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On solving large-scale multistage stochastic problems with a new specialized
interior-point approach

Jordi Castro · Laureano F. Escudero · Juan F. Monge

Abstract A novel approach based on a specialized interior-point method (IPM) is presented for solving large-scale
stochastic multistage continuous optimization problems, which represent the uncertainty in strategic multistage and
operational two-stage scenario trees, the latter being rooted at the strategic nodes. This new solution approach con-
siders a split-variable formulation of the strategic and operational structures, for which copies are made of the
strategic nodes and the structures are rooted in the form of nested strategic-operational two-stage trees. The spe-
cialized IPM solves the normal equations of the problem’s Newton system by combining Cholesky factorizations
with preconditioned conjugate gradients, doing so for, respectively, the constraints of the stochastic formulation
and those that equate the split-variables. We show that, for multistage stochastic problems, the preconditioner (i)
is a block-diagonal matrix composed of as many shifted tridiagonal matrices as the number of nested strategic-
operational two-stage trees, thus allowing the efficient solution of systems of equations; (ii) its complexity in a
multistage stochastic problem is equivalent to that of a very large-scale two-stage problem. A broad computational
experience is reported for large multistage stochastic supply network design (SND) and revenue management (RM)
problems; the mathematical structures vary greatly for those two application types. Some of the most difficult in-
stances of SND had 5 stages, 839 million variables, 13 million quadratic variables, 21 million constraints, and
3750 scenario tree nodes; while those of RM had 8 stages, 278 million variables, 100 million constraints, and
100,000 scenario tree nodes. For those problems, the proposed approach obtained the solution in 2.3 days using
167 gigabytes of memory for SND, and in 1.7 days using 83 gigabytes for RM; while the state-of-the-art solver
CPLEX v20.1 required more than 24 days and 526 gigabytes for SND, and more than 19 days and 410 gigabytes
for RM.

Keywords interior-point methods · multistage stochastic optimization · strategic and operational uncertainties ·
large-scale optimization · two-stage structures · preconditioned conjugate gradient

Mathematics Subject Classification (2000) 90C06 · 90C015 · 90C51

1 Introduction and motivation

The realization of the uncertain parameters in dynamic mathematical optimization is usually structured in a finite
set of scenarios along stages in a given time horizon [3,32]. The representation of the uncertain data affects the
type of decision models and the decomposition methodologies for problem solving to be dealt with. Therefore, the
quality of the solution for the decision making process is also affected by the type of scenario tree generated in
stochastic optimization. In dealing with problems within a time horizon (such as capacity expansion planing (CEP)
to name one), we undoubtedly must have two types of uncertainties and two types of variables, namely, strategic
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and operational ones. The strategic variables are related to the decisions on the location, capacity and timing on
the infrastructure elements of a system’s CEP as supply chain, production system, rapid transit network, energy
transmission network and energy generation mix system, to name a few. The operational variables are related
to the decisions on the operations of the available elements in the system at the stages along the time horizon.
Therefore, there are two types of dynamic optimization submodels, namely, strategic and operational ones which
are intrinsically inter-related in a usually large-sized global model for real-life problem solving.

The rationale behind the partition of uncertain parameters into strategic and operational ones, basically, consists
of considering that the strategic decisions should not be based on individual operational ones at the stages; see [14].
By contrary, strategic decisions should depend on the realizations of the strategic uncertain parameters as well as
on the set of realizations of the operational parameters as a whole in the stage and successors. Therefore, that
observation is translated into considering that the strategic nodes in the scenario tree should not be successors
of individual operational nodes. (An additional reason is the gigantic stochastic model that would result in the
hypothetical case where the strategic and operational features are not taken into independent consideration; note
that the uncertainty would be represented in a multistage scenario tree, where the nodes represent a mixture of the
strategic and operational uncertain parameters; see [15].) Note that the operational uncertainty can be represented
in a two-stage tree, where the second stage nodes have one-to-one correspondence with the operational scenarios in
the stage. The root nodes of those trees are precisely the strategic nodes in the stage. The above approach has been
considered in works for different industrial sectors as production energy planning [36,23], rapid transit network
design [4], dynamic forest stand harvesting selection planning [1] and, recently, hub network expansion planning
[15], among few others. In a different context, see a strong multistage multiscale-based stochastic formulation in
[17]. A scheme for obtaining lower and upper bounds on this type of stochastic problems is presented in [28].

Given the large sizes of real-life instances of many optimization problems, decomposition algorithms are
widely considered, mainly under uncertainty. See [13] for a comprehensive overview of important types of those
algorithms. This work presents a new alternative interior-point method (IPM) [37] for multistage stochastic op-
timization problems, and it is based on a nested splitting formulation for the step variables (i.e., state strategic
variables that link a strategic node to only its immediate successors in the multistage stochastic tree). Formulating
stochastic problems based on splitting is not new, as it was introduced, as far as we know, in [27] for two-stage
stochastic problems. The purpose of that splitting was to avoid the constraint matrix having dense columns, which
are known to be a drawback for IPMs. Other practical split-variable reformulations of multistage stochastic opti-
mization for IPMs are presented in [33], but without reporting any computational evidence. Another approach that
relies on IPMs is the dual decomposition implemented in the DSP (Decomposition for Structured Programming)
stochastic solver [24], which includes an interior-point cutting-plane generator. DSP, however, is not competitive
for large-scale problems. The IPM-based primal-dual column generation approach introduced in [19] efficiently
solves large instances of two-stage stochastic optimization problems, but it is not easily generalized to the multi-
stage case. This same set of two-stage instances was also solved in [34] with a Dantzig-Wolfe decomposition using
the Tulip interior-point academic code. However, extending this approach to multistage stochastic problems is also
not straightforward. In addition, the two-stage instances tested in those two previous references using IPMs are
much smaller than the multistage problems solved in this work.

In this new proposal, nested strategic-operational two-stage trees structures are rooted at the strategic nodes of
the multistage stochastic tree. The form in which those structures are represented impacts the constraints of the
model. This new solution approach considers a split-variable formulation for the step variables in the first stage
nodes of the strategic and operational structures. Therefore, each variable in any strategic node has copies, which
are related to the first stage of both types of interlinked two-stage subproblems. The first copy is related to the
strategic two-stage subproblem and the second to the operational one. The efficiency of the new approach relies on
exploiting the primal block-angular structure of the resulting split-variable reformulation of the multistage stochas-
tic problem. This is done by means of the specialized IPM, which was initially introduced in [5] for multicommod-
ity flows, and later extended to other classes of primal block-angular problems [6,9]. This algorithm —which was
implemented in a package named BlockIP [8]— solves the normal equations associated with the Newton direction
of the IPM by combining Cholesky factorizations with a preconditioned conjugate gradient (PCG). In this work we
will develop the particular form of the preconditioner for multistage stochastic optimization problems, and we will
show that linear systems of equations can be efficiently solved with this preconditioner (which are needed at each
PCG iteration). This new method was implemented in a package named MSSO-BlockIP (MultiStage Stochastic
Optimization based on BlockIP). As it will be seen in the computational results, and in terms of both CPU time
and required gigabytes of memory, MSSO-BlockIP outperformed the state-of-the-art solver CPLEX v20.1 in mul-
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tistage stochastic optimization problems with up to 839 million variables, up to 100 million constraints, and more
than 100,000 nodes in scenario trees of 8 stages. This new approach requires far fewer computational resources for
huge problems, thereby also significantly reducing energy consumption and thus CO2 emissions. We note that a
simpler variant of this approach has already proven to be efficient for two-stage stochastic optimization problems
[10]; and that algorithm is indeed a particular case of the one introduced in this work, namely when the number of
stages is only two and there are no operational decisions.

The rest of the work is organized as follows. For completeness and to introduce some notations to be used
throughout the work, Section 2 outlines the main concepts underlying strategic multistage stochastic trees that
have operational two-stage trees embedded in them. Section 3 presents the two multistage stochastic metamodels
used in this work. The first model is presented in compact form and the second in its split-variable formulation,
which is more amenable to IPMs. Section 4 introduces the specialized IPM for multistage stochastic problems.
Its implementation, MSSO-BlockIP, is presented in Section 5, which also reports the results of computational ex-
periments comparing our approach with CPLEX v20.1 in the solution of two different applications—described in
Appendices A and B—namely, for strategic and operational supply network design, and strategic revenue manage-
ment. Section 6 draws the main conclusions and outlines future research plans.

2 Strategic multistage operational two-stage stochastic trees

The notation is taken from [15].

2.1 Strategic multistage stochastic tree

Let a strategic scenario be the realization of the uncertain strategic parameters along the time horizon. A strategic
node for a given stage has one-to-one correspondence with the group of strategic scenarios that have the same
realization of the uncertain parameters up to the stage. This information structure can be visualized as the tree de-
picted in Fig. 1, where each root-to-leaf path represents a specific scenario and, then, it corresponds to a realization
of the whole set of the uncertain parameters. Let us point out that it is beyond the scope of this work to present
a methodology for multistage scenario tree generation and reduction; see e.g., [12,22,20,31,25,26,21], among
others.

t = 1 t = 2 t = 3

T = {1, 2, 3}
Ω = Ω1 = {4, 5, 6, 7}
A6 = {6, 3, 1}
t3 = 2

σ7 = 3

S1 = {2, 3, 4, 5, 6, 7}
S1
1 = {2, 3}

N = {1, . . . , 7}
N2 = {2, 3}
Ω3 = {6, 7}

1

2

3

4

5

6

7

Fig. 1 Strategic multistage scenario tree
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Lexicographically ordered sets in the strategic tree

T , stages.
N , nodes in the scenario tree.
Nt, nodes in stage t, where Nt ⊂ N , t ∈ T . By construction, |N1| = 1.
Ω, scenarios. Each one comprises the nodes in the Hamiltonian path from root node 1 to a node, say, ω in the last

stage, up through the stages in set T ; therefore, ω ∈ N|T |. For convenience, a scenario has traditionally been
denoted by its last node in the path.

