M ATLLAB
 The Language of Technical Computing

Computation

Visualization

Programming

Language Reference M anual
Version 5

How to Contact The MathW orks:

\%	(508) 647-7000	Phone
7	(508) 647-7001	Fax
$\bar{\sigma}=\square$	(508) 647-7022	Technical Support Faxback Server
\checkmark	The MathWorks, Inc. 24 Prime Park Way Natick, MA 01760-1500	Mail
\%	http:// www. mathworks.com ftp. mathworks.com	Web Anonymous FTP server
Q	support @mathworks.com suggest @mathworks.com bugs @mathworks.com doc@mathworks.com subscribe@mathworks.com service@mathworks.com info@mathworks.com	Technical support Product enhancement suggestions Bug reports Documentation error reports Subscribing user registration Order status, license renewals, passcodes Sales, pricing, and general information
	Language Reference Manual (November 1996) © COPYRIGHT 1994-1996 by The MathWorks, Inc. All Rights Reserved. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.	
	U.S. GOVERNMENT: If Licensee is Government, the following shall appla (a) for units of the Department of RESTRICTED RIGHTS LEGEND tions as set forth in subparagraph at DFARS 252.227-7013. (b) for any other unit or agency: NOTICE - Notwithstanding any delivery of, the computer softwar regarding its use, reproduction and Contractor/manufacturer is The MATLAB, SIMULINK, and Handle Gr mark of The MathWorks, Inc. Other product or brand names are tr	cquiring the software on behalf of any unit or agency of the U.S. Defense: Use, duplication, or disclosure by the Government is subject to restricc)(1)(ii) of the Rights in Technical Data and Computer SoftwareClause her lease or license agreement that may pertain to, or accompany the and accompanying documentation, the rights of the Government disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR. athWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500. phics are registered trademarks and Real-Time Workshop is a trade- demarks or registered trademarks of their respective holders.

Preface

What Is MATLAB?

MATLAB ${ }^{\circledR}$ is a technical computing environment for high-performance numeric computation and visualization. MATLAB integrates numerical analysis, matrix computation, signal processing, and graphics in an easy-to-use environment where problems and solutions are expressed just as they are written mathematically - without traditional programming.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects, which together represent the state of the art in software for matrix computation.

MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows you to solve many numerical problems in a fraction of the time it would take to write a program in a language such as Fortran, Basic, or C.

MATLAB has evolved over a period of years with input from many users. In university environments, it has become the standard instructional tool for introductory courses in applied linear algebra, as well as advanced courses in other areas. In industrial settings, MATLAB is used for research and to solve practical engineering and mathematical problems. Typical uses include general purpose numeric computation, algorithm prototyping, and special purpose problem solving with matrix formulations that arise in disciplines such as automatic control theory, statistics, and digital signal processing (time-series analysis).

MATLAB also features a family of application-specific solutions that we call tool boxes. Very important to most users of MATLAB, tool boxes are comprehensive collections of MATLAB functions (M-files) that extend the MATLAB environment in order to solve particular classes of problems. Areas in which tool boxes are available include signal processing, control systems design, dynamic systems simulation, systems identification, neural networks, and others.

Probably the most important feature of MATLAB, and one that we took care to perfect, is its easy extensibility. This allows you to become a contributing author too, creating your own applications. In the years that MATLAB has been available, we have enjoyed watching many scientists, mathematicians, and engineers develop new and interesting applications, all without writing a single line of Fortran or other low-level code.

Who Wrote MATLAB?

The original MATLAB was written in Fortran by Cleve Moler, in an evolutionary process over several years. The underlying matrix al gorithms are from the many people who worked on the LINPACK and EISPACK projects.

The current MATLAB program was written in C by The MathWorks. The first rel ease was written by Steve Bangert, who wrote the parser/interpreter, Steve Kleiman, whoimplemented thegraphics, andJ ohn Littleand CleveMoler, who wrote the analytical routines, the user's guide, and most of the M-files. Since the first release, many other people have joined the MATLAB development team and have made substantial contributions.

