16d 0.69 1.47 15.18 141 2451 0.76 1.34 15.18 105 3340
hier16x16x16e 0.69 1.47 15.18 141 2451 0.76 1.34 15.18 105 3340
nine12 0.67 1.15 12.55 389 6835 0.76 0.94 8.95 280 9220
nine5d 0.73 1.31 9.78 873 4675 0.85 0.99 8.79 423 9071
ninenew 0.79 1.29 16.16 210 3548 0.88 1.06 10.3 172 5687
osorio 0.01 0.36 20 7 9 0.03 0.05 0.57 0 9990
table1 0.12 0.62 5.02 46 703 0.14 0.6 5 38 816
table3 0.44 2.01 66.19 1 1343 0.46 1.68 10.86 0 1880
table4 0.44 2.01 66.19 1 1343 0.46 1.68 10.86 0 1880
table5 0.44 2.01 66.19 1 1343 0.46 1.68 10.86 0 1880
table6 0.12 0.62 8.39 31 745 0.14 0.6 5 27 816
table7 0.59 8.44 144 3 96 0.66 8.41 144 2 467
table8 0 0.03 0.81 3 7 0 0.03 0.78 3 1197
targus 0.25 2.74 33.36 1 48 0.26 2.74 33.36 1 102
toy3dsarah 0.14 0.62 4 108 351 0.15 0.61 4 106 351
two5in6 0.69 1.23 9.69 376 3731 0.79 0.99 8.53 248 4960
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Fig. 1. Difference of the CPU time of L1 and L2 (in log scale) vs number of cells (in
log scale)
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Fig. 2. Difference of the maximum relative deviations provided by L1 and L2 (in log
scale) vs number of cells (in log scale), for (a) all the cells, and (b) nonsensitive cells

with large protection levels), much larger than the other sensitive and nonsensi-
tive cells. Therefore, it may be stated than, specially in frequency tables, when
some relatively small cells must compensate the necessary perturbations of some
large sensitive cells, we can expect large maximum relative deviations.

Figure 3 plots the difference of the number of cells with large relative devia-
tions between L1-CTA and L2-CTA, where “large” mean deviations greater than
one fourth of the maximum relative deviation obtained with L1. This threshold
value depends on whether sensitive cells are considered (Figure 3.(a)) or not
(Figure 3.(b)). From this figure we clearly see that the number of cells with
large deviations was higher for L1-CTA than for L2-CTA (in the extreme cases,
around 500 cells). If a smaller number of cells with large relative deviations can
be seen as a measure of “data utility”, L2-CTA provides better results.

Finally, Figure 4 shows the difference of the L0 norms of the vector of relative
deviations provided by L2-CTA and L1-CTA, i.e, the difference in the number
of perturbed cells. We remark that both plots (a) and (b) in this Figure are
the same, since sensitive cells have always nonnegative deviations. We observe
that in most instances L2 perturbs more cells than L1 (much more in some
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Fig. 3. Difference of the number of large relative deviations provided by L1 and L2 vs
number of cells (in log scale), for (a) all the cells, and (b) nonsensitive cells
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Fig. 4. Difference of L0 norms of the relative deviations provided by L2 and L1 (i.e.,
difference of the number of nonzero relative deviations) vs number of cells (in log scale),
for (a) all the cells, and (b) nonsensitive cells

instances). This is consistent with theory, since L1-CTA solutions are basic solu-
tions (or vertices of the feasible polyhedron, with many zero components), while
the quadratic optimization problem derived from L2 tries to evenly distribute
deviations among all the components. Indeed, the solution with the minimum
number of perturbed cells would be provided by formulation (8) using the L0

norm, and L1 is “closer” to L0 than L2. It is worth to mention that in some
situations this is not a main drawback for L2-CTA, since CTA can be used in
practice as a second stage after the introduction of stochastic noise, such that
original cell values are anyway modified [9].

5 Conclusions

From the computational results of this work comparing the continuous formu-
lations of L1-CTA (LP) and L2-CTA (QP) we conclude that both approaches
have their merits and drawbacks. If we focus on efficiency, L2-CTA requires less



46 J. Castro

CPU time. If we focus on the relative adjustments provided by both models we
observe that: (i) L1-CTA provides in general smaller means but larger standard
deviations of relative adjustments than L2-CTA; (ii) L2-CTA provided for all the
instances tested smaller maximum relative deviations; (iii) L2-CTA provided a
smaller number of cells with large relative deviations (which can be associated
to a measure of data utility); (iv) L1-CTA provided a much larger number of
cells without deviations, since it is a better approximation to L0 than L2. If
preserving the original values in as many cells as possible is an objective, then
L1-CTA should be chosen. If we look for efficiency and a smaller number of cells
with large deviations, then L2-CTA could be used. The best option is likely hav-
ing implementations of both models at hand, and, depending on the particular
instances or goals, either use one or the other.
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