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Abstract The purpose of the field of statistical disclosure control is to avoid that no
confidential information can be derived from statistical data released by, mainly, na-
tional statistical agencies. Controlled tabular adjustment (CTA) is an emerging tech-
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1 Introduction

Minimum-distance controlled tabular adjustment, or CTA for short, (Dandekar and Cox,
2002; Castro, 2006) is an emerging technique for the protection of statistical tabular
data (Hundepool et al, 2010). This is a major concern for national statistical insti-
tutes, which must guarantee that individual information cannot be disclosed from
released data. Tabular data is obtained by crossing two or more variables in a file
of microdata, e.g., city, age, and profession. The Cartesian product of values for
these variables provides a set of cells. For each cell, the table reports either the
number of individuals (frequency or contingency tables) or information about an-
other variable, e.g., salary (magnitude tables). Some of the state-of-the-art research in
this field can be found in the recent monographs Domingo-Ferrer and Saigin (2008);
Domingo-Ferrer and Magkos (2010).

Given a table to be protected, CTA looks for the closest safe table, L; and L, be-
ing the two more practical distances. We will refer as L{-CTA and L,-CTA to these
two particular variants. CTA is formulated as a mixed integer linear or quadratic op-
timization problem, with binary variables. It is a difficult combinatorial optimization
problem even for medium size tables, and some heuristic approaches have been re-
cently considered for L;-CTA (Gonzalez and Castro, 2011). If the binary variables
are a priori fixed, the resulting linear or quadratic optimization problems are still
challenging for very large instances. In practice, interior-point methods have shown
to be more efficient than simplex algorithms for linear L;-CTA instances (Castro,
2006). As it will be outlined in the paper, the constraint matrix associated to three-
dimensional (3D) tables (i.e., crossing three categorical variables) exhibits a primal
block-angular structure (Castro, 2007b). In particular, the resulting L,-CTA formu-
lation in 3D tables is a quadratic multicommodity flow problem, and the specialized
interior-point algorithm of Castro (2000) can be used. This specialized interior-point
algorithm solves the normal equations at each interior-point iteration by a sensible
scheme that combines Cholesky factorizations for the diagonal separable block con-
straints, and a preconditioned conjugate gradient (PCG) for the linking constraints.
This fact was exploited in Castro (2005, 2007a); Castro and Cuesta (2011) to solve
very large L,-CTA instances. For example, some instances of 10 millions variables
and 210000 constraints were solved with the specialized algorithm in 51 seconds,
while CPLEX 11 needed 35000 seconds (Castro and Cuesta, 2011).

In this work we extend this approach to linear L;-CTA in 3D tables. Due to the
absolute value in the objective function, the resulting formulations are no longer mul-
ticommodity flow problems. But they still exhibit a primal block-angular structure,
which can be dealt with the specialized interior-point algorithm. Three different mod-
els for L;-CTA will be provided, each of them accepting two different primal block-
angular structures. This amounts to six different primal block-angular structures.
They are implemented and solved with the specialized interior-point algorithm. As it
will be shown, a quadratic regularization term is instrumental to (partially) reproduce
the good behaviour of the specialized algorithm for L,-CTA. A set of 17 instances—
ranging from 500 to 50 millions variables and 320 to 25 millions constraints—will be
used for the computational results. It will be shown that one of the six primal block-



angular structures considered is efficient enough to outperform the state-of-the-art
interior-point solver of CPLEX 12.1 in the largest instances.

The structure of the document is as follows. Section 2 outlines the formulation of
the CTA problem, presents three different linear programming formulations for Li-
CTA, and shows the primal block-angular structure of CTA for 3D tables. Section 3
overviews the specialized interior-point algorithm for primal block-angular problems,
and presents the main results relating the quality of the preconditioner and the pres-
ence of quadratic terms in the barrier problem (including quadratic regularizations).
Section 4 presents six different primal block-angular structures for the three linear
programming formulations of L{-CTA, two for each of them; they differ in the def-
inition of the block and linking constraints. Finally, Section 5 reports computational
results with an implementation of the six different primal block-angular structures,
which are solved through the specialized interior-point algorithm.

2 The L;-CTA problem

Any CTA instance can be represented by the following parameters:

— A set of cells a;,i € 4, that satisfy a set linear relations M;a = b;,j € 4. In
matrix form these relations can be written Ma = b, a € R ‘, M € R-IXIAT and
b el being, respectively, the vector of a;’s, the matrix of table constraints, and
the right-hand-side for these constraints.

— A lower and upper bound for each cell i € .4/, respectively g; and a;, which are
considered to be known by any attacker. If no previous knowledge is assumed for
cell i g; = 0 (g; = —o= if @ > 0 is not required) and @; = +oo can be used. The
vectors of g;’s and @;’s are denoted as g and a.

— Asset ¥ C . of indices of sensitive or confidential cells. This cells are a priori
determined by some sensitivity rules. Discussing this sensitivity rules is out of the
scope of this work. Information about these rules can be found in Hundepool et al
(2010).

— A lower and upper protection level for each confidential cell i € .7, respectively
Ipl; and upl;, such that the released values y;,i € ./, satisfy either y; > a; + upl;
or y; < a; — Ipl;. The vector of y;’s is denoted as y.

