M ATLAB
 The Language of Technical Computing

Computation

Visualization

Programming

N ew Features Guide
Version 5

How to Contact The MathW orks:

List of Tables v
Introduction ix
Help Desk ix
Related MATLAB Commands x
MATLAB Documentation x
New Features and Enhancements
1
What's New in MATLAB? 1-2
Enhanced Programming and Application Development Tools 1-2
New Data Types, Structures, and Language
Features 1-3
F aster, Better Graphics and Visualization 1-3
More Mathematics and Data Analysis Firepower 1-4
Enhancements to Application Toolbox Suite and to SIMULINK 1-4
New Data Constructs 1-5
Multidimensional Arrays 1-5
Cell Arrays 1-7
Structures 1-7
Character Arrays 1-8
Flow Control Improvements 1-9
M-File Programming Tools 1-11
Variable Number of Input and Output Arguments 1-11
Multiple Functions Within an M-File 1-12
M-File Profiler 1-12
Pseudocode M-Files 1-12
New and Enhanced Language Functions 1-14
Subscripting and Assignment Enhancements 1-16
Integer Bit Manipulation Functions 1-16
Dimension Specification for Data Analysis Functions 1-17
Wildcards in Utility Commands 1-18
Empty Arrays 1-18
New Data Analysis Features 1-20
Higher-Dimension Interpolation 1-21
griddata Based on Delaunay Triangulation 1-21
Set Theoretic Functions 1-21
New and Enhanced Handle Graphics Features 1-23
Plotting Capabilities 1-23
area Function 1-23
Bar Chart Enhancements 1-23
legend Enhancement 1-24
Marker Style Enhancement 1-24
Stem Plot Enhancements 1-24
Three-Dimensional Plotting Support 1-24
Data Visualization 1-24
New Viewing Model 1-24
New Method for Defining Patches 1-25
Triangular Meshes and Surfaces 1-25
Improved Slicing 1-25
Contouring Enhancements 1-25
New zoom Options 1-26
Graphics Presentation 1-26
Enhancements to Axes Objects 1-26
Color Enhancements 1-26
Text Object Enhancements 1-27
Improved General Graphics Features 1-28
Lighting 1-28
print Command Revisions 1-29
Additional print Device Options 1-29
Image Support 1-31
Truecolor 1-31
Reading and Writing Images 1-31
8-Bit Images 1-31
Indexed images 1-32
Colormaps 1-33
Truecolor Images 1-33
New and Enhanced Handle Graphics Object Properties 1-34
Improvements to Graphical User Interfaces (GUIs) 1-42
General GUI Enhancements 1-42
Guide 1-43
Enhancements to the Application Program Interface (API) 1-44
New Fundamental Data Type 1-44
New Functions 1-44
Support for Structures and Cells 1-44
Support for Multidimensional Arrays 1-44
Support for N ondouble Precision Data 1-44
Access toSpecial Numbers 1-45
OLE Support 1-45
MATLAB 4 F eatures Unsupported in MATLAB 5 1-45
Non-ANSI C Compilers 1-45
printf and scanf 1-45
New Platform Specific Features 1-46
MS Windows 1-46
Path Browser 1-46
Workspace Browser 1-47
M-File Debugger 1-47
Command Window Toolbar 1-48
New Dialog Boxes 1-49
Macintosh 1-50
User Interface Enhancements 1-50
Command Window Features 1-50
Command History Window 1-50
Path Browser 1-52
Workspace Browser 1-52
M-File Debugger 1-53
Editor F eatures 1-54
UNIX Workstations 1-56
Figure Window Tool bar 1-56
Path Editor 1-57
Simplified Installation Procedure 1-58

Upgrading to MATLAB 5

2
Upgrading from MATLAB 4 to MATLAB 5 2-2
Converting M-Files from MATLAB 4 to MATLAB 5 2-3
Converting MEX-Files from MATLAB 4 to MATLAB 5 2-14
MEX-File Binary Incompatibility 2-14
General Considerations 2-14
PC-Specific Considerations 2-14
Macintosh-Specific Considerations 2-14
MEX-File Source Incompatibility 2-14
General Considerations 2-14
UNIX-Specific Considerations 2-15
PC-Specific Considerations 2-15
MEX-File Conversion Techniques 2-15
Rebuilding with the-V4 Option 2-19
Recoding for MATLAB 5 Compliance 2-20
How to Convert Each MATLAB 4 Function 2-22

List of Tables

New Multidimensional Array Functions 1-4
New Cell Array Functions 1-5
New Structure Functions 1-6
New Character String Functions 1-6
New Object-Oriented Functions 1-7
New Flow Control Commands 1-10
New Logical Operators 1-10
New Programming Tools 1-12
New Elementary and Specialized Math F unctions 1-13
New Time and Date Functions 1-13
New Ordinary Differential Equation Functions 1-14
New Matrix Functions 1-14
New Iterative M ethods for Sparse Systems of Linear Equations1-14
New Bitwise Functions 1-15
New Statistical Data Analysis Functions 1-19
New Interpolation Functions 1-20
New Set Functions 1-20
New and Enhanced Plotting Capabilities 1-22
New Graph Annotation Commands 1-23
Three Dimensional Plotting 1-23
New Triangular Mesh and Surface Commands 1-24
New Contour Plot 1-24
New Figure and Axis Color Control 1-26
New Colormaps 1-26
New Figure Window Creation and Control Commands 1-27
Properties of All Graphics Objects 1-32
Axes Properties 1-33
Figure Properties 1-34
Image Properties 1-35
Light Properties 1-35
Line Properties 1-35
Patch Properties 1-36
Root Properties 1-37
Surface Properties 1-38
Text Properties 1-39
Uicontrol Properties 1-39
Uimenu Properties 1-40
New GUI Controls 1-41
New Program Execution Controls 1-41
Guide Tools 1-42
Language Changes 2-3
Graphics Changes 2-7
Obsolete Functions 2-10
Converting MEX-F unctions to MATLAB 5 2-20

Introduction

MATLAB 5 is a significant new release of MATLAB. We've been listening to your requests for new features - via telephone, e-mail, and at conferences - for the past several years, and have carefully used them to design this new version. We have combined these requests with exciting innovations to bring you MATLAB 5.

This booklet

- Describes new features and enhancements in MATLAB 5.
- Provides guidelines for upgrading from MATLAB 4 to MATLAB 5.

If you're familiar with MATLAB 4, you should read this guide first. Go on to Using MATLAB and Using MATLAB Graphics for more details on any new feature. If you encounter a new MATLAB function in this book and want to learn more, consult the online MATLAB Function Reference. (See "MATLAB Documentation" below.)

If you are a new MATLAB user, you should begin with Getting Started with MATLAB, which introduces you to MATLAB's capabilities as a programming and visualization Ianguage.

Help Desk

MATLAB 5 includes the MATLAB Help Desk, an enhanced Help facility that provides access to online help topics, online reference materials, electronic documentation, and World Wide Web pages through a Web browser. You do not need to be connected to the I nternet to use this facility.
The Help Desk is optimized for the use of Netscape Navigator.

On all platforms you can access this facility via theh el pdesk command. On the PC and Macintosh you can additionally access this facility via the Help menu or the ? icon on the Command Window tool bar.

MATLAB Help Desk

Related MATLAB Commands

- hel p displays MATLAB help text in the command window.
- hel pwin opens a window and displays MATLAB help text.

MATLAB Documentation

The MATLAB documentation set has been rewritten, expanded, and divided into several volumes for ease of use. The set includes on-line help, as well as hypertext-based and printed manuals. The online MATLAB Function Reference is a compendium of all MATLAB language, mathematical, and graphics functions. You can access this documentation from the MATLAB Help Desk. Choose "MATLAB Functions" to display the Function Reference.

The online documentation is augmented with a full set of printed documents, consisting of the following titles:

- Getting Started with MATLAB, an introductory document describing the fundamentals of MATLAB.
- Using MATLAB, which explains how to use MATLAB as both a programming language and a command-line application.
- Using MATLAB Graphics, which describes how to use MATLAB's graphics and visualization tools.
- MATLAB Application Program InterfaceGuide, which explains how to write C or Fortran programs that interact with MATLAB.
- MATLAB 5 New Features Guide, which summarizes new features and provides information useful in making the transition from MATLAB 4 to MATLAB 5.
- MATLAB Installation Guide, which describes how to install MATLAB on your platform.
- Building GUIs with MATLAB, which describes Guide, a Graphical User Interface (GUI) design tool.
- MATLAB N otebook User's Guide, which describes the use of Microsoft Word as an interface to MATLAB.
- MATLAB LateBreaking News, which contains information that became available after the preparation of the rest of the documentation set.

If one or more of the printed documents is unavailable to you, you can locate an online version of the same document via the Help Desk.
Additionally, command lineASCII help and an extensive library of demonstration programs provide instant online reference information about MATLAB commands and demonstrate MATLAB features.

New Features and Enhancements

What's New in MATLAB?

MATLAB, the language of technical computing, has been designed to increase the scope and productivity of science and engineering, to accelerate the pace of discovery and devel opment, to facilitate learning, and to amplify the creativity of research. MATLAB 5, the newest version of the MATLAB environment, vastly enhances programmer productivity, providing many ease-of-use/ ease-of-learning features that enabletherapid development of larger and more complex applications. Befitting its name, MATLAB 5 features five major areas of programming innovation:

- Enhanced programming and application devel opment tools
- New data types, structures, and language features
- Faster, better graphics and visualization
- M ore mathematics and data analysis firepower
- Major enhancements to the MATLAB application tool box suite and to SIMULINK

Enhanced Programming and Application Development Tools

MATLAB 5 provides new M-file programming enhancements and application development tools that make it easier than ever to develop and maintain applications in MATLAB. Highlights include:

- Integrated M-file editor
- Visual M-file debugger
- M-file performance profiler
- Search path browser/editor
- Workspace browser
- Web-based online Help Desk/documentation viewer
- GUI builder
- Handle Graphics property editor
- Pre-parsed P-code files (P-files)
- Enhanced, self-diagnosing Application Program Interface (API)

New Data Types, Structures, and Language Features

MATLAB 5 introduces new data types and language improvements. These new features make it easy to build much larger and more complex MATLAB applications.

- Multi-dimensional arrays
- User-definable data structures
- Cell arrays: multi-type data arrays
- Character arrays: two bytes per character
- Single byte data type for images
- Object-oriented programming
- Variable-length argument lists
- Multifunction and private M-files
- Function and operator overloading
- switch/case statements

Faster, Better Graphics and Visualization

Graphics take another quantum leap with powerful new visualization techniques and significantly faster image display using the Z-buffer algorithm. Presentation graphics are also improved to give you more options and control over how you present your data.

- Visualization
- Truecolor (RGB) support
- Fast and accurate Z-buffer display algorithm
- Flat, Gouraud, and Phong lighting
- Vectorized patches for three dimensional modeling
- Camera view model, perspective, fly throughs
- Efficient 8-bit image display
- Image file import/export
- Presentation Graphics
- Greek symbols, sub/superscripts, multiline text
- Dual axis plots
- Three dimensional quiver, ribbon, and stem plots
- Pie charts, three dimensional bar charts
- Extended curve marker symbol family

More Mathematics and Data Analysis Firepower

- New ordinary differential equation solvers (ODEs)
- Delaunay triangulation
- Gridding for irregularly-spaced data
- Set theory functions
- Two-dimensional quadrature
- Time and date handling functions
- Multi-dimensional interpolation, convolution, FFT
- Bit-wise operators
- Iterative sparse methods
- Sparse matrix eigenvalues and singular values

Enhancements to Application Toolbox Suite and to SIMUUNK

- SIMULINK 2.0
- Image Processing Tool box 2.0
- Control System Tool box 4.0
- Signal Processing Toolbox 4.0
- Symbolic Math Tool box 2.0
- Many more to come

New Data Constructs

MATLAB 5 supports these new data constructs:

- Multidimensional arrays
- Cell arrays
- Structures

In addition, MATLAB 5 features an improved storage method for string data.

Multidimensional Arrays

Arrays (other than sparsematrices) are no longer restricted to two dimensions. You can create and access arrays with two or more dimensions by

- Using MATLAB functions likezeros, ones, or rand
- Using the new cat function
- Using the repmat function

MATLAB functions likezeros, ones, and rand have been extended to accept more than two dimensions as arguments. To create a 3-by-4-by-5 array of ones, for example, use

```
A = ones(3,4,5)
```

The new cat function enables you to concatenate arrays along a specified dimension. For example, create two rectangular arrays A and B :

```
A = [1 2 3; 4 5 6];
B = [6 2 0; 9 1 3];
```

To concatenate these along the third dimension:

```
C = cat( 3,A,B)
C(:,:,1) =
    2 3
    4 5 6
C(:,:,2) =
    6 2 0
    9 1 3
```

You can also create an array with two or more dimensions in which every element has the same value using ther epmat function. repmat accepts the value with which to fill the array, followed by a vector of dimensions for the array. For example, to create a 2-by-2-by-3-by-3 array B where every element has the valuepi:

```
B = repmat(pi,[2 2 3 3]);
```

You can also user epmat to replicate or "tile" arrays in a specified configuration.
Table 1-1: New Multidimensional Array Functions

Function	Description
cat	Concatenate arrays.
flipdim	Flip array along specified dimension.
ind2sub	Subscripts from linear index.
ipermute	Inverse permute the dimensions of a multidimen- sional array.
ndgrid	Generate arrays for multidimensional functions and interpolation.
ndims	Number of array dimensions.

Table 1-1: New Multidimensional Array Functions (Continued)

Function	Description
permute	Rearrange the dimensions of a multidimensional array.
reshape	Change size.
shiftdim	Shift dimensions.
squeeze	Remove singleton array dimensions.
sub2ind	Single index from subscripts.