MATLAB Documentation

MATLAB comes with an extensive set of both online and printed documentation. The onlineMATLAB Function Referenceis a compendium of all MATLAB Ianguage and graphics commands plus mathematical functions. You can access this documentation from the MATLAB Help Desk. Users on all platforms can access this facility via the doc command. Windows and Macintosh users can additionally access this facility via the Help menu or the? icon on the Command Window tool bar. From the Help Desk main menu, choose "MATLAB Functions " to display the Function Reference.

The online documentation is augmented with a full set of printed documents, consisting of the following titles:

- Getting Started with MATLAB, which explains how to get started with the fundamentals of MATLAB.
- Using MATLAB, which explains how to use MATLAB as both a programming language and a command-line application.
- MATLAB Graphics, which describes how to use MATLAB's graphics and visualization tools.
- MATLAB Application Program InterfaceGuide, which explains how to write C or Fortran programs that interact with MATLAB.
- MATLAB 5 New Features Guide, which provides information useful in making the transition from MATLAB 4 to MATLAB 5.
- MATLAB Installation Guide, which decribes how to install MATLAB on your platform.
If one or more of the printed documents is unavailable to you, you can locate an online version of the same document via the Help Desk.

Preface

What Is MATLAB? iv
MATLAB Documentation vi
Command Summary
1
General Purpose Commands 1-2
Operators and Special Characters 1-3
Logical Functions 1-4
Language Constructs and Debugging 1-4
Elementary Matrices and Matrix Manipulation 1-5
Specialized Matrices 1-7
Elementary Math F unctions 1-7
Specialized Math Functions 1-8
Coordinate System Conversion 1-8
Matrix Functions - Numerical Linear Algebra 1-9
Data Analysis and Fourier Transform Functions 1-10
Polynomial and Interpolation Functions 1-11
Function Functions - Nonlinear Numerical Methods 1-12
Sparse Matrix Functions 1-12
Sound Processing Functions 1-14
Character String Functions 1-14
Low-Level File I/O Functions 1-15
Bitwise Functions 1-16
Structure Functions 1-17
Object Functions 1-17
Cell Array Functions 1-17
Multidimensional Array Functions 1-17
Graphics Functions 1-18
Reference
2
List of Commands
Function Names A-2

Command Summary

This chapter lists MATLAB commands by functional area.

General Purpose Commands

Managing Commands and Functions

addpath Add directories to M ATLAB's search path page 2-23
doc Load hypertext documentation page 2-194
help Online help for M ATLAB functions and M-files. page 2-337
I asterr Last error message. page 2-394
I ookfor Keyword search through all help entries. page 2-411
path Control MATLAB's directory search path page 2-490
profile Measure and display M-file execution profiles. page 2-520
rmpath Remove directories from M ATLAB's search path page 2-556

version MATLAB version number page2-672
what Directory listing of M-files, MAT-files, and M EX-files. page2-680
what snew Display README files for MATLAB and toolboxes page2-681
which Locate functions and files. page 2-682

Managing Variables and the Workspace

clear Removeitems from memory . page 2-108
disp Display text or array . page 2-190
I ength Length of vector... page 2-399
I oad Retrieve variables from disk .. page 2-402

save Save workspace variables on disk. page 2-565

who, whos List directory of variables in memory page 2-685

Controlling the Command Window

Working with Files and the Operating Environment
applescript Load a compiled AppleScript from a file and execute it page 2-32
cd Change working directory page 2-85
delete Delete files and graphics objects page 2-183
diary Save session in a disk file page 2-186
dir Directory listing. page 2-189
edit Edit an M-file. page 2-198

fullfile	Build full filename from parts	page 2-283
i n mem	Functions in memory	page 2-362
matlabroot	Root directory of M ATLAB installation	page 2-427
tempdir	Return the name of the system's temporary directory.	page 2-654
tempname	U nique name for temporary file	page 2-655
$!$	Execute operating system command	page 2-13

Starting and Quitting MATLAB

matlabrc MATLAB startup M-file... page 2-426
quit TerminateMATLAB... page 2-533
startup
M ATLAB startup M-file
page 2-619