CTA aims at finding the closest safe values y;,i € .4, according to some distance
L, that makes the released table safe. This involves the solution of the following
optimization problem:

min ||y —allz

s. to My:bi (1)
a<y<a
yi<ai—lIpl; or y;>aj+upl; i€.”.



Problem (1) can also be formulated in terms of deviations from the current cell values.
Defining x =y—a,x =a—a, and X =a—a, (1) can be recast as:
min [Ja/];
s.to Mx= O B (2)
x<x<Xx
x; < —Ipl; or x;>upl; i€,

xR being the vector of deviations. Problem (2) is a combinatorial optimization
problem due to the disjunctive constraints. However, if the protection senses are a
priori fixed for sensitive cells (i.e., only one of the two constraints x; < —Ipl; or
x; > upl; is kept and the other is removed, for i € .¥), then, using the L; norm, (2)
can be written as the following problem
min X;
i ieZ/’V‘ il
s.to Mx=20 )
[<x<u,

where [,u € R are easily obtained from x, X, Ipl; and upl;, once the protection
sense has been fixed.

2.1 Three linear programming formulations for (3)

The specialized interior-point solver outlined in Section 3 considers zero lower bounds
for all the variables. The next three formulations meet this requirement.
The first formulation considers the change of variable z = x — [, such that (3) is
equivalent to
Q@'Z\E+M
ieN 4)
s.to Mz= —Al (
0<z<u—-1.

Adding extra variables t € R for modeling the absolute value, we finally obtain
the first model: )
rrgin Z t

ieN
s.to Mz=—Al
1>z+1 3)
t>—(z+1)
0<z<u—-1I, t>0.
The second model is directly obtained from (3) by considering the standard change
of variable when dealing with L; norms x = x™ —x~, such that |x;| = x; +x;
min XX
min ,-5( )

s.to Mxt —x7)=0
xt—x"<u (©6)
xt—x=>1

x>0, x >0.



A third model, with less constraints but more variables, is obtained from (4) by
considering the change of variable z = x™ —x~ — /. The third formulation is

min x4
min ig,M( § )
s.to Mz=—-MI (7)
z=x"—x"—1
0<z<u—I, x>0, x >0.

2.2 The structure of table constraints in 3D tables

Crossing three categorical variables of, respectively, r+ 1, c+ 1 and k + 1 categories,
we obtain a 3D table (i.e., a cube of data). The last category of each variable corre-
sponds to marginal values, which, in practice, want to be published and can not be
perturbed. The linear relations Mx = 0 of a 3D table are

Y Xinin=0 i=1..c, is=1...x (8a)
=1
C
Y Xy =0 ii=1..ri3=1...x (8b)
K
inliziszo ii=1...r, h=1...c. (8¢c)

=1

Matrix M can be written in a primal block-angular form by exploiting the structure
of (8), as follows. Firstly, variables x; ;,i;,i1 = 1,...,1,i2 =1,...,c,iz3 =1,...,K are
reordered according to i3, i.e., x = (xiTlizl,...,xiTlizK)T iir=1,...,rip=1,...,c. Each
group for a particular i3 contains rc variables, and it is associated to one slice of the 3D
cube of data. Secondly, constraints (8a)—(8b) are set first, and ordered according to i3.
Each group for a particular i3 contains r 4 ¢ constraints. The remaining rc constraints

(8c) are moved to end positions. The resulting constraint matrix structure is

xilizl xi1i22 xilizK
N (8a—8b) for iz =1
N (8a—8b) for iz =2

€))

N | (8a—8b) foriz = K
1 I ... I | (8).

N € R™" denotes the structure of constraints (8a—8b), where m = r+ ¢ — 1 and
n =rc. I € R™" are identity matrices related to constraints (8¢). In addition, it was
shown that N (related to the constraints and cells of a particular slice of the cube
of data) is a node-arc incidence network matrix (Castro, 2007b) (one constraint is
thus redundant, and this explains that the number of rows of N is r+ ¢ — 1 instead of
r+ ¢). Therefore, M has a multicommodity network structure with equality linking
constraints.



It is worth noting that if the Euclidean distance L, is considered, the general
formulation of L;-CTA in 3D tables (3) should be replaced by

min Z x?
Y oewn 10)
s.to Mx=0 (

[ <x<u.

Problem (10) is a quadratic multicommodity flow problem, and the specialized interior-
point algorithm of Section 3 has shown to be the most efficient approach for this kind
of problems (Castro, 2005; Castro and Cuesta, 2011). The three models for L;-CTA
(5)—(7) developed in Subsection 2.1 are no longer multicommodity problems since
they involve additional constraints. In Section 4 we will show that they can be solved
by the specialized interior-point algorithm.

