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Abstract

One of the main services of National Statistical Agencies (NSAs) for the current Infor-
mation Society is the dissemination of large amounts of tabular data, which is obtained
from microdata by crossing one or more categorical variables. NSAs must guarantee that
no confidential individual information can be obtained from the released tabular data. Sev-
eral statistical disclosure control methods are available for this purpose. These methods
result in large linear, mixed integer linear, or quadratic mixed integer linear optimization
problems. This paper reviews some of the existing approaches, with an emphasis on two
of them: cell suppression problem (CSP) and controlled tabular adjustment (CTA). CSP
and CTA have concentrated most of the recent research in the tabular data protection field.
The particular focus of this work is on methods and results of practical interest for end-users
(mostly, NSAs). Therefore, in addition to the resulting optimization models and solution ap-
proaches, computational results comparing the main optimization techniques—both optimal
and heuristic—using real-world instances are also presented.

Keywords: linear programming, network flows, mixed integer linear programming, sta-
tistical disclosure control, large-scale optimization

1 Introduction

National Statistical Agencies (NSAs) store information about individuals or respondents
(persons, companies, etc.) in microdata files. A microdata file V of s individuals and t

∗To appear in European Journal of Operational Research
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P1 P2 P3 P4 P5 TOTAL
M1 20 15 30 20 10 95
M2 72 20 1 30 10 133
M3 38 38 15 40 11 142

TOTAL 130 73 46 90 31 370

Figure 1: Two-dimensional frequency table showing number of persons for each profession and munici-
pality.

P1 P2 P3 P4 P5 TOTAL
M1 360 450 720 400 360 2290
M2 1440 540 22 570 320 2892
M3 722 1178 375 800 363 3438

TOTAL 2522 2168 1117 1770 1043 8620

Figure 2: Two-dimensional magnitude table showing overall salary (in 1000e) for each profession and
municipality.

variables is a s × t matrix where vij is the value of variable j for individual i. Formally, it
can be defined as a function

V : I → D(V1) × D(V2) × · · · × D(Vt)

that maps individuals of set I to an array of t values for variables V1,. . . , Vt, D() being the
domain of those variables. According to this domain, variables can be classified as numerical
(e.g., “age”, “net profit”) or categorical (“sex”,“economy sector”). From those microdata
files, tabular data is obtained by crossing one or more categorical variables. For instance,
assuming a microdata file with information of inhabitants of some region, crossing variables
“profession” and “municipality” the two-dimensional frequency table of Figure 1 may be
obtained. Instead, the table could provide information about a third variable; these tables
are named magnitude tables. For instance, the table of Figure 2 shows the overall salary for
each profession and municipality. Formally, a table is a function

T : D(Vi1) × D(Vi2) × · · · × D(Vil
) → R or N,

l being the number of categorical variables that were crossed. The result of function T (cell
values) belongs to N for a frequency table, and to R for a magnitude table.

Although tabular data show aggregated information, there is a risk of disclosing individual
information. For instance, if the two tables of Figures 1 and 2 are published, then any
attacker knows that the salary of the unique respondent of cell (M2, P3) is 22000e. This is
named an external attacker. If there were two respondents in that cell, then any of them
could deduce the other’s salary, becoming an internal attacker. Even if there was a larger
number of respondents, e.g. 5, if one of them had a salary of, e.g. 18000e, there would be a
disclosure risk, since the contribution of the largest respondent could exceed some predefined
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percentage of the cell total; this cell would be reported as sensitive by the so-called dominance
rule. A more dangerous and difficult to protect scenario is named the singleton problem or
multi-attacker problem. This happens, for instance, when two cells with a single respondent
(a singleton) appear in the same table relation (e.g., a row or a column of Figures 1 and 2),
such that any of them can deduce the other’s contribution. This situation can be generalized
to more than two singletons with collusions. The singleton problem has been discussed in
Jewett (1993); Robertson (2000), and more recently in Daalmans and de Waal (2010). In all
the above situations, prior to publication, NSAs have to apply some tabular data protection
method. In short, those methods, whose origins date back to Bacharach (1966), basically
either suppress or perturb the table cell values.

A different set of protection techniques apply directly to the original microdata files,
instead of the resulting tabular data. These are out of the scope of this work. Some re-
cent improvements on microdata protection methods can be found in Domingo-Ferrer and
Mateo-Sanz (2002); Hansen and Mukherjee (2003); Muralidhar and Sarathy (2006), and in
the monographs Domingo-Ferrer and Franconi (2006); Domingo-Ferrer and Magkos (2010);
Domingo-Ferrer and Saigin (2008); Domingo-Ferrer and Torra (2004); Willenborg and de
Waal (2000). Although the number of records in a microdata file r is in general much larger
than the number of cells n in a table (r ≫ n ≫ 0), tabular data involve a number of linear
constraints m, and in some real-world instances m ≫ 0. These linear constraints model the
relations between inner and total cells, the most usual relation being that the sum of some
inner cells is equal to some marginal cell. Microdata protection in general involves few (if not
zero) linear constrains. Therefore, tabular data protection methods rely on linear program-
ming (LP), mixed integer linear programming (MILP), and even mixed integer quadratic
programming (MIQP) technology, making the protection of complex and large tables a dif-
ficult problem. Some huge instances (which result in MILP problems of order of millions of
variables and constraints) can be found in http://www-eio.upc.es/~jcastro/data.html.

The detection of the sensitive cells to be protected is made by applying some sensitivity
rules. Although it is an important step of the data protection process, it is not covered here.
Indeed, currently, those rules do not rely on optimization or operations research methodology.
Practical details about these rules can be found in Hundepool et al. (2010). Additional
information can be found in Domingo-Ferrer and Torra (2002); Robertson and Ethier (2002).

Although it contains references to recent literature, this paper is not meant to be a
comprehensive survey on statistical disclosure control of tabular data. The interested reader
is referred, for instance, to the research monographs Domingo-Ferrer and Franconi (2006);
Domingo-Ferrer and Magkos (2010); Domingo-Ferrer and Saigin (2008); Domingo-Ferrer and
Torra (2004); Willenborg and de Waal (2000), and the recent survey Salazar-González (2008).
Guidelines to end-users of tabular data protection methods can be found in the handbook
Hundepool et al. (2010). Compared to those previous works, the main contributions of
this paper are: (i) it focuses on two of today more relevant techniques for NSAs (namely,
cell suppression problem, and controlled tabular adjustment); (ii) not only the resulting
optimization models are presented, but also the main solution techniques are sketched; (iii)
it reports computational results comparing the available techniques using state-of-the-art
software for tabular data protection, showing the lacks and benefits of the different models
and solution approaches.

The structure of the paper is as follows. Section 2 shows the different types of tables that
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can be obtained, and how they are modeled; this background is needed for the subsequent
sections. Section 3 introduces tabular data protection methods. Sections 4 and 5 focus on
two of the most widely used protection techniques, the cell suppression and the controlled
tabular adjustment, both describing the optimization models and outlining the main solution
approaches.