Operators and Special Characters

+	Plus	page 2-2
.	Minus	page 2-2
*	M atrix multiplication	page 2-2
. *	Array multiplication	page 2-2
\wedge	M atrix power	page 2-2
, ^	Array power	page 2-2
kron	Kronecker tensor product.	page 2-393
1	Backslash or left division.	page 2-2
1	Slash or right division	page 2-2
. 1 and . 1	Array division, right and left.	page 2-2
:	Colon	page 2-16
()	Parentheses.	page 2-13
[]	Brackets.	page 2-13
\{\}	Curly braces.	page 2-13
.	Decimal point	page 2-13
	Continuation	page 2-13
,	Comma.	page 2-13
;	Semicolon.	page 2-13
\%	Comment.	page 2-13
!	Exclamation point.	page 2-13
,	Transpose and quote.	page 2-13
. '	N onconjugated transpose.	page 2-13
=	Assignment.	page 2-13
==	Equality.	page 2-9
< >	Relational operators	page 2-9
\&	Logical AND	page 2-11
\|	Logical OR...	page 2-11

~ Logical NOT page 2-11
x 0 r Logical EXCLUSIVE OR page 2-690
Logical Functions
all Test to determine if all elements are nonzero page 2-26
any Test for any nonzeros page 2-30
exist
Check if a variable or file exists page 2-223
fo Find indices and values of nonzero elements page 2-247
*isa
Detect state page 2-389
logical
Detect an object of a given class. page 2-407
Language Constructs and Debugging
MATLAB as a Programming Language
builtin Execute builtin function from overloaded method page 2-76
eval Interpret strings containing M ATLAB expressions page 2-220
feval Function evaluation page 2-284
global
Function M -files page 2-319
nargchk Define global variables
Check number of input arguments page 2-436
script Script M-files page 2-570
Control Flow
break Break out of flow control structures page 2-75
case Case switch page 2-83
else Conditionally execute statements page 2-209
elseif Conditionally execute statements page 2-210
end Terminate for, while, switch, and if statements or indicate last indexpage 2-212
error Display error messages page 2-217
for Repeat statements a specific number of times page 2-265
if Conditionally execute statements page 2-341
otherwise D efault part of switch statement page 2-475
return Return to the invoking function page 2-554
switch Switch among several cases based on expression page 2-645
warning Display warning message page 2-675
while Repeat statements an indefinite number of times page 2-684

Interactive Input

keyboard Invokethekeyboard in an M-file........................... . page 2-392
menu Generate a menu of choices for user input page 2-430
pause Halt execution temporarily.................................. page 2-492

Object-Oriented Programming

class Create object or return class of object

double Convert to double precision page 2-195
inferiorto Inferior class relationship...................................... page 2-359
inline Construct an inline object. page 2-360
i s a Detect an object of a given class. page 2-389
superiorto Superior class relationship page 2-641
uint $8 \quad$ Convert to unsigned 8 -bit integer
page 2-665

Debugging

dbdown Change local workspace context page 2-146
dbmex EnableMEX-file debugging page 2-149
dbquit Quit debugmode.. . page 2-150
dbstack Display function call stack page 2-151
dbstatus List all breakpoints. page 2-152
dbstep Execute one or more lines from a breakpoint. page 2-153
dbstop Set breakpoints in an M-filefunction page 2-154
dbtype List M-file with linenumbers. page 2-157
dbup Change local workspace context . page 2-158

Elementary Matrices and Matrix Manipulation

Elementary Matrices and Arrays

eye Identity matrix.. . page 2-229
I inspace Generatelinearly spaced vectors page 2-401
Iogspace Generatelogarithmically spaced vectors.................. . page 2-410
ones Create an array of all ones.................................. page 2-473
rand Uniformly distributed random numbers and arrays...... page 2-536
r and $n \quad$ Normally distributed random numbers and arrays....... page 2-538
zeros Create an array of all zeros.. page 2-691
(colon) Regularly spaced vector. page 2-16
Special Variables and Constants
ans Themost recent answer page 2-29
computer Identify the computer on which MATLAB is running page 2-116
e ps Floating-point relative accuracy page 2-214
flops Count floating-point operations page 2-255
i Imaginary unit. page 2-340
Inf Infinity page 2-358
input name Input argument name. page 2-365
j Imaginary unit. page 2-391
NaN Not-a-Number page 2-435
nargin, nargoutNumber of function argumentspage 2-437
pi Ratio of a circle's circumference to its diameter,π page 2-500
real max Largest positive floating-point number page 2-547
realmin Smallest positive floating-point number page 2-548
varargin, varargout
Pass or return variable numbers of arguments. page 2-670
Time and Dates
calendar Calendar page 2-79
clock Current time as a date vector page 2-110
cputime Elapsed CPU time page 2-132
date Current date string page 2-138
datenum Serial date number page 2-139
datestr Date string format page 2-140
datevec Date components page 2-142
eomday End of month page 2-213
et i me Elapsed time. page 2-219
now Current date and time. page 2-448
tic, toc Stopwatch timer page 2-656
weekday Day of the week page 2-679
Matrix Manipulation
cat Concatenatearrays page 2-84
diag Diagonal matrices and diagonals of a matrix page 2-185
fliplr Flip matrices left-right page 2-252
flipud Flip matrices up-down page 2-253
repmat Replicate and tile an array page 2-550
reshape Reshape array page 2-551
rot 90 Rotate matrix 90 degrees page 2-559
tril Lower triangular part of a matrix page 2-661
triu
(colon)
U pper triangular part of a matrix
page 2-662
Index into array, rearrange array
page 2-16