Cell Arrays

Cell arrays have elements that are containers for any type of MATLAB data, including other cells. You can build cell arrays using assignment statements (for instance, A(2,2) = \{'string'\}), or by using the new cell function.
Table 1-2: New Cell Array Functions

Function	Description
cell	Create cell array.
cell2struct	Cell array to structure array conversion.
celldisp	Display top-level structure of cell array.
cellplot	Graphically display the structure of a cell array.
num2cell	Convert a matrix into a cell array.

Structures

Structures are constructs that have named fields containing any kind of data. F or example, one field might contain a text string representing a name (patient. name = 'Jane Doe'), another might contain a scalar representing a billing amount (patient. billing = 127.00), and a third might hold a matrix of medical test results. You can organize these structures into arrays of data.

Create structure arrays by using individual assignment statements or the new struct function.

Table 1-3: New Structure Functions

Function	Description
fields	Field names of structure array.
getfield	Get field of structure array.
rmfield	Remove structure fields.
setfield	Set field of structure array.
struct	Create structure array.
structzcell	Structure to cell array conversion.

Character Arrays

Strings now take up less memory than they did in previous releases.
MATLAB 4 required 64 bits per character for string data. MATLAB 5 requires only 16 bits per character.
Table 1-4: New Character String Functions

Function	Description
base2dec	Base B to decimal number conversion.
bin2dec	Binary to decimal number conversion.
char	Convert numeric values to string.
dec2base	Decimal number to base conversion.
dec2bin	Decimal to binary number conversion.
mat2str	Convert a matrix into a string.
strcat	String concatenation.
strmatch	Find possible matches for a string.

Table 1-4: New Character String Functions (Continued)

Function	Description
strncmp	Compare the first n characters of two strings.
strucat	Vertical concatenation of strings.

The MATLAB programming language does not require the use of data types. F or many applications, however, it is helpful to associate specific attributes with certain categories of data. To facilitate this, MATLAB allows you to work with objects. Objects are typed structures. A single class name identifies both the type of the structure and the name of the function that creates objects belonging to that class.
Objects differ from ordinary structures in two important ways:
Data hiding. The structure fields of objects are not visible from the command line. Instead, you can access structure fields only from within a method, an M -file associated with the object class. Methods reside in class directories. Class directories have the same name as the class, but with a prepended @ symbol. For example, a class directory named @i nl i ne might contain methods for a class calledinline.

Function and expression overloading. You can create methods that override existing M-files. If an object calls a function, MATLAB first checks to see if there is a method of that name before calling a supplied M-file of that name. You can also provide methods that are called for MATLAB operators. For objects a and b, for instance, the expression $a+b$ calls the method plus (a, b) if it exists.Programming Capabilities
MATLAB 5 includes flow-control improvements and new M-file programming tools.

Flow Control Improvements

MATLAB 5 features:

- A new flow control statement, the swit ch statement
- More efficient evaluation of logical operators

Thes witch statement is a convenient way to execute code conditionally when you have many possible cases to choose from. It is no longer necessary to use a series of el seif statements:

```
switch input_num
    case-1
        disp('negative one');
    case 0
            disp('zero');
    case 1
            disp('positive one');
    otherwise
            disp('other value');
end
```

Only the first matching case is executed.
swit ch can handle multiple conditions in a singlec ase statement by enclosing the case expression in a cell array. F or example, assume met hod exists as a string variable:

```
switch lower(method)
    case {'|inear','bilinear'}, disp('Method is linear')
    case 'cubic', disp('Method is cubic')
    case 'nearest', disp('Method is nearest')
    otherwise, disp('Unknown method.')
end
```

Table 1-5: New Flow Control Commands

Command	Description
case	Case switch.
dbmex	Enable MEX-file debugging.
errortrap	Skip errors during testing.
otherwise	Default part of switch statement.
switch	Conditionally execute code, switching among sev- eral cases.

MATLAB now evaluates expressions involving logical operators more efficiently than before. For example, consider the expression if a|b.If a is true, then MATLAB will not evaluateb. Similarly, MATLAB won't execute statements following the expression if $a \& b$ in the event a is found to be false.
Table 1-6: New Logical Operators

Operator	Description
iscell	True for a cell array.
isequal	True if arrays are equal.
isfinite	True for finite elements.
islogical	True for logical arrays.
isnumeric	True if input is a numeric array.
isprime	True for prime numbers isspace
isspace, newline, carriage return, tab, ver-	
logical	True for a structure.

M-File Programming Tools

MATLAB 5 adds three features to enhance MATLAB's M-file programming capabilities.

Variable Number of Input and Output Arguments

Thevarargin andvarargout commands simplify the task of passing data into and out of M -file functions. For instance, the statement function varargout = my fun(A, B) allows M-file my fun to return an arbitrary number of output arguments, while the statement function [C, D] = myfun(varargin) allows it to accept an arbitrary number of input arguments.

Multiple Functions W ithin an M-File

It is now possible to have subfunctions within the body of an M-file. These are functions that the primary function in the file can access but that areotherwise invisible.

M-File Profiler

This utility lets you debug and optimize M-files by tracking cumulative execution time for each line of code. Whenever the specified M-file executes, the profiler counts how many time intervals each line uses.

Pseudocode M-Files

Thepcode command saves a pseudocode version of a function or script to disk for later sessions. This pseudocode version is ready-to-use code that MATLAB can access whenever you invoke the function. In some cases, this reduces the time it takes to execute a function.

Table 1-7: New Programming Tools

Function	Description
addpath	Append directory to MATLAB's search path.
applescript	Load a compiled AppleScript from a file and execute it.
assignin	Assign variable in workspace.
edit	Edit an M-file.
editpath	Modify current search path.
evalin	Evaluate variable in workspace.
fullfile	Build full filename from parts.
inmem	Functions in memory.
inputname	Input argument name.

Table 1-7: New Programming Tools (Continued)	
Function	Description
mfilename	Name of the currently running M-file.
mexext	Return the MEX filename extension.
pcode	Create pseudo-code file (P-file).
profile	Measure and display M-file execution profiles.
rmpath	Remove directories from MATLAB's search path.
varargin, varargout	Pass or return variable numbers of arguments.
warning	Display warning message.
web	Point web browser at file or web site.

New and Enhanced Language Functions

MATLAB 5 provides a large number of new language functions as well as enhancements to existing functions.
Table 1-8: New Elementary and Specialized Math Functions

Function	Description
airy	Airy functions.
besselh	Bessel functions of the third kind (Hankel).
condeig	Condition number with respect to eigenvalues.
condest	1-norm matrix condition estimate.
dblquad	Numerical double integration
mod	Modulus (signed remainder after division).
normest	2-norm estimate.

Table 1-9: New Time and Date Functions

Function	Description
calendar	Calendar.
datenum	Serial date number.
datestr	Create date string.
datetick	Date formatted tick labels.
datevec	Date components.
eomday	End of month.
now	Current date and time.
weekday	Day of the week.

Table 1-10: New Ordinary Differential Equation Functions	
Function	Description
ode 45,0 de $23,0 d e 113$, ode23s,ode15s	Solve differential equations, low and high order methods.
odefile	Define a differential equation problem for ODE solvers.
odeget	Extract options from an argument created with odeset.
odeset	Create and edit input arguments for ODE solvers.

Table 1-11: New Matrix Functions

Function	Description
cholinc	Incomplete Cholesky factorization.
gallery	More than 50 new test matrices.
I uinc	Incomplete LU factorization.
repmat	Replicate and tile an array.
sprand	Random uniformly distributed sparse matrices.

Table 1-12: New Methods for Sparse Matrices

Method	Description
bicg	BiConjugate Gradients method.
bicgstab	BiConjugate Gradients Stabilized method.
cgs	Conjugate Gradients Squared method.
eigs	Find a few eigenvalues and eigenvectors.
gmres	Generalized Minimum Residual method.

Table 1-12:	New Methods for Sparse Matrices
Method	Description
$p c g$	Preconditioned Conjugate Gradients method.
$q \mathrm{mr}$	Quasi-Minimal Residual method.
$s v d s$	A few singular values.

Subscripting and Assignment Enhancements

In MATLAB 5, you can now:

- Access the last element of an array using the end keyword.
- Obtain consistent results for indexing expressions consisting of all ones.
- Use scalar expansion in subarray assignments.

A statement likeA(ones([m, n])) now always returns an m-by-n array in which each element is A(1). In previous versions, the statement returned different results depending on whether a was or was not an m-by-n matrix.

In previous releases, expressions like $A(2: 3,4: 5)=5$ resulted in an error. MATLAB 5 automatically "expands" the 5 to be the right size (that is, 5 *ones (2,2)).

Integer Bit Manipulation Functions

Thebitfun directory contains commands that permit bit-level operations on integers. Operations include setting and unsetting, complementing, shifting, and logical AND, OR, and XOR.
Table 1-13: New Bitwise Functions

Function	Description
bitand	BitwiseAND.
bitcmp	Complement bits.
bitmax	Maximum floating-point integer.
bitor	Bitwise 0R.

Table 1-13: New Bitwise Functions (Continued)

Function	Description
bitset	Set bit.
bitshift	Bitwise shift.
bittest	Test bit.
bitxor	BitwiseXOR.

Dimension Specification for Data Analysis Functions

MATLAB's basic data analysis functions now enable you to supply a second input argument. This argument specifies the dimension along which the function operates. For example, create an array A:

```
A = [3 2 4; 1 0 5; 8 2 6];
```

To sum al ong the first dimension of A , incrementing the row index, specify 1 for the dimension of operation:
$\operatorname{sum}(A, 1)$
ans =
$12 \quad 4 \quad 15$
To sum along the second dimension, incrementing the column index, specify 2 for the dimension:
sum($A, 2$)
ans $=$
9
6
16
Other functions that accept the dimension specifier includeprod, cumprod, and cumsum.

Wildcards in Utility Commands

The asterisk (*) can be used as a wildcard in the clear and whos commands. This allows you, for example, to clear only variables beginning with a given character or characters, as in

```
clear A*
```


Empty Arrays

Earlier versions of MATLAB allowed for only one empty matrix, the 0-by-0 matrix denoted by []. MATLAB 5 provides for matrices and arrays in which one, but not all, of the dimensions is zero. For example, 1 -by-0, 10 -by- 0 -by- 20 , and[3 40 2] are all possible array sizes.

The two-character sequence [] continues to denote the 0-by-0 matrix. Empty arrays of other sizes can be created with the functions zeros, ones, rand, or e y e. To create a 0 -by- 5 matrix, for example, use

```
E = zeros(0,5)
```

The basic model for empty matrices is that any operation that is defined for m-by-n matrices, and that produces a result whose dimension is some function of m and n, should still be allowed when m or n is zero. The size of the result should be that same function, evaluated at zero.

For example, horizontal concatenation

```
C = [A B]
```

requires that A and B have the same number of rows. So if A is $m-b y-n$ and B is m-by-p, then C is m-by- $(n+p)$. This is still true if m or n or p is zero.

Many operations in MATLAB produce row vectors or column vectors. It is now possible for the result to be the empty row vector

```
r = zeros(1,0)
```

or the empty column vector

```
c = zeros(0,1)
```

MATLAB 5 retains MATLAB 4 behavior for if and while statements. For example

```
if A, S1, else, SO, end
```

will execute statement 50 when A is an empty array.
Some MATLAB functions, like sum and max , are reductions. For matrix arguments, these functions produce vector results; for vector arguments they produce scalar results. Backwards compatibility issues arise for the argument [], which in MATLAB 4 played the role of both the empty matrix and the empty vector. In MATLAB 5, empty inputs with these functions produce these results:

- sum([]) is 0
- prod([]) is 1
- max([]) is[]
- min([]) is []

New Data Analysis Features

MATLAB 5 provides an expanded set of basic data analysis functions.

Table 1-14: New Statistical Data Analysis Functions

Function	Description
convhull	Convex hull.
cumtrapz	Cumulative trapezoidal numerical integration.
delaunay	Delaunay triangularization.
dsearch	Search for nearest point.
factor	Prime factors.
inpolygon	Detect points insidea polygonal region.
nchoosek	All possible combinations of n elements takenk at a time.
perms	All possible permutations.
polyarea	Generatea list of prime numbers.
primes	Sort rows in ascending order.
sortrows	Search for enclosing Delaunay triangle.
tsearch	Voronoi diagram.
voronoi	

MATLAB 5 also offers expanded data analysis in the areas of:

- Higher-dimension interpolation
- Extendedgriddat a functionality based on Delaunay triangulation
- New set theoretic functions

Higher-Dimension Interpolation

The new functions interp3 andinterpn let you perform three-dimensional and multidimensional interpolation. ndgrid provides arrays that can be used in multidimensional interpolation.
Table 1-15: New Interpolation Functions

Function	Description
interp3	Three-dimensional data interpolation (table lookup).
interpn	Multidimensional data interpolation (table lookup).
ndgid	Generate arrays for multidimensional functions and interpolation.

griddata Based on Delaunay Triangulation

griddat a supports triangle-based interpol ation using nearest neighbor, linear, and cubic techniques. It creates smoother contours on scattered data using the cubic interpolation method.

Set Theoretic Functions

Thefunctionsunion, intersect, is member, setdiff, andunique treat vectors as sets, allowing you to perform operations like union $(A \cup B)$, intersection $(A \cap B)$, and difference ($A-B$) of such sets. Other set-theoretical operations include location of common set elements (i s me mber) and elimination of duplicate elements (unique).

Table 1-16: New Set Functions

Function	Description
intersect	Set intersection of two vectors.
is member	Detect members of a set.
setdiff	Return the set difference of two vectors.
set xor	Set XOR of two vectors.