Ωn ⊂ Ω, scenarios containing node n in the path from root node 1 to their last node ω ∈ N|T |. Note thatΩ1 = Ω.
An, node n and its ancestors, n ∈ N . Note that A1 only contains node 1 ∈ N1.
Sn, successors of node n, n ∈ N . Note that Sn = ∅, n ∈ N|T |; and S1 = N \ {1}.
Sn1 ⊂ Sn, immediate successors of node n, n ∈ N .

Other elements in strategic node n for n ∈ N

wn, weight factor representing the likelihood that is associated with node n. Note that wn =
∑
ω∈Ωn w

ω , where
wω gives the modeler-driven likelihood associated with scenario ω, such that

∑
ω∈Ω w

ω = 1.
tn, stage that node n belongs to, therefore, n ∈ Ntn .
σn, immediate ancestor node of node n. Note: It is assumed that σ1 = 0.
sn(i), i-th node in set Sn1 : tn < |T |, i = 1, . . . , `n, where `n = |Sn1 |.

As an illustration, let us consider an instance with |T | = 3 stages (say, years) and a scenario tree where the
number of strategic immediate successor nodes of node n is `n = 2, n ∈ N : tn < |T |. Therefore, the cardinality
of the strategic scenario tree is |N | = ∑t∈T |Nt| = 1 + 2 + 4 = 23 − 1 = 7 nodes, see Fig. 1.

2.2 Operational uncertainty in the stages in set T along the time horizon

The operational uncertainty is represented in a finite set of stage-dependent operational scenarios in each stage
t, t ∈ T . It is thus assumed that the operational uncertainty originates in any of the previous or current stage—
independent of the strategic uncertainty. Let us introduce the following additional notation:

Πt, set of operational scenarios in stage t.
wπ , weight of operational scenario π, π ∈ Πt, such that

∑
π∈Πt w

π = 1.
πt(i), i-th operational node in set Πt, i = 1, . . . , |Πt|.

A solution approach for a strategic multistage stochastic problem with stage-related uncertainty requires that
the operational decisions for a given strategic realization are structured in a two-stage stochastic tree at any stage.
The first stage is made of the appropriate strategic node and the second stage is composed of the operational
scenarios. As an illustration, Fig. 2 depicts a scenario tree with the same strategic node set as in Fig. 1, plus a set
of operational scenarios (i.e., it is a multistage multiscale scenario tree), where |Πt| = 2, ∀t ∈ T .

Note that in the unlikely case where the strategic nodes are also stagewise-dependent on the operational ones,
the tree depicted in Fig. 2 will instead result in a gigantic multistage scenario tree containing the full combination of
strategic and operational scenarios. As an illustration, a joint multistage scenario tree for an instance with |T | = 5
and `n = 2 for tn ∈ T : tn < 5 has 23,405 nodes and 16,384 scenarios for |Πt| = 4; and 629,145 nodes and
528,288 scenarios for |Πt| = 8∀t ∈ T ; see [15].
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t = 1 t = 2 t = 3

Π3 = {e, f}
N = {1, · · · , 7}
N2 = {2, 3}
A4 = {1, 2, 4}
S2 = {4, 5}1
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6
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e

f
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Fig. 2 Strategic multistage scenario tree with operational two-stage scenario trees

3 Strategic multistage operational two-stage stochastic metamodels

The compact version of the strategic multistage operational two-stage metamodel can be expressed as

min
∑
n∈N

wn
[
anxn +

1

2
xn>Qnxx

n + bnzn +
1

2
zn>Qnz z

n+
∑

π∈Πtn

(
wπcπyπn +

1

2
yπn
>Qπyπn

)]
(1a)

s. to (Tnxσ
n

):tn>1 +Wnxn +Mnzn = hn ∀n ∈ N (1b)
Tπxn +Wπyπn = hπ ∀π ∈ Πtn , n ∈ N (1c)
0 ≤ xn ≤ unx , 0 ≤ zn ≤ unz ∀n ∈ N (1d)
0 ≤ yπn ≤ uπy ∀π ∈ Πtn , n ∈ N , (1e)

where the new parameters are as follows: an, bn, cπ and Qnx , Qnz , Qπ are the vectors and (positive semidefinite)
matrices of the linear and quadratic terms of the objective function for the variables xn, zn and yπn , respectively;
Tn and Wn, respectively, are the constraint matrices of the state strategic variables xσ

n

in the first stage and xn

in the second one (both in the related embedded strategic two-stage submodel); Mn is the constraint matrix of the
local strategic variables zn in the first stage strategic node n in the related embedded strategic two-stage submodel;
Tπ and Wπ , respectively, are the constraint matrices of the state strategic variables xn in the first stage and the
operational variables yπn in the second one of the embedded operational two-stage submodels; hn and hπ are the
right-hand-side (RHS) of the two-stage strategic and operational constraints, respectively; and unx , unz and uπy are
the upper bounds of the variables in the vectors xn, zn and yπn , respectively. Fig. 3 shows the structure of the
constraint matrix for metamodel (1) in the Fig. 2 example, which we have simplified by omitting the columns
related to the zn variables (i.e., terms Mnzn).

To overcome the existence of dense columns in (1) (e.g., xi, i = 1, 2, . . . , in Fig. 3), split-variable reformula-
tions are required when the models are solved by IPMs [27,33,10]. Our approach considers that formulation by
using the following copies of the variables:

xsn, copy of xn in strategic node s, where n is the strategic node that roots the strategic two-stage tree and s is a
second stage node, for s ∈ Sn1 , n ∈ N : tn < |T |.

xπn, copy of xn in operational node π, where n is the strategic node that roots the operational two-stage tree and
π ∈ Πtn .

The copies of those variables above are forced to have the same value through a set of linking constraints. To
simplify notation, let us drop the superindex n in sn(i) and `n, n ∈ N , and the subindex t in πt(i), t ∈ T , when no
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x1 x2 x3 ya1 yb1 x4 x5 yc2 yd2 x6 x7 yc3 yd3 ye4 yf4 ye5 yf5 ye6 yf6 ye7 yf7
W 1

T 2 W 2

T 3 W 3

T a W a

T b W b

T 4 W 4

T 5 W 5

T c W c

T d W d

T 6 W 6

T 7 W 7

T c W c

T d W d

T e W e

T f W f

T e W e

T f W f

T e W e

T f W f

T e W e

T f W f

Fig. 3 Constraint matrix of metamodel (1) for the example in Fig. 2, omitting columns zn, n ∈ N .

ambiguity exists in the context being studied. Therefore, for the strategic two-stage tree we impose xn−xs(1)
n = 0

and xs(i)n − xs(i+1)
n = 0, i = 1, . . . , `n − 1, for each node n that is not in the last stage (that is, n ∈ N : tn <

|T |). And for the operational two-stage tree, we have for any node n ∈ N : xs(`)n − xπ(1)
n = 0 if tn < |T |, or

xn − xπ(1)
n = 0 if tn = |T |; and xπ(i)

n − xπ(i+1)
n = 0, i = 1, . . . , |Πtn | − 1. Our split-variable scheme first covers

the entire set of strategic immediate successors of node n and, next, all the operational scenarios for any strategic
node. It is worth pointing out that xs(`)n −xπ(1)

n = 0 could be replaced by xn−xπ(1)
n = 0, among other alternatives.

However, the chosen scheme has the advantage that the variables in set {xn, xs(1)
n , · · ·, xs(`)n , x

π(1)
n , · · ·, x|Πtn |n }

simply appear in two linking constraints, with the exception of xn and x|Πtn |n which appear in only one (see Fig. 4
for an example).

Thus, the split-variable formulation of metamodel (1) considered by our approach is:

min
∑
n∈N

wn
[
anxn +

1

2
xn>Qnxx

n + bnzn +
1

2
zn>Qnz z

n +
∑

π∈Πtn

(
wπcπyπn +

1

2
yπn
>Qπyπn

)]
(2a)

s. to (Tnxnσn):tn>1 +Wnxn +Mnzn = hn ∀n ∈ N (2b)
Tπxπn +Wπyπn = hπ ∀π ∈ Πtn , n ∈ N (2c)

xn − xs(1)
n = 0, xs(i)n − xs(i+1)

n = 0 ∀i = 1, . . . , `n − 1, n ∈ N : tn < |T | (2d)

x•n − xπ(1)
n = 0, xπ(i)

n − xπ(i+1)
n = 0 ∀i = 1, . . . , |Πtn | − 1, n ∈ N (2e)

0 ≤ xn ≤ unx , 0 ≤ zn ≤ unz ∀n ∈ N (2f)
0 ≤ yπn ≤ uπy ∀π ∈ Πtn , n ∈ N , (2g)

where x•n ≡ x
s(`)
n for n ∈ N : tn < |T | and x•n ≡ xn for n ∈ N|T |. Constraints (2d) and (2e) are the linking

equations for the split-variables that are used in, respectively, the strategic and operational nodes (that is, in (2b)
and (2c)). Fig. 4 depicts the structure of the constraint matrix of the meta formulation (2) for the same example in
Fig. 3 for metamodel (1), omitting columns zn to save space.
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x1 x21 x2 x31 x3 xa1 ya1 xb1 yb1 x42 x4 x52 x5 xc2 yc2 xd2 yd2 x63 x6 x73 x7 xc3 yc3 xd3 yd3 xe4 ye4 xf4 yf4 xe5 ye5 xf5 yf5 xe6 ye6 xf6 yf6 xe7 ye7 xf7 yf7
W 1

T 2 W 2

T 3 W 3

T a W a

Tb Wb

T 4 W 4

T 5 W 5

T c W c

Td Wd

T 6 W 6

T 7 W 7

T c W c

Td Wd

T e W e

T f W f

T e W e

T f W f

T e W e

T f W f

T e W e

T f W f

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

I −I
I −I

Fig. 4 Constraint matrix of meta formulation (2) for the example in Fig. 2, omitting columns zn

4 The specialized IPM for multistage stochastic optimization

Let us consider the following general formulation of a primal block-angular optimization problem:

min
x1,...,xk,x0

k∑
i=1

(
ci
>
xi + xi

>
Qixi

)

s. to


N1

N2

. . .
Nk

R1 R2 . . . Rk I




x1

x2

...
xk

x0

 =


b1

b2

...
bk

b0


0 ≤ xi ≤ ui i = 0, . . . , k.