Specialized Matrices

compan	Companion matrix	page 2-115
gallery	Test matrices	page 2-294
hadamard	H adamard matrix	page 2-331
hankel	H ankel matrix	page 2-332
hilb	Hilbert matrix	page 2-339
invhilb	Inverse of the Hilbert matrix	page 2-383
magic	M agic square	page 2-424
pascal	Pascal matrix	page 2-489
toeplitz	Toeplitz matrix	page 2-657
wilkinson	W ilkinson's eigenvalue test matrix	page 2-687

Elementary Math Functions

abs Absolute value and complex magnitude page 2-18
acos, acosh Inverse cosine and inverse hyperbolic cosine page 2-19
acot, acoth Inverse cotangent and inversehyperbolic cotangent page 2-20
acsc, acsch Inverse cosecant and inversehyperbolic cosecant page 2-21
angle angle Phase angle page 2-28
asec, asech Inverse secant and inverse hyperbolic secant page 2-33
asin, asinh Inversesine and inverse hyperbolic sine page 2-34
at an, at anh Inverse tangent and inverse hyperbolic tangent page 2-36
atan2 Four-quadrant inverse tangent. page 2-38
ceil Round toward infinity. page 2-88
conj Complex conjugate page 2-121
$\cos , \cosh \quad$ Cosine and hyperbolic cosine. page 2-128
cot, coth Cotangent and hyperbolic cotangent. page 2-129
csc, csch Cosecant and hyperbolic cosecant page 2-134
exp Exponential page 2-225
fix Round towards zero page 2-250
floor Round towards minus infinity page 2-254
gcd Greatest common divisor page 2-316
i mag Imaginary part of a complex number page 2-346
I cm Least common multiple page 2-396
$10 g \quad$ N atural logarithm page 2-404
$\log 2$ Base 2 logarithm and dissect floating-point numbers into exponent andmantissapage 2-405

$\log 10$	Common (base 10) logarithm	page 2-406
mod	M odulus (signed remainder after division)	page 2-434
real	Real part of complex number	page 2-546
rem	Remainder after division	page 2-549
round	Round to nearest integer	page 2-560
sec, sech	Secant and hyperbolic secant	page 2-571
sign	Signum function	page 2-577
sin, sinh	Sine and hyperbolic sine.	page 2-578
sqrt	Square root	page 2-611
$t a n, t a n h$	Tangent and hyperbolic tangent	page 2-652

Specialized Math Functions

airy Airyfunctions page 2-24
bessel h Bessel functions of the third kind (Hankel functions) page 2-45
besseli, besselk
M odified Bessel functions page 2-47
besselj, bessely
Bessel functions page 2-49
beta, betainc, betaln
Beta functions page 2-52
ellipj Jacobi elliptic functions page 2-205
ell ipke Complete elliptic integrals of the first and second kind page 2-207
erf, erfc, erfcx, erfinv
Error functions page 2-215
expint Exponential integral page 2-226
gamma, gammai nc, gammaln
Gamma functions page 2-314
l egendre Associated Legendrefunctions page 2-397
pow2 Base 2 power and scalefloating-point numbers page 2-517
rat, rats Rational fraction approximation page 2-542
Coordinate System Conversion
cart2pol Transform Cartesian coordinates to polar or cylindrical ... page 2-80
cart2sph Transform Cartesian coordinates to spherical page 2-82
pol 2 cart Transform polar or cylindrical coordinates to Cartesian page 2-504