Table 1-16:	New Set Functions (Continued)
Function	Description
union	Set union of two vectors.
unique	Unique elements of a vector.

New and Enhanced Handle Graphics Features

MATLAB 5 features significant improvements to Handle Graphics. For details on all graphics functions, see Using MATLAB Graphics.

Plotting Capabilities

MATLAB's basic plotting capabilities have been improved and expanded in MATLAB 5.
Table 1-17: New and Enhanced Plotting Capabilities

Function	Description
area	Filled area plot.
bar 3	Vertical 3-D bar chart.
bar 3h	Horizontal 3-D bar chart.
barh	Horizontal bar chart.
gplot	"Graph theoretic" graph.
pie	Pie chart.
pie3	Three-dimensional pie chart.
plotyy	Plot graphs with Y tick labels on left and right.
stem3	Three-dimensional stem plot.

area Function

The area function plots a set of curves and fills the area beneath the curves.

Bar Chart Enhancements

bar 3, bar 3h, andbarh draw vertical and horizontal bar charts. Thesefunctions, together with bar , support multiple filled bars in grouped and stacked formats.

legend Enhancement

I e gend can label any solid-color patch and surface. Y ou can now place legends on line, bar, ribbon, and pie plots, for example.
Table 1-18: New Graph Annotation Functions

Function	Description
box	Axes box.
datet ick	Display dates for Axes tick labels.

Marker Style Enhancement

A number of new line markers are available, including, among others, a square, a diamond, and a five-pointed star. These can be specified independently from line style.

Stem Plot Enhancements

stem andstem3 plot discrete sequence data as filled or unfilled stem plots.

Three-Dimensional Plotting Support

quiver 3 displays three-dimensional velocity vectors with (u, v, w) components. Theribbon function displays data as three-dimensional strips.
Table 1-19: New Three-Dimensional Plotting Functions

Function	Description
quiver 3	Three-dimensional quiver plot.
ribbon	Draw lines as 3-D strips.
rotate3d	Three-dimensional rotation using the mouse.

Data Visualization

MATLAB 5 features many new and enhanced capabilities for data visualization.

New Viewing Model

Axes camera properties control the orthographic and perspective view of the scene created by an Axes and its child objects. You can view the Axes from any
location around or in the scene, as well as adjust the rotation, view angle, and target point.

New Method for Defining Patches

Y ou can define a Patch using a matrix of faces and a matrix of vertices. E ach row of the face matrix contains indices into the vertex matrix to define the connectivity of the face. Defining Patches in this way reduces memory consumption because you no longer need to specify redundant vertices.

Triangular Meshes and Surfaces

Thenew functionst rimesh and trisurf create triangular meshes and surfaces from x, y, and z vector data and a list of indices into the vector data.
Table 1-20: New Triangular Mesh and Surface Functions

Function	Description
trisurf	Triangular surface plot.
trimesh	Triangular mesh plot.

Improved Slicing

slice now supports an arbitrary slicing surface.

Contouring Enhancements

The contouring algorithm now supports parametric surfaces and contouring on triangular meshes. In addition, clabel rotates and inserts labels in contour plots.
Table 1-21: New Contour Plot

Function	Description
contourf	Filled contour plot.

New zoom Options

Thezoom function supports two new options:

- scal e_fact or - zooms by the specified scale factor relative to the current zoom state (e.g., z $00 \mathrm{~m}(2)$ zooms in by a factor of two).
- fill-zooms tothe point wherethe objects contained in the Axes are as large as they can be without extending beyond the Axes plot box from any view. Usethis option when you want to rotate the Axes without seeing an apparent size change.

Graphics Presentation

MATLAB 5 provides improved control over the display of graphics objects.

Enhancements to Axes \mathbf{O} bjects

MATLAB 5 provides more advanced control for three-dimensional Axes objects. You can control the three-dimensional aspect ratio for the Axes' plot box, as well as for the data displayed in the plot box. You can also zoom in and out from a three-dimensional Axes using viewport scaling and Axes camera properties.

Theaxi s command supports a new option designed for viewing graphics objects in 3-D:

```
axis vis3d
```

This option prevents MATLAB from stretching the Axes to fit the size of the Figure window and otherwise altering the proportions of the objects as you change the view.

In a two-dimensional view, you can display thex-axis at the top of an Axes and the y-axis at the right side of an Axes.

Color Enhancements

colordef white or colordef black changes the color defaults on the root so that subsequent figures produce plots with a white or black axes background col or. The figure background color is changed to be a shade of gray, and many other defaults are changed so that there will be adequate contrast for most
plots. col ordef none sets the defaults to their MATLAB 4 values. In addition, a number of new colormaps are available.
Table 1-22: New Figure and Axis Color Control

Function	Description
col or def	Select Figure col or scheme.

Table 1-23: New Colormaps

Function	Description
autumn	Shades of red and yellow colormap.
col or cube	Regularly spaced col ors in RGB col orspace that pro- vide more steps of gray, pure red, pure green, and pure blue.
I ines	Colormap of colors specified by theAxes'Col or Order property.
spring	Shades of magenta and yellow col ormap.
summer	Shades of green and yellow colormap.
winter	Shades of blue and green colormap.

Text 0 bject Enhancements

MATLAB 5 supports a subset of LaTex commands. A single Text graphics object can support multiplefonts, subscripts, superscripts, and Greek symbols. See the text function in the online MATLAB Function Referencefor information about the supported LaTex subset.

You can also specify multiline character strings and use normalized font units so that Text size is a fraction of an Axes' or Uicontrol 's height. MATLAB supports multilinetext strings using cell arrays. Simply define a string variable as a cell array with one line per cell.

Improved General Graphics Features

The MATLAB startup file sets default properties for various graphics objects so that new Figures are aesthetically pleasing and graphs are easier to understand.
Table 1-24: New Figure Window Creation and Control Commands

Command	Description
di alog	Create a dialog box.
hgmenu	Display default File and Edit menus for Figures.

Z-buffering is now available for fast and accurate three-dimensional rendering.

Lighting

MATLAB supports a new graphics object called a Light. You create a Light object using the I ight function. Three important Light object properties are:

- Col or - the color of the light cast by the Light object
- Mode - either infinitely far away (the default) or local
- Position - the direction (for infinite light sources) or the location (for local light sources)

Y ou cannot see Light objects themselves, but you can see their effect on any Patch and Surface objects present in the same Axes. Y ou can control these effects by setting various Patch and Surface object properties - Amb i ent Strength, DiffuseStrength, and Specularstrength control theintensity of the respective light-reflection characteristics;
SpecularColor Ref I ectance andSpecularExponent provideadditional control over the reflection characteristics of specular light.

The Axes Ambient Light Col or property determines the color of the ambient light, which has no direction and affects all objects uniformly. Ambient light effects occur only when there is a visible Light object in the Axes.

The Light object's Col or property determines the color of the directional light, and its Mode property determines whether the light source is a point source (Mode set tolocal), which radiates from the specified position in all directions, or a light source placed at infinity (Mode set to infinite), which shines from the direction of the specified position with parallel rays.

Y ou can also select the algorithm used to cal culate the col oring of the lit objects. The Patch and SurfaceEdgeLighting and FaceLighting properties select between no lighting, and flat, Gouraud, or Phong lighting algorithms.

print Command Revisions

Theprint command has been extensively revised for MATLAB 5. Consult Using MATLAB Grapics for a complete description of print command capabilities. Among the new options available for MATLAB 5:

- The-loose option makes the PostScript bounding box equal to the Figure's PaperPosition property. PICT (Macintosh) and EPSI (X) previews are the same size as the generated PostScript drawing.
- Z-buffer images may be printed at user-selectable resolution.
- Theprint function can generate an M-file that recreates a Figure.
- Uicontrol objects print by default unless suppressed with the - noui option. In earlier versions of MATLAB, Uicontrols did not appear when you printed Figures. If you specify the-noui option with the print command, MATLAB ignores Uicontrols and prints only Axes and Axes children.

Additional print Device 0 ptions

Theprint command has several new device options:
Table 1-25: print Command Device Options

Device	Description
-dIjet 4	HP LaserJ et 4 (defaults to 600 dpi)
- ddeskjet	HP DeskJ et and DeskJ et Plus
-ddj et 500	HP Deskjet 500
-dcdeskjet	HP DeskJ et 500C with 1 bit/pixel color
-dcdj 500	HP DeskJ et 500C
-dcdj 550	HP Deskjet 550C
-dpjxI	HP Paint et XL color printer
-dpjx\|300	HP PaintJ et XL300 color printer

Table 1-25: print Command Device Options (Continued)

Device	Description
-ddnj 650 C	HP Designj et 650C
-dbj 200	Canon Bubblej et BJ 200
-dbjc 600	Canon Color BubbleJ et BJ C-600 and BJ C-4000
-depsonc	Epson LQ-2550 and Fujitsu 3400/2400/1200
-dibmpro	IBM 9-pin Proprinter
-dtiffpack	TIFF PackBits (tag = 32773) (monochrome)
-dbmp 256	8-bit (256-color) BMP file format
- dbmp 16 m	24-bit BMP file format
-dpcxmono	M onochrome PCX file format
-dpcx24b	24-bit color PCX file format, three 8-bit planes
-dpbm	Portable Bitmap (plain format)
-dpbmraw	Portable Bitmap (raw format)
-dpgm	Portable Graymap (plain format)
-dpgmraw	Portable Graymap (raw format)
-dppm	Portable Pixmap (plain format)
-dppmraw	Portable Pixmap (raw format)
-dbit	A plain "bit bucket" device
-dbitrgb	Plain bits, RGB
-dbitcmyk	Plain bits, CMYK

Image Support

MATLAB 5 provides a number of enhancements to image support. These enhancements include:

- Truecolor support
- New functions for reading images from and writing images to graphics files
- 8-bit image support

Truecolor

In addition to indexed images, in which colors are stored as an array of indices into a col ormap, MATLAB 5 now supports truecol or images. A truecol or image does not use a colormap; instead, the color values for each pixel are stored directly as RGB triplets. In MATLAB, theCDat a property of a truecolor Image object is a three-dimensional (m-by-n -by-3) array. This array consists of three m-by-n matrices (representing the red, green, and blue color planes) concatenated along the third dimension.

Reading and Writing Images

Thei mr ead function reads image data into MATLAB arrays from graphics files in various standard formats, such as TIFF. You can then display these arrays using thei mage function, which creates a Handle Graphics ${ }^{\circledR}$ I mage object. Y ou can also write MATLAB image data to graphics files using the i mwr ite function. i mread and imwrite both support a variety of graphics file formats and compression schemes.

8-Bit Images

When you read an image into MATLAB using i mr ead , the data is stored as an array of 8 -bit integers. This is a much more efficient storage method than the double-precision (64-bit) floating-point numbers that MATLAB typically uses.

The Handle Graphics I mage object has been enhanced to support 8-bit CDat a . This means you can display 8-bit images without having to convert the data to double precision. MATLAB 5 also supports a limited set of operations on these 8 -bit arrays. Y ou can view the data, reference values, and reshape the array in various ways. To perform any mathematical computations, however, you must first convert the data to double precision, using the double function.

N ote that, in order to support 8-bit images, certain changes have been made in the way MATLAB interprets image data. This table summarizes the conventions MATLAB uses:

Image Type	Double-Precision Data (Double Array)	8-Bit Data (uint8 Array)
Indexed (col ormap)	Image is stored as a 2-D (m-by-n) array of integers in the range [1,I ength(col or map)]; colormap is an m -by-3 array of floating-point values in the range [0, 1]	Image is stored as a 2-D (m-by-n) array of integers in the range [0, 255]; colormap is an m-by-3 array of floating-point values in the range [0,1]
Truecolor (RGB)	Image is stored as a 3-D (m-by-n -by-3) array of floating-point values in the range [0, 1]	I mage is stored as a 3-D (m-by-n -by-3) array of integers in the range [0, 255]

N ote that MATLAB interprets image data very differently depending on whether it is double precision or 8 -bit. The rest of this section discusses things you should keep in mind when working with image data to avoid potential pitfalls. This information is especially important if you want to convert image data from one format to another.

Indexed images

In an indexed image of class double, the value 1 points to the first row in the col ormap, the value 2 points to the second row, and so on. In a uint 8 indexed image, there is an offset; the value 0 points to the first row in the col ormap, the value 1 points to the second row, and so on. Theuint 8 convention is also used in graphics fileformats, and enables 8-bit indexed images to support up to 256 col ors. Notethat when you read in an indexed image with i mr ead, the resulting image array is always of class ui nt 8 . (The colormap, however, is of class double ; see below.)

If you want to convert a uint 8 indexed image to double, you need to add 1 to the result. For example:

```
X64 = double(X8) + 1;
```

To convert from doubl e to ui nt 8 , you need to first subtract 1 , and then use round to ensure all the values are integers:

X8 = uint 8(round (X64-1));
The order of the operations must be as shown in these examples, because you cannot perform mathematical operations on ui nt 8 arrays.

When you write an indexed image using imwrite, MATLAB automatically converts the values if necessary.

Colormaps

Colormaps in MATLAB are always m-by-3 arrays of double-precision floating-point numbers in the range [0, 1]. In most graphics file formats, col ormaps are stored as integers, but MATLAB does not support colormaps with integer values. i mr ead and i mwrite automatically convert colormap values when reading and writing files.