3 Overview of the specialized interior- point algorithm for primal
block-angular problems

The specialized interior-point algorithm was introduced for multicommodity flow

problems in Castro (2000) and later extended to any primal block-angular structure in
Castro (2007a). It considers the very general form of a primal block-angular problem

k

min Z(ciTxi +xiTQixi) (11a)
i=0

]\,1 .Xl bl

s. to N 2 »?
] =1 (11b)

Nk xk bk

LiLy ... Ly I] | X° »°
0<x'<u i=0,... .k (11c)

Matrices N; € R™>*" and L; € R, i=1,... k, respectively define the block-diagonal
and linking constraints, k being the number of blocks. Vectors x' € R% i =1,... k,
are the variables for each block. x° € R/ are the slacks of the linking constraints.
b € R™,i=1,...,k, is the right-hand-side vector for each block of constraints,
whereas b° € R is for the linking constraints. The upper bounds for each group of
variables are defined by u/,i =0, ..., k. If needed, equality constraints may be defined
with this formulation by imposing (close to) zero upper bounds on the slacks. ¢! € R"
and Q; € R%*" j=1,... k, define the linear and quadratic costs for each group of
variables. We restrict our considerations to the separable case where Q;, i =0,... k,
are diagonal positive semidefinite matrices. Although the L;-CTA formulations of
this work are linear optimization problems, quadratic terms may be used for regular-
izing the algorithm (Castro and Cuesta, 2011).



The specialized interior-point algorithm solves the normal equations at each interior-
point iteration. The expression of normal equations (see, for instance, Wright (1996)
for full details) is

(AGAT)Ay = ¢ (12)

where © is a positive definite diagonal matrix of blocks ©;, i = 0,...,k, Ay is the
direction of dual variables, and g is some right-hand-side g. Exploiting the structure
of A and ® in (11) the matrix of (12) can be recast as

[N1©NT NiO LT

A@AT — Nk@kaT Nk@kL/{

13)

_L]@]NIT ...Lk@kaT @OJFZ?:]Li@iLiT_

[ BC
c" D’

BER™M (=YK | m;), C € R™! and D € R/ being the blocks of AGAT .
Appropriately partitioning g and Ay in (12), the normal equations can be written

as
B CllAy|_ |8
o] [52]= [5] w0
By eliminating Ay, from the first group of equations of (14), we obtain
(D-C'B'C)Ay, = (- C"B 'g1) (15)
BAy, = (g1 —CAy»). (16)

System (16) is solved by a Cholesky factorization for each diagonal block ]\/,-@,-NZ-T7 i=
1...k, of B. The system with matrix D — CTB~!C, the Schur complement of (14), is
solved by a PCG. The dimension of this system is /, which is the number of linking
constraints. In Castro (2000) it was proved that, under some conditions, which are
guaranteed in our setting, the inverse of (D —C” B~!C) can be computed as

(D-CTB'C) ' = <Z(D1(CTB1C))i> D! (17)
i=0

The preconditioner M~!, an approximation of (D —CTB~!C)~!, is thus obtained by
truncating the infinite power series (17) at some term /. The more the terms included,
the better the preconditioner will be, at the expense of increasing the execution time
of each PCG iteration. However, in general, # = 0 or & = 1 are reasonable choices,
which in practice yield

M~ =D! ifh=0,

M~ = (I+D Y (CTB7'C)D ' ifh=1.

This preconditioner, initially developed for multicommodity flows (Castro, 2000) can
be applied to any primal block-angular problem (Castro, 2007a).



3.1 Improving the effectiveness of the preconditioner

The effectiveness of the preconditioner depends on the spectral radius of matrix
D~Y(CTB~'C), which is always in [0, 1) (Castro, 2000, Theorem 1). The farther away
from 1 is the spectral radius of D' (CTB~!C), the better is the quality of the approx-
imation of (17) obtained by truncation with # = 0 or & = 1. The next theorem and
proposition from Castro and Cuesta (2011) show that a quadratic term in the objec-
tive function effectively reduces this spectral radius.

Theorem 1 Let A be the constraint matrix of problem (11), with full row rank ma-
trices N; € R">*"% j =1 ...k, and at least one full row rank matrix L; € RIxni
i=1,...,k. Let © be the diagonal positive definite matrix of (12), and B € R™ "™
C e R™! and D € R™! the submatrices of AOAT defined in (13). Then, the spectral
radius p of D~'(CTB~'C) is bounded by

ngg ?axl}+
ie{l,..., Uu;i

where u is the eigenvector (or one of the eigenvectors) of D~ (CT B=1C) for p; Y j=
L,...,l,andV =[V; ...V}, are respectively the eigenvalues and matrix of columnwise
eigenvectors of ):;‘:1 LiO,L;T; v=VTu; and, abusing of notation, we assume that for
vj =0, (u/v;)?* = +eo.

<1, (18)

Proposition 1 Let assume the hypotheses of Theorem 1, and consider a linear prob-
lem and a quadratic one obtained by adding (likely small) quadratic costs Q; > 0,
i=1,... .k Assume 0;/V; <uj/v; j=1,...,1, where “hatted” and “non-hatted”
terms refer, respectively, to the linear and quadratic problems, and u and v are de-
fined as in Theorem 1. Then bound (18) is smaller for the quadratic than for the linear
problem.