Matrix Functions - Numerical Linear Algebra

Matrix Analysis

cond	Condition number with respect to inversion page 2-118
condeig	Condition number with respect to eigenvalues..

condeig Condition number with respect to eigenvalues page 2-119
det Matrix determinant... . page 2-184
norm Vector and matrix norms page 2-445
null Null space of a matrix page 2-449
orth Rangespace of a matrix. .. page 2-474
rank Rank of a matrix page 2-541
r cond \quad atrix reciprocal condition number estimate page 2-545
rref, rrefmovie
Reduced row echelon form. page 2-561
subspace Angle between two subspaces.................................. . page 2-639
trace Sum of diagonal elements... page2-658

Linear Equations

	11	Linear equation solution	age 2-2

chol Cholesky factorization.. . page 2-100

I scov Least squares solution in the presence of known covariance page 2-413
I u LU matrix factorization. page 2-414
nnls \quad Nonnegative least squares...................................... . page 2-441
pinv Moore-Penrose pseudoinverse of a matrix................. . page 2-501
qr Orthogonal-triangular decomposition page 2-526

Eigenvalues and Singular Values

balance Improveaccuracy of computed eigenvalues page 2-41
$\mathrm{cdf} 2 \mathrm{rdf} \quad$ Convert complex diagonal form to real block diagonal form page 2-86
eig Eigenvalues and eigenvectors page 2-199
hess Hessenberg form of a matrix page 2-335
poly Polynomial with specified roots page 2-505
qz QZ factorization for generalized eigenvalues page 2-534
rsf2csf Convert real Schur form to complex Schur form page 2-563
schur Schur decomposition page 2-568
svd Singular value decomposition page 2-642
Matrix Functions
expmM atrix exponentialpage 2-227
funm Evaluatefunctions of a matrix page 2-286
0 gm M atrix logarithm page 2-408
sqrtm M atrix square root page 2-612
Low Level Functions
qrdelete Delete column from QR factorization page 2-528
qrinsert Insert column in QR factorization page 2-530
Data Analysis and Fourier Transform Functions
Basic Operations
convhul Convexhull page 2-125
cumprod Cumulative product page 2-135
cumsum Cumulative sum page 2-136
cumtrapz Cumulative trapezoidal numerical integration page 2-137
del aunay Delaunay triangulation page 2-180
dsearch Search for nearest point page 2-196
factor Prime factors page 2-230
inpolygon Detect points inside a polygonal region page 2-363
ma x M aximum elements of an array page 2-427
mean A verage or mean value of arrays page 2-428
median Median value of arrays page 2-429
mi $n \quad$ Minimum elements of an array page 2-433
perms All possible permutations page 2-498
polyarea Area of polygon page 2-508
primes Generate list of prime numbers page 2-518
prod Product of array elements page 2-519
sort Sort elements in ascending order page 2-582
sortrows Sort rows in ascending order page 2-583
std Standard deviation page 2-620
sum Sum of array elements page 2-640
trapz Trapezoidal numerical integration page 2-659
tsearch Search for enclosing Delaunay triangle page 2-663
voronoi Voronoi diagram page 2-673
Finite Differences
del 2 DiscreteLaplacian page 2-177
diff Differences and approximate derivatives page 2-187
gradient Numerical gradient page 2-325

Correlation

corrcoef Correlation coefficients. page 2-127
cov Covariance matrix page 2-130
Filtering and Convolution
conv Convolution and polynomial multiplication page 2-122
conv2 Two-dimensional convolution page 2-123
deconv Deconvolution and polynomial division page 2-176
filter Filter data with an infiniteimpulseresponse(IIR) or finiteimpulseresponse (FIR) filter page 2-244
filter 2 Two-dimensional digital filtering page 2-246
Fourier Transforms
abs Absolute value and complex magnitude page 2-18
angle Phase angle page 2-28
cplxpair Sort complex numbers into complex conjugate pairs page 2-131
$f f t$ One-dimensional fast Fourier transform page 2-235
$f f t 2$ Two-dimensional fast Fourier transform page 2-238
fftshift M ove zero'th lag to center of spectrum. page 2-240
ifft Inverse one-dimensional fast Fourier transform page 2-343
ifft 2 Inverse two-dimensional fast Fourier transform page 2-344
nextpow2 Next power of two page 2-440
unwrap Correct phase angles page 2-668
Vector Functions
cross Vector cross product page 2-133
intersect Set intersection of two vectors page 2-379
i s member Detect members of a set page 2-390
setdiff Return the set difference of two vectors page 2-573
setxor Set exclusive-or of two vectors page 2-575
union Set union of two vectors page 2-666
unique U nique elements of a vector page 2-667
Polynomial and Interpolation Functions
Polynomials
conv Convolution and polynomial multiplication page 2-122
deconv Deconvolution and polynomial division page 2-176