Truecolor Images

In a truecolor image of class double , the data values are floating-point numbers in therange [0, 1]. In a truecolor image of classui nt 8 , the data values are integers in the range [0, 255].
If you want to convert a truecolor image from one data type to the other, you must rescale the data. F or example, this call converts a uint 8 truecol or image todouble:

```
RGB64 = double(RGB8)/255;
```

This call converts a double truecolor image to uint 8 :

```
RGB8 = uint8(round(RGB*255));
```

The order of the operations must be as shown in these examples, because you cannot perform mathematical operations on ui nt 8 arrays.

When you write a truecolor image using imwrite, MATLAB automatically converts the values if necessary.

New and Enhanced Handle Graphics Object Properties

This section lists new graphics object properties supported in MATLAB 5. It also lists graphics properties whose behavior has changed significantly. Using MATLAB Graphics provides a more detailed description of each property.
Table 1-26: Properties of All Graphics Objects

Property	Description
BusyAction	Controls events that potentially interrupt executing callback routines.
Children	Enhanced behavior allows reordering of child objects
Createfcn	A callback routine that executes when MATLAB creates a new instance of the spe- cific type of graphics object
Deletefcn	A callback routine that executes when MATLAB deletes the graphics object
Interruptible	Controls scope of handlevisibility
Parent	Now on by default
Enhanced behavior allows reparenting of	
graphics objects	

Table 1-27: Axes Properties

Property	Description
Ambienttight Color	Color of the surrounding light illuminating all Axes child objects when a Light object is present.
Cameraposition	Location of the point from which the Axes is viewed.
CamerapositionMode	Automatic or manual camera positioning.
Cameratarget	Point in Axes viewed from camera position.
CameraTargetMode	Automatic or manual camera target selection.
CameraUpVector	Determines camera rotation around the viewing axis.
CameraUpVector Mode	Default or user-specified camera orientation.
CameraviewAngle	Angle determining the camera field of view.
CameraViewAnglemode	Automatic or manual camera field of view selection.
DataAspectratio	Relative scaling of $x-, y$-, and z-axis data units.
DataAspectratioMode	Automatic or manual axis data scaling.
Font Units	Units used to interpret theF ont Si ze property (allowing normalized text size).
Layer	Draw axis lines below or above child objects.
NextPl ot	Enhanced behavior supports add, replace, andreplacechildren options.
Plot BoxAspectratio	Relative scaling of Axes plot box.
Plot BoxAspectratiomode	Automatic or manual selection of plot box scaling.

Table 1-27: Axes Properties	(Continued)
Property	Description
Projection	Select orthographic or perspective projection type.
TickDirMode	Automatic or manual selection of tick mark direction (allowing you to change view and preserve the specified TickDir).
XAxisLocation	Locatex-axis at bottom or top of plot.
YAxisLocation	Locatey-axis at left or right side of plot.

Table 1-28: Figure Properties

Property	Description
CloseRequest F (n	Callback routine executed when you issue a close command on a Figure.
Dithermap	Colormap used for true-color data on pseudocolor displays.
DithermapMode	Automatic dithermap generation.
Integertandle	Integer or floating-point Figure handle.
PaperPositionMode	WYSIWYG printing of Figure.
NextPlot	Enhanced behavior supportsadd, replace, andreplacechildren options.
PointershapeCData	User-defined pointer data.
Pointershapehot Spot	Active point in custom pointer.
PrintPostProcess	Commands to execute at the end of the printing process.
Renderer	Select painters or Z-buffer rendering or enable MATLAB to select automatically.
Resize	Determines if Figure window is resizeable.

Table 1-28: Figure Properties (Continued)

Property	Description
ResizeFcn	Callback routine executed when you resize the Figure window.

Table 1-29: Image Properties

Property	Description
CDat a	Enhanced behavior allows true color (RGB values) specification.
CDat a Mapping	Select direct or scaled interpretation of indexed colors.

Table 1-30: Light Properties

Property	Description
Color	Color of the light source.
Position	Place the light source within Axes space.
Style	Select infinite or local light source.

Table 1-31: Line Properties

Property	Description
Marker	The marker symbol to use at data points (markers are now separate from line style).
MarkerEdgeCol or	The color of the edge of the marker symbol.
MarkerfaceCol or	The color of the face of filled markers.

Table 1-32: Patch Properties

Property	Description
AmbientStrength	The strength of the Axes ambient light on the particular Patch object.
CData	Enhanced behavior allows true color (RGB values) specification.
CDatamapping	Select direct or scaled interpretation of indexed colors.
DiffuseStrength	Strength of the reflection of diffuse light from Light objects.
FacelightingAlgorithm	Lighting algorithm used for Patch faces.
Faces	The vertices connected to define each face.
FaceVertexCData	Col or specification when using the F a ces and Vertices properties to define a Patch.
LineStyle	Type of line used for edges.
Marker	Symbol used at vertices.
MarkerEdgeColor	The color of the edge of the marker symbol.
Markerfacecolor	The col or of the face of filled markers.
Markersize	Size of the marker.
Nor mal Mode	MATLAB-generated or user-specified normal vectors.
SpecularColorReflectance	Control the col or of the specularly reflected light from Light objects.
Specularexponent	Control the shininess of the Patch object.
Specularstrength	Strength of the reflection of specular light from Light objects.

Table 1-32: Patch Properties (Continued)

Property	Description
VertexNormal s	Definition of the Patch's normal vectors.
Vertices	The coordinates of the vertices defining the Patch.

Table 1-33: Root Properties

Property	Description
Callbackobject	Handle of object whose callback is currently executing.
Errormessage	Text of the last error message issued by MATLAB.
ErrorType	The type of the error that last occurred.
ShowHiddenHandles	Show or hide graphics object handles that are marked as hidden.
Terminal HideGraphCommand	Command to hide graphics window when switching to command mode.
Terminal Dimensions	Size of graphics terminal.
Terminal ShowGraphCommand	Command to expose graphics window when switching from command mode to graphics mode.

Table 1-34: Surface Properties

Property	Description
Ambient Strength	The strength of the Axes ambient light on the particular Surface object.
CData	Enhanced behavior allows true col or (RGB values) specification.

Table 1-34: Surface Properties (Continued)

Property	Description
CDatamapping	Selects direct or scaled interpretation of indexed colors.
Diffusestrength	Strength of the reflection of diffuse light from Light objects.
FacelightingAlgorithm	Lighting algorithm used for Surface faces.
Marker	Symbol used at vertices.
MarkerEdgeCol or	The color of the edge of the marker symbol.
MarkerfaceColor	The col or of the face of filled markers.
Markersize	Size of the marker.
Nor mal Mode	MATLAB generated or user-specified normal vectors.
Specularcolor Reflectance	Control the col or of the specularly reflected light from Light objects.
Specularexponent	Control the shininess of the Surface object.
Specularstrength	Strength of the reflection of specular light from Light objects.
VertexNormals	Definition of the Surface's normal vectors.
Vertices	The coordinates of the vertices defining the Surface.

Table 1-35: Text Properties

Property	Description
Font Units	Select the units used to interpret the Fon- t Si ze property (allowing normalized text size).
Interpreter	Allows MATLAB to interpret certain charac- ters as LaTex commands.

Table 1-36: Uicontrol Properties

Property	Description
Enable	Enable or disable (gray out) uicontrols.
Font Angle	Select character slant.
Font Name	Select font family.
Fontsize	Select font size.
Font Units	Select the units used to interpret the Fon. t Size property (allowing normalized text size).
Font Weight	Select the weight of text characters.
ListboxTop	Select the listbox item to display at the top of thelistbox.
SliderStep	Select the size of the slider step. Style

Table 1-37: Uimenu Properties

Property	Description
Enable	E nable or disable (gray out) uicontrols.

Improvements to Graphical User Interfaces (GUIs)

General GUI Enhancements

MATLAB 5 provides general enhancements that are useful in the GUI area:

- Starting MATLAB with the-nosplash argument suppresses the splash screen on UNIX.
- Using the Close RequestFcn callback can abort a Figureclose command.
- Stacking of Figure and Axes graphics objects may be varied to affect the order in which MATLAB displays these objects.
- The mouse pointer can be set to a number of different symbols or you can create a custom Figure pointer.
- On the Windows platforms edit controls now have a three-dimensional appearance.

MATLAB 5 provides features that make it easier to create MATLAB GUIs. Major enhancements include List Box objects to display and select one or more list items. You can also create modal or non-modal error, help, and warning message boxes. In addition, uicontrol edit boxes now support multiline text.
Table 1-38: New GUI Controls

Function	Description
msgbox	Display message box.
dragrect	Drag pre-defined rectangles.
inputdlg	Display a dialog box to input data.
questdlg	Question dialog.
rbbox	Rubberband box.
selectmoveresize	Interactively select, move, or resize objects.

MATLAB 5 also provides more flexibility in callback routines. Y ou can specify callbacks that execute after creating, changing, and deleting an object.
Table 1-39: New Program Execution Controls

Function	Description
uiresume	Resume suspended M-file execution.
uiwait	Blocks program execution.
waitfor	Blocks execution until a condition is satisfied.

Guide

Guide is a Graphical User Interface (GUI) design tool. In other words, it makes it easy to create and modify GUIs in MATLAB. The individual pieces of the Guide environment are designed to work together, but they can also be used individually. For example, there is a Property Editor (invoked by the command propedit) that allows you to modify any property of any HandleGraphics object, from a figure to a line. Point the Property Editor at a line and you can change its color, position, thickness, or any other line property.

The Control Panel is the centerpiece of the Guide suite of tools. It lets you "control" a figure so that it can be easily modifed by clicking and dragging. As an example, you might want to move a button from one part of a figure to another. From the Control panel you put the button's figure into an editable state, and then it's simply a matter of dragging the button into the new position. Once a figure is editable, you can also add new uicontrols, uimenus, and plotting axes.
Table 1-40: Guide Tools

Tool	Command	Description
Control Panel	guide	Control figure editing.
Property Editor	propedit	Modify object properties.
Callback Editor	cbedit	Modify object callbacks.
Alignment Tool	align	Align objects.
Menu Editor	menuedit	Modify figure menus.

Enhancements to the Application Program Interface (API)

The MATLAB 5 API introduces data types and functions not present in MATLAB 4. This section summarizes the important changes in the API. F or details on any of these topics, see the MATLAB Application Program I nterface Guide.

New Fundamental Data Type

The MATLAB 4 Matrix data type is obsolete. MATLAB 5 programs use the $m x A r r a y$ data typein place of Matrix. ThemxArray data typehas extra fields to handle the richer data constructs of MATLAB 5.

Functions that expected Matrix arguments in MATLAB 4 expect mxar ray arguments in MATLAB 5.

New Functions

The API introduces many new functions that work with the C language to support MATLAB 5 features.

Support for Structures and Cells

MATLAB 5 introduces structure arrays and cell arrays. Therefore, the MATLAB 5 API introduces a broad range of functions to create structures and cells, as well as functions to populate and analyze them. See "How to Convert Each MATLAB 4 Function" on page 2-21 for a complete listing of these functions.

Support for Multidimensional Arrays

The MATLAB 4 Matrix data type assumed that all matrices were two-dimensional. The MATLAB 5 mxArray data type supports arrays of two or more dimensions. The MATLAB 5 API provides two different mxCr eate functions that create either a two-dimensional or a multidimensional mxArray.

In addition, MATLAB 5 introduces several functions to get and set the number and length of each dimension in a multidimensional mxArray.

Support for Nondouble Precision Data

The MATLAB 4 Matrix data type represented all numerical data as double-precision floating-point numbers. The MATLAB 5 mxArray data type
can store numerical data in six different integer formats and two different floating-point formats.

Note Although the MATLAB API supports these different data representations, MATLAB itself does not currently provide any operations or functions that work with nondouble precision data. Nondouble precision data may be viewed, however.

Access toSpecial Numbers

Several me x-prefix functions that access special numbers such as I nfinity, NaN, and eps have been renamed. The new names use themx prefix instead of the mex prefix. For example, mexGetEps is obsolete; call mxGetEps instead. These functions are now available from the stand-al one interfaces.

OLE Support

The MATLAB API now provides OLE support on the Windows platforms.

MATLAB 4 Features Unsupported in MATLAB 5

Non-ANSI C Compilers

MATLAB 4 let you compile MATLAB applications with non-ANSI C compilers. MATLAB 5 requires an ANSI C compiler.

printf and scanf

MATLAB5 MEX-files nolonger support calls to the ANSI Cprint fandscanf. Instead of calling print f, your MEX-file should always call mexprint f. Instead of calling scanf, your MEX-file should call mexCal I MATLAB with the fifth argument set to the input function.

New Platform Specific Features

Two features are available on both the Macintosh and MS Windows platforms:

- J apanese characters

It is now possible to generate annotation and string constants that useJ apanese characters.

- 16-bit stereo sound

MATLAB 5 now supports 16-bit stereo sound.

MS Windows

Path Browser

The Path Browser lets you view and modify the MATLAB search path. All changes take effect in MATLAB immediately.

Workspace Browser

The Workspace Browser lets you view the contents of the current MATLAB workspace. It provides a graphical representation of the traditional whos output. In addition, you can clear workspace variables and rename them.

M-File Debugger

The graphical M-file debugger allows you to set breakpoints and single-step through M-code. The M-file debugger starts automatically when a breakpoint is hit.

Command Window Toolbar

A toolbar is now optionally present for theCommand Window. The tool bar provides single-click access to several commonly used operations:

A MATLAB Command Window

File Edit Window Help

- Open a new editor window
- Open a file for editing
- Cut, copy, paste, and undo
- Open the Workspace Browser
- Open the Path Browser
- Create new SIMULINK model
- Access the Help facility

New Dialog Boxes

New Preferences dialog boxes are accessible through the File menu. Some of these were previously available through the Options menu in MATLAB 4. There are three categories of preferences:

- General
- Command Window F ont
- Copying Options

Macintosh

User Interface Enhancements

- Optional toolbars in the Command Window, Editor windows, and M-file debugger allow rapid access to commonly used features.