The technical assumption i#;/9; < u;/v;, j=1,...,1 in Proposition 1 is needed
to guarantee that the bound (18) is smaller if a quadratic term is added to a linear
problem. The fulfillment of this assumption is problem dependent, and, for a gen-
eral problem, it may not be easy to check. However, as it will be shown in Section
5, matrices L;,i = 1,.. .k, of some formulations of L;-CTA satisfy this requirement.
Therefore, it makes sense to consider a quadratic regularization term in the objective
function to reduce the spectral radius, i.e., to improve the quality of the precondi-
tioner. In this work we will consider a quadratic regularization in the barrier function
of the interior-point algorithm. The particular form of this regularization term is

1
R(x) = /.LExTQx Q=18/pol, (19)

where x is the vector of variables, u € R is the parameter of the barrier function,
t € Z is the number of interior-point iteration, L € R the value of the barrier param-
eter at the first interior-point iteration, and 0 € R a parameter to be provided by the
user for initializing the regularization matrix Q at the first iteration. Note that at the
first iteration the value of the regularization is R(x) = pox” (1-8/uol)x = 6x” x, and
as we approach the optimal solution yu — 0, thus, R(x) — 0. Full details about this
regularized version of the algorithm can be found in Castro and Cuesta (2011).



4 Primal block-angular structures for Z;-CTA in 3D tables

Let us consider that the vectors of variables z,¢,x7,x~ € R¥" and bounds /,u € R¥",
which intervene in the definition of models (5)—(7), are partitioned in k blocks, one
for each category of the third dimension, i.e., z= ((z")7,...,(z)7)7, and similarly
for the other vectors. Each block 7/, #/, (xT)!, (x7)' € R", i = 1,...,k is related to
the variables and bounds for a particular slice of the 3D cube of data, which contains
n = rc cells and m = r+ ¢ — 1 table constraints.

Exploiting the above partitioning of vectors and the structure of M in (9), (5) is
equivalent to

K
: T. i
2
rrZ17ltn i;e t (20a)
s.to NZ'=—NI' i=1,...,x (20b)
Yi=-)1 (20c)
i=1 i=1
zi—t <=1l i=1,...,K (20d)
——t < i=1,...,x (20e)
0<zZ<u—1I', >0 i=1,...,kK, (20f)

where e € R" is a vector of 1’s. The constraints matrix A defined by (20b)—(20e)
accept different structures, depending on the reordering of variables and constraints
considered. We will consider the following two:

R L L
N
Lol bl o ZK K pK K
N
N I —I1
! ! @h (22
) ) N
1 —I I —I1
=1 —1 N
" I I
I I

where vi,w',i = 1,..., k are, respectively, the slacks of (20d) and (20e), and I € R™*"
are identity matrices. The structure of (21) is obtained with the natural ordering of
(20b)—(20e). It matches the primal block-angular structure of (11) by setting k = 2k,
Ni=N,mj=m,nj=nfori=1,...,k, Ny RO fori = k+1,...,2K (empty ma-
trix); L; € R i =1,...,2x are defined by the blocks of (21) with matrices 7 and
—I for each 7' and ¢/, where [ = (2k + 1)n. In this scheme the block constraints are
small, while the number of linking constraints is very large. The structure of (22) is
obtained after reordering the variables and constraints, and transforming (20d) and
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(20e) to equalities. This structure also matches (11), where k = k,

N
N=\|1-11 |, Li=[1 0 0 0], i=1,...k (23)
e B
0 € R™" is a matrix of 0’s, m; = m~+2n,n; =4n,fori=1,...,k, and [ = n.
Similarly, exploiting the structure of M, (6) is equivalent to
min T x! 24a
x+,]r ;e (x4x7) (24a)
s.to Nx™—x7)=0 i=1,...,k (24b)
K .
Z’()c‘H —x =0 (24¢)
i=1
xH—xi<yf i=1,...,K (244)
ity g i=1,.., (24e)
x>0 x>0 i=1,...,k. (24f)

The two particular structures, with and without reordering, of the constraints matrix
A defined by (24b)—(24e) are

xt oyl xtE K
N —N xl el W CHK K K K
N —N
N -N -
I =1 I - - r 1
I - 25) . (26)
N —N
I =1 I —I I
=11 N I
I —I I -
A

where v\, wi,i=1,...,x are, respectively, the slacks of (24d) and (24e). Both (25)
and (26) match (11). For (25) we have k = x, N; = [N —N], m; = m, n; = 2n,
I =(2Kk+1)n, and L; € R>?" i =1,..., K are defined by the blocks of (25) with
matrices 7 and —I for (x™ x%). On the other hand, for (26), k = k, m; = m+2n,
n; =4n,l =n, and

N —N
N=|1 —-I 1
-1 1 1

. Li=[ 100, i=l,...k. @7

PR
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Finally, (7) is equivalent to

K
: T/, +i —i
min 28a
,»;e (a7 (28a)
s.to Nzl =—NI' i=1,...,x (28b)
YZ=-)1© (28¢)
i=1 i=1
Z—xtigxi=—p i=1,...,K (28d)
0<zZ<u—1I, x>0, x>0 i=1,....K (28e)

The two particular structures, with and without reordering, of the constraints matrix
A defined by (28b)—(28d) are

b K xt xl xR K
N Zl x+1 x_l ZK x-Hc x—K‘
. N
: I —I I
N
7. (29) . (30)
I I I N
' I —I I
I -1 I ! 1

As for previous models, (29) and (30) match (11). For structure (29) k = 2k, N; =
N.mj=mnj=nfori=1,....x, N € RO for i = x+1,...,2k (empty matrix),
I=(xk+1n,LieR>"fori=1,...,x,and L; € R"*?" fori = x+1,...,2x. For (30),
k=x,mi=m-+n,n; =3n,l =n, and