poly	Polynomial with specified roots.	page 2-505
polyder	Polynomial derivative.	page 2-509
polyeig	Polynomial eigenvalue problem	page 2-509
polyfit	Polynomial curve fitting.	page 2-511
polyval	Polynomial evaluation	page 2-513
polyvalm	M atrix polynomial evaluation	page 2-515
residue	Convert between partial fraction	coefficients
		page 2-552
roots	Polynomial roots.	page 2-557

Data Interpolation

griddata Data gridding. page 2-328
interpl One-dimensional data interpolation (table lookup) page 2-367
interp2 Two-dimensional data interpolation (table lookup) page 2-370
interp3 Three-dimensional data interpolation (table lookup) page 2-374
interpft One-dimensional interpolation using the FFT method page 2-376
interpn Multidimensional data interpolation (table lookup) page 2-377
meshgrid Generate X and Y matrices for three-dimensional plots page 2-431page 2-438
spline Cubic spline interpolation page 2-597
Function Functions - Nonlinear Numerical Methods
dblquad Numerical double integration page 2-147
f min Minimize a function of one variable. page 2-256
f mins Minimize a function of several variables page 2-258
fzero Zero of a function of one variable page 2-291
ode45, ode23, ode113, ode15s, ode23s
Solve differential equations page 2-453
odefile Define a differential equation problem for ODE solvers. page 2-461
odeget Extract properties from options structure created with odesetpage 2-466
odeset Create or alter options structure for input to ODE solvers. page 2-467
quad, quad8 Numerical evaluation of integrals page 2-531
Sparse Matrix Functions
Elementary Sparse MatricesExtract and create sparse band and diagonal matricespage 2-591
speye Sparse identity matrix page 2-594
sprand Sparse uniformly distributed random matrix page 2-603
sprandn Sparse normally distributed random matrix. page 2-604
sprandsym Sparse symmetric random matrix page 2-605
Full to Sparse Conversion
find Find indices and values of nonzero elements page 2-247
full Convert sparse matrix to full matrix page 2-282
sparse Create sparse matrix page 2-587
spconvert Import matrix from sparse matrix external format page 2-589
Working with Nonzero Entries of Sparse Matrices
nnz N umber of nonzero matrix elements page 2-443
nonzeros Nonzero matrix elements page 2-444
nz max Amount of storage allocated for nonzero matrix elements. page 2-452
spalloc Allocate space for sparse matrix page 2-586
spfun Apply function to nonzero sparse matrix elements page 2-595
spones Replace nonzero sparse matrix elements with ones page 2-599
Visualizing Sparse Matrices
spy Visualize sparsity pattern page 2-610
Reordering Algorithms
col mmd Sparse column minimum degree permutation page 2-111
colperm Sparse column permutation based on nonzero count page 2-114
dmperm Dulmage-M endelsohn decomposition page 2-193
randperm Random permutation page 2-540
s y mmmd Sparse symmetric minimum degree ordering page 2-646
s y mr cm Sparse reverse Cuthill-M cK ee ordering. page 2-648
Norm, Condition Number, and Rank
condest 1-norm matrix condition number estimate page 2-120 page 2-447
normest
normest 2-norm estimate. 2-norm estimate.
Sparse Systems of Linear Equations
bicg BiConjugate Gradients method page 2-54
bicgstab BiConjugate Gradients Stabilized method page 2-61
cgs Conjugate Gradients Squared method page 2-94
cholinc Incomplete Cholesky factorizations page 2-102
g mr es Generalized M inimum Residual method (with restarts) page 2-321
uinc Incomplete LU matrix factorizations page 2-417
pCg Preconditioned Conjugate Gradients method page 2-493
q mr Quasi-M inimal Residual method page 2-522
Sparse Eigenvalues and Singular Values