2 Tabular data: types and models

Some protection methods of Section 3 are either only valid or may be specialized (i.e., made
more efficient) for some particular type of tabular data. It is thus instrumental to know in
advance the type of table to be protected and how to model it.

2.1 Classification of tables

Tables can be classified according to different criteria. Two of the simplest criteria for
classification are “cell values” and “sign of cell values”. According to the cell values, the
two classes of tables were already introduced in Section 1: frequency tables—also named
contingency tables—, and magnitude tables. According to the sign of cell values, tables
are classified as either positive or general tables. Cell values of positive tables are non-
negative, which is the most usual situation. For instance, all frequency tables and most
magnitude tables, like “salary” for “profession”×“municipality”, are positive tables. Cell
values of general tables can be positive or negative. An example of a general table would
be “variation of gross domestic product” for “year”×“state”. Assuming a table is general
instead of positive can be instrumental in some protection methods. Indeed, those methods
usually involve the solution of difficult LP or MILP problems; the lower bounds of some
variables are −∞ for general tables (0 for positive ones). This property has been exploited
in some efficient heuristics for general tables (Carvalho et al., 1994).

For a modelling point of view, and to exploit the type of table in the resulting LP or
MILP from the data protection method, the most important classification criteria is “table
structure”. Indeed, some protection methods can only be applied to particular table struc-
tures. Moreover, the different models in Subsection 2.2 are tailored for some table structures.
According to their structure, tables may be classified as single k-dimensional, hierarchical,
or linked tables. A single k-dimensional table is obtained by crossing k categorical variables.
For instance, tables of Figures 1–2 are two-dimensional. A hierarchical table is a set of tables
obtained by crossing some variables, and a number of these variables have a hierarchical re-
lation. For instance, consider the three tables of Figure 3. The left subtable shows number of
respondents for “region”×“profession”; the middle subtable, a “zoom in” of region R2, pro-
vides the number of respondents for “municipality”(of region R2)×“profession”; finally the
right subtable, “zip code”×“profession”, details municipality R21. This table belongs to a
particular class named 1H2D, two-dimensional tables with one hierarchical variable. Finally,
linked tables are the most general situation. A linked table is a set of tables obtained from
the same microdata file. In theory, the set of all tables obtained from a microdata file should
be considered together as a (likely huge) linked table. Hierarchical and k-dimensional tables
are particular cases of linked tables. Note that, in theory, the only safe way for protecting all
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C1 C2 C3

R1 5 6 11
R2 10 15 25
R3 15 21 36

T1

C1 C2 C3

R21 8 10 18
R22 2 5 7
R2 10 15 25

T2

C1 C2 C3

R211 6 6 12
R212 2 4 6
R21 8 10 18

T3

Figure 3: Hierarchical table made of three subtables: “region”×“profession”,
“municipality”×“profession” and “zip code”×“profession”.

a11 . . . a1c a1(c+1)

. . . . . . . . . . . .

ar1 . . . arc ar(c+1)

a(r+1)1 . . . a(r+1)c a(r+1)(c+1)

Figure 4: General two-dimensional table.

the tables from a microfile, is to jointly protect them as a single linked table. Unfortunately,
in many cases the size of the resulting table would be excessive for current LP or MILP
technology.

2.2 Modelling tables

Linked tables are the more general case, and a model for them is valid for the other types of ta-
bles. However, below are outlined particular models for two-dimensional, three-dimensional,
1H2D tables, and, finally, a general model for linked tables, valid for any table.

Two-dimensional tables. A two-dimensional table of r + 1 rows and c + 1 columns as the
one of Figure 4 is modeled by constraints

c
∑

j=1

aij = ai(c+1) i = 1, . . . , r

r
∑

i=1

aij = a(r+1)j j = 1, . . . , c.

(1)

Constraints (1) can be represented by the bipartite network of Figure 5. This allows the
application of efficient network optimization algorithms, such as those for minimum cost
network flows, or shortest-paths (Ahuja et al., 1993). This fact was originally noticed in
Bacharach (1966), and it has been extensively used in other works (Carvalho et al., 1994;
Castro, 2002, 2004, 2007a; Cox, 1995; Fischetti and Salazar-González, 1999; Kelly et al.,
1992).
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Figure 5: Network representing constraints (1).

Three-dimensional tables. The linear constraints of a three-dimensional table of r + 1
rows, c + 1 columns and l + 1 levels (levels refer to categories of third variable) are

r
∑

i=1

aijk = a(r+1)jk j = 1 . . . c, k = 1 . . . l

c
∑

j=1

aijk = ai(c+1)k i = 1 . . . r, k = 1 . . . l

l
∑

k=1

aijk = aij(l+1) i = 1 . . . r, j = 1 . . . c.

(2)

Note the above constraints correspond to a cube of data. Rearranging (2), these con-
straints can be modeled as a multicommodity network (Castro, 2002). Variables xijk, i =
1, . . . , r, j = 1, . . . , c, k = 1, . . . , l are ordered according to k, i.e., x = (xT

ij1, . . . , x
T
ijl)

T . Each
group for a particular k contains rc variables, and it corresponds to a layer of the cube of
data. Each layer is a two-dimensional table, which is modeled as the network of Figure 5.
Data for each particular layer (or level) corresponds to a commodity. The l commodities are
linked by capacity constraints, forcing that the sum for all the commodities (levels) is equal
to the marginal level. The resulting constraints matrix structure is

A =

aij1 aij2 . . . aijl

N for k = 1
N for k = 2

. . .
...

N for k = l

I I . . . I linking constraints,

(3)

N being the node-arc incidence network matrix for the two-dimensional tables of each level,
and I ∈ R

rc×rc being the identity matrix. Exploiting this structure, significant computa-
tional savings can be obtained (Castro, 2005, 2007b).
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Figure 6: Intermediate network representing 1H2D table of Figure 3 (first iteration).

Hierarchical tables. In general, hierarchical tables have to be modeled as a general linked
table. However, for the particular case of 1H2D tables, as that of Figure 3, it is possible to
obtain a network representation. In short, the algorithm for building the network of a 1H2D
table consists of the following stages (Castro, 2007a):

1. Build a tree of subtables representing the structure of the 1H2D (i.e., for table of Figure
3, the root node would be the left table; the middle table would be a descendant of the
root table; and the right table would be a descendant of the middle table).

2. Perform a search on the tree of subtables, using, for instance, a breadth-first-search,
and build the breadth-first-list.

3. Build the network for each subtable.

4. For all the subtables in the breadth-first-list, embed the network of a table within the
table of its parent table.

The above procedure is done in linear time. For instance, for the 1H2D table of Figure 3
after the first iteration the network of Figure 6 is obtained; after the second and last iteration
the definitive network of Figure 7 would be obtained. This network model was successfully
used for a fast heuristic for protection of 1H2D tables in Castro (2007a).