(3)

The matrices Ni ∈ Rmi×ni and Ri ∈ Rl×ni , i = 1, . . . , k, define, respectively, the block and linking constraints,
where k is the number of blocks, l is the number of linking constraints, and mi and ni denote the number of
constraints and variables of block i. It will be seen below that for MSSO problems the number of blocks k is the
number of strategic and operational nodes in the multistage scenario tree, and that matricesNi andRi are related to
constraints (2b)–(2c) and (2d)–(2e), respectively. Vectors xi ∈ Rni and ui ∈ Rni are the variables and their upper
bounds, respectively, for block i = 1, . . . , k. The components of x0 ∈ Rl are the slacks of the linking constraints; if
they are equalities their upper bounds u0 ∈ Rl can be set to 0 or to a very small feasibility tolerance. The objective
function considers both linear and convex quadratic separable costs, as defined by vectors ci ∈ Rni and matrices
Qi ∈ Rni×ni (Qi = Qi

> and Qi � 0), i = 1, . . . , k. The vectors bi ∈ Rmi , i = 1, . . . , k and b0 ∈ Rl define,
respectively, the RHS of the block and the linking constraints.

By using an appropriate reordering of variables and constraints, any multistage stochastic optimization problem
(2) can be recast as a primal block-angular problem (3). This is illustrated in Fig. 4 for the particular case of the
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scenario tree in Fig. 2. Note that variable vectors zn, n ∈ N are omitted to save space, but, this does not affect
the matrix structure depicted in Fig. 4 because they are local to each node and are therefore not replicated. The
order of the variables is based on a breadth-first-search (BFS) in the scenario tree (that is, nodes are explored
by stages). And for each node n in the BFS, the first variables considered are those involved in the (nested)
strategic two-stage tree composed of node n and its immediate successors s ∈ Sn1 (namely, variable vectors
xn, all the copies xsn, the local strategic variables vector zs, and the state strategic ones xs), followed by the
variables in the operational two-stage tree comprising the nodes n and π ∈ Πtn (that is, variable vectors xπn and
yπn). As for the constraints, (2b) and (2c) are moved to the first rows (block constraints in (3)), while (2d)–(2e)
correspond to the linking constraints. Observe that with this particular ordering the two groups of (block and
linking) constraints have a stair-type form. In Fig. 4 vertical lines separate the k blocks of the problem; a double
horizontal line separates the diagonal block constraints Nixi = bi, i = 1, . . . , k, from the linking constraints;
and, within the linking constraints part, a horizontal line separates the constraints of different (nested) two-stage
trees. For instance, the linking constraints in Fig. 4 are partitioned into seven groups, which correspond to the
seven (nested) two-stage trees in Fig. 2, each one composed of the scenario root node n, followed by the first
strategic node sn(1) until the last node in Sn1 , and trailed by the first operational node π(1) until the last node
in Πtn , namely, {1, 2, 3, 1a, 1b}, {2, 4, 5, 2c, 2d}, {3, 6, 7, 3c, 3d}, {4, 4e, 4f}, {5, 5e, 5f}, {6, 6e, 6f}, {7, 7e, 7f}.
Note also that the number of blocks k is equal to the number of nodes in the multistage scenario tree, that is,
k =

∑
n∈N (1 + |Πtn |). For the particular case of a problem where |Π| = |Πt| for all t ∈ T , and ` = |Sn1 | for

all n ∈ N : tn < |T |, the number of blocks can be computed as k =
`|T | − 1

`− 1
(|Π| + 1) (e.g., in Fig. 4 we have

` = 2, |T | = 3 and |Π| = 2, so k = 21, which is the number of (strategic and operational) nodes in the tree in Fig.
2). It is worth pointing out the high sparsity of the matrices Ri ∈ Rl×ni , where all coefficients are zero, except
for at most three diagonal (identity) matrices I or −I (see e.g., Fig. 4). This high sparsity will be crucial for the
efficient solution of problem (3). We also remark that (3) can deal with more general MSSO models than those of
formulation (2), for instance, for problems where the set of operational scenarios is different for each node of the
same stage, that is, we have Πn, n ∈ N instead of Πt, t ∈ T . This is a case in which the operational uncertainty is
stagewise-dependent (as oppose to stage-dependent), but the strategic uncertainty continues to be non-dependent
of individual realizations of the operational uncertainty.

The previous discussion can be summarized in the following result:

Proposition 1 Any multistage stochastic optimization problem that has both strategic and operational decisions,
and is based on the split-variable formulation (2) can be recast as a primal block-angular problem (3).

Proof It is immediate from the discussion in the previous paragraph.

Problems in the form of (3) can be solved by the specialized IPM of [5,6,9], which was recently implemented
in the BlockIP package [8]. This approach is based on an infeasible long-step primal-dual path-following method
[37] that solves the normal equations at each IPM iteration by exploiting the particular structure of the constraint
matrix of (3).

For completeness, we summarize the primal-dual path-following IPM. Problem (3) can be written in standard
form as

min
x

c>x+ 1
2x
>Qx

s. to Ax = b
0 ≤ x ≤ u,

(4)

where c, x, u ∈ Rn, A ∈ Rm×n, Q ∈ Rn×n and b ∈ Rm, m and n, respectively, being the overall number of
constraints and variables of the problem (in our context, n =

∑k
i=1 ni + l, m =

∑k
i=1mi + l).

The dual problem of (4) is

max b>λ− 1
2x
>Qx− λ>u u

s. to A>λ−Qx+ λ0 − λu = c
λ0, λu ≥ 0,

(5)

where λ ∈ Rm, λ0 and λu ∈ Rn are, respectively, the Lagrange multipliers of the equality constraints and the
lower and upper bounds of (4).
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Replacing the bounds in (4) with a logarithmic barrier having parameter µ ∈ R+, the µ-perturbed version of
the KKT conditions of (4) become

rc ≡ c− (A>λ−Qx+ λ0 − λu) = 0, (6a)
rb ≡ b−Ax = 0, (6b)

rxλ0
≡ µe−XΛ0e = 0, (6c)

rsλu ≡ µe− SΛue = 0, (6d)
(x, s, λ0, λu) ≥ 0 , (6e)

where e ∈ Rn is a vector of ones, X,U,Λ0, Λu ∈ Rn×n are diagonal matrices made up of, respectively, vectors
x, u, λ0, λu, and S is defined as S = U −X . Equations (6a)–(6b) impose, respectively, dual and primal feasibility,
whereas (6c)–(6d) impose (µ-perturbed) complementarity. The set of unique solutions from (6) for each µ value is
known as the central path. When µ → 0, these solutions converge to those of (4) and (5). The primal-dual path-
following algorithm solves the nonlinear system (6) by a sequence of damped Newton directions (that is, with step
length reduction to preserve (6e)), reducing the µ parameter at each iteration, and staying close to the central path.
The monograph [37] provides an excellent discussion about primal-dual path-following algorithms.

The Newton direction (∆x,∆λ,∆λ0, ∆λu) is obtained by the solution of the system
−Q A> I
A
Λ0 X
−Λu S



∆x
∆λ
∆λ0

∆λu

 =


rc
rb
rxλ0

rsλu

 . (7)

By eliminating ∆λu and ∆λ0 in (7), as follows,

∆λ0 = X−1rxλ0
−X−1Λ0∆x (8a)

∆λu = S−1rsλu + S−1Λu∆x, (8b)

we obtain a symmetric indefinite system known as the augmented system:[
−Θ−1 A>

A

] [
∆x
∆λ

]
=

[
r
rb

]
, (9)

where Θ and r are defined as

Θ = (Q+ S−1Λu +X−1Λ0)−1 r = rc + S−1rsλu −X−1rxλ0
. (10)

If, in addition, we eliminate ∆x from the last group of equations in (9), the normal equations form is obtained:

(AΘA>)∆λ = g where g = rb +AΘr (11a)

∆x = Θ(A>∆λ− r). (11b)

The Newton direction is computed from (8a), (8b), (11a) and (11b). For linear (i.e., Q = 0) or separable quadratic
problems Θ is a positive diagonal matrix and can be easily computed and inverted.

Computationally, the most time-consuming step of the algorithm is solving system (11a) at each iteration of
the IPM. An efficient solution approach for this system is needed mainly for large-scale problems such as the
multistage stochastic optimization models (1) and (2), which can easily reach millions of variables and constraints
even for scenario trees with a small number of stages (see Section 5). The IPM specialization used in this work
solves the normal equations by exploiting the structure of matrix A in (3). Appropriately partitioning Θ, the matrix
AΘA> of the normal equations can be recast as

AΘA> =



N1Θ1N
>
1 N1Θ1R

>
1

. . .
...