eigs Find a few eigenvalues and eigenvectors page 2-202
svds A few singular values. page 2-644
Miscellaneous
spparmsSet parameters for sparse matrix routinespage 2-600
Sound Processing Functions
General Sound Functions
sound Convert vector into sound page 2-584
SPARCstation-specific Sound Functions
auread Read NeXT/SUN (.au) sound file page 2-39
auwrite WriteNeXT/SUN (.au) sound file. page 2-40
.WAV Sound Functions
wavread Read Microsoft WAVE (.wav) sound file page 2-676
wavwrite Write M icrosoft WAVE (.wav) sound file page 2-677
Character String Functions
General
abs Absolute value and complex magnitude page 2-18
eval Interpret strings containing M ATLAB expressions page 2-220
real Real part of complex number page 2-546
stringspage 2-626
String Manipulation
debl ank Strip trailing blanks from the end of a string page 2-172
findstr Find onestring within another page 2-249
lower Convert string to lower case page 2-412
strcat String concatenation page 2-623
strcmp Compare strings. page 2-624
strjust Justify a character array page 2-627
strmatch Find possible matches for a string page 2-628
strncmp Compare the first n characters of two strings page 2-629
strrep String search and replace page 2-630
strtok First token in string page 2-631
strvcat Vertical concatenation of strings page 2-634
upper Convert string to upper case. page 2-669
String to Number Conversion
char Create character array (string) page 2-98
int2str Integer to string conversion page 2-366
mat2str Convert a matrix into a string page 2-425
num2st Number to string conversion page 2-451
sprintf Writeformatted data to a string page 2-606
sscanf Read string under format control page 2-616
str2num String to number conversion page 2-622
Radix Conversion
bin2dec Binary to decimal number conversion page 2-65
dec 2 bin Decimal to binary number conversion page 2-174
dec 2 hex Decimal to hexadecimal number conversion page 2-175
hex2dec IEEE hexadecimal to decimal number conversion page 2-337
hex2num Hexadecimal to double number conversion page 2-338
File Opening and Closing
fclose Close oneor more open files page 2-231
fopen Open a file or obtain information about open files page 2-262
Unformatted I/ O
fread Read binary data from file page 2-273
Low-Level File I/ O Functions
fwrite W rite binary data to a file page 2-288
Formatted I/ O
f get $1 \quad$ Return the next line of a file as a string without line terminator(s) page 2-241
fgets Return the next line of a file as a string with line terminator(s)
fprintf W rite formatted data to file page 2-242
fscanf Read formatted data from file page 2-277
File Positioning
feof Test for end-of-file page 2-232
ferror Query M ATLAB about errors in file input or output page 2-233
frewind Rewind an open file. page 2-276
fseek Set file position indicator page 2-280
ftell Get file position indicator page 2-281
String Conversion
sprintf W rite formatted data to a string page 2-606
sscanf Read string under format control page 2-616
Specialized File I/ O
dl mread Read an ASCII delimited file into a matrix. page 2-191
dl mwrite Write a matrix to an ASCII delimited file page 2-192
i mf info Return information about a graphics file page 2-347
i mread Read image from graphics file page 2-350
i mwrite W rite an image to a graphics file page 2-353
wk1read Read a Lotus123 W K 1 spreadsheet file into a matrix page 2-688
wk 1 write W rite a matrix to a Lotus123 WK1 spreadsheet file. page 2-689
Bitw ise Functions
bitand Bit-wise AND page 2-66
bitcmp Complement bits page 2-67
bitor Bit-wise OR page 2-70
bit max M aximum floating-point integer page 2-69
bitset Set bit page 2-71
bitshift Bit-wise shift page 2-72