Linked tables. In general, any table can be modeled as a set of n cells ai, i = 1, . . . , n,
which satisfy a set of m linear relations Aa = b, A ∈ R

m×n, b ∈ R
m. In practice cell values

must be between some lower and upper bounds li, ui, i = 1, . . . , n. If the table is positive
then li ≥ 0, i = 1, . . . , n. Each row of matrix A = (aij), i = 1, . . . ,m, j = 1, . . . , n is related
to a table linear relation, and aij ∈ {1, 0,−1}. The value −1 of every equation is related to
the marginal or total cell. The above types of tables are particular cases where A is either
a node-arc incidence network flows matrix, or a multicommodity network flows matrix. In
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Figure 7: Final network representing 1H2D table of Figure 3 (second iteration).
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Figure 8: The risk-utility graph.

real-world problems the dimension of n and m can be very large (order of millions of variables
and constraints).

3 Tabular data protection methods

The purpose of data protection methods is to reduce the disclosure risk of confidential in-
formation, while preserving the utility of the released data (where data utility means the
value of a given data release as an analytical resource). Disclosure risk is usually reduced
by modifying or hiding some information. Note that disclosure risk can only be reduced,
not completely avoided, unless no data is published. This is clearly shown in the risk-utility
graph of Figure 8. The goal is to publish tabular data as close as possible to the original
data, i.e., with a similar utility, but below the maximum acceptable risk. Of course, this
depends on how risk and utility are modeled, and every protection method has a particular
model (all of them equally valid) within the resulting optimization problem.

Broadly, tabular data protection methods can be classified as:

• Non-perturbative: they don’t change the original data, instead they suppress data or
change the table structure, such as, for instance, recoding and cell suppression.

• Perturbative: they provide an alternative table with modified values. Controlled round-
ing and controlled tabular adjustment belong to this class.
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Original table
P1 P2 P3 P4 P5 TOTAL

M1 20 15 30 20 10 95
M2 72 20 1 30 10 133
M3 38 38 15 40 11 142

TOTAL 130 73 46 90 31 370

Recoded table
P1 P2 + P3 P4 P5 TOTAL

M1 20 45 20 10 95
M2 72 21 30 10 133
M3 38 53 40 11 142

TOTAL 130 119 90 31 370

Figure 9: Original and recoded table after aggregation of professions P2 and P3.

Cell suppression and controlled tabular adjustment have concentrated most of the recent
research in the tabular data protection field. Below sections 4 and 5 are devoted to these
particular techniques. Of the remaining approaches, recoding is likely the simplest one. It
consists in aggregating or changing some of the categorical variables that define the table, to
satisfy the sensitivity rules. This is shown in the example of Figure 9, whose tables report
the number of respondents for “profession”×“municipality”. The main advantages of this
approach are its simplicity and that it does not require any sophisticated algorithm. The
main inconveniences are that it changes the table structure, that an excessive aggregation
may significantly reduce the utility of the resulting table, and that it may have a high
disclosure risk; indeed, if a variety of tables with recoded versions of the same categorical
variable (like ”size class”) are published, it becomes very likely that by suitable differencing,
some cell entries can be disclosed.

An alternative approach is rounding, which achieves protection by rounding all cell tables
to a multiple of a certain base number r. Figure 10 shows an example of a two-dimensional
table using a base number r = 5. Note that the total cell could not be rounded to the
closest multiple of 5, otherwise the resulting table would not be additive. This variant
that guarantees additivity is named controlled rounding. Although controlled rounding was
already in use two decades ago (Cox and George, 1989), some recent extensions using lower
and upper protection levels have been considered (Salazar-González, 2006). The complexity
of the resulting model is similar to that of cell suppression, resulting in a large MILP which is
solved by Benders decomposition (Benders, 2005). One of the main drawbacks of controlled
rounding is that it forces deviations for all the cells that are not originally a multiple of the
base r, reducing the utility of the resulting table. In addition, to guarantee additivity, total
cells have also to be rounded, likely to a multiple which can be far from the original value.
The controlled tabular adjustment approach of Section 5, which also perturbs cell values,
avoids some of these inconveniences, and it may guarantee a greater utility of the resulting
modified table.

4 Cell suppression

Given a set of sensitive cells to be protected (named primary cells), the purpose of the
cell suppression problem (CSP) is to find a set of additional cells (named secondary or
complementary cells) that guarantees that the value of primary cells can not be guessed, and
minimize some information loss criteria. Figure 11 shows an example of a two-dimensional
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Original table
P1 P2 P3 TOTAL

M1 20 24 28 72
M2 38 38 40 116
M3 40 39 42 121

TOTAL 98 101 110 309

Rounded table
P1 P2 P3 TOTAL

M1 20 25 30 75
M2 40 40 40 120
M3 40 40 40 120

TOTAL 100 105 110 315

Figure 10: Original and rounded table using a base number r = 5.

Original table
P1 P2 P3 TOTAL

M1 20 24 28 72
M2 38 38 40 116
M3 40 39 42 121

TOTAL 98 101 110 309

Protected table
P1 P2 P3 TOTAL

M1 24 72
M2 38 116
M3 40 39 42 121

TOTAL 98 101 110 309

Figure 11: Original table with primary cell in boldface, and protected table after suppression of three
secondary cells.

table with only one primary cell in boldface. If this was the only removed cell, its value could
be retrieved from marginals. Therefore, the suppression of three additional complementary
cells is needed. From the protected table of Figure 11, any attacker may deduce a lower and
upper bound for the primary cell. Indeed, considering variables x11, x13, x21, x23 for the
primary and secondary cells, a lower bound a23 and an upper bound a23 for the primary cell
can be obtained by solving

a23 = min x23

s. to x11 + x13 = 72 − 24
x21 + x23 = 116 − 38
x11 + x21 = 98 − 40
x13 + x23 = 110 − 42
(x11, x13, x21, x23) ≥ 0

and

a23 = max x23

s. to x11 + x13 = 72 − 24
x21 + x23 = 116 − 38
x11 + x21 = 98 − 40
x13 + x23 = 110 − 42
(x11, x13, x21, x23) ≥ 0.

(4)

The solutions to (4) are a23 = 20 and a23 = 68. If, for instance, lower and upper protection
levels of lpl = upl = 10 were imposed (i.e., the protection pattern must guarantee that no
attacker can deduce a value of the sensitive cell within the range [40−lpl, 40+upl] = [30, 50]),
then this cell would be protected by this suppression pattern since a23 = 20 < 30 and
a23 = 68 > 50.

The above example illustrated the basics of CSP. In general, any instance of CSP is
defined by the following parameters:

• A general table ai, i = 1, . . . , n, with m linear relations Aa = b, a = (a1, . . . , an)T being
the vector of cell values.
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• Upper and lower bounds u and l for the cell values, which are assumed to be known by
any attacker: l ≤ a ≤ u (e.g., l = 0, u = +∞ for a positive table).

• Vector of nonnegative weights associated to the cell suppressions wi, i = 1, . . . , n, i.e.,
wi measures the cost (or data utility loss) associated to the suppression of cell i. The
objective function to be minimized by CSP is the sum of the weights of suppressed
cells. Then, if wi = 1 the number of suppressed cells is minimized; if wi = ai the
overall value suppressed is minimized.

• Set P ⊆ {1, . . . , n} of primary or sensitive cells, decided in advance by applying some
sensitivity rules.