NkΘkN
>
k NkΘkR

>
k

R1Θ1N
>
1 . . . RkΘkN

>
k Θ0 +

∑k
i=1RiΘiR

>
i


=

[
B C
C> E

]
,

(12)
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whereB ∈ Rm̃×m̃ (m̃ =
∑k
i=1mi),C ∈ Rm̃×l, andE ∈ Rl×l are the blocks ofAΘA>; andΘi, i = 0, . . . , k, are

the submatrices ofΘ associated with the k+1 groups of variables (x0, x1, ···, xk) in (3). Considering a partitioning
of the RHS of (11a) g = [g>1 g>2 ]>, where g1 ∈ Rm̃ and g2 ∈ Rl, and the direction of Lagrange multipliers λ,
∆λ = [∆λ>1 ∆λ>2 ]>, with ∆λ1 ∈ Rm̃ and ∆λ2 ∈ Rl, the normal equations can be written as[

B C
CT E

] [
∆λ1

∆λ2

]
=

[
g1

g2

]
. (13)

Eliminating ∆λ1 from the first group of equations in (13), we get

(E − C>B−1C)∆λ2 = (g2 − C>B−1g1) (14)
B∆λ1 = (g1 − C∆λ2). (15)

Following [5,6,9], system (15) will be solved by performing one Cholesky factorization for each diagonal block
NiΘ

iN>i , i = 1, . . . , k of matrix B. Computing the matrix of system (14) can be very expensive, because it
involves the inverse of B. Even if computed, it might result in a dense and large matrix, whose factorization would
be prohibitive. Therefore, system (14) will be solved by a PCG. The dimension of this system is l (the number of
linking constraints, as previously stated), which can be very large in practice. Therefore a good preconditioner is
crucial for a fast solution of (14).

The preconditioner initially developed in [5] for multicommodity flows can be used for any primal block-
angular problem [6]. It is based on the following Neumann series of the inverse of the matrix of system (14):

(E − C>B−1C)−1 =

( ∞∑
i=1

(E−1(C>B−1C))i−1

)
E−1. (16)

It was proven in [5] that the eigenvalues of E−1(C>B−1C) are in ([0, 1), and that the infinite sum in (16) con-
verges. The preconditioner is obtained by considering a number of terms (say, φ) of the infinite sum. Its efficiency
depends on the two following factors:

– The spectral radius ρ (i.e., the largest eigenvalue) of the matrix (E−1(C>B−1C)). When ρ is not excessively
close to 1, the contribution of higher order terms in the series decreases quickly, and then a small φ is enough
for a good approximation of the inverse of E − C>B−1C. Unfortunately, the value of the spectral radius
ρ is problem dependent and cannot be controlled or determined a priori. We have just a few results stating
that ρ is smaller for quadratic problems than for linear ones (see [9, Theorem 1, Proposition 2]). Although
computing ρ is not practical, it can be approximated using the Ritz values of the PCG, as described in [7]. This
allows monitoring their values along the IPM iterations. Although, in theory, the greater the φ, the better the
preconditioner, increasing φ by one means solving an additional system with matrices E and B at each PCG
iteration. In practice, it has been observed [5,6,8,10] that the best results are obtained for φ = 1 (that is, the
preconditioner is E−1) or φ = 2 (in this case the preconditioner is (E−1(C>B−1C))E−1). In general, for
very large problems, φ = 2 can be very time consuming due to the extra computations needed [8]. For this
reason, this work obtains all the computational results with φ = 1.

– The efficient solution of systems with matrix E is instrumental for the performance of the method. Unlike the
spectral radius ρ, which is not possible to determine a priori whether or not it will be far from 1, the particular
structure of E for any multistage stochastic instance can be analyzed before starting the IPM iterations. This is
done in the next subsection, which shows that systems with E are easy to solve.

By abuse of notation, matrix E is denoted as the preconditioner throughout the rest of the work.

4.1 The structure of preconditioner E

According to (12), preconditioner E is defined as

Rl×l 3 E = Θ0 +

k∑
i=1

RiΘiR
>
i . (17)
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Let k̄ denote the number of (nested) computational strategic-operational two-stage trees in the multistage sce-
nario tree, where k̄ = |N | for |Π|T || > 0 and otherwise, k̄ = |N \ N|T ||. The first node in any of those trees is a
strategic node n and the node set in the second stage is

Sn1 ∪Πtn if tn < |T |, or Πtn if tn = |T |. (18)

For problems where the number of strategic and operational nodes is constant for each node (that is, ` = |Sn1 | for
all n ∈ N : tn < |T |, and |Π| = |Πt| for all t ∈ T ), the number of nested two-stage trees is

k̄ =


`|T | − 1

`− 1
if |Π| > 0

`|T |−1 − 1

`− 1
if |Π| = 0 .

(19)

As discussed in the previous section, the linking constraints can also be partitioned by rows in groups of
constraints for each nested two-stage tree (e.g., see again Fig. 4 which is associated to the scenario tree depicted in
Fig. 2). Then, the linking constraint matrix can be decomposed as

[
R1 R2 . . . Rk

]
=


R11 R21 . . . Rk1

R12 R22 . . . Rk2

...
R1k̄ R2k̄ . . . Rkk̄.

 , (20)

Each submatrix Rij of (20), i = 1, . . . , k, for the two-stage tree j, j = 1, . . . , k̄, is any of the following
matrices (see Fig. 4 for an example):

– A zero matrix, if the variables of block i (which is associated with some node inN of the scenario tree) do not
intervene in the two-stage tree j.

– A matrix containing an identity submatrix I , and zeros elsewhere, if block i corresponds to the root node
n ∈ N of the strategic two-stage tree j. This identity starts the splitting of variables xn, and its dimension is
the number of components of xn.

– A matrix containing a submatrix of the form
[
−I
I

]
associated with a node in set Sn1 ∪Πtn , other than the last

node, where n is the root node of the two-stage tree. The dimension of I and −I is the number of components
of xn. This matrix continues the splitting of xn between nodes in Sn1 ∪Πtn .

– A matrix containing a submatrix −I , associated with the last node in set Sn1 ∪Πtn , where n is the root node of
the two-stage tree. This matrix ends the splitting of xn, and its dimension is the number of components of xn.

Then, from (17) and (20), preconditioner E can be rewritten as

E = Θ0 +



k∑
i=1

Ri1ΘiR
>
i1 . . .

k∑
i=1

Ri1ΘiR
>
ik̄

...
...

k∑
i=1

Rik̄ΘiR
>
i1 . . .

k∑
i=1

Rik̄ΘiR
>
ik̄


= Θ0 +



k∑
i=1

Ri1ΘiR
>
i1

. . .
k∑
i=1

Rik̄ΘiR
>
ik̄


, (21)

where the last equality comes from the fact that each two-stage tree has its own split-variables, in other words, the

matrices I ,
[
−I
I

]
, and −I of Rij and Rij′ , j 6= j′, are located in different columns, and, thus, RijΘiR>ij′ = 0.

Therefore, considering an appropriate partition Θ0j , j = 1, . . . , k̄, of the diagonal matrix Θ0, it follows that E is a
block diagonal matrix with k̄ block submatricesΘ0j+

∑k
i=1RijΘiR

>
ij , j = 1, . . . , k̄, each of them associated with
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a (nested) two-stage tree of the multistage scenario tree. For any two-stage tree j ∈ {1, . . . , k̄} that is associated
with some node n ∈ N , the structure of

[
R1j . . . Rkj

]
is as follows

[
R1j . . . Rkj

]
=

xn x1
n x2

n · · · x
ξ−1
n xξn

· · · I · · · −I
I −I

. . .
I −I

 , (22)

where, by abuse of notation, xin, i = 1, . . . , ξ, represents either the copy of xn in the i-th strategic immediate
successor node of root node n, i ∈ Sn1 , or it is the copy of xn in the π-th operational node, π ∈ Πtn . Note that
ξ = |Sn1 |+ |Πtn |.

From (22), and by block multiplication, we get

k∑
i=1

RijΘiR
>
ij =


Θx

n

+Θx
1
n −Θx1

n

−Θx1
n Θx

1
n +Θx

2
n −Θx2

n

. . . . . . . . .
−Θxξ−2

n Θx
ξ−2
n +Θx

ξ−1
n −Θxξ−1

n

−Θxξ−1
n Θx

ξ−1
n +Θx

ξ
n

 , (23)

that is,
∑k
i=1RijΘiR

>
ij is a v-shifted tridiagonal matrix, where v is the number of components of xn, which

is also the dimension of the Θ-matrices. This type of matrix is a generalization of a tridiagonal one where the
superdiagonal (nonzero diagonal above the main diagonal) and subdiagonal (nonzero diagonal below the main
diagonal) are shifted v positions from the main diagonal. In other words, elements (i, j) are non-zero only if |i− j|
is either 0 or v. The matrices with such a structure can be efficiently factorized with zero fill-in by extending
a standard factorization for tridiagonal ones. Therefore, systems with the preconditioner E are reduced to the
solution of k̄ independent smaller systems, each one involving the (fast) factorization of a v-shifted tridiagonal
matrix. In addition, note that systems with E can be easily parallelized for the k̄ smaller systems.

The description above proves the following result:

Proposition 2 For any multistage stochastic optimization problem, with both strategic and operational decisions,
based on the split-variable formulation (2), matrix E, as defined in (17), is block diagonal with k̄ blocks; and
each block j is a vj-shifted tridiagonal matrix, where k̄ is the number of nested two-stage trees in the multistage
scenario tree, and vj is the number of variables replicated in the two-stage tree j ∈ {1, . . . , k̄}.
Proof It is immediate from the discussion in the previous paragraphs.