N,-:{];]_I I]’ Li=[ 0 0], i=1,...,k,. (31)

The three pairs of structures (21)—(22), (25)—(26) and (29)—(30), amount to six
different formulations of L;-CTA which can be solved with the specialized algorithm
of Section 3. Formulations (21), (25), (29) have in common very small block di-
agonal matrices N;, but a large number / of linking constraints. On the other hand,
structures (22), (26) and (30) have larger diagonal matrices N; but significantly fewer
linking constraints. A priori the latter seem to be more promising approaches, since
the fewer linking constraints, the higher the performance of the specialized algo-
rithm. The computational comparison made at the beginning of Section 5 between
the two groups of formulations confirms this guess. Another advantage of formula-
tions (22), (26) and (30) is that the topology of N; and L; is the same for all the blocks
i=1,...,k, which is a slight computational benefit when performing the symbolic
factorizations in the interior-point algorithm. However, the most instrumental feature
is that, as shown by below Proposition 2, the structures of matrices L; for (22), (26)
and (30) satisfy the technical assumption &;/9; <u;/v;, j=1,...,l, of Proposition 1.
This guarantees that quadratic terms in the objective function (which can be added by
a quadratic regularization (Castro and Cuesta, 2011)) will improve the performance
of the algorithm.
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Proposition 2 Given the hypotheses of Theorem 1, let us consider the definition of
u and v in that Theorem. Let u, v be the vectors @i and ¥ for a quadratic problem
obtained by adding a quadratic term to the linear objective. Then, for the constraint
matrices A defined by (22), (26) and (30), it holds that ﬁj/ﬁj = uj/vj, j=1,...,L

Proof By definition, u,v € R/, v = VTu, where V = Vi...Vi] € R is the ma-
trix of columnwise eigenvectors V;,j = 1,...,[ of ZleLiGiLiT. Matrices L;,i =
1,...,k for (22), (26) and (30) are, respectively, defined by (23), (27), (31). The
matrices Zfz 1 L;®,L;" derived from (23), (27), (31) are thus, respectively, 2{»‘21 O,,
Y5 (0.4 —O,i) and Y¥_| @i, which are positive definite and diagonal. Therefore
V =1, v=Iu = u, and similarly for the linear objective V = I, ¥ = [i = i, thus
satisfying #1;/9; =u;/v;=1,j=1,...,. O

By Propositions 2 and 1 the bound of the spectral radius (18) is reduced if a quadratic
regularization is added to the objective function. A it will be shown in Section 5,
the regularized version of the specialized algorithm is by far more efficient than the
non regularized version for large L;-CTA instances, making it competitive against
state-of-the-art interior-point implementations like CPLEX 12.1.

5 Computational results

The six different formulations (21)—(22), (25)—(26) and (29)—(30) have been imple-
mented and solved with the specialized interior-point algorithm. We used a MATLAB
implementation of the algorithm described in Castro (2007a), named PRBLOCK_IP.
PRBLOCK_IP implements a standard infeasible path-following algorithm (Wright,
1996), which solves normal equations either through a Cholesky factorization, or
through the specialized procedure. Note that neither the Mehrotra predictor-corrector
(Mehrotra, 1992) nor the multiple centrality corrections (Gondzio, 1996) heuristics
for higher order directions are not used, since, as shown in Castro (2000), they are
not useful when PCG is applied in interior-point methods. For reasons of efficiency,
Cholesky factorizations are performed through external precompiled routines. Specif-
ically, the code uses the Ng-Peyton sparse Cholesky package Ng and Peyton (1993),
hooked to MATLAB for the LIPSOL package Zhang (1998). The code also includes
the regularization strategy described in Castro and Cuesta (2011). PRBLOCK_IP can
be obtained for research purposes from http://www-eio.upc.es/~jcastro/prblock_ip.html.
Results with the barrier algorithm of CPLEX 12.1 are also reported. The CPLEX
simplex solvers were not used, since interior-point algorithms have shown to be the
most efficient option for the linear programming formulations of CTA (Castro, 2006).
MATLAB and CPLEX were hooked by a free software, available from http://www-eio.upc.es/~jcastro/software.html.
It is worth noting that CPLEX 12.1 is a state-of-the-art code with highly optimized
routines, while the Ng-Peyton package used by PRBLOCK_IP is an academic free
implementation for sparse Cholesky factorizations. Therefore, the comparison be-
tween PRBLOCK_IP and CPLEX 12.1 is biased due to the quality of the implemen-
tation. All runs were carried out on a Dell PowerEdge 6950 server with four dual core
AMD Opteron 8222 3.0 GHZ processors and 64 GB of RAM, without exploitation
of parallelism capabilities.
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Table 1 Dimensions of L;-CTA instances for formulations (21)—(22)