• Lower and upper protection levels for each primary cell lplp and uplp p ∈ P (usually
either a fraction of ap or directly obtained from the sensitivity rules).

CSP looks for a set S of secondary cells to be removed such that for all p ∈ P

ap ≤ ap − lplp and ap ≥ ap + uplp, (5)

ap and ap being defined as

ap = min xp

s. to Ax = b

li ≤ xi ≤ ui i ∈ P ∪ S
xi = ai i 6∈ P ∪ S

and

ap = max xp

s. to Ax = b

li ≤ xi ≤ ui i ∈ P ∪ S
xi = ai i 6∈ P ∪ S.

(6)

The classical model for CSP was originally formulated in Kelly et al. (1992). It considers two
sets of variables: (1) yi ∈ {0, 1}, i = 1, . . . , n, is 1 if cell i has to be suppressed, 0 otherwise;
(2) for each primary cell p ∈ P, two auxiliary vectors xl,p ∈ R

n and xu,p ∈ R
n, which

represent cell deviations (positive or negative) from the original ai values. The resulting
model is

min

n
∑

i=1

wiyi

s. to
Axl,p = 0

(li − ai)yi ≤ x
l,p
i ≤ (ui − ai)yi i = 1, . . . , n

xl,p
p ≤ −lplp

Axu,p = 0
(li − ai)yi ≤ x

u,p
i ≤ (ui − ai)yi i = 1, . . . , n

xu,p
p ≥ uplp







































∀ p ∈ P

yi ∈ {0, 1} i = 1, . . . , n.

(7)

The inequality constraints of (7) with both right- and left-hand sides impose bounds on x
l,p
i

and x
u,p
i when yi = 1, and prevent deviations in non-suppressed cells (i.e., yi = 0). Clearly,

the constraints of (7) guarantee that the solutions of the linear programs (6) will satisfy (5).
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Note that (7) gives rise to a MILP problem of n binary variables, 2n|P| continuous
variables, and 2(m+2n)|P| constraints. This problem is very large even for tables of moderate
size and number of primary cells. For instance, for a table of 8000 cells, 800 primaries, and
4000 linear relations, we obtain a MILP with 8000 binary variables, 12,800,000 continuous
variables, and 32,000,000 constraints. However, (7) is the basis of several solution methods,
either optimal or heuristic, to be discussed below. Subsection 4.4 performs a computational
comparison of these approaches using public and private real-world instances.

The classical CSP model (7) does not protect against the singleton problem described in
Section 1. We outline below two possible extensions of (7) for the singleton problem.

• The first approach provides a “local” protection since it only focuses on individual
table relations with singletons. This approach is simple, but since inter-relations are
not considered it may offer a weak protection (although higher than the standard model
(7)). Denoting by Gj and Hj , j = 1, . . . ,m, the set of singletons (i.e., cells with one
respondent) and set of cells in table relation j, respectively, we can ensure than at least
one additional cell, different from those in Gj , has to be suppressed by adding to (7)
the following set of constraints:

∑

i∈Hj

yi ≥ |Gj | + 1 j = 1, . . . ,m. (8)

• The second approach would provide a more “global” protection, resulting in a model
which is still practical from a computational point of view (unlike, for instance, the
theoretical “global” approach of Daalmans and de Waal (2010)). It deals with all the
table relations, considering the (perhaps unrealistic) worst-case scenario where all the
singletons may collude to recompute some non-singleton sensitive cell. This approach
works as follows. When computing the lower and upper bounds ap and ap through (6),
which are available to any attacker, we assume that the cell values of singletons are
known, although they are sensitive (i.e., we compute ap and ap by assuming collusion

of singletons). For this purpose, denoting by G the set of singletons, the third set of
constraints of the minimization and maximization problems of (6) should be replaced
by

xi = ai i 6∈ ((P \ G) ∪ S ∪ {p}), (9)

i.e., we consider the attacker knows the values of single-respondent cells, excluding cell
p when p ∈ G; if p ∈ G then (6) with the new constraints (9) provides the lower and
upper bounds of p when the other singletons collude. This means that the constraints
of (7)

(li − ai)yi ≤ x
l,p
i ≤ (ui − ai)yi i = 1, . . . , n

(li − ai)yi ≤ x
u,p
i ≤ (ui − ai)yi i = 1, . . . , n

should be replaced by the new ones

(li − ai)yi ≤ x
l,p
i ≤ (ui − ai)yi i ∈ ({1, . . . , n} \ G) ∪ {p}

x
l,p
i = 0 i ∈ G \ {p}

(li − ai)yi ≤ x
u,p
i ≤ (ui − ai)yi i ∈ ({1, . . . , n} \ G) ∪ {p}

x
u,p
i = 0 i ∈ G \ {p}.

(10)
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It is worth noting that, by assuming this worst-case scenario where all the singletons collude,
this procedure may cause oversuppression—the information loss can thus be excessive—,
resulting in an unacceptable table for practitioners.

4.1 Benders decomposition for CSP

Problem (7) can be approached by means of a Benders decomposition (Benders, 2005).
Initially applied to two-dimensional tables (Fischetti and Salazar-González, 1999), it was
later extended to general tables (Fischetti and Salazar-González, 2001), and other CSP
variants (Salazar-González, 2004). Benders algorithm is a cut generation procedure that
iteratively solves a master problem in variables yi ∈ {0, 1}, i = 1, . . . , n—which provides a
suppression pattern—, and |P| subproblems (one per primary cell) which “inform” about
the protection provided by this pattern to primary cells. If all primaries are protected, then
the suppression pattern is optimal. Otherwise, a violated “protection cut” is added to the
master problem, and the master is solved again. Iterations are performed until the optimal
solution is found (which is guaranteed, since the number of iterations is finite). Broadly, the
Benders decomposition algorithm applied to CSP is as follows:

1. Initializations: set initial set of protection constraints J = ∅.

2. Solve master problem:

min

n
∑

i=1

wiyi

s. to yp = 1 ∀p ∈ P
yi ∈ {0, 1} i = 1, . . . , n

vjT
y ≥ βj j ∈ J ,

(11)

where vj ∈ R
n and βj ∈ R are the left and right hand sides of protection cuts (to be

defined in below steps 3–4). Note primary cells are always suppressed, even for J = ∅.

3. Check whether suppression pattern yi, i = 1, . . . , n satisfies lower protection level lplp
for each cell p ∈ P:

• For each primary cell p ∈ P it has to be checked whether deviations x (supraindices
l,p are suppressed to simplify the notation) that satisfy the first group of constraints
of (7)

Ax = 0
(li − ai)yi ≤ xi ≤ (ui − ai)yi i = 1, . . . , n

xp ≤ −lplp

exist, or equivalently that

−lplp ≥ min xp

s. to Ax = 0 [λ]
xi ≥ (li − ai)yi i = 1, . . . , n [µl]
xi ≤ (ui − ai)yi i = 1, . . . , n [µu],

(12)

λ, µl and µu being the set of Lagrange multipliers (also known as dual variables)
of each group of constraints.
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• Problem (12) has always a solution: (i) it is feasible, since x = 0 (no deviation),
which corresponds to the original table is feasible (but not optimum); (ii) it is not
unbounded, since xp ≥ lp − ap > −∞ (e.g., if table is positive then lp = 0).