Figure 5 shows the structure of
[
R1 . . . Rk

]
and preconditionerE for a problem with |T | = 4 stages, |Sn1 | = 2

for n ∈ N : tn < |T | and |Π| = |Πtn | = 2 for every node n ∈ N (then, |N | = 15), where the number of split-
variables at every two-stage tree is v = 10. Note that, according to (19), since |Π| > 0 the number of two-stage
trees (i.e., tridiagonal blocks of E) in Fig. 5 is k̄ = 24−1

2−1 = 15, and each of those trees has four and two two-stage
strategic-operational nodes for tn < 4 and tn = 4, respectively, see (18).

It is worth pointing out that the approach in [10] for the split-variable formulation of two-stage stochastic
problems is a particular case (when k̄ = 1) of the more general preconditioner E presented in this work for the
split-variable formulation (2). One of the most significant features of the new proposal is that the preconditioner
for a multistage stochastic problem (where E has k̄ v-shifted tridiagonal matrices) is equally as complex as the
preconditioner for a very large two-stage stochastic problem (where E is a unique very large v-shifted tridiagonal
matrix). In other approaches, like a nested Benders decomposition (see [2]), solving a multistage case is generally
more complex than solving a two-stage problem.

5 Computational results

This section presents the computational validation of the new approach based on two pilot applications. The first
one is supply network design presented in Appendix A, where the multistage stochastic scenario tree has strate-
gic and operational nodes. The second application is revenue management, presented in Appendix B, where the
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(a) (b)

Fig. 5 Structure of (a) linking constraints and (b) preconditioner E, for a problem with |T | = 4 stages, |Sn1 | = 2 for n ∈ N : tn < |T |
and |Πtn | = 2, n ∈ N .

multistage stochastic scenario tree has only strategic nodes. For each of the instances in the testbed of each pilot
application, the new approach MSSO-BlockIP is compared with the state-of-the-art solver CPLEX v20.1 using
both splitting and non-splitting modeling schemes.

5.1 Implementation details and computational environment

The specialized IPM described in Section 4 was implemented in C++ giving rise to the BlockIP package [6,8].
In this work, BlockIP has been extended to deal with the preconditioner E described in the previous section. The
new code, named MSSO-BlockIP, runs on top of BlockIP, and it is appropriate for very large multistage stochastic
optimization problems with both strategic and operational uncertainties. MSSO-BlockIP and its user’s guide can be
retrieved from http://www-eio.upc.edu/˜jcastro/MSSO-BlockIP.html. Given the sizes of the instances to be tested
(up to hundreds of millions of variables and tens of millions of constraints), we considered an optimality tolerance
of 10−2 in MSSO-BlockIP; that is, we require a primal and dual solution with a relative duality gap (i.e., difference
between the objective functions in (4) and (5)) of less than 10−2. For such huge problems, the only reliable and non-
heuristic code (thus, able to compute an optimal solution) that can be used for comparison with MSSO-BlockIP is
some state-of-the-art implementation of an IPM. In this work, we used the standard primal-dual implementation of
the barrier algorithm in CPLEX v20.1; for huge problems this variant is expected to outperform the homogeneous
self-dual IPM in CPLEX v20.1, which is selected by default in some cases. Default values were used for all
the CPLEX parameters except for the crossover postprocess, which was deactivated (i.e., the solver provides an
interior-point solution instead of a basic one). Another modified CPLEX parameter was the optimality tolerance,
which was also set to 10−2 in order to make a fair comparison with MSSO-BlockIP. This is an additional argument
for using the standard primal-dual barrier instead of the homogeneous self-dual algorithm, since the latter would
not benefit from reducing the optimality tolerance; on the other hand, the standard primal-dual code can trigger an
early stop with feasible primal and dual solutions, as well as with a desired duality gap.

One of the most influential parameters in MSSO-BlockIP for the efficient solution of (14) is the tolerance re-
quired by the PCG. This tolerance is dynamically updated at each interior-point iteration i as εi = max{βεi−1,minε},
where ε0 is the initial tolerance, minε is the minimum allowed tolerance, and β is a tolerance reduction factor at
each interior-point iteration. For the very large MSSO problems solved in this work we used by default the conser-
vative values: ε0 = minε = 10−2, β = 1 for the supply network design instances in Section 5.2; and ε0 = 10−2,
β = 0.98 and minε = 10−3 for the revenue management problems in Section 5.3. Although tighter values may
significantly increase the number of PCG iterations, it was necessary in some cases to reduce β and minε in order
to obtain either a solution or a faster solution (e.g., we used β = 0.98, and minε = 10−3 for a few supply network
design instances; and β = 0.95, and minε ∈ {10−4, 10−5} for a few revenue management problems).

http://www-eio.upc.edu/~jcastro/MSSO-BlockIP.html
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Table 1 Sizes of supply network design instances

Instance |T | ` |Π| k # var. L. # var. Q. # cons. l
SC-T4-L4-PI-10-P40-S2000-C4000-L 4 4 10 935 209,219,005 — 5,212,245 37,360
SC-T4-L4-PI-10-P40-S2000-C4000-Q 4 4 10 935 205,819,005 3,400,000 5,212,245 37,360
SC-T4-L4-PI-20-P40-S2000-C4000-L 4 4 20 1,785 418,421,005 — 10,414,245 71,360
SC-T4-L4-PI-20-P40-S2000-C4000-Q 4 4 20 1,785 411,621,005 6,800,000 10,414,245 71,360
SC-T3-L15-PI-15-P40-S4000-C2000-L 3 15 15 3,856 889,772,161 — 22,152,921 154,200
SC-T3-L15-PI-15-P40-S4000-C2000-Q 3 15 15 3,856 882,542,161 7,230,000 22,152,921 154,200
SC-T3-L15-PI-15-P40-S4000-C2000-L 5 4 10 3,751 839,187,661 — 20,760,421 150,000
SC-T3-L15-PI-15-P40-S4000-C2000-Q 5 4 10 3,751 825,547,661 13,640,00 20,760,421 150,000

The values of the objective function for the solutions will be omitted in the tables of results of next sections, in
order to save space; and both MSSO-BlockIP and CPLEX v20.1 reached similar solutions, with relative differences
of around 10−3 in the optimal values.

It is worth noting that BlockIP performs matrix factorizations of linear equation systems using the academic
Ng-Peyton block sparse Cholesky package [30], which uses an approximate minimum degree algorithm for re-
ordering constraints and variables. On the other hand, modern state-of-the-art IPM commercial solvers (such as
CPLEX v20.1 and others) implement highly efficient numerical linear algebra routines that exploit hardware capa-
bilities [29]. Therefore, any computational advantage of MSSO-BlockIP over CPLEX is not due to implementation
details, but to the specialized algorithm introduced in this work.

All the computational experiments in this work (unless otherwise stated) were carried out on a Fujitsu Primergy
RX2530 M4 server with two 2.3 GHz Intel Xeon Gold 6140 CPUs (72 cores) and 503 gigabytes of RAM, running
on a GNU/Linux operating system (openSuse 15.0), without exploitation of multithreading capabilities.

5.2 Supply network design planning

A multistage extension of the stochastic two-stage problem in [10] is presented in Appendix A. In this problem
the raw material supply and end product production and distribution network G = (S ∪ P ∪ C, A) is considered,
where S ∪P ∪ C is the set of nodes, A is the set of arcs, S is the set of raw materials to be supplied, P is the set of
potential plants where the raw materials are processed, and C is the set of customer centers where the end product
is distributed to satisfy the demand.

The aim of the problem, as presented in Appendix A, consists of deciding on the strategic manufacturing plant
locations in the network, such that the total expected cost is minimized along the time horizon in both the strategic
and operational scenarios. The uncertain strategic parameters are the stagewise-dependent initial capacity of the
plant and its expansion unit costs, and the plant capacity’s residual unit value. The uncertain operational parameters
are the stage-dependent unit cost of the raw material being supplied and transported to the manufacturing plants,
the manufacturing plant’s required capacity for processing a unit of raw material, and the end product demand from
customer centers, among others. According to the metamodels (1) and (2), two application models can be derived,
depending on whether or not copies of variables are considered. These are named the split-variable formulation
(24) and the compact model (25).

We generated a set of eight very large instances (four linear and four quadratic), which the authors will provide
upon request. These instances contain both strategic and operational uncertainties, and their sizes are reported in
Table 1. Columns headed with |T | and ` give, respectively, the number of stages and immediate successors of each
node in the scenario tree, where ` = |Sn1 | ∀n ∈ N : tn < |T |. Column |Π| shows the number of operational
scenarios in each strategic node. Columns k, “#var. L.”, “#var. Q.”, “#cons.”, and l show, respectively, the numbers
of blocks (i.e., the number of nodes in the multistage scenario tree), linear variables, quadratic variables, block
constraints

∑k
i=1mi, and linking constraints in the problem. Instances’ names are denoted as SC-Tx-Ly-PI-z-Pu-

Sv-Cw-L/Q, where “x” = |T |, “y” = `, “z”= |Π|, “u” is the number of potential plants, “v” is the number of raw
materials, “w” is the number of customer centers, and L/Q denotes whether the problem is linear or quadratic. It
can be noted from Table 1 that the number of linking constraints equating the split-variables is not very large. In
other words, despite they are instances with huge numbers of variables, the numbers of split-variables for them are
moderately low.
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Table 2 Results for supply network design instances. CPU times are in seconds unless otherwise stated. Fastest execution in boldface.