Formulation (21) Formulation (22)
Instance k ml(*) n; k m; n; vars. const.
CTA-5-5-5 10 9 25 5 59 100 500 320
CTA-10-10-5 10 19 100 5 219 400 2000 1195
CTA-15-15-10 20 29 225 10 479 900 9000 5015
CTA-20-20-20 40 39 400 20 839 1600 32000 17180
CTA-25-25-10 20 49 625 10 1299 2500 25000 13615
CTA-25-25-25 50 49 625 25 1299 2500 62500 33100
CTA-30-30-10 20 59 900 10 1859 3600 36000 19490
CTA-30-30-30 60 59 900 30 1859 3600 108000 56670
CTA-40-40-20 40 79 1600 20 3279 6400 128000 67180
CTA-50-50-10 20 99 2500 10 5099 10000 100000 53490
CTA-50-50-25 50 99 2500 25 5099 10000 250000 129975
CTA-50-50-50 100 99 2500 50 5099 10000 500000 257450
CTA-100-100-10 20 199 10000 10 20199 40000 400000 211990
CTA-100-100-25 50 199 10000 25 20199 40000 1000000 514975
CTA-200-200-50 100 399 40000 50 80399 160000 8000000 4059950
CTA-500-500-50 100 999 250000 50 500999 1000000 50000000 25299950
CTA-1000-500-20 40 1499 500000 20 1001499 2000000 40000000 20529980

O Only for first k¥ nonempty blocks

As MATLAB is an interpreted language, the overall execution time is meaning-
less. Following Castro (2007a), we only report the execution time spent in the ex-
ternal precompiled Ng-Peyton Cholesky routines, including minimum degree order-
ing, symbolic factorization, numerical factorization, and numerical solution. Note
that communication between MATLAB and the external precompiled Ng-Peyton
Cholesky routines is made by value (copy of parameters). This means a significant
overhead time for large instances, which is included in the time reported. For large
instances, this reported time should be comparable to the total time spent by an effi-
cient C/C++ implementation. For the runs with CPLEX 12.1 we provide the overall
execution time. An efficient C/C++ version of PRBLOCK_IP is work in progress.

We generated a set of 17 3D CTA instances with a random generator of synthetic
tables. The generator can be retrieved from http://www-eio.upc.es/~jcastro/CTA_3Dtables.html.
Tables 1-3 report the dimensions of each instance, for, respectively, the formulations
21)-(22), (25)-(26) and (29)—(30). Instances are denoted as CTA-c-r-k, where r, ¢
and x are the number of categories of the variables of the 3D table. For each instance
and formulation the tables report the number of blocks (k), the number of constraints
and variables for each block (m; and n;), and the overall number of constraints and
variables of the linear problem (*“vars.” and “const.”), including the slacks of inequal-
ity linking constraints. For formulations (21) and (29) columns m; provide the number
of constraints of the first ¥ nonempty diagonal blocks.

From tables 1-3 it is clear that, although the overall number of variables and con-
straints of the resulting linear problem is the same for the two formulations of each
table, the dimension of the diagonal matrices (m; X n;) of formulations (21), (25) and
(29) is much smaller (or, equivalently, the number of linking constraints of formula-
tions (21), (25) and (29) is much larger). Since the dimension of systems to be solved
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Table 2 Dimensions of L;-CTA instances for formulations (25)—(26)

Formulation (25)

Formulation (26)

Instance k m; n; k m; n; vars. const.
CTA-5-5-5 5 9 50 5 59 100 500 320
CTA-10-10-5 5 19 200 5 219 400 2000 1195
CTA-15-15-10 10 29 450 10 479 900 9000 5015
CTA-20-20-20 20 39 800 20 839 1600 32000 17180
CTA-25-25-10 10 49 1250 10 1299 2500 25000 13615
CTA-25-25-25 25 49 1250 25 1299 2500 62500 33100
CTA-30-30-10 10 59 1800 10 1859 3600 36000 19490
CTA-30-30-30 30 59 1800 30 1859 3600 108000 56670
CTA-40-40-20 20 79 3200 20 3279 6400 128000 67180
CTA-50-50-10 10 99 5000 10 5099 10000 100000 53490
CTA-50-50-25 25 99 5000 25 5099 10000 250000 129975
CTA-50-50-50 50 99 5000 50 5099 10000 500000 257450
CTA-100-100-10 10 199 20000 10 20199 40000 400000 211990
CTA-100-100-25 25 199 20000 25 20199 40000 1000000 514975
CTA-200-200-50 50 399 80000 50 80399 160000 8000000 4059950
CTA-500-500-50 50 999 500000 50 500999 1000000 50000000 25299950
CTA-1000-500-20 20 1499 1000000 20 1001499 2000000 40000000 20529980
Table 3 Dimensions of L;-CTA instances for formulations (29)—(30)
Formulation (29) Formulation (30)
Instance k mg*) n; k m; n; vars. const.
CTA-5-5-5 10 9 25 5 34 75 375 195
CTA-10-10-5 10 19 100 5 119 300 1500 695
CTA-15-15-10 20 29 225 10 254 675 6750 2765
CTA-20-20-20 40 39 400 20 439 1200 24000 9180
CTA-25-25-10 20 49 625 10 674 1875 18750 7365
CTA-25-25-25 50 49 625 25 674 1875 46875 17475
CTA-30-30-10 20 59 900 10 959 2700 27000 10490
CTA-30-30-30 60 59 900 30 959 2700 81000 29670
CTA-40-40-20 40 79 1600 20 1679 4800 96000 35180
CTA-50-50-10 20 99 2500 10 2599 7500 75000 28490
CTA-50-50-25 50 99 2500 25 2599 7500 187500 67475
CTA-50-50-50 100 99 2500 50 2599 7500 375000 132450
CTA-100-100-10 20 199 10000 10 10199 30000 300000 111990
CTA-100-100-25 50 199 10000 25 10199 30000 750000 264975
CTA-200-200-50 100 399 40000 50 40399 120000 6000000 2059950
CTA-500-500-50 100 999 250000 50 250999 750000 37500000 12799950
CTA-1000-500-20 40 1499 500000 20 501499 1500000 30000000 10529980