• By LP duality, the dual of (12) is

max 0λ +

n
∑

i=1

(li − ai)yiµli −
n

∑

i=1

(ui − ai)yiµui
=

=

n
∑

i=1

((li − ai)µli − (ui − ai)µui
) yi

s. to AT λ + µl − µu = ep

µl ≥ 0, µu ≥ 0,

(13)

where ep is the p-th column of the identity matrix.

• Then, lower protection level of primary cell p is satisfied if

−lplp ≥
n

∑

i=1

((li − ai)µli − (ui − ai)µui
) yi, (14)

µl and µu being the solution of (13).

• If (14) holds for all p ∈ P, then the suppression pattern y guarantees lower pro-
tection levels. If, for some p ∈ P, (14) is not satisfied, then it is added to J , the
set of protection constraints of the master problem.

4. Check whether suppression pattern yi, i = 1, . . . , n satisfies upper protection level uplp
for each cell p ∈ P:

• We proceed as in the previous case for lower protection levels. If the protection of
some primary is violated, a protection constraint (similar to (14)) is added to the
master problem:

uplp ≤
n

∑

i=1

(−(li − ai)µli + (ui − ai)µui
) yi (15)

µl and µu being the solutions of the dual problem for the upper protection.

5. If at steps 3–4 no protection constraint was violated, then the current suppression
pattern yi is optimal. Otherwise we go to step 2 to solve the master problem with an
updated set J .

As in other applications of Benders decomposition, the performance of the method de-
pends of the number of iterations to be performed. In general, it has been observed that
this approach is very efficient for CSP instances in two-dimensional tables. However, for
medium-large sized and complex tables, this approach becomes computationally expensive.
On the other hand, compared to below alternative approaches, it guarantees an optimal
solution if large enough CPU times are provided (unfortunately, this is not always allowed
in real practice).
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Figure 12: Solutions of (4) (left figure for a23, right figure for a23) as minimum cost network flow
problems. Values in brackets are the cell increments and decrements.

The above Benders algorithm for CSP can be easily extended with the two approaches
suggested in Section 4 for the singleton problem. For the first “local” protection approach,
the set of constraints (8) should be added to the master problem (11) while the subproblems
(12) and its equivalent for the upper protection would not change. In the second “global”
protection approach, the new constraints (10) should replace the last two sets of constraints
of the subproblems (12) and its equivalent for the upper protection, while the master problem
(11) would not change.

4.2 Network optimization heuristics for CSP

Most heuristic approaches for (7) find a feasible, hopefully good point, by network optimiza-
tion algorithms (in particular, minimum cost network flows, and shortest paths (Ahuja et al.,
1993)). Unfortunately, those heuristics can only be used in tables that accept a network repre-
sentation: two-dimensional and 1H2D hierarchical tables (the latter is however an interesting
case for NSAs). Some attempts have been made for extending them to three-dimensional ta-
bles (Dellaert and Luijten, 1999), but as mentioned in Section 2.2, three-dimensional tables
correspond to multicommodity flows, and therefore “standard single-commodity” network
optimization procedures are not valid (and rather unsuccessful). Among those heuristics
we find the seminal paper Kelly et al. (1992), and Castro (2002) and Cox (1995), which
rely on minimum-network cost flows. For general tables Carvalho et al. (1994) suggested an
efficient procedure based on shortest paths. Some of those ideas were sensibly combined in
the approach of Castro (2007a), based on shortest paths but valid for positive tables. This
approach is very efficient, but it can only be applied to either two-dimensional or 1H2D
hierarchical tables.

Figure 12 illustrates how network flows can be used for cell suppression. The network of
Figure 12 represents the table of the example of Figure 11. For each cell ai an edge xi = (s, t)
is depicted (s and t are the source and target node for each cell), and two arcs are considered:
the forward arc x+

i = (s, t) for the cell value increments, and the backward arc x−

i = (t, s)
for the cell value decrements. The two optimization problems (4) are solved as two minimum
cost network flow problems, by finding the maximum and minimum flow that can be sent
through the arcs associated to suppressed cells. Those flows are 20 and 68, which match the
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Figure 13: Protections provided to cell (2, 3) by two different paths: either using internal cells (left
figure), or total cells (right figure).

solutions of (4), and since they are out of the protection interval [40− lpl, 40+upl] = [30, 50]
then cell (2, 3) is protected. If this procedure is repeated for all primary cell, and the values
are out of the respective protection intervals, then a feasible solution is available for CSP.
This idea is the basis of network flows heuristics for CSP. The general solution scheme is as
follows:

1. Build the network associated to either the two-dimensional or 1H2D table.

2. For each cell ai two arcs x+
i = (s, t) and x−

i = (t, s) are considered, related to cell value
increments and decrements.

3. A (hopefully good) feasible solution to CSP is obtained by solving two minimum cost
network flow problems for each primary cell p ∈ P:

• Problem for upper protection level uplp. Considering forward arc x+
p = (s, t), send

uplp flow units from t to s excluding arc x−
p = (t, s). Cells in the resulting cycle

are suppressed (they are either cells in P or in S—set of secondary cells).

• Problem for lower protection level lplp. Considering backward arc x−
p = (t, s):

send lplp flow units from s to t excluding arc x+
p = (s, t). As before, cells in the

resulting cycle are suppressed.

When solving the minimum cost flows problems, cells in P or previously suppressed
cells in S are preferred. This is achieved by using appropriate arc costs.

4. Once all primary cells have been considered, the sets P and S provide a feasible (sub-
optimal) suppression pattern.

The main drawback of the previous approach is that up to 2|P| minimum cost network
flow problems have to be solved. Although minimum cost network flows problems are more
efficient than LP problems, for large instances they may require a significant amount of time.

A recent improvement (Castro, 2007a) was obtained by replacing the minimum cost
network flow problems by shortest paths ones. Figure 13 illustrates this approach, using
the same example of Figure 12. Left picture of Figure 13 shows the shortest path (for some
particular arc costs) from t to s for the primary cell ap = (s, t). Cells of arcs in the shortest
path are the ones to be suppressed (marked with thick lines). The minimum of the cell
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values for the cells associated to forward arcs in the shortest paths (this minimum will be
denoted as γ+) provides the maximum decrement of cell p that preserves the nonnegativity
of cells in the cycle. In this example γ+ = min{40, 20} = 20. Similarly, the minimum
of the cell values for the cells associated to backward arcs in the shortest path (denoted
as γ−) provides the maximum increment that preserves the nonnegativity of cells in the
cycle. In this case γ− = min{28, 38} = 28. Therefore, γ+ and γ− are the lower and upper
protections given by this shortest path to primary cell p. The right picture of Figure 13
shows another shortest path, for some other particular arc costs, only involving total cells.
In this case γ+ = min{40, 110, 309, 116} = 40 (minimum of forward arcs) and γ− = +∞
(there is no backward arc), which means that the maximum decrement of this cell is 40
(i.e., lower protection level is 40), and it can be infinitely increased (i.e., upper protection
level is +∞). This situation in practice is avoided, since total cells usually don’t want to be
suppressed and high costs are set to them. If some lower or upper protection level for some
primary is not satisfied, additional shortest paths are computed. This procedure is repeated
for all primary cell. The set of cells associated to arcs of any shortest path is the set of
complementary cells to be suppressed. Figure 14 outlines the overall procedure, where S is
the set of secondary cells, Clpl and Cupl are vectors that keep the current protection achieved
by each primary cell with previously computed shortest paths, and T T is the set of cells
already used in shortest paths for protecting the current primary cell p. This heuristic is very
fast in practice, since it only requires the solution of shortest paths algorithms. The quality
of the upper bound provided for the optimal objective function depends of the particular
instance. Some LP models have been used for obtaining a lower bound (Kelly et al., 1992;
Castro, 2007a).