Instance MSSO-BlockIP CPLEX(1) CPLEX(2) CPLEX(3)

it. PCG CPU it. CPU it. CPU it. CPU
SC-T4-L4-PI-10-P40-S2000-C4000-L 179 9071 24,296 28 50,285 24 42,906 13 5,997
SC-T4-L4-PI-10-P40-S2000-C4000-Q 40 6043 14,770 47 84,252 45 78,564 23 9,528
SC-T4-L4-PI-20-P40-S2000-C4000-L 135 13,904 67,371 32 441,330 27 392,539 14 33,004
SC-T4-L4-PI-20-P40-S2000-C4000-Q 53 18,012 82,458 62 842,572 — >9d† 46 108,112
SC-T3-L15-PI-15-P40-S4000-C2000-L 440 27,836 323,956 � � � � 18 389,321
SC-T3-L15-PI-15-P40-S4000-C2000-Q 507 31,694 371,227 � � � � 35 746,641
SC-T5-L4-PI-10-P40-S2000-C4000-L 370 34,067 201,2054,§ � � � � 24 2,024,8614,∗

SC-T5-L4-PI-10-P40-s2000-C4000-Q 217 12,655 99,1474,‡ � � � � — >41d4,†
(1) CPLEX v20.1 solved the split-variable formulation (2), with default aggregator.
(2) CPLEX v20.1 solved the split-variable formulation (2), deactivating default aggregator.
(3) CPLEX v20.1 solved the compact formulation (1), with default aggregator.
∗ 2,024,861 seconds = 23days:10hours:27minutes:41seconds.
— Execution was stopped early by excessive expected CPU time.
� Out of memory.
4 Execution performed in a different server of 755 gigabytes of RAM.
§ 334,740 seconds if executed in usual server.
‡ 144,238 seconds if executed in usual server.
† Estimated number of days of CPU from the total number of arithmetic operations for factorizations reported in the CPLEX log file.

Table 3 Memory requirements (in gigabytes of RAM) for supply network design instances

Instance MSSO-BlockIP CPLEX(1) CPLEX(2) CPLEX(3)

SC-T4-L4-PI-10-P40-S2000-C4000-L 42 126 126 117
SC-T4-L4-PI-10-P40-S2000-C4000-Q 43 128 128 119
SC-T4-L4-PI-20-P40-S2000-C4000-L 83 285 285 246
SC-T4-L4-PI-20-P40-S2000-C4000-Q 86 289 289 249
SC-T3-L15-PI-15-P40-S4000-C2000-L 164 > 503 > 503 480
SC-T3-L15-PI-15-P40-S4000-C2000-Q 184 > 503 > 503 482
SC-T5-L4-PI-10-P40-S2000-C4000-L 167 > 503 > 503 526
SC-T5-L4-PI-10-P40-S2000-C4000-Q 174 > 503 > 503 531
(1) CPLEX v20.1 solved the split-variable formulation (2), with default aggregator.
(2) CPLEX v20.1 solved the split-variable formulation (2), deactivating default aggregator.
(3) CPLEX v20.1 solved the compact formulation (1), with default aggregator.

Table 2 shows the results for the supply network design instances that were obtained using MSSO-BlockIP
and CPLEX v20.1. MSSO-BlockIP solved the split-variable formulation (2) as a primal block-angular problem.
Three different runs were performed with CPLEX v20.1 in order to make a fair comparison with MSSO-BlockIP,
and they were marked as variants (1), (2) and (3). CPLEX variant (1) solved the split-variable formulation (2)
using the default CPLEX aggregator option, which may remove many of the splitting constraints (2d)–(2e) and,
thus, reduce the size of the problem; however, it can eventually degrade the sparsity of the constraint matrix and
thereby increase the fill-in of IPM factorizations. To avoid this fill-in issue, CPLEX variant (2) also solved the split-
variable formulation (2), but it deactivated the default CPLEX aggregator option (that is, CPLEX v20.1 solves the
same model as MSSO-BlockIP). Finally, CPLEX variant (3) solved the compact formulation (1) (with the default
CPLEX aggregator, which is the fastest option for the compact model). Columns “it.” and “CPU” provide the
number of IPM iterations and CPU time in seconds for each run (unless otherwise stated). The overall number of
PCG iterations is also given for MSSO-BlockIP. The CPU of the fastest execution is marked in boldface.

Looking at Table 2 it can be concluded that, for supply network design instances, both CPLEX variants (1) and
(2) based on the split-variable formulation were never competitive with the compact variant (3). Indeed, variants
(1) and (2) exhausted the 503 gigabytes of the server for the four largest instances. It is also observed that MSSO-
BlockIP was significantly faster than any CPLEX variant for the largest instances, especially for the last two.
These last two instances were executed on a different server (with 755 gigabytes of RAM) because even CPLEX
compact variant (3) required more than 503 gigabytes. For the largest linear case, MSSO-BlockIP found a solution
in 2.3 days, while CPLEX needed more than 23 days. The result is even more dramatic for the quadratic problem:
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Table 4 Sizes of revenue management instances

Instance |T | ` k # var. # cons. l
RMc-T5-L5 5 5 781 1,951,700 702,900 624,000
RM-T5-L5 5 5 781 1,936,100 687,300 624,000
RMc-T8-L3 8 3 3,280 8,199,200 2,952,000 2,623,200
RM-T8-L3 8 3 3,280 8,089,900 2,842,700 2,623,200
RMc-T3-L100 3 100 10,101 25,251,700 9,090,900 8,080,000
RM-T3-L100 3 100 10,101 25,241,600 9,080,800 8,080,000
RMc-T4-L25 4 25 16,276 40,689,200 14,648,400 13,020,000
RM-T4-L25 4 25 16,276 40,624,100 14,583,300 13,020,000
RMc-T10-L3 10 3 29,524 73,809,200 26,571,600 23,618,400
RM-T10-L3 10 3 29,524 72,825,100 25,587,500 23,618,400
RMc-T8-L5 8 5 97,656 244,139,200 87,890,400 78,124,000
RM-T8-L5 8 5 97,656 242,186,100 85,937,300 78,124,000
RMc-T6-L10 6 10 111,111 277,776,700 99,999,900 88,888,000
RM-T6-L10 6 10 111,111 276,665,600 98,888,800 88,888,000

MSSO-BlockIP required 1.1 days while the estimated number of days for CPLEX was 41. Table 2 also shows
that MSSO-BlockIP is generally more efficient for quadratic than for linear problems, which is consistent with the
theoretical results found in [9].

MSSO-BlockIP may also be much more efficient than general IPM solvers in terms of memory requirements.
This can be seen in Table 3, which provides the gigabytes of RAM required by each method for all the supply
network design instances. MSSO-BlockIP clearly requires a fraction of the memory used by CPLEX in those
instances. Therefore MSSO-BlockIP could be successfully run on much smaller hardware, thereby significantly
saving energy and contributing to a reduction in CO2 emissions.

5.3 Revenue management (RM)

As pointed out in [35], "revenue management aims to maximize the revenue of selling limited quantities of a set of
resources by means of demand management decisions. A resource in RM is usually a perishable product/service,
such as seats on a single flight leg or hotel rooms for a given date. It is common in RM that multiple resources are
sold in bundles".

The aim of the problem, as presented in Appendix B, consists of deciding on the number of accepted bookings
for bundle-class in any stage, as well as in the stages previous to the service that will be provided, such that
the expected income is maximized along the scenarios time horizon. The uncertain (strategic) parameter is the
stagewise-dependent bundle-class demand, which means that we are dealing with a multistage strategic tree. As
for the supply network design instances, we also consider the compact model (26) and its split-variable formulation
(27) by following (1) and (2), respectively.

We generated a set of 14 large (linear) instances following [16], and the objective function was transformed to
a minimization formulation. These instances are available from the authors by request. Their sizes are reported in
Table 4. Column headed with “#var.” shows the number of (linear) variables

∑k
i=1 ni of the problem. The rest of

columns have the same meaning as in Table 1. Instances’ names are denoted as RM[-c]-Tx-Ly, where “x” = |T |
and “y” = `. The difference between RMc-Tx-Ly and RM-Tx-Ly instances is that the former includes an additional
set of constraints and variables (see the note about the tightening formulation of model (26) considered in Section
B.2 of Appendix B). Table 4 shows that, unlike in the supply network design instances, the number of linking
constraints is very large. This is due to RM problems having large numbers of split-variables.

Table 5 shows the results obtained for the RM instances using MSSO-BlockIP and CPLEX v20.1. The columns
headings are the same as those for the supply network design instances in Table 2. For RM problems, of the two
CPLEX variants based on the split-variable formulation, that is, variants (2) and (1), variant (2) outperformed
variant (1) in many instances. We note that this means the split-variable formulation (2) has collateral benefits not
only for our specialized method but also for general state-of-the-art solvers. The best CPLEX variants for RM
problems were generally (2) and (3).
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Table 5 Results for revenue management instances. CPU times are in seconds unless otherwise stated. Fastest execution in boldface.

Instance MSSO-BlockIP CPLEX(1) CPLEX(2) CPLEX(3)

it. PCG CPU it. CPU it. CPU it. CPU
RMc-T5-L5 87 2,136 83 19 268 35 177 14 135
RM-T5-L5 183 15,182 485 16 303 27 137 18 104
RMc-T8-L3 143 5,706 884 24 7,447 35 1,985 15 2,825
RM-T8-L3 239 6,278 1,040 22 2,465 41 1,040 28 12,521
RMc-T3-L100 210 9,866 4,968 44 6,971 56 7,845 22 23,073
RM-T3-L100 249 8,726 4,558 44 5,049 40 7,719 19 21,234
RMc-T4-L25 265 11,695 10,049 39 23,904 44 30,590 25 3,823
RM-T4-L25 733 7,244 9,479 39 10,165 46 14,928 23 3,584
RMc-T10-L3 471 16,874 24,952 38 101,444 48 91,650 — >14d†

RM-T10-L3 355 16,661 22,923 33 82,746 45 60,121 — >33d†

RMc-T8-L5 907 27,515 151,979 55 1,710,241∗ — >6d† — >14d†

RM-T8-L5 1,360 15,837 112,013 — >31d† — >10d† — >144d†

RMc-T6-L10 673 34,891 197,701 — >17d† — >3.3d† 38 235,954
RM-T6-L10 1,165 17,730 129,291 — >22d† — >3.3d† 33 207,714
(1) CPLEX v20.1 solved the split-variable formulation (2), with default aggregator.
(2) CPLEX v20.1 solved the split-variable formulation (2), deactivating default aggregator.
(3) CPLEX v20.1 solved the compact formulation (1), with default aggregator.
∗ 1,710,241 seconds = 19days:19hours:33minutes:36seconds.
— Execution was stopped early by excessive expected CPU time.
† Estimated number of days of CPU from the total number of arithmetic operations for factorizations reported in the CPLEX log file.