©) Only for first k¥ nonempty blocks

by PCG in the the specialized interior-point algorithm is the number of linking con-
straints, (21), (25) and (29) seem not to be good candidates. This is confirmed by the
results of Tables 4-6. They provide the computational results obtained with, respec-
tively, (21)-(22), (25)—(26) and (29)—(30), for a subset of small instances. Columns
“It.”, “PCG” and “CPU” provide the number of interior-point iterations, overall num-
ber of PCG iteration and CPU time. The maximum allowed number of interior-point
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Table 4 Results for a subset of small instances comparing (21) and (22)

Formulation (21) Formulation (22)
Instance It. PCG CPU It. PCG CPU
CTA-5-5-5 51(9) 4670 1.38 200 280 0.34
CTA-10-10-5 48(13) 14851 493 200 1724 0.77
CTA-15-15-10  100(44) 145745 152.09 111(23) 5382 4.57
CTA-20-20-20  100(21) 503361 1575.34 200(118) 6807 40.24
CTA-25-25-10 98(36) 411112 854.00 93(6) 17958 27.40
CTA-25-25-25 100(20) 1105761 6939.38 200 5936 30.80
CTA-30-30-10  117(40) 672017 2475.10 200(74) 36583 77.22
CTA-30-30-30 100(4) 1458906  15883.20 200(66) 27319  343.88

Table 5 Results for a subset of small instances comparing (25) and (26)

Formulation (25) Formulation (26)
Instance It. PCG CPU It. PCG CPU
CTA-5-5-5 18 65 0.06 27 76 0.07
CTA-10-10-5 48 1671 0.38 58 502 0.22
CTA-15-15-10 46 3247 2.92 48 1951 1.47
CTA-20-20-20 51 13722 30.22 57(15) 3528 11.40
CTA-25-25-10 64 22556 37.33 48 4594 6.79
CTA-25-25-25 48 14437 95.68 36 1454 6.17
CTA-30-30-10 54 6501 15.89 75(21) 7806  20.30
CTA-30-30-30 58 13106 161.67 70(20) 5624  90.06

Table 6 Results for a subset of small instances comparing (29) and (30)

Formulation (29) Formulation (30)
Instance It. PCG CPU It. PCG CPU
CTA-5-5-5 54(5) 1493 0.51 154(9) 252 0.22
CTA-10-10-5 94(8) 4077 1.56 41 1033 0.30
CTA-15-15-10 141 87208 65.22 66 3685 2.33
CTA-20-20-20  200(39) 189318 423.75 200(110) 13444 35.37
CTA-25-25-10  162(23) 114437 239.17 109(6) 29714 27.83
CTA-25-25-25  200(36) 105095 472.56 200 5907 16.73
CTA-30-30-10 147 35540 57.48 187(60) 45128 61.34
CTA-30-30-30  200(21) 387852  2345.41 200(54) 29252 228.41

iterations was set to either 100 or 200, depending on the instance. Executions that
reached this maximum limit provided a suboptimal solution. For columns “It.”, the
values in brackets correspond to the number of iterations performed solving nor-
mal equations by Cholesky factorizations, instead of PCG; the code automatically
switches from PCG to Cholesky when a wrong solution is reported by PCG within its
maximum number of iterations (set to a large value of 2/). From Tables 4-6 it is clear
that the specialized interior-point algorithm is more efficient with formulation (22)
than with (21), mainly due the big difference in number of PCG iterations needed by
the formulations. A similar conclusion can be derived for (25) and (26), the latter be-
ing a more efficient approach. In that case, however, for (26) the code switched from
PCG to Cholesky, while PCG was always enough for (25) (at the expenses of a larger
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Table 7 Results for a subset of instances comparing (22), (26) and (30)

Formulation (22) Formulation (26) Formulation (30)

Instance It. PCG CPU It. PCG CPU It. PCG CPU
CTA-40-40-20 200(41) 14319 181.99 57 5256 49.89 200(61) 18303 154.59
CTA-50-50-10 200(93) 30910 232.18 54 5867 36.18 200(77) 86882 315.06
CTA-50-50-25 200(65) 15939 548.88 200(89) 13554 564.70 200(74) 23816 532.57
CTA-50-50-50 200(63) 124991 6779.41 140(17) 105453 4142.12 200(71) 111273 4835.68
CTA-100-100-10  200(94) 34339 1441.62 200(110) 33176 1677.41 200(109) 60610 1632.50
CTA-100-100-25  200(96) 26844  5537.92 93(32) 6849  2718.50 200(102) 38229  5346.47
CTA-200-200-50 Not executed 45 281 599.44 Not executed

number of PCG iterations). Similarly, (30) outperformed (29). This empirical evi-
dence confirms that those formulations with fewer linking constraints are favorable
for the specialized interior-point algorithm.