It is worth noting that a solution that overcomes the singleton problem can be easily
obtained with either network flows or shortest paths heuristics as follows. As seen above,
for each sensitive cell p either two network flows problems or a sequence of shortest paths
problems has to be solved. The arcs in the cycle or in the shortest path are used to compute
the upper and lower protection levels for the sensitive cell p. We just have to forbid singletons
in either these cycles or shortest paths, such that the protection to any sensitive cell is
provided by other non-singleton cells. This can be done by imposing large costs to the arcs
associated to singletons in the network flows or shortest paths problems to be solved.

4.3 Other heuristics for CSP

Two other heuristics are finally mentioned, currently being used by NSAs. Indeed, these two
heuristics were developed at NSAs to overcome the drawbacks of the optimal approach of
Subsection 4.1 (namely, computationally too expensive for large instances) and the heuristic
of Subsection 4.2 (namely, not applicable to general linked tables). The hypercube (Giess-
ing and Repsilber, 2002), initially developed for k-dimensional tables, is a simple and fast
procedure. For two-dimensional tables, given a primary cell aij (row i, column j), it finds a
protection pattern of three cells ail − ahl − ahj (a rectangle, or two-dimensional cube). For
a three-dimensional table, it would find a pattern of seven cells (three-dimensional cube).
It can thus be seen as a network flows approach that only considers a subset of the flows
(thus providing less quality solutions than heuristics based on network optimization). This
is illustrated by the example of Figure 15. Hypercube suppresses an extra cell (X), whereas
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Algorithm Shortest-paths Heuristic for CSP (Table,P, upl, lpl)
S = ∅; Clpli = 0, Cupli = 0, i ∈ P;
for each p ∈ P do

Find source and target nodes of primary arc x+
p = (s, t);

for each type of protection level ∗ ∈ {lpl, upl} do

T T = ∅;
while (C∗p < ∗p) do

Set arc costs;
Compute the shortest path SP from t to s;
if SP is empty then

// check whether CSP instance is infeasible
end if

T = {cells associated with arcs ∈ SP};
S := S ∪ T \ P;
Compute γ+ and γ−;
Update Clpli and Cupli, i ∈ (P ∩ T ) ∪ {p};
T T := T T ∪ T ;

end while

end for each

end for each

Return: S;
End algorithm

Figure 14: Outline of shortest paths heuristic for CSP.

P

C

C

C

C

C

X

Networks flows Hypercube

C C

Figure 15: Illustration of the hypercube method on a two-dimensional table. P is the primary cell; C

are previously removed complementary or secondary cells; X is an extra cell removed by hypercube.
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a network flows heuristic would notice that primary cell P is already protected by a set of
previously suppressed complementary cells C. Although it is efficient, the hypercube method
in practice tends to over-suppress cells and, moreover, it does not guarantee a feasible so-
lution (indeed, it may provide a solution with underprotected cells). Some of the above
drawbacks are also shared by the other heuristic, named Hitas (deWolf, 2002). That ap-
proach decomposes a general k-dimensional hierarchical table in a tree of (k− l)-dimensional
non-hierarchical subtables, l = 0, . . . , k − 1, and locally protects them by the approach of
Subsection 4.1. The practical implementation of Hitas can only deal with (hierarchical) ta-
bles with k ≤ 3, since the approach of Subsection 4.1 is not efficient for (real-world instances
of) higher dimensional tables. Since some linking constraints between subtables are removed,
the final solution is not guaranteed to be feasible. However, the quality of the solutions is
in general acceptable, and the overall procedure is quite fast. It is worth noting that, in
spite of their infeasibility issues, both hypercube and Hitas provide solutions that avoid the
singleton problem, making them, in practice, good choices for data owners.

4.4 Computational evaluation of approaches for CSP

It is not easy to compare the approaches of previous subsections 4.1–4.3, since codes are not
freely available. However, most of them have been included in the τ -Argus software (Hunde-
pool et al., 2008), freely available from http://neon.vb.cbs.nl/casc/tau.htm, and being
used by several European NSAs. In particular, this package includes the Benders decom-
position of Fischetti and Salazar-González (2001), the shortest paths heuristic of Castro
(2007a), and the two (infeasible) heuristics of deWolf (2002) and Giessing and Repsilber
(2002). These four approaches can be tested with the same set of tables, generated within
the τ -Argus common interface.

Table 1 shows the dimensions and results obtained on a set of six 1H2D private real-world
instances (Castro, 2007a). The information for instances CBS* and DES* was reported,
respectively, by Statistics Netherlands and Statistics Germany. They were obtained with the
τ -Argus package, running the four available solution approaches, and using Xpress as the
MILP solver for Benders and Hitas. The information provided for each instance is the total
number of cells n, the number of primary cells |P|, and the CPU time (columns “CPU”)
and the best objective function value achieved (columns f∗). Problems CBS* and DES*
were solved, respectively, on a 1.5 GHz Pentium-4 and a 900MHz Pentium-3 processor.
From Table 1, it can be concluded that, although they do not guarantee optimal solutions,
heuristics are much faster than Benders decomposition for “complex” tables (i.e., non-two-
dimensional tables, in particular 1H2D tables), and in some cases they provide similar (even
better, due to the time limit of one hour set for these executions) objective functions. It
is worth to note that solutions provided by Hitas and hypercube are not guaranteed to be
feasible, while Benders and the shortest paths heuristics always provide a feasible solution.

Since results of Table 1 are not reproducible, because instances are private, an additional
set of two public tables has been tested. The information for these two tables is reported
in Table 2, and the meaning of the columns is the same than for Table 1. These two 1H2D
magnitude tables are obtained from the example microdata file distributed with τ -Argus,
by crossing variables “IndustryCode”×”Size”, and reporting information for either “Var1”
or “Var2” as output variables. CPLEX was used as the MILP solver for Benders and Hitas
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Table 1: Results for private real-world tables from Statistics Netherlands and Statistics Germany.