Table 6 Memory requirements (in gigabytes of RAM) for revenue management instances

Instance MSSO-BlockIP CPLEX(1) CPLEX(2) CPLEX(3)

RMc-T10-L3 23 102 133 166
RM-T10-L3 21 81 102 480
RMc-T8-L5 83 410 469 481
RM-T8-L5 77 317 468 454
RMc-T6-L10 92 408 438 331
RM-T6-L10 87 468 452 307
(1) CPLEX v20.1 solved the split-variable formulation (2), with default aggregator.
(2) CPLEX v20.1 solved the split-variable formulation (2), deactivating default aggregator.
(3) CPLEX v20.1 solved the compact formulation (1), with default aggregator.

It can be observed in Table 5 that MSSO-BlockIP required many more IPM iterations than CPLEX. This is
due to the inexact Newton directions provided by the PCG, whereas CPLEX instead uses more accurate directions
computed by Cholesky factorizations. It is known, however, that inexact directions can be used in IPMs with-
out significantly affecting their convergence properties [18]. The CPU time of the fastest execution is marked in
boldface, and it is clearly observed that MSSO-BlockIP outperformed CPLEX in all but four of these very large in-
stances. For example, in instance RMc-T8-L5 MSSO-BlockIP took 151,979 seconds (1 day, 18 hours, 12 minutes,
and 57 seconds) of CPU time, while CPLEX variant (1) required almost 20 days of CPU. Because of this exces-
sive amount of time with CPLEX, some runs (for the largest instances) were stopped early and the overall CPU
time was estimated by comparing the total number of arithmetic operations needed for the Cholesky factorizations
(reported in the CPLEX log file) with the value in CPLEX variant (1) for instance RMc-T8-L5.

Looking at MSSO-BlockIP results in 5, it can be observed that variant RMc-Tx-Ly outperformed variant RM-
Tx-Ly in only two out of the seven instances, with CPU times being much higher in the other five. It is worth
pointing out that the opposite is observed when using a stochastic programming-based decomposition algorithm
(as in [16]) for the revenue management compact model (26) that is detailed in Section B.2 of Appendix B. The
rationale behind this is that the higher sizes of the classical tightening approaches for non-IPMs usually degrade
the matrix sparsity.
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As with the network design instances, MSSO-BlockIP was also much more efficient than CPLEX in terms of
memory requirements, which can be observed in Table 6. This table shows the gigabytes of RAM required by each
method in a subset of the largest revenue management instances. MSSO-BlockIP also required a fraction of the
memory used by CPLEX and, thus, could be run on much smaller hardware.

6 Conclusions

The new approach for multistage stochastic optimization introduced in this work, which is based on a special-
ized interior-point method for primal block-angular problems, has proven to be very effective for solving huge
problems. Unlike previous MSSO techniques, the new method can deal with both operational and strategic uncer-
tainties, and it can solve both linear and (convex separable) quadratic problems. The method relies on the particular
structure of preconditionerE (discussed in Section 4.1), which allows efficiently solving systems of equations. The
extensive computational experience reported (using two applications: supply network design and revenue manage-
ment) shows that the MSSO-BlockIP package—which implements the new method—outperformed one of the best
state-of-the-art solvers by a significant margin.

This work could be extended in several ways. One line of research could apply the new method to problems
other than supply network design and revenue management. A second line of work would be extending this new
approach to general convex separable MSSO (that is, problems with nonlinear objective functions and positive
diagonal Hessian matrices), for which, in practice, no solution techniques are available for huge problems.
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Appendices

A Supply network design under uncertainty: Models

The multistage strategic supply network design problem considered in this work deals with strategic and operational uncertainties. The two-
stage stochastic trees rooted at the strategic nodes represent the operational uncertainty that is realized in the second stage scenarios. As for the
revenue management pilot application, see Appendix B, two mathematically equivalent models are considered, namely, the compact model and
the split-variable formulation.

There are state strategic variables at the nodes as well as local strategic ones. The state variables link two consecutive stages (i.e., the
strategic node that belongs to and their immediate successors). The plant capacity expansion in the strategic nodes is represented by local
strategic variables. The actual capacity (a state strategic variable) is represented by the step variables modeling object that ensures the strategic
nodes are linked only between consecutive stages.

A.1 Introduction and notation

The strategic decision variables are related to the plant capacity, such that the local ones are the initial plant capacity and its extensions; and
the state variables represent the resulting plant capacity as the link between the strategic nodes and their immediate successors. Therefore,
the strategic variables belong to the nodes of the Hamiltonian path from root node 1 up to a node, viz., ω in the last stage of the multistage
scenario tree. The uncertain strategic parameters are the initial capacity and expansion unit costs and the plant capacity residual unit values. On
the other hand, the operational decision variables are related to the raw materials being supplied and their transportation from the suppliers to
the plants, their processing in the plants, and the transportation of the manufactured end product from the plants to the customer centers. The
uncertain operational parameters cover all stages along the time horizon, and they are the cost of supplying, transporting and processing the
raw materials in the plants, the processing coefficients in the plants, the end product transporting cost from the plants to the customer centers,
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and the demand from those centers. This operational uncertainty is captured in scenarios that are represented as nodes in the second stage of
the stochastic two-stage trees rooted at the strategic nodes.

Let the notation of the different elements, usually capital letters and the symbol (.), denote data, while lowcase and Greek letters denote
variables. Recall from Section 5.2 that S, P , C, and A denote, respectively, the sets of raw materials to be supplied, plants, customer centers,
and arcs connecting the nodes associated to S ∪ P ∪ C.

Deterministic data

x̂0j , Current existing capacity of plant j, j ∈ P , at the beginning of the time horizon. Note: x̂0j = 0∀j ∈ P means that the infrastructure
system is anew.

xj , Maximum capacity that is allowed for plant j, j ∈ P .
Bt, budget available for plant investment (either initial capacity or extension) at stage t, t ∈ T .
ρ ∈ (0, 1), parameter that gives the fraction of the investment in any plant capacity over the overall plant investment at any stage.
Mt
j , plant unit maintenance cost, j ∈ P , at stage t, t ∈ T .

yi, maximum stock volume of raw material i that can be supplied under any operational scenario at any stage, i ∈ S.
ytij , upper bound on the flow from node i to node j, (ij) ∈ A, being raw material for i ∈ S, j ∈ P and end product for i ∈ P, j ∈ C.
Md, unit penalization of demand shortfall under any operational scenario at any stage, k ∈ C.

Strategic uncertain data in node n, n ∈ N

Cnj , unit cost of the investment on the initial capacity or its expansion in plant j, j ∈ P , in strategic node n.
V nj , unit residual value of the capacity investment on plant j, j ∈ P , in node n at the end of the time horizon (i.e., n ∈ N|T |). Usually,

V nj < Cn
′

j , n′ ∈ N .

Operational uncertain data under scenario π, π ∈ Πt, t ∈ T

Cπij , unit cost of raw material i supplying, its transporting to and processing in plant j, i ∈ S, j ∈ P , and unit cost of transporting the end
product from plant i to customer center j, i ∈ P, j ∈ C, under scenario π, provided that (i, j) ∈ A.

Pπij , capacity requirement of plant j to process a unit of raw material i, i ∈ S, j ∈ P , under scenario π, provided that (ij) ∈ A.
Dπk , end product demand from customer center k, k ∈ C, under scenario π.

Note: Under the assumption that the parameters Cπij , Pπij and Dπk are not stagewise-dependent but stage-dependent ones, it means that
they do not depend on the plants’ capacity.

State strategic variables in node n, n ∈ N

xni , end product capacity of plant i, i ∈ P , and raw material i stock volume, i ∈ S, that is available in strategic node n. Observe that xni ,
i ∈ P , is the result of the cumulated investment that is carried out in the previous strategic nodes back to stage t = 1, including node n.
(i.e., set ∀n′ ∈ An).

Therefore, note that xni , n ∈ N|T |, is the capacity investment in plant i, i ∈ P , that results at the end of the time horizon.

Local strategic variables in node n, n ∈ N

δnj , end product initial capacity of plant j or its expansion, j ∈ P , to be invested in strategic node n at stage tn.

(xρ)nj , fraction of the total plant capacity that has not been considered while deciding the capacity of plant j, j ∈ P , by strategic node n
during stage tn, it is a slack variable.

(ba)n, unused budget for plant investment (either initial capacity or expansion) in strategic node n during stage tn, it is a slack variable.

Operational variables under scenario π, π ∈ Πtn , n ∈ N

yn,πij , flow from node i to node j, (ij) ∈ A, being raw material for i ∈ S, j ∈ P , and end product for i ∈ P, j ∈ C, under scenario π.

(ya)
n,π
j , unused capacity of plant j, j ∈ P , under scenario π.

(da)
n,π
k , demand shortfall from customer center k under scenario π, k ∈ C.
Note: For levelizing the end product demand shortfall in the customer centers, the quadratic of (da)πk is Md-penalized in the objective
function of the model below.
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A.2 Strategic multistage operational two-stage split-variable formulation

This type of formulations is more suitable for IPM solvers, see [10].