- Color syntax highlighting in the Command Window, Editor windows, and M-file debugger provides visual cues for identifying blocks of code, comments, and strings.
- Almost all lists and text items in the Command Window, Editor, Path Browser, Workspace Browser, M-file debugger, and Command History Window have optional dynamic or "live" scrolling; the display is scrolled as the scroll box of a scrollbar is moved.
- Macintosh Drag and Drop is supported throughout MATLAB for rapid and easy exchange of text between windows.

Command Window Features

- Typing on the current command line can now be undone and redone. This includes cutting, clearing, overtyping, dragging, and dropping.
- Placing the caret on an error message and pressing Enter opens the M-file in the Editor, positioned to the offending line.

Command History W indow

The Command History window contains a list of all commands executed from the Command Window. Commands are saved between MATLAB sessions, so
you can select and execute a group of commands from a previous day's work to continue quickly from where you left off.

Path Brow ser

The Path Browser provides an intuitive, easy-to-use graphical interface for viewing and modifying the MATLAB search path. The search path may bereordered or modified simply by dragging items in the path list.

W orkspace Brow ser

The Workspace Browser allows you to view the contents of the current MATLAB workspace. It provides a graphic representation of the traditional whos output. You can delete variables from the workspace and sort the work-
space by various criteria．Double－dicking workspace variables displays that variable＇s contents in the Command Window．

MATLAB Шorkspace				
Hane	Size	Bytes	Class	
囲a	1×12		double array	
囲 ans	1×12	96	double array	
囲 ${ }^{\text {B }}$	1×9		double array	
囲 b	1×8		double array	
贯1	1×9		double array	
曲 ${ }^{\text {i }}$	1×8		double array	
㖆」	1×13		double array	
曲 j	1×12		double array	
贯k	1×30		double array	
因 out	1×7	25602	struct array	
囲r	3×4		double array	
囲 var	1×1		double array	
Grand total is 4341 elements using 28050 bytes				
Workspa	Base			Delete

M－File Debugger

MATLAB 5 includes a graphical M－file debugger，which allows you to set breakpoints and single－step through M－code．Selecting text in the debugger
window and pressing the Enter (not the Return) key evaluates that text in the Command Window.

Editor Features

- Command-clicking in the title of an Editor window displays a pop-up menu containing the full path to the M-file. Selecting a folder from the pop-up menu opens that folder in the Finder.
- Selecting text in an Editor window and pressing Enter evaluates that text in the Command Window.
- Typing a close parenthesis, bracket, or brace briefly highlights the matching open parenthesis, bracket, or brace.
- Double-clicking a parenthesis, bracket, or brace selects all text within the matching parenthesis, bracket, or brace.
- Line numbers may be optionally displayed.

UNIX Workstations

Figure Window Toolbar

The Figure window now provides a tool bar with a File pulldown menu.
Selecting the Print option on the File menu activates a set of pushbuttons that allow easy setting of the most frequently used print options.

Path Editor

Thepat hedit command displays a GUI that allows you to view and modify your MATLAB search path.

Simplified Installation Procedure

The installation procedure now uses a GUI to select or deselect products and platforms.

1 N ew Features and Enhancements

Upgrading from MATLAB 4 to MATLAB 5

MATLAB 5 is a major upgrade to MATLAB. Although The MathWorks endeavors to maintain full upwards compatibility between subsequent releases of MATLAB, inevitably there are situations where this is not possible. In the case of MATLAB 5, there are a number of changes that you need toknow about in order to migrate your code from MATLAB 4 to MATLAB 5.

It is useful to introduce two terms in discussing this migration. The first step in converting your codeto MATLAB 5 is to makeit MATLAB 5 compatible. This involves a rather short list of possible changes that let your M-files run under MATLAB 5. The second step is to make it MATLAB 5 compliant. This means making further changes so that your M -file is not using obsolete, but temporarily supported, features of MATLAB. It also can mean taking advantage of MATLAB 5 features like the new data constructs, graphics, and so on.

There are a relatively small number of things that are likely to be in your code that you will haveto change to make your M-files MATLAB 5 compatible. Most of these are in the graphics area.
There are a somewhat larger number of things you can do (but don't have to) to make your M-files fully MATLAB 5 compliant. To help you gradually make your code compliant, MATLAB 5 displays warning messages when you use functions that are obsolete, even though they still work correctly.

Converting M-Files from MATLAB 4 to MATLAB 5

This section describes some changes you can make to your MATLAB 4 code to eliminate error messages and warnings due to incompatible and noncompliant statements.

Table 2-1: Language Changes

Function	Change	Action
bessel	Thebessel functions nolonger produce a table for vector arguments of the same orientation.	In besselj(nu, x), specify nu as a row and x as a column to produce a table.
case, otherwise, switch, default	case,otherwise, switch, and default cannot be used as variable names.	Rename your variables.
dialog	di alog.m now creates a modal dialog.	Use themsgbox function instead.
end	extra end statements	Remove redundant end statements.
eps	eps is a function	eps $=0$ nolonger redefineseps for other functions (it makes a local variable called eps in the current workspace). Functions that base their tolerance on externally defined eps won't work. Change code accordingly.
global	Undefined globals	Define globals before they are used. Always put theglobal statement at the top of the M-file (just below the help comments).
gradient	gradient nolonger produces complex output.	Use two outputs in the two-dimensional case.

Table 2-1: Language Changes (Continued)

Function	Change	Action
input	input('prompt','s') nolonger outputs an initial line feed. Prompts now show up on the same line.	U pdate code accordingly if this causes a display problem. Add n in the prompt string to force a line feed.
interpl	The oldinterpl syntax (interpl(x, n)) no longer calls interpft.A warning was in place in MATLAB 4.	U pdate code accordingly.
	interpl now returns a row vector when given a row vector. It used to return a column vector.	Transpose the output of int erpl to produce the MATLAB 4 result when $x i$ is a row vector.
	interpl('spline') returns NaN's for out of range values.	Usespline directly.
interp2	The oldinterp2 syntax (interp2(x,y,xi)) nolonger calls interpl.A warning was in place in MATLAB 4.	U pdate code accordingly.
interp3	The oldinterp3 syntax (interp3(z,m,n) or interp3(x,y,z,xi,yi))nolonger callsgriddata (users were warned in 4.0). interp3 is now three-dimensional interpolation.	U pdate code accordingly.
i sempty	$\mathrm{A}==$ [] and $\mathrm{A} \sim=[]$ as a check for an empty matrix produce warning messages.	Usei sempty(A) or ~isempty(A).Ina future version A == [] will produce an empty result.
isspace	i sspace only returnstrue (1) on strings.isspace(32) is 0 (it was 1 in MATLAB 4).	Wrap your calls toisspace with char.

Table 2-1: Language Changes (Continued)

Function	Change	Action
logical	Some masking operations where the mask isn't defined using a logical expression now produce an out of range index error.	Wrap the subscript with a call to logical or use the logical expression A $\sim=0$ to produce MATLAB 4 behavior.
	Boolean indexing is no longer directly supported.	Uselogical to create the index array.
matlabrc	On the PC, MATLAB no longer stores the path in matlabrc.	All platforms except the Macintosh now usepat hdef. m. The Macintosh still stores its path in the MATLAB Settings file (usually in the Prefer. ences folder).
max	$\max (\operatorname{size}(v))$, as a means to determine the number of elements in a vector v, fails when v is empty.	Usel ength(v) in place of $\max \left(\operatorname{size}^{2} \mathrm{v}\right)$) as the upper limit on loops over the elements of any vector.
nargin , nargout	nargin andnargout arefunctions.	nargout = nargout-1 (and anysimilar construction) is an error. To work around this change, assign nargin to a local variable and increment that variable. Rename all occurrences of nargin to the new variable. The same holds true for all functions.
ones	Alones(size(A))) nolonger produces A.	This statement produces copies of the first element of A. Use A(ones(size(A))~=0) or just A to produce the MATLAB 4 behavior.
	Functions such asones, eye, rand, andzeros give an error if supplied with a matrix argument (such aszeros(A)).	Use the syntaxones(size(A)) instead.

Table 2-1: Language Changes (Continued)

Function	Change	Action
r and	rand('normal') andrand('uniform') nolonger supported.	User andn for normally distributed and r and for uniformly distributed random numbers.
round	Subscripts must be integers.	To reproduce MATLAB 4 behavior, wrap noninteger subscripts with round (). Strings are no longer valid subscripts (since they are not integers in the strict sense).
slice	slice nolonger requires the number of columns (ncols) argument.	U pdate code accordingly.
strcmp strncmp	strcmp andstrncmp now return false (0) when any argument is numeric. They used to perform an is sequal.	Callisequal for all nonstrings you want to compare.
	$\mathrm{a}(:)=\mathrm{b}$ wherea doesn't exist creates an error. This used to do the samething as $a=b(:)$ when a didn't exist.	Either initialize a or usea $=b(:)$ instead.
	Must use an explicitly empty matrix to delete elements of an array, as ina(i) = [] or $a(i,:)=[]$.	This syntax works for all built-in data types (including cell arrays and structures).
	The syntaxa(i) $=B$, when B is empty, no longer deletes elements.	An empty assignment is attempted. Using the empty cell array \{\} in place of [] is not valid for deleting elements of a cell array.
	An attempt to delete elements of an array outside its range is no longer (incorrectly) ignored.	An error is generated.

Table 2-1: Language Changes (Continued)	
Function	Change
Undefined variables	To reproduce MATLAB 4 behavior, ini- tialize your variable to the empty matrix ([]) or empty string (' ').
Undefined outputs	To reproduce MATLAB 4 behavior, ini- tialize your outputs to the empty matrix ([]).

Table 2-2: Obsolete Language Functions

Obsolete Function	Action
csuread, csuwrite	Usedl mreadlfilename,',') and dlmwrite(filename, ', ') .
ellipk	Replace with ellipke.
extent	Replaced by Extent property.
figflag	Usefindobj
finite	Renametoisfinite.finite will continue to work for MATLAB 5 but will probably be removed in a later release.
f which	Usewhich.
hthelp	hthelp works in MATLAB 5, but will not befurther developed or supported.Usehel pwin or doc.
htpp	Usehel pwin or doc.
inquire	Useset and get to obtain the current state of an object or of MATLAB.
inverf	Renametoerfinv.
isdir	Usedir.
I ayout	No replacement in MATLAB 5.
loadhtml	Use helpwin ordoc.

Table 2-2: Obsolete Language Functions (Continued)

Obsolete Function	Action
mat q 2 ws	Replaced byassignin andevalin.
matqdig	Replaced byassignin andevalin.
mataparse	Replaced byassignin andevalin.
mat queue	Replaced byassignin andevalin.
menulabel	Bug in Handle Graphics is now fixed.
mexdebug	Rename todbmex.
ode $23 p$	Useode 23 with nolefthand arguments or set an output function withodeset.
polyline, polymark	Use theline object or plot.
print menu	No replacement in MATLAB 5.
saxis	Usesoundsc.
ws 2 mat 9	Replaced byassignin andevalin.

Table 2-3: Graphics Function Changes

Function	Change	Action
get	get (0 , 'currentfigure') and get (0 , 'currentaxes') nolonger create an Axes if one doesn't exist. They return [] in that case.	gcf and gca always return a valid handle. Usegcf and gca instead of the get function in this context.
	In MATLAB 4 you could determine if a graphics object had a default value set by passing its handle in a query like get (gca,' DefaultAxesColor').	In MATLAB 5 make the query on the object's ancestor, e.g.: get (gcf,' DefaultaxesColor') or get (0 , ' DefaultaxesColor')

Table 2-3: Graphics Function Changes (Continued)

Function	Change	Action
plot	MATLAB 4 plots may have elements that are the wrong color.	MATLAB 5 defaults to a white background on all platforms. (MATLAB 4 defaulted to white on the Macintosh and black everywhere else.) Usecol ordef to control your color defaults. Typically, you'll put a call to col or def instartup.m. To get the MATLAB 4 defaults, usecolordef none.
	pl ot line stylesc 1 through c 15 and i are no longer supported	Usea 1-by-3 RGB ColorSpec instead. i is the same asget (gca, 'color') or get(gcf,'color') when theAxes color is'none'.
uicontrol	The default uicontrol text horizontal alignment is centered in MATLAB 5. (In MATLAB 4 we used to left align text and ignore the alignment property.)	Explicitly set the horizontal alignment when you create Uicontrol Text objects.
	In MATLAB 4, Uicontrols of style edit' executed their callback routine whenever you moved the pointer out of the edit box. In MATLAB 5, edit controls execute their callbacks after you perform a specific action.	The callback is called when: - return>key is pressed (single-line edits only) - focus is moved out of the edit by: - dicking elsewhere in the Figure (on another Uicontrol or on another graphical object) - clicking in another Figure - clicking on the menubar (X Windows only)

Table 2-4: Graphics Property Changes

Property	Change	Action
Aspectratio	Obsolete	Replace with DataAspectRatio and Plot BoxAspectRatio.
BackgroundColor	Obsolete	Do not use.
CDatascaling	Renamed	CDatamapping
Current Menu	Becoming obsolete. No warning message produced.	Replace with the function gabo.
EraseMode	We now xor against the Axes color rather than the Figure color.	Modify code as appropriate.
ExpFontAngle	Obsolete	Do not use.
ExpFont Name	Obsolete	Do not use.
ExpFontsize	Obsolete	Do not use.
ExpFontstrikeThrough	Obsolete	Do not use.
ExpFont Underline	Obsolete	Do not use.
ExpFontunits	Obsolete	Do not use.
ExpFont Weight	Obsolete	Do not use.
Font StrikeThrough	Obsolete	Do not use.
Font Underline	Obsolete	Do not use.
FVCData	Renamed	FaceVertexCData
Hidden Handle	Obsolete	Replace with HandleVisibility.