Benders shortest paths Hitas hypercube
Instance n |P| f∗ CPU f∗ CPU f∗ CPU f∗ CPU
CBS1 6399 570 4.85e+6 >3600 4.84e+6 4 5.85e+6 12 11.8e+6 6

CBS2 172965 68964 (1) 2.96e+10 403 1.31e+10 1151 24.9e+10 177
DES1 460 18 0.90e+6 93 0.87e+6 6 1.68e+6 1 43.2e+6 2
DES2 1050 61 2.41e+7 98 2.44e+7 4 2.57e+7 4 4.06e+7 4
DES3 8230 994 10.2e+7 618 12.9e+7 10 9.41e+7 35 42.2e+7 9

DES4 16530 2083 (2) 1.83e+8 21 1.54e+8 38 5.98e+8 14

DES4a 29754 3494 (2) 11.9e+7 65 5.95e+7 119 33.8e+7 24
(1) not tried; (2) failed

Table 2: Results for magnitude 1H2D public tables from microdata file of τ -Argus distribution, obtained
crossing variables “IndustryCode”×”Size”, and reporting information for either “Var1” or “Var2”.

Benders shortest paths Hitas hypercube
Instance n |P| f∗ CPU f∗ CPU f∗ CPU f∗ CPU

Var1 6399 657 18.7e+6 604(1) 20.4e+6 1 25.7e+6 4 54.2e+6 4

Var2 6399 1018 6.85e+6 605(1) 8.26e+6 2 8.75e+6 6 14.3e+6 3
(1) stopped after default τ -Argus time limit of 10 minutes reached

approaches. All the runs have been performed on a Linux Dell Precision T5400 workstation
with 16GB of memory and four Intel Xeon E5440 2.83 GHz processors, without exploitation
of parallelism capabilities. As it is observed, Benders requires much more CPU time than
the other heuristic approaches, but as expected it provides a better objective. The default
time limit of 10 minutes of CPU (which is the minimum allowed limit by the software) was
reached by Benders. The shortest paths heuristic provides better results than the other
heuristics with less CPU time, and it is guaranteed to provide a feasible solution. On the
other hand, if the table was more complex (instead of 1H2D) the shortest paths heuristic
could not be used. For end-users, the availability of several different approaches (which
represent a tradeoff between solution time and solution quality) is very positive: they just
have to select the appropriate one for their particular needs.

5 Controlled tabular adjustment

The purpose of controlled tabular adjustment (also known as minimum-distance controlled
tabular adjustment or simply CTA) is to find the closest safe table to the original one (i.e.,
the closest table that meets some protection levels). Since CTA is a perturbative method,
its goal is to publish a table where the values of sensitive cells have been modified, such
that any attempt for retrieving confidential information from individual respondents will fail
(i.e., it will provide wrong values, far enough from the real ones). This risk model, although
different from the one used by CSP, achieves the same goal of preserving confidentiality, and
it is thus equally valid. Although CTA is a recent approach, compared to CSP, it is gaining
recognition; indeed in some occasions end users prefer a slightly perturbed value to an empty
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Original table
P1 P2 P3

M1 20 24 28 72
M2 38 38 40 116
M3 40 39 42 121

98 101 110 309

Adjusted table,
lower protection sense
P1 P2 P3

M1 15 24 33 72
M2 43 38 35 116
M3 40 39 42 121

98 101 110 309

Adjusted table,
upper protection sense
P1 P2 P3

M1 25 24 23 72
M2 33 38 45 116
M3 40 39 42 121

98 101 110 309

Figure 16: Original table with sensitive cell in boldface, of lower and upper protection levels equal to
five. Protected tables with “lower protection sense” and “upper protection sense” (i.e., value of sensitive
is respectively reduced and increased by five units).

cell (Zayatz, 2009). CTA is considered and discussed as a new emerging protection method
in Hundepool et al. (2010). Figure 16 illustrates CTA on a small two-dimensional table with
one sensitive cell in boldface, with lower and upper protection levels equal to five (left table
of Figure 16). Depending on the “protection sense” of the sensitive cell, either “lower” or
“upper”, which has to be decided, the value to be published for this cell will be respectively
less or equal than the original cell value minus the lower protection level, or greater or equal
than the original cell value plus the upper protection level. In the example of Figure 16, if
the protection sense is “lower”, then the value published for the sensitive cell should be less
or equal than 35; the optimal adjusted table for this case is shown in the middle table of
Figure 16. If the protection sense is “upper”, then the value must be greater or equal than
45, as shown in the right table of Figure 16.

CTA was introduced in the manuscript Dandekar and Cox (2002) and, independently
and in an extended form, in Castro (2006) (in the latter it was named minimum-distance
controlled perturbation method). The parameters that define any CTA instance are the
same than for CSP, i.e.:

• A general table ai, i = 1, . . . , n, with m linear relations Aa = b.

• Upper and lower bounds u and l for the cell values, assumed to be known by any
attacker: l ≤ a ≤ u.

• Vector of nonnegative weights associated to the cell perturbations wi, i = 1, . . . , n.

• Set P ⊆ {1, . . . , n} of sensitive cells.

• Lower and upper protection levels for each primary cell lplp and uplp p ∈ P.

CTA finds the safe table x closest to a, using some distance L(w):

minx ||x − a||L(w)

s. to Ax = b

l ≤ x ≤ u

xp ≤ ap − lplp or xp ≥ ap + uplp p ∈ P.

(16)

Defining z = x − a, lz = l − a and uz = u − a, (16) can be recast in terms of deviations:

minz ||z||L(w)

s. to Az = 0
lz ≤ z ≤ uz

zp ≤ −lplp or zp ≥ uplp p ∈ P.

(17)
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To model the “or” constraints it is necessary to consider binary variables yp ∈ {0, 1}, p ∈ P,
such that yp = 1 if cell p is “upper protected” (i.e, zp ≥ uplp), and yp = 0 if it is “lower
protected” (zp ≤ −lplp). For the particular case of distance L1, it is also needed a pair of
variables z+

i and z−i , such that zi = z+
i − z−i and |zi| = z+

i + z−i . The resulting MILP model
is

min
z+,z−

n
∑

i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
0 ≤ z+

i ≤ uzi
i 6∈ P

0 ≤ z−i ≤ −lzi
i 6∈ P

upliyi ≤ z+
i ≤ uzi

yi i ∈ P
lpli(1 − yi) ≤ z−i ≤ −lzi

(1 − yi) i ∈ P
yi ∈ {0, 1} i ∈ P.

(18)

Problem (18) has |P| binary variables, 2n continuous variables and m+4|P| constraints. The
size of (18) is much less than that of the the cell suppression formulation (7). For instance,
for a table of 8000 cells, 800 primaries, and 4000 linear relations, CTA formulates a MILP of
800 binary variables, 16000 continuous variables and 7200 constraints (these figures would
be 8000, 12,800,000 and 32,000,000 for CSP).

The benefits of CTA are not limited to a smaller size of the resulting MILP problem.
CTA can be easily extended with constraints to meet some data quality criteria (Cox et al.,
2005). It has also been experimentally observed that the information loss of CTA solutions
is comparable (in some instances even better) than that of CSP. For instance, in Castro
and Giessing (2006), it was observed that for a real-world instance from Statistics Germany,
the number of cells with large deviations provided by CTA was six, whereas the number of
suppressed cells by CSP was 20. If we consider that a cell with a “large” deviation in CTA
is equivalent to a cell whose value is “suppressed” in CSP (since the information provided
by this cell is “small”), we may conclude that the information loss of the CTA solution was
lower in that situation.