Table 7 reports results for the more efficient formulations (22), (26) and (30) con-
sidering the subset of larger instances. The meaning of the columns is as in previous
tables. The limit of interior-point iterations was set to 200. We see that the limit was
reached in many runs. In addition, the code switched from PCG to Cholesky in al-
most all runs. However, when this happened, the relative optimality gap between the
dual and primal objective was in general O(10~2). The remaining —and expensive—
Cholesky factorization were needed to reach the required default 10~ optimality gap.
Without this interior-point iterations which solve the Cholesky factorizations of nor-
mal equations, the CPU time would have been much lower. We see that formulation
(26) provides the best results, both in CPU time, but also in number of PCG and
interior-point iterations. Indeed, this option was the only one that solved three in-
stances without switching to the Cholesky factorization of normal equations. We also
checked that, when this switch is done, the optimality gap reached by formulation
(26) was smaller than for the other two formulations.

Finally, Table 8 shows results with the regularized interior-point algorithm, for
the more efficient formulations (22), (26) and (30), and with the barrier solver of
CPLEX 12.1. The meaning of the columns is as for previous tables. All the instances
were considered, excluding the three largest ones for the formulations (22) and (30),
since the computational time would be excessive. The value § = 107> was used for
the regularization term (19). Note that for CPLEX the particular formulation consid-
ered is not relevant, since it does not exploit a particular partitioning of the constraints
matrix; anyway, the results provided for CPLEX correspond to the ordering of con-
straints and variables of (26). From Table 8 it is clear that: (1) regularized versions are
much more efficient than the non-regularized ones; (2) formulation (26) is the most
efficient approach for the regularized algorithm; (3) the generic barrier of CPLEX
12.1 is the most efficient approach when the size of the problem is not very large; (4)
for the tree largest instances (of millions of variables and constraints), the specialized
approach outperforms the state-of-the-art interior-point solver.
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Table 8 Results comparing (22), (26) and (30), with the regularized interior-point algorithm, and the
barrier solver of CPLEX 12.1

Formulation (22) Formulation (30)
Instance It. PCG CPU It. PCG CPU
CTA-5-5-5 200 280 0.27 25 82 0.07
CTA-10-10-5 29 397 0.21 157(7) 1894 0.63
CTA-15-15-10 94 7034 4.68 63 3497 1.95
CTA-20-20-20 36 2125 5.11 42 3140 4.61
CTA-25-25-10 48 5705 7.98 49 5841 5.60
CTA-25-25-25 58 2841 11.25 127 4233 12.51
CTA-30-30-10 119 38426 72.52 134 54394 64.11
CTA-30-30-30 100 14895 104.76 65 13753 55.72
CTA-40-40-20 200(39) 19865 196.53 200(68) 17893 139.35
CTA-50-50-10 200(58) 54886 344.81 200(46) 112168 389.36
CTA-50-50-25 200(43) 21654 514.96 172(58) 19365 369.13
CTA-50-50-50 200(56) 176643  7762.12 125 134386 2509.18
CTA-100-100-10 130(26) 120548  3382.39 108(7) 70431 1337.92
CTA-100-100-25 200(79) 33464  6607.60 112(8) 43507 3225.03
CTA-200-200-50 not executed not executed
CTA-500-500-50 not executed not executed
CTA-1000-500-20 not executed not executed

Formulation (26) barrier CPLEX 12.1
Instance It. PCG CPU It. CPU
CTA-5-5-5 28 128 0.16 7 0.01
CTA-10-10-5 71 600 0.34 9 0.01
CTA-15-15-10 32 898 0.68 15 0.07
CTA-20-20-20 35 2011 4.87 13 0.73
CTA-25-25-10 39 2405 4.19 17 0.28
CTA-25-25-25 36 1358 6.37 9 1.80
CTA-30-30-10 48 4733 10.37 18 0.51
CTA-30-30-30 54 7865 52.36 14 6.85
CTA-40-40-20 46 3301 27.39 12 4.98
CTA-50-50-10 56 6774 41.36 28 2.72
CTA-50-50-25 50 4558 73.36 13 13.64
CTA-50-50-50 113 73002 1959.40 25 166.87
CTA-100-100-10 77 13727 319.79 30 24.28
CTA-100-100-25 82 26292 1604.76 20 153.92
CTA-200-200-50 42 282 514.26 9 3518.21
CTA-500-500-50 53 163 3631.98 9  55670.34
CTA-1000-500-20 51 160  2723.17 8 10050.54

6 Conclusions

The specialized interior-point algorithm for primal block-angular problems was shown
in the past to be an efficient approach for large continuous L,-CTA instances, which
result in quadratic multicommodity flow problems. However, until this work, the al-
gorithm had not been applied to L;-CTA. L;-CTA has a primal block-angular struc-
ture, but it is no longer a multicommodity flow problem. However, for one of the six
primal block-angular structures developed, a regularized version of the specialized
interior-point algorithm has shown to be an efficient approach, outperforming the
state-of-the-art interior-point solver of CPLEX 12.1 when the size of the problem is
very large (millions of variables and constraints). The regularization term has shown
to be instrumental in the efficiency of this approach. For larger instances, the special-
ized algorithm is expected to be even more efficient against CPLEX 12.1. However
such massive instances can not be dealt with the current MATLAB code, and a C/C++
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implementation of the specialized algorithm should be used. The development of this
efficient implementation is one of the ongoing projects.
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