Table 2-4: Graphics Property Changes (Continued)

Property	Change	Action
LineStyle	Setting the Li neStyle property to a marker value (such as ' + ') now produces a warning. Setting the marker style of a line now affects the MarkerStyle propertyinstead of the LineStyle property. Although you will be able to set a line marker using the LineStyle property (with a warning), you will not be able to get marker style information from Linestyle.	Set the MarkerStyle property instead. Note that plot will continue to take line-color-marker line styles. If your code relies on markers in the Linestyle, you'll have to change it to use the Markerstyle instead.
Mode	Renamed	Style
Projectiontype	Becoming obsolete. No warning message produced.	Will be replaced in a future release.
RenderLimits	Obsolete	Do not use.
Units	Units/Position is always order dependent for all objects. In MATLAB 4, it was inconsistent.	The Units property should precede any properties that depend upon it. A command such as axes('position',[100 200 300 100],'units','pixels') is not the same as axes('units','pixels','posi tion',[100 200300 100]).In the first case, the default axes units are normalized; the numbers are interpreted in normalized coordinates.

Table 2-4: Graphics Property Changes (Continued)

Property	Change	Action
WindowlD	Possibly becoming obsolete.	May be removed in a future release.
XLoc2D	Becoming obsolete. No warning message produced.	Will be replaced in a future release.
XMinorTicks	Renamed	XMinorTick
XTickLabels	Renamed	XTickLabel
YLoc2D	Becoming obsolete. No warning message produced.	Will bereplaced in a future release.
YMinorTicks	Renamed	YMinorTick
YTickLabels	Renamed	YTickLabel
ZMinorTicks	Renamed	ZMinorTick
ZTickLabels	ZTickLabel	

Converting MEX-Files from MATLAB 4 to MATLAB 5

MATLAB 5 may or may not run existing MATLAB 4 MEX-files and binaries. If your binaries or source files are not compatible with the MATLAB 5 API, you must convert your MATLAB 4 MEX-file source code to MATLAB 5.

MEX-File Binary Incompatibility

General Considerations

MATLAB 4 binaries will not run in MATLAB 5 if they:

- directly manipulate strings.
- were built with the - V3. 5 compile switch.

PC-Specific Considerations

- 16-bit DLLs are no longer supported.

Macintosh-Specific Considerations

- MEX-files compiled for MATLAB 4 for the Macintosh Power PC are not supported. You must regenerate these MEX-files from the source code before using them with MATLAB 5.

MEX-File Source Incompatibility

General Considerations

- Non-ANSI MEX-files are no longer supported.
- MATLAB 4 Fortran MEX-files on Sun 4, MS-Windows, and Macintosh 68K platforms that access string arrays will not work.
- MATLAB 4 C and Fortran MEX-files that directly manipulate strings will not work. V4 strings were stored as double precision floating point numbers. MATLAB 5 strings are stored as 16-bit unsigned integers.
- MEX-file source code that required the V3. 5 compile switch will not compile.
- mexdebug is now calleddbmex. Only the name has changed; in all other respects $d b m e x$ behaves exactly like mexdebug.

UN IX-Specific Considerations

- Themexrc.sh file is no longer supported. The new options file, mexopts.sh, contains the same information, but in a different format.
\$ MATLAB/bin/mexopts. sh is the default UNIX options file.
- The cmex and f mex Bourne shell scripts have been superseded by mex, a new Bourne shell script that includes both C and F ortran support, as well as additional support for $\mathrm{C}++$.

PC-Specific Considerations

- Existing MATLAB 4 REX MEX-files are usable but cannot be created under MATLAB 5.
- The cmex and f mex batch files have been superseded by mex, a PERL script.

MEX-File Conversion Techniques

If your existing MEX-file binaries do not run, you must convert MATLAB 4 MEX-file sources to MATLAB 5 by:

- Rebuilding MATLAB 4 source code by invoking mex with the -V4 option, or
- Recoding MATLAB 4 source code to make it MATLAB 5 compliant.

These flowcharts help you determine what steps you should take to run your MATLAB 4 MEX-files under MATLAB 5. In particular, they help you determine if you can:

- Use your MATLAB 4 MEX-file binary as is
- Rebuild your MEX-file source using the - v4 option of mex
- Recompile your MEX-file source using mex fil ena me

The sections "Rebuilding with the -V4 Option" and "Recoding for MATLAB 5 Compliance" following the flowcharts provide additional porting information.

[^0]
Rebuilding with the -V4 Option

The simplest strategy for converting C MEX-file programs is to rebuild them with the special - V4 option of mex. This option uses mex to include MATLAB 4 header files. Therefore, any C MEX-file source code that compiled cleanly under MATLAB 4 should compile cleanly with the - V4 option. The resulting MEX-file should run under MATLAB 5 just as it ran under MATLAB 4. For example, given C MEX-fileMATLAB 4 source code in fileMy Ei g. c , recompiling under UNIX with
mex - V4 myeig.c
yields a MEX-file that MATLAB 5 can execute. It is also possible to use c me x and f mex for compiling C and F ortran source code, but both of these functions simply call mex.
Even with the - V4 option, you need to recode if your source code manipulates string matrices. The - V4 option cannot handle the different ways in which MATLAB 4 and MATLAB 5 represent string data. The MATLAB 4 Mat rix structure held each "character" in a string matrix as a double-precision, floating-point number. MATLAB 5 represents each "character" in a string matrix as an mxChar, a 16-bit unsigned integer data type.
The obvious advantage to the - v4 strategy is that it requires very little work on your part. However, this strategy provides only a temporary solution to the conversion problem; there is no guaranteethat futurereleases of MATLAB will continueto support the- V4 option. If you have the time, recoding for MATLAB 5 compliance is a better strategy.

Recoding for MATLAB 5 Compliance

Recoding your MATLAB 4 C or Fortran code for MATLAB 5 compliance involves:

- Rewriting any non-ANSI C code as ANSI C code. (For details, see an ANSI C book.)
- Changing all Matrix variables to mxarray variables.

The MATLAB 4 Matrix data type is obsolete; you must change all Mat rix variables to mxArray variables. For example, the mxCreateSparse function returns a Matrix pointer in MATLAB 4:

```
Matrix *MySparse;
MySparse = mxCreateSparse(10, 10, 110, REAL);
```

To be MATLAB 5 compliant, change the code to:
mxArray *MySparse;
MySparse $=m x C r e a t e S p a r s e(10,10,110, ~ m x R E A L) ; ~$

- Rewriting all function prototypes.

The function prototype of almost every MATLAB $4 m x$ and mex function is different in MATLAB 5. The two primary prototype changes are

- All matrix arguments are now mxArray arguments.
- Pointers to read only data are now declared asconst *.
- Changing REAL to mxREAL and COMPLEX to mxCOMPLEX.

In any function that requires the specification of real or complex data types, instead of REAL and COMPLEX, use mxREAL and mxCOMPLEX. For example, in MATLAB 4 you would write

```
mxCreateSparse(m, n, nzmax,REAL);
```

to create an m-by-n sparse matrix with $n z$ max nonzero real elements. In MATLAB 5, the correct syntax for this same function is:
mxCreateSparse(m, n, nzmax,mxREAL) ;

- Translating obsolete function calls into their MATLAB 5 replacements. A number of functions have become obsolete. However, MATLAB 5 offers replacements for nearly all of the obsolete functions. See "How to Convert Each MATLAB 4 F unction" for details.
- Protecting against MATLAB 5 new data types.

If your code identifies a data type by a process of elimination, you must rewrite it in MATLAB 5. For example, if your code checks a variable and finds that it is neither a double nor a sparse matrix, you can no longer assume that the variable must be a string.

- Rewriting any code that assumes complex arguments.

In MATLAB 4, if one argument to a MEX-function was complex, all arguments were considered complex. This is not true in MATLAB 5. F or example, consider a MEX-function my ei $g(A, B, C)$ that calculates eigenvalues of three matrices. In MATLAB 4 if matrix A is complex, B and C are assumed to be complex matrices as well. In this instance additional memory is allocated for the complex part of B and C, whether or not these matrices are complex. In MATLAB 5, B and C are assumed to be real unless otherwise specified.

- Converting string matrices using API routines for access and manipulation.

In MATLAB 4, the Mat rix structure held each "character" in a string matrix as a double-precision, floating-point number. If the string flag was set, then MATLAB displayed each double-precision, floating-point number as an ASCII value.
MATLAB 5 represents each "character" in a string matrix as an mx Char , a 16-bit unsigned integer data type. Themx Ar r a y does not provide a string flag; if the mxArray 's class is mxCHAR_CLASS, MATLAB treats each number in the $m x A r r a y$ as an element from the current character set. Character sets are platform specific.
If your MATLAB 4 source code created string matrices by calling $m x C r$ eatestring, you do not have to recode sections that create strings. However, if your MATLAB 4 source code called mxset String to create string matrices, you must recode. mxSet String is obsolete in MATLAB 5; if you used mxSet String to create a two-dimensional string matrix, call mxCreateChar Matrixfromstrings instead.
If your MATLAB 4 source code used something other than mxGet String to copy string data into a C string, you must recode. As you recode, don't forget that each character in a string mx Ar ray is now stored as a 16-bit integer rather than as a double-precision, floating-point number.

How to Convert Each MATLAB 4 Function

This table shows each MATLAB 4 function along with a description of how to port that function to MATLAB 5.

Table 2-5: Converting MEX-Functions to MATLAB 5

MATLAB 4 Function	MATLAB 5 Conversion
mexat Exit	No change
mexCal IMATLAB	Ssecond and fourth arguments aremx Ar ray *
mexErrMsgTxt	No change
mexEvalString	No change
mexfunction	Second and fourth arguments aremx Ar ray *. Fourth argument is aconst.
mexGetEps	Obsolete; call mx Get Eps instead
mexGetFull	Obsolete; call this sequence instead: ```mexGetArray(array_ptr, "caller"); name = mxGetName(array_ptr); m = mxGetM(array_ptr); n = mxGetM(array_ptr); pr = mxGetPr(array_ptr); pi = mxGetPi(array_ptr);```
mexGet Global	Obsolete; call mex Get Array Ptr instead, setting the second argument to " global ". Note: it is better programming practice to call mexGe- tArray(, "global") ;
mexGetInf	Obsolete; call mxGetInf instead
mexGetMatrix	Call mex Getarray(name, "caller") ;
mexGet Matrixptr	Call mexGetarrayPtr(name, "caller") ;
mexGetNaN	Obsolete; call mx Get NaN instead.
mexlsfinite	Obsolete; call mxasfinite instead.

Table 2-5: Converting MEX-Functions to MATLAB 5 (Continued)

mexIsInf	Obsolete; call mx\| sınf instead.
mexis NaN	Obsolete; call mx s NaN instead.
mexprintf	No change
mexputfull	Obsolete; call this sequence instead: ```mxArray *parray; int retval; parray=mxCreateDouble(0, 0,0); if(parray==(mxArray*)0) return(1); mxSetM(parray,m); mxSetN(parray,n); mxSetPr(parray, pr); mxSetPi(parray,pi); mxSet Name(parray, name); retval=mxPutArray(parray,"caller"); mxFree(parray); return(retval);```
mexputMatrix	Obsolete; call mex Put Array instead.
mexsettrapFlag	No change
$m \times C a l l o c$	No change
	Obsolete; call mxCr eat e Doubl e Matrix instead.
mxCreatesparse	Returns mxar ray *.
	Returns mxAr ray *.
mxFree	No change
mxFreeMatrix	Obsolete; call mx DestroyArray instead.
mxGetIr	First argument is mxarray *.
mx GetJC	First argument is mxarray *.

Table 2-5: Converting MEX-Functions to MATLAB 5 (Continued)

mxGet M	First argument is mxArray *.
mxGet N	First argument is mxArray *.
mxGet Name	First argument is mxArray *.
mx Get Nz max	First argument is mxArray *.
$m x$ Get Pi	First argument is mx Array *.
$m x$ Get Pr	First argument is mx Array *.
mxGetScal ar	First argument is mxArray *.
$m x G e t S t r i n g ~$	First argument is mxArray *.
$m \mathrm{l}$ s Complex	First argument is mx Array *.
mxIs Double	First argument is mxArray *. Note that MATLAB 4 stores all data as double e's; MATLAB 5 stores data in a variety of integer and real formats.
$m \times 1 s F u l \mid$	Obsolete; call ! mx I s Sparse instead.
mxI s Numeric	First argument is mxArray *.
$m x / s$ Sparse	First argument is mx Array *.
$m x / s$ String	Obsolete; call mxI s Char instead.
$m x$ Setlr	First argument is mx Ar ray *.
$m \times S e t J c$	First argument is mxArray *.
mxSet M	First argument is mxArray *.
mxSet N	First argument is mx Ar ray *.
mx Set Name	First argument is mx Ar ray *.
mx Set Nz max	First argument is mxArray *.
$m \times S e t P i$	First argument is mxArray *.

Table 2-5: Converting MEX-Functions to MATLAB 5 (Continued)

$m \times S$ St Pr	First argument is mxArray ${ }^{*}$.
$m \times S$ et String	Obsolete; MATLAB 5 provides no equivalent call since the mxArray data type does not contain a string flag. UsemxCreateChar MatrixfromStrings to create multidimensional string mxArray's.