State strategic split-variables in node n, n ∈ N

xsj,n, copy of xnj where n is the strategic node that roots the embedded strategic two-stage tree, where {s} is the set of second stage nodes,
∀j ∈ P, s ∈ Sn1 , n ∈ N : tn < |T |.

xπj,n, copy of xnj where n is the strategic node that roots the operational two-stage tree, where {π} is the set of second stage nodes, ∀j ∈
P, π ∈ Πtn , n ∈ N .

The model can be expressed

min
∑
n∈N

wn
[∑
j∈P

(
Mtn

j xnj + Cnj δ
n
j

)
+

∑
π∈Πtn

wπ
( ∑
(ij)∈A

Cπijy
n,π
ij +

∑
k∈C

Md((da)
n,π
k )2

)]
−
∑
j∈P

∑
n∈N|T |

wnV nj x
n
j (24a)

The objective function (24a) minimizes the expected cost of the plant investment and their maintenance, the expected cost of the operational
activity and the quadratic penalization of demand shortfall in the scenarios, minus the residual value of the plants’ capacity at the end of the
time horizon.

The strategic and operational split-variables definition is represented in the constraint system to be expressed as

xnj − x
s(1)
j,n = 0, xs−1

j,n − x
s
j,n = 0 ∀j ∈ P, s ∈ Sn1 \ {s(1)}, n ∈ N : tn < |T | (24b)

x•j,n − x
π(1)
j,n = 0, xπ−1

j,n − x
π
j,n = 0 ∀j ∈ P, π ∈ Πtn \ {π(1}, n ∈ N , (24c)

where (24b) define the split-variables of the strategic plant investment variables xni , and (24c) does the same for the operational copies of those

variables. Note that x•j,n ≡ x
s(`)
j,n for n ∈ N : tn < |T | and x•j,n ≡ xnj for n ∈ N|T |.

The other constraints system for the strategic multistage operational two-stage problem can be expressed

(xnj,σn ):tn>1 + δnj − xnj = 0− (x̂σ
n

j ):tn=1 ∀j ∈ P, n ∈ N (24d)∑
i∈S:(ij)∈A

Pπijy
n,π
ij + (ya)

n,π
j − xπj,n = 0 ∀j ∈ P, π ∈ Πtn , n ∈ N (24e)

xnj + (xρ)
n
j − ρ

∑
j′∈P

xnj′ = 0 ∀j ∈ P, n ∈ N (24f)

∑
j∈P

Cnj δ
n
j + (ba)

n −Bt
n
= 0 ∀n ∈ N (24g)

∑
j∈P:(ij)∈A

yn,πij = yi ∀i ∈ S, π ∈ Πtn , n ∈ N (24h)

∑
i∈S:(ij)∈A

Pπijy
n,π
ij −

∑
k∈C:(jk)∈A

yn,πjk = 0 ∀j ∈ P, π ∈ Πtn , n ∈ N (24i)

∑
j∈P:(jk)∈A

yn,πjk + (da)
n,π
k = Dπk ∀k ∈ C, π ∈ Πtn , n ∈ N (24j)

0 ≤ δnj , xnj ≤ xj ∀j ∈ P, n ∈ N (24k)

0 ≤ (xρ)nj ∀j ∈ P, n ∈ N (24l)

0 ≤ (ba)n ∀n ∈ N (24m)

0 ≤ yn,πij ≤ ytnij ∀(ij) ∈ A, π ∈ Πtn , n ∈ N (24n)

0 ≤ (ya)
n,π
j ∀j ∈ P, π ∈ Πtn , n ∈ N (24o)

0 ≤ (da)
n,π
k ∀k ∈ C, π ∈ Πtn , n ∈ N (24p)

The strategic constraints (24d) introduce the step variable modeling object for plant capacity. It is assumed that the initial capacity or
expansion δnj in plant j from xnj,σn up to xnj is performed at the beginning of stage tn. The strategic operational constraints (24e) bound the
operational consumption of raw material volume in each plant. The state strategic constraints (24f) keep a ρ-based equilibrium on the plants’
capacity. The local strategic constraints (24g) force plant investment budget limitations. The operational constraint (24h) bound the raw material
volume to supply under the operational scenarios in order to cover the manufacturing needs in the plants, without keeping stock volume at the
end of the stages. The operational constraints (24i) balance the end product volume manufactured in each plant with the total volume distributed
to the customer centers under the operational scenarios. The operational constraints (24j) balance the end product manufactured in the plant set
for each customer center with its demand and, so, defining the demand shortfall (da)

n,π
k , if any, under the operational scenarios.
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Relationship between the split-variable formulation (24) and split-variable meta formulation (2)

The vectors of the variables of meta formulation (2) can be expressed by the following sets of variables of formulation (24), for j ∈ P, π ∈
Πtn , (ij) ∈ A, i ∈ S, k ∈ C, n ∈ N :

–
(
xnσn = (xnj,σn )

)
tn>1

, xn = (xnj ), z
n = (δnj , (xρ)

n
j , (ba)

n),

–
(
xπσn = (xn,πj,σn )

)
tn>1

, yπn = (yn,πij , (ya)
n,π
j , (da)

n,π
k ),

A.3 Strategic multistage operational two-stage-based compact model

This type of model is more suitable for primal and dual Simplex solvers, and also for IPM solvers if the number of dense columns is not large.
It can be expressed

min (24a) (25a)

s. to (x̂σ
n

j ):tn=1 + (xσ
n

j ):tn>1 + δnj − xnj = 0 ∀j ∈ P, n ∈ N (25b)∑
i∈S:(ij)∈A

Pπijy
π
ij ≤ xnj ∀j ∈ P, π ∈ Πtn , n ∈ N (25c)

xnj ≤ ρ
∑
j′∈P

xnj′ ∀j ∈ P, n ∈ N (25d)

∑
j∈P

Cnj δ
n
j ≤ Bt

n
∀n ∈ N (25e)

(24h)− (24p) (25f)

The constraints (25b) introduce the state and local strategic variables. The constraints (25c), (25d) and (25e) bound the processing volume of the
required raw materials in the plants under the operational scenarios, bound the plants’ capacity and bound the plants’ investment, respectively.
The other constraints are as in the system (24h)-(24p) for the split-variable formulation.

B Revenue management under uncertainty: Models

B.1 Introduction and notation

The revenue management model used in this work for maximizing expected income is taken from [11]. The following notation is used to
present the problem in a multistage setting:

Sets

R, resources.
I, bundles.
J , fare classes.
Ir , bundles using resource r, r ∈ R.

Deterministic parameters

fij , fare of bundle-class ij, i ∈ I, j ∈ J .
Cr , capacity on resource r, r ∈ R.

Uncertain parameters

dnij , demand for bundle-class ij in stage tn at node n, i ∈ I, j ∈ J , n ∈ N .

Variables for i ∈ I, j ∈ J , n ∈ N

bnij , number of accepted bookings for bundle-class ij at stage tn in node n. Note: It is a local strategic variable.
Bnij , cumulative number of accepted bookings of bundle-class ij along the path from root node 1 to node n. Note: It is a state strategic

variable.
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B.2 Strategic multistage revenue management compact model

The last stage satisfaction capacity-based model can be expressed

max
∑
n∈N

wn
∑
i∈I

∑
j∈J

fijb
n
ij (26a)

s. to Bσ
n

ij + bnij = Bnij ∀i ∈ I, j ∈ J , n ∈ N (26b)∑
i∈Ir

∑
j∈J

Bnij ≤ Cr ∀r ∈ R, n ∈ N|T | (26c)

0 ≤ bnij ≤ dnij ∀i ∈ I, j ∈ J , n ∈ N . (26d)

Note that the constraints (26c) impose that the total number of accepted bookings along the whole booking horizon is restricted by the
resource capacity.

A tightening formulation of model RM (26) (which in tables 4, 5 and 6 is denoted as RMc) that is useful for some approaches consists of
replacing ∀r ∈ R, n ∈ N|T | with ∀r ∈ R, n ∈ N in constraints (26c) (see [16]) for a stochastic dynamic programming decomposition
algorithm for problem solving. Note that the new constraints impose that the overall number of accepted bookings in each stage’s nodes along
the booking horizon is restricted by the resource capacity.

B.3 Strategic multistage revenue management split-variable formulation

As an alternative to the compact model RM (26) that is more amenable to IPMs, we use the split-variable formulation RM (27). It requires the
following variable

Bsij,n, copy ofBnij where n is the node that roots the two-stage tree where {s} is the set of second stage nodes, s ∈ Sn1 , n ∈ N : tn < |T |.
The formulation can be expressed

max
∑
n∈N

wn
∑
i∈I

∑
j∈J

fijb
n
ij (27a)

s. to Bnij −B
s(1)
ij,n = 0, Bs−1

ij,n −B
s
ij,n = 0 ∀s ∈ Sn1 \ {s(1)}, i ∈ I, j ∈ J , n ∈ N : tn < |T | (27b)

Bnij = Bnij,σn + bnij ∀i ∈ I, j ∈ J , n ∈ N (27c)∑
i∈Ir

∑
j∈J

Bnij ≤ Cr ∀r ∈ R, n ∈ N|T | (27d)

0 ≤ bnij ≤ dnij ∀i ∈ I, j ∈ J , n ∈ N . (27e)

Notice that here the constraints (27d) impose that the total number of accepted bookings along the whole booking horizon is restricted by the
resource capacity. Additionally, for the RM model (26), a tightening of formulation RM (27) (that in tables 4, 5 and 6 is denoted as RMc)
consists of replacing ∀r ∈ R, n ∈ N|T | with ∀r ∈ R, n ∈ N in constraints (27d).
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