Being a recent method, there is not too much literature about solution approaches for
CTA. We outline in next subsections some of the attempts currently being performed.

5.1 Use of state-of-the-art solvers for CTA

Because of the relatively small size of the CTA formulation (18), it is possible to apply
(usually not straightforwardly, but tuning some parameters) state-of-the-art MILP solvers.
Such an implementation was developed using both CPLEX and Xpress in a package to be
used and funded by Eurostat (Castro et al., 2009). Table 3 shows the results obtained with
the commercial state-of-the-art solver Xpress on a set of four real-world instances provided
by Eurostat, and processed by Statistics Germany and Statistics Netherlands. These in-
stances can be considered difficult, since they have a complex structure. They are related to
structural business statistics, for NACE sectors C, D and E. (The NACE code system is the
European standard for industry classifications. Sectors C, D and E correspond respectively
to “manufacturing”, “electricity, gas, steam and air conditioning supply” and “water supply;
sewerage; waste management and remediation activities”.) Columns n, |P| and m provide
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Table 3: Results with Xpress for some real data of structural business statistics from Eurostat.

Instance n |P| m objective gap(%) CPU (sec)
sbs-E 1430 382 991 109130 2.9 4.3
sbs-C 4212 1135 2580 314950 2.0 57
sbs-Da 28288 7142 13360 414474 4.9 11548
sbs-Db 28288 7131 13360 407665 4.9 19510

the number of cells, sensitive cells and linear relations of the table. Columns objective, gap
and CPU show the final value of the objective function (weighted perturbations for all the
cells), optimality gap, and CPU time in seconds. The optimality gap is defined as

gap =
best − lb

10−10 + |best|
· 100%,

best being the best current solution, and lb the best current lower bound. All the runs
were carried out on a Linux Dell PowerEdge 6950 server with four AMD Opteron 8222 3.0
GHZ processors without exploitation of parallelism capabilities (since parallelism was not
exploited, a modern PC would provide faster executions than those reported in Table 3).
The required optimality gap was of 5% for all the executions. We see that the smallest
execution was solved in seconds, the medium-sized one in less than a minute, and the two
largest required few hours of CPU. However, the solution of larger instances, with tighter
optimality gaps (i.e., close to 0%) result in executions of more than one day of CPU, and
specialized solution approaches are needed for them.

5.2 Benders reformulation of CTA

One specialized solution approach is, as for CSP, Benders reformulation (not decomposition
in this case) for CTA, where the master problem is formulated in terms of the binary variables
(protection senses) and the subproblem just finds a feasible pattern of adjustments for these
protection senses. It can be shown (Castro and Baena, 2008) that, applying Benders method
to (18), the formulation of the subproblem (for some yi, i ∈ P values) is:

max
µ+

u ,µ−

u ,µ+

l
,µ−

l

−µ+T

u u+ − µ−
T

u u− + µ+T

l l+ + µ−
T

l l−

s. to

(

AT

−AT

)

λ −

(

µ+
u

µ−
u

)

+

(

µ+
l

µ−

l

)

=

(

w

w

)

µ+
u , µ−

u , µ+
l , µ−

l ≥ 0,

(19)

where l+, l−, u+, u− provide the lower and upper bounds of z+ and z− once binary variables
y ∈ R

p are fixed, µ+
u , µ−

u , µ+
l , µ−

l ∈ R
n are the vectors of Lagrange multipliers for these lower

and upper bounds, and λ ∈ R
m is the vector of Lagrange multipliers for the table linear
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Table 4: Results with Benders reformulation for CTA on two-dimensional tables.

dimensions Benders CPLEX
Instance n |P| m CPU Iter. CPU MIP iter.
random16 22801 10000 302 4.26 9 8.29 23228
random17 22801 18500 302 3.24 5 19.08 41301
random18 15251 13000 252 1.69 4 9.16 28959
random19 15251 11000 252 2.02 5 8.53 24856
random20 22801 18500 302 3.18 5 17.3 413013

relations. The formulation of the master problem is

min
θ,y

θ

s. to
∑

h/∈P

(−µ+,i
uh

uzh
+ µ−,i

uh
lzh

) +
∑
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lzh
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−,i
lh
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+
∑
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uh
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+,i
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lzh
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∑
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+
∑
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(−v+,j
uh

uzh
− v−,j

uh
lzh

+ v
+,j
lh

uplh − v
−,j
lh

lplh)yh ≤ 0 j ∈ J

yh ∈ {0, 1} h ∈ P,

(20)

where θ is the computed lower bound of the optimal objective, and I and J are the sets
of optimality and feasibility cuts (associated to vertices and rays of the polyhedron of the
feasible region of (19)).

This approach was tested on a set of random two-dimensional instances (Castro and
Baena, 2008) obtained with the generator in Castro (2007a). All runs were carried on a
Sun Fire V20Z server with two AMD Opteron processors (without exploiting parallelism
capabilities), and under the Linux operating system. Table 4 shows the instance dimensions
(number of cells n, number of sensitive cells |P|, number of table linear relations m), and the
computational results (CPU times with both Benders and CPLEX branch-and-cut, number
of Benders iterations “Iter.”, and number of CPLEX simplex iterations “MIP iter.”). CPLEX
was used for the solutions of (19) and (20). From this table it can be shown that Benders
reformulation is more efficient than a branch-and-cut approach for two-dimensional tables.
However, this does not hold for more complex tables, as the number of Benders iterations
grows significantly. This is the same behaviour observed for the Benders decomposition
approach for CSP of Subsection 4.1: it could efficiently solve large two-dimensional tables
(Fischetti and Salazar-González, 1999), but it was only applied to smaller three-dimensional
and other complex tables (Fischetti and Salazar-González, 2001).

Other specialized (exact or heuristic) approaches are being considered for larger CTA
instances. Some preliminary work has been started improving the standard Benders refor-
mulation of (Castro and Baena, 2008), and on block coordinate-descent heuristics (González
and Castro, 2011).

24



6 Conclusions

This paper presented some of the techniques for tabular data protection, focusing on CSP
and CTA. It also outlined the main successful optimization approaches currently being ap-
plied. They are used in real-world by NSAs for the protection of released tables. All of
those approaches share, at different degrees, the same computational drawbacks: they result
in large difficult MILP optimization problems. Current research for improving the solution
of these MILPs is being undertaken, mainly for the most recent method, CTA. There are
other alternative protection methods, like interval protection or partial cell suppression which
result in a very large, even massive, linear programming problem. However, being a continu-
ous optimization problem, recent specialized interior-point methods for structured problems
(Castro, 2007b; Castro and Cuesta, 2010) are expected to be a very efficient alternative.
This is research to be conducted in the near future. Adding to current CSP methods the
solutions outlined in Section 4 to deal with the singleton problem is also part of the work to
be done in this challenging field.
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