2 Upgrading to MATLAB 5

A

addpath function 1-12
airy function 1-14
al ign function 1-43
Ambient Light Col or property 1-35
AmbientStrength property 1-38, 1-39
API
cell array support 1-44
converting each MATLAB 4 function 2-22
fundamental data type 1-44
multidimensional array support 1-44
nonANSI C compilers no longer supported 1-45
nondouble data support 1-44
printf nolonger supported 1-45
scanf no longer supported 1-45
special number analysis support 1-45
stucture support 1-44
See also function, API.
applescript function 1-12
Application Programmer's Interface. Se API. 1-44
area function 1-23
array
empty 1-18
string 1-8
AspectRatio property 2-10
assignin function 1-12
assignment enhancements 1-16
asterisk
as wildcard 1-18
a ut umn col ormap 1-27
Axes object 1-26, 2-10
Axes property
Ambientlight Color 1-35
Cameraposition 1-35
Cameraposition Mode 1-35
CameraTarget 1-35

CameraTarget Mode 1-35
CameraUpVector 1-35
CameraUpVector Mode 1-35
CameraViewAngle 1-35
CameraViewAnglemode 1-35
DataAspectRatio 1-35
DataAspectRatio Mode 1-35
Font Units 1-35
Layer 1-35
NextPlot 1-35
Plot BoxAspectRatio 1-35
PIot BoxAspectratiomode 1-35
ProjectionType 1-36
TickDir Mode 1-36
XLoc2D 1-36
YLoc 2 D 1-36

B

BackgroundCol or property 2-10
bar charts 1-23
bar 3 function 1-23
bar 3 h function 1-23
bar h function 1-23
base2dec function 1-8
basic functions
dimension specification 1-17
bessel functions
producing table 2-3
bessel h function 1-14
bi cg function 1-15
bicgstab function 1-15
bi $n 2$ dec function 1-8
bitand function 1-16
bit cmp function 1-16
bit fun directory 1-16
bit max function 1-16
bitor function 1-16
bitset function 1-17
bitshift function 1-17
bittest function 1-17
bitxor function 1-17
box function 1-24
browser
path 1-46, 1-52
workspace 1-47, 1-52
Busyaction property 1-34

C

calendar function 1-14
Callback0bject property 1-39
Camera properties 1-24
Cameraposition property 1-35
Cameraposition Mode property 1-35
CameraTarget property 1-35
CameraTarget Mode property 1-35
CameraUpVector property 1-35
CameraUpVector Mode property 1-35
CameraViewAngle property 1-35
CameraViewAngleMode property 1-35
case statement 1-10
cat function 1-5, 1-6
cbedit function 1-43
CDat a property 1-37, 1-38, 1-39
CDataMapping property 2-10
CDataScaling property 1-37, 1-38, 1-40
cell array 1-5, 1-7
API support 1-44
cell function 1-7, 1-43
cell2struct function 1-7
cell disp function 1-7
cellpl ot function 1-7
cells function 1-7
cgs function 1-15
char function 1-8
character set
J apanese 1-46
Children property 1-34
cholinc function 1-15
clabel function 1-25
CloseRequestfon property 1-36
col or enhancements 1-26
Color property 1-37
col or cube colormap 1-27
col ordef 1-26
colordef function 1-27
colormap
a ut umn 1-27
col orcube 1-27
lines 1-27
spring 1-27
summer 1-27
winter 1-27
command
varargin 1-11
varargout 1-11
compatibility with previous versions 2-2
compliance with previous versions 2-2
condeig function 1-14
condest function 1-14
connectivity, graph of 1-23
consistent results for ones subscripting 1-16
contourf function 1-25
contouring enhancements 1-25
control
flow 1-9
convhul। function 1-20
Createfcn property 1-34
csuread function (obsolete) 2-7
csuwrite function (obsolete) 2-7
cumprod function
dimension specifier 1-17
cumsum 1-17
cumsum function
dimension specifier 1-17
cumtrapz function 1-20
Current Menu property 2-10

D

data analysis features 1-20
data construct
cell array 1-7
structure 1-7
data constructs 1-5
cell array 1-5
multidimensional array 1-5
tructure 1-5
data hiding 1-9
data visualization 1-24
DataAspectratio property 1-35
DataAspectRatiomode property 1-35
dat enum function 1-14
datestr function 1-14
datetick function 1-14, 1-24
datevec function 1-14
dbl quad function 1-14
db mex command 1-10
dbmex function 2-7
debugger 1-47, 1-53
dec 2 base function 1-8
dec 2 bin function 1-8
defining global variable2-3
defining Patches 1-25
del aunay function 1-20
Deletefen property 1-34
device options
print command 1-29
dialog box
modal 1-42, 2-3
non-modal 1-42
di al 0 g function 1-28, 2-3
DiffuseStrength property 1-38, 1-40
dimension specification for basic functions 1-17
Dit hemapMode property 1-36
Dither map property 1-36
dl mr ead function 2-7
dl mwrite function 2-7
documentation x
dragrect function 1-42
dsearch function 1-20

E

edit function 1-12
editor 1-54
editpath function 1-12
eigs function 1-15
el I ipk function (obsolete) 2-8
ell i pke function 2-8
empty array 1-18
checking for 2-4
multidimensional 1-18
empty matrix 1-18
checking for 2-4
empty vector 2-5
Enable property 1-41
end statements, extra 2-3
eomday function 1-14
EraseMode property 2-10
erfinv function 2-8
Errormessage property 1-39
errortrap function 1-10

ErrorType property 1-39
evalin function 1-12
evaluation of logical operators 1-11
ExpFontangle property 2-10
ExpFont Name property 2-10
ExpFontsize property 2-10
ExpFontStrikeThrough property 2-10
ExpFontunderline property 2-10
ExpFontUnits property 2-10
ExpFont Weight property 2-10
extent function 2-7
eye function
with matrix inputs 2-5

F

FaceLightingAl gorithm property 1-38, 1-40
Faces property 1-38
FaceVertexCData property 2-10
fact or function 1-20
features
Macintosh 1-50
MS Windows 1-46
platform specific 1-46
UNIX workstations 1-56
fi el ds function 1-8
figflag function 2-7
Figure property
CloseRequest fon 1-36
Dithermap 1-36
Dither mapMode 1-36
Integertandle 1-36
NextPlot 1-36
Paperposition Mode 1-36
PointerShapeCData 1-36
PointerShapeHotSpot 1-36
PrintpostProcess 1-36

Renderer 1-36
Resize 1-36
Resizefcn 1-37
finite function(obsolete) 2-8
flipdimfunction 1-6
flow control 1-9
case 1-10
switch 1-10
FontAngle property 1-41
Font Name property 1-41
Fontsize property 1-41
Font StrikeThrough property 2-10
Font Underline property 2-10
Font Units property 1-35, 1-41
Font Weight property 1-41
fullfile function 1-12
function
addpath 1-12
airy 1-14
align 1-43
API
dbmex 2-7
mexatexit 2-22
mexCall MATLAB 2-22
mexdebug 2-7
mexErrMsgTxt 2-22
mexEvalString 2-22
mexfunction 2-22
mexGet Eps 2-22
mexGetFull 2-22
mexGet Global 2-22
mexGetInf 2-22
mexGetMatrix 2-22
mexGetMatrixPtr 2-22
mexGet NaN 2-22
mexlsfinite 2-22
mexlslnf 2-23
mexls NaN 2-23
mexprintf 2-23
mexputfull 2-23
mexPutMatrix 2-23
mexSetTrapFlag 2-23
mxCalloc 2-23
$m x C r e a t e F u l \mid ~ 2-23$
$m x C r e a t e S p a r s e ~ 2-23$
mxCreateString 2-23
$m x$ Free 2-23
mxfreeMatrix 2-23
mxGetlr 2-23
mxGetJc 2-23
mxGetM 2-24
mxGet N 2-24
mxGet Name 2-24
$m x$ Get Nz max 2-24
mxGetPi 2-24
mxGetPr 2-24
mxGetScalar 2-24
mxGetString 2-24
mxl s Complex 2-24
mxIsDouble 2-24
mxlsfull 2-24
mxl s Numeric 2-24
mxissparse 2-24
mxisstring 2-24
mxsetlr 2-24
mxSetJc 2-24
mxSetM 2-24
mxSet N 2-24
mxSet Name 2-24
$m \times S e t \mathrm{Nz}$ Max 2-24
mxSetPi 2-24
mxSetPr 2-25
mxSetString 2-25
applescript 1-12
area 1-23
assignin 1-12
bar 3 1-23
bar3h 1-23
barh 1-23
base2dec 1-8
besselh 1-14
bicg 1-15
bicgstab 1-15
bin2dec 1-8
bitand 1-16
bitcmp 1-16
bit max 1-16
bitor 1-16
bitset 1-17
bitshift 1-17
bittest 1-17
bitxor 1-17
box 1-24
calendar 1-14
cat 1-5, 1-6
cbedit 1-43
cell 1-7, 1-43
cell2struct 1-7
celldisp 1-7
cellplot 1-7
cells 1-7
cgs 1-15
char 1-8
cholinc 1-15
clabel 1-25
colordef 1-27
condeig 1-14
condest 1-14
contourf 1-25
convhull 1-20
csuread 2-7
csuwrite 2-7
cumprod 1-17
cumsum 1-17
cumtrapz 1-20
datenum 1-14
datestr 1-14
datetick 1-14, 1-24
datevec 1-14
db| quad 1-14
dec 2 base 1-8
dec2bin 1-8
del aunay $1-20$
dialog 1-28, 2-3
dl mread 2-7
dl mwrite 2-7
dragrect 1-42
dsearch 1-20
edit 1-12
editpath 1-12
eigs 1-15
ellipk 2-8
ellipke 2-8
eomday 1-14
erfinv 2-8
errortrap 1-10
evalin 1-12
extent 2-7
eye 2-5
factor 1-20
fields 1-8
figflag 2-7
finite 2-8
flipdim1-6
fullfile 1-12
fwhich 2-7
gallery 1-15
gca 2-8
gcf 2-8
get 2-8
getfield 1-8
gmres 1-15
gplot 1-23
gradient 2-3
griddata 1-21
guide 1-43
hgmenu 1-28
hthelp 2-7
http 2-7
ind2sub 1-6
i n mem 1-12
inpolygon 1-20
input 2-4
inputdlg 1-42
inputname 1-12
inquire 2-8
interpl 2-4
interp2 2-4
i nt erp3 1-21, 2-4
interpn 1-21
intersect 1-21
inverf 2-8
i permute 1-6
iscel| 1-11
i sdir 2-7
i sempty 2-4
i sequal 1-11
isfinite 1-11
islogical 1-11
i s member 1-21
i snumeric 1-11
i sprime 1-11
i sspace 1-11,2-4
isstruct 1-11
| ayout 2-7
loadht ml 2-7
logical 1-11
I uinc 1-15
mat2str 1-8
matq2ws 2-7
matqdlg 2-7
matqparse 2-7
matqueue 2-7
max 1-19
menuedit 1-43
menulabel 2-7
mexext 1-13
mfilename 1-13
min 1-19
mod 1-14
msgbox 1-42, 2-3
nargin 2-5
nargout 2-5
nchoosek 1-20
ndgrid 1-6, 1-21
ndims 1-6
normest 1-14
now 1-14
num2cell 1-7
odel13 1-15
odel5s 1-15
ode23 1-15, 2-8
ode23p 2-8
ode23s 1-15
ode45 1-15
odefile 1-15
odeget 1-15
odeset 1-15, 2-8
ones 2-5
ot herwise 1-10
pathedit 1-57
pcg 1-16
pcode 1-13
perms 1-20
permute 1-7
pie 1-23
pies 1-23
plot 2-8, 2-9
plotyy 1-23
polyarea 1-20
polyline 2-8
primes 1-20
print menu 2-8
prod 1-17, 1-19
profile 1-13
q mr 1-16
quiver 3 1-24
r and 2-5, 2-6
rbbox 1-42
repmat 1-15
reshape 1-7
ribbon 1-24
rmfield 1-8
rmpath 1-13
rotate3d 1-24
saxis 2-8
select moveresize 1-42
set 2-8
set diff 1-21
setfield 1-8
setxor 1-21
shiftdim 1-7
slice 1-25, 2-6
sortrows 1-20
soundsc 2-8
sprand 1-15
squeeze 1-7
stem 1-24
stem3 1-23, 1-24
strcat 1-8
strcmp 2-6
strmatch 1-8
strncmp 1-9, 2-6
struct 1-8
struct2cell 1-8
structs 1-8
strvcat 1-9
sub2ind 1-7
sum 1-17, 1-19
svds 1-16
trimesh 1-25
trisurf 1-25
tsearch 1-20
uni on 1-21, 1-22
unique 1-21, 1-22
voronoi 1-20
web 1-13
weekday 1-14
ws 2 mat q 2-8, 2-9
zeros 2-5
function referencex
functions
bessel 2-3
fundamental data type, API 1-44
FVCDat a property 1-38, 2-10
f which function 2-7

G

gallery function 1-15
gca function 2-8
gcf function 2-8
general graphics features 1-28
get function 2-8
getfield function 1-8
global variable, defining 2-3
gmres function 1-15
gpl ot function 1-23
gradient function 2-3
graph, node connectivity 1-23
graphical user interface. See GUI.
graphics object
Axes 1-27, 2-10
defaults 1-28
Line 2-8
Patch 1-25
Text 1-27
graphics object property
BusyAction 1-34
Children 1-34
Createfon 1-34
Deletefon 1-34
HandleVisibility 1-34
Interruptible 1-34
Parent 1-34
Selected 1-34
SelectionHighlight 1-34
Tag 1-34
griddata function 1-21
GUI
general enhancements 1-42
improvements 1-42
Guide 1-43
guide function 1-43

H

HandleVisibility property 1-34, 2-10
help desk ix
hgmenu function 1-28
Hi ddentandle property 2-10
higher-dimension interpolation 1-21
ht help function 2-7
http function 2-7

I

I mage property
CData 1-37
CDataScaling 1-37
ind2sub function 1-6
initializing
outputs 2-7
variables 2-6, 2-7
i n mem function 1-12
input function
no initial linefeed 2-4
inputdlg function 1-42
inputname function 1-12
i nquire function (obsolete) 2-8
integer bit manipulation functions 1-16
integer subscripts 2-6
Integer Handle property 1-36
interpl function 2-4
int erp2 function 2-4
interp3 function 1-21, 2-4
interpn function 1-21
interpolation
higher-dimension 1-21
triangle-based 1-21
Interpreter property 1-41
Interruptible property 1-34
intersect function 1-21
inverf function (obsolete) 2-8
i permute function 1-6
i polygon function 1-20
i scell function 1-11
isdir function 2-7
i sempty function 2-4
isequal function 1-11
isfinite function 1-11
islogical function 1-11
is member function 1-21
is numeric function 1-11
isprime function 1-11
isspace function 1-11, 2-4
isstruct function 1-11

J

J apanese character set 1-46

L

LaTeX commands 1-27
Layer property 1-35
I ayout function 2-7
Light property Col or 1-37
Mode 1-37
Position 1-37
Line object 2-8
Line property
LineStyle 2-11
Marker 1-37
MarkerEdgeColor 1-37
MarkerfaceCol or 1-37
MarkerStyle 2-11
line styles 2-9
I ines colormap 1-27
LineStyle property 1-38, 2-11
linestyles
c 1 through c 15 2-9
List Box objects 1-42
ListboxTop property 1-41
loadht ml function 2-7
logical function 1-11
logical operators 1-11
I uinc function 1-15

M

Marker property 1-37, 1-38, 1-40
marker style enhancement 1-24
MarkerEdgeCol or property 1-37, 1-38, 1-40
MarkerfaceCol or property 1-37, 1-38, 1-40
Markersize property 1-38, 1-40
MarkerStyle property 2-11
masking 2-5
mat 2 str function 1-8
mat q 2 ws function 2-7
mat qdI g function 2-7
mat aparse function 2-7
mat queue function 2-7
matrix
empty 1-18
\max function
with empty argument 1-19
menlabel function 2-7
menuedit function 1-43
meshes
and triangulation 1-25
method 1-9
mexAt Exit function 2-22
mexCal I MATLAB function 2-22
mexdebug function
obsolete 2-7
mexErrMsgTxt function 2-22
mexEvalString function 2-22
mexext function 1-13
mexfunction function 2-22
mexGet Eps function (obsolete) 2-22
mexGetFull function (obsolete) 2-22
mexGet Gl obal function 2-22
mexGet Global function (obsolete) 2-22
mexGetInf function (obsolete) 2-22
mexGet Matrix function 2-22
mexGet Matrixptr function 2-22
mexGet NaN function (obsolete) 2-22
mexlsfinite function(obsolete) 2-22
mexIsInf function (obsolete) 2-23
mexl s NaN function (obsolete) 2-23
mexprintf function 2-23
mexputful। function (obsolete) 2-23
mexput Matrix function (obsolete) 2-23
mexSetTrapFlag function 2-23
M-file
profiling 1-12
pseudocode 1-12
variable number of arguments 1-11
with multiple functions 1-12
M-file programming tool s 1-11
mfilename function 1-13
mi n function
with empty argument 1-19
\bmod function 1-14
modal dialog box 2-3
Mode property 1-37, 2-11
model dialog box 1-42
mouse pointer 1-42
ms gbox function 1-42, 2-3
multidimensional array 1-5
API support 1-44
empty 1-18
multiple functions within an M-file1-12
mxCall oc function 2-23
$m \times C r e a t e f u l l$ function 2-23
mxCreateSparse function 2-23
mxCreateString function 2-23
$m x F r e e$ function 2-23
mx FreeMatrix function (obsolete) 2-23
mxGet I r function 2-23
$\mathrm{mxGet} J \mathrm{c}$ function 2-23
$m x$ Get M function 2-24
$m \times G e t N$ function 2-24
$m \times$ Get Na me function 2-24
$m x$ Get $N z \max$ function 2-24
$m \times$ Get Pi function 2-24
$m x$ Get Pr function 2-24
$m x G e t S c a l a r$ function 2-24
mxGetString function 2-24
mxl sComplex function 2-24
mxIs Double function 2-24
mx|sFul| function (obsolete) 2-24
mxI s Numeric function 2-24
mxI s parse function 2-24
mx l sString function (obsolete) 2-24
mxSetIr function 2-24
$m \times S e t J c$ function 2-24
$m \times S e t M$ function 2-24
$m \times S e t N$ function 2-24
mxSet Na me function 2-24
mxSet Nz max function 2-24
$m \times S e t$ Pi function 2-24
$m \times S$ et Pr function 2-25
mxSetString function (obsolete) 2-25

N

naming variables 2-3
nargin function 2-5
nargout function 2-5
nchoosek function 1-20
ndgrid function 1-6, 1-21
ndi ms function 1-6
Next PI ot property 1-35, 1-36
nonANSI C compilers 1-45
nondouble data

API support 1-44
non-modal dialog box 1-42
Nor mal Mode property 1-38, 1-40
normest function 1-14
nosplash 1-42
now function 1-14
num2cell function 1-7

0

object
Axes 1-26
Patch 1-25
Text 1-27
objects 1-9
List Box 1-42
ode113 function 1-15
odel5s function 1-15
ode 23 function 1-15
ode 23 function(obsolete) 2-8
ode 23 punction(obsolete) 2-8
ode23s function 1-15
ode45 function 1-15
odefile function 1-15
odeget function 1-15
odeset function 1-15
odeset function(obsolete) 2-8
ones function
with matrix inputs 2-5
ot herwise function 1-10
outputs
initializing 2-7
overloading 1-9

P

PaperPositionMode property 1-36

Parent property 1-34
Patch object 1-25
Patch property
Ambient Strength 1-38
CData 1-38
CDataScaling 1-38
DiffuseStrength 1-38
FacelightingAlgorithm 1-38
Faces 1-38
FVCData 1-38
Linestyle 1-38
Marker 1-38
MarkerEdgeColor 1-38
MarkerfaceColor 1-38
Markersize 1-38
Nor mal Mode 1-38
SpecularColor Reflectance 1-38
Specularexponent 1-38
Specularstrength 1-38
Vertexnormals 1-39
Vertices 1-39
path browser 1-46, 1-52
pathedit function 1-57
pcg function 1-16
pcode command 1-12
pcode function 1-13
perms function 1-20
permute function 1-7
pie function 1-23
pi e3 function 1-23
pl ot function 2-8, 2-9
Pl ot BoxAspect Ratio property 1-35
Pl ot BoxAspect Ratiomode property 1-35
plotting capabilities 1-23
plotyy function 1-23
PointerShapeCData property 1-36
PointershapehotSpot property 1-36
polyarea function 1-20
polyline function (obsolete) 2-8
Position property 1-37
primes function 1-20
print command 1-29
print options
generating M-file to recreate figure 1-29
PostScript bounding box 1-29
Uicontrol objects 1-29
user-sel ectable Z-buffer resolution 1-29
printf function
not supported in API 1-45
print menu function 2-8
PrintPost Process property 1-36
prod function
dimension specifier 1-17
with empty argument 1-19
profile function 1-13
profiler 1-12
programming tools 1-11
ProjectionType property 1-36
ProjectionTyper property 2-11
property
AspectRatio 2-10
BackgroundColor 2-10
Current Menu 2-10
Erasemode 2-10
ExpFontAngle 2-10
ExpFont Name 2-10
ExpFontsize 2-10
ExpFontstrikeThrough 2-10
ExpFont Underline 2-10
Expfontunits 2-10
ExpFont Weight 2-10
FaceVertexCData 2-10
FontstrikeThrough 2-10
Font Underline 2-10

FVCData 2-10
HandleVisibility 2-10
HiddenHandle 2-10
LineStyle 2-11
Mode 2-11
ProjectionType 2-11
Rendertimits 2-11
Style 2-11
Units 2-12
Windowl D 2-12
XLoc2D 2-12
XMinortick 2-12
XMinorTicks 2-12
XTickLabel 2-12
XTickLabels 2-12
YLoc2D 2-12
YMinortick 2-12
YMinorticks 2-12
YTickLabel 2-12
YTickLabels 2-12
ZMinortick 2-13
ZMinorticks 2-13
ZTickLabel 2-13
ZTickLabels 2-13
property 1-38
pseudocode 1-12

Q

q mr function 1-16
quiver 3 function 1-24

R

r and function 2-6
with matrix inputs 2-5
random number generation 2-6
rbbox function 1-42
recreating a figure with the print command 1-29
Renderer property 1-36
RenderLi mits property 2-11
repmat function 1-15
reshape function 1-7
Resize property 1-36
Resizefcn property 1-37
ribbon function 1-24
rmf i eld function 1-8
rmpath function 1-13
Root property
Callback0bject 1-39
Error Message 1-39
ErrorType 1-39
ShowHiddenHandles 1-39
Terminal Di mensions 1-39
Terminal HideGraphCommand 1-39
Terminal ShowGraphCommand 1-39
rotate 3 d function 1-24

S

saxis function 2-8
scalar expansion for subarray assignments 1-16
scanf function
not supported in API 1-45
Selected property 1-34
SelectionHighlight property 1-34
select moveresize function 1-42
set function 2-8
set theoretic functions 1-21
setdiff function 1-21
setfield function 1-8
setxor function 1-21
shiftdim function 1-7
ShowHiddenHandl es property 1-39
slice function 1-25, 2-6
SI iderStep property 1-41
sortrows function 1-20
soundsc function 2-8
special number analysis support
API 1-45
SpecularColorReflectance property 1-38, 1-40
Specularexponent property 1-40
SpecularStrength property 1-38, 1-40
splash screen
suppressing on UNIX system 1-42
sprand function 1-15
spring colormap 1-27
squeeze function 1-7
startup file 1-28
st em function 1-24
stem plots 1-24
st em3 function 1-23, 1-24
stereo sound
Macintosh 1-46
PC 1-46
strcat function 1-8
strcmp function
with numeric inputs 2-6
string array 1-8
strmatch function 1-8
strncmp function 1-9
with numeric inputs 2-6
struct function 1-8
struct2cel। function 1-8
structs function 1-8
structure 1-5, 1-7
API support 1-44
strvcat function 1-9
St yl e property 1-41, 2-11
sub2ind function 1-7
subscripting enhancements 1-16
subscripts
must be integers 2-6
sum function
dimension specifier 1-17
with empty argument 1-19
summer colormap 1-27
Surface property
Ambient Strength 1-39
CData 1-39
CDataScaling 1-40
DiffuseStrength 1-40
FacelightingAlgorithm 1-40
Font Units 1-41
Interpreter 1-41
Marker 1-40
MarkerEdgeColor 1-40
MarkerfaceColor 1-40
Markersize 1-40
Nor mal Mode 1-40
SpecularColor Reflectance 1-40
Specularexponent 1-40
Specularstrength 1-40
VertexNormals 1-40
Vertices 1-40

surfaces

and triangualtion 1-25
svds function 1-16
switch statement 1-10

T

Tag property 1-34
Terminal Di mensions property 1-39
Terminal HideGraphCommand property 1-39
Terminal ShowGraphCommand property 1-39
Text object 1-27
LaTeX commands 1-27
three-dimensional plotting 1-24
TickDir Mode property 1-36
triangle-based interpolation 1-21
triangular meshes 1-25
triangular surfaces 1-25
trimesh function 1-25
trisurf function 1-25
$t \mathrm{search}$ function 1-20

U

uicontrol
text alignment 2-9
uicontrol object
List Box 1-42
uicontrol property
Enable 1-41
FontAngle 1-41
Font Name 1-41
Font Size 1-41
Font Units 1-41
Font Weight 1-41
ListboxTop 1-41
Sliderstep 1-41
Style 1-41
uimenu property
Enable 1-41
uir esume command 1-43
ui wait command 1-43
uni on function 1-21, 1-22
uni que function 1-21, 1-22
Units property 2-12

v

varargin 1-13
varargin command 1-11
varargout 1-13
varargout command 1-11
variable
global 2-3
variable number of inputs to M-files 1-11
variable number of outputs for M -files 1-11
variable, initializing 2-7
variables
initializing 2-6
names 2-3
vector
empty 2-5
VertexNormals property 1-39, 1-40
Vertices property 1-39, 1-40
viewing model 1-24
vis3doption 1-26
visualization
data 1-24
voronoi function 1-20

W

wait for command 1-43
warning 1-13
we b function 1-13
weekday function 1-14
wildcard for utility commands 1-18
Wi ndowl D property 2-12
wi nt er colormap 1-27
workspace browser 1-47, 1-52
ws 2 mat q function 2-8, 2-9

X

XLoc 2 D property 1-36, 2-12
XMi norTick property 2-12
XMinorTicks property 2-12

XTickLabel property 2-12
XTickLabels property 2-12

```
Y
YLoc 2 D property 1-36, 2-12
YMinorTick property 2-12
YMinorTicks property 2-12
YTickLabel property 2-12
YTickLabels property 2-12
```


Z

Z-buffering 1-28
printing Z-buffer images 1-29
zeros function
with matrix inputs 2-5
ZMinorTick property 2-13
ZMinorTicks property 2-13
ZTickLabel property 2-13
ZTickLabels property 2-13

[^0]: *Not available at time of printing; Contact The MathWorks, Inc. for availability.