bitget	Get bit	page 2-68
bitxor	Bit-wise XOR	page 2-73

Structure Functions

fieldnames Field names of a structure page 2-243
get field Get field of structure array page 2-318
rmf i eld Remove structure fields. page 2-555
setfield Set field of structure array page 2-574
struct Create structure array page 2-632
struct2cell Structure to cell array conversion page 2-633
Object Functions
class Create object or return class of object page 2-107
is a Detect an object of a given class page 2-389
Cell Array Functions
cell Create cell array... page 2-89
cellstr Create cell array of strings from character array page 2-93
cell 2 struct Cell array to structure array conversion page 2-90
celldisp Display cell array contents page 2-91
cel| pl ot Graphically display the structure of cell arrays page 2-92
num2cell Convert a numeric array into a cell array page 2-450
Multidimensional Array Functions
cat Concatenate arrays page 2-84
flipdim Flip array along a specified dimension page 2-251
ind2sub Subscripts from linear index page 2-357
i permute Inverse permute the dimensions of a multidimensional arrayndgrid Generate arrays for multidimensional functions and interpolationpage 2-384
page 2-438
ndi ms Number of array dimensions page 2-439
permute Rearrange the dimensions of a multidimensional array page 2-499
reshape Reshapearray reshape page 2-551
Shift dimensions shiftdim page 2-576
squeeze Removesingleton dimensions page 2-615
sub2ind Singleindex from subscripts page 2-635

Graphics Functions

Color Operations and Lighting

brighten

colorbar
colorcube
colordef
col ormap
diffuse
graymon hsv2rgb
lighting
material Material reflectance mode
rgb2hsv RGB to HSV conversion
rgbplot Plot color map
shading Color shading mode
specular Specular reflectance
spinmap Spin the colormap
surfnorm
whitebg
Brighten or darken color map Pseudocolor axis scaling Display color bar (color scale) Enhanced color-cube color map Set up color defaults Set the color look-up table Diffuse reflectance Lighting mode 3-D surfacenormals Change axes background color for plots

Graphics figure defaults set for gray-scale monitor Hue-saturation-value to red-green-blue conversion

Colormaps

autumn
bone
contrast
cool
copper
jet Variant of HSV
Iines Line color colormap
prism Colormap of prism colors
flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map
hot Black-red-yellow-white color map
hsv Hue-saturation-value(HSV) color map
spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
Shades of red and yellow color map
Gray-scale with a tinge of blue color map
Gray color map to enhance image contrast
Shades of cyan and magenta color map
Linear copper-tone color map

Basic Plots and Graphs

bar Vertical bar chart
barh Horizontal bar chart
hist Plot histograms
hold Hold current graph
loglog Plot using log-log scales
pie Pieplot
plot Plot vectors or matrices.
polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subpl ot Create axes in tiled positions

Hardcopy/ File Output

hardcopy Save figure window to file
orient Hardcopy paper orientation
print Print graph or save graph to file
printopt Configure local printer defaults
savtoner Modify graphic objects to print on a white background

Surface, Mesh, and Contour Plots

contour Contour (level curves) plot.
contourc Contour computation
contourf Filled contour plot
hidden \quad Mesh hidden line removal mode
meshc Combination mesh/contourplot
mes $h \quad$ 3-D mesh with reference plane
surf 3-D shaded surfacegraph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
trimesh Triangular mesh plot
trisurf Triangular surface plot

Domain Generation for Function Visualization

griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Specialized Plotting

area Areaplot
box Axis box for 2-D and 3-D plots
comet
Comet plot
compass
errorbar
Compass plot
Plot graph with error bars
ezplot
Easy to use function plotter
feather
Feather plot
fill
Draw filled 2-D polygons
fplot Plotafunction
pareto Pareto chart
pie3 3-D Pieplot
plotmatrix
Scatter plot matrix
pcolor Pseudocolor (checkerboard) plot
rose Plot rose or angle histogram
quiver \quad Quiver (or velocity) plot
ribbon Ribbon plot
stairs Stairstep graph
stem
Plot discrete sequence data

Three-Dimensional Plotting

bar $3 \quad$ Vertical 3-D bar chart
bar 3h Horizontal 3-D bar chart
comet 3 3-D Comet plot
cylinder Generate cylinder
fill3 Draw filled 3-D polygons in 3-space
plot $3 \quad$ Plot lines and points in 3-D space
quiver $3 \quad 3$-D Quiver (or velocity) plot
slice Volumetric slice plot
sphere Generate sphere
stem3 Plot discrete surface data
vi ew 3-D graph viewpoint specification.
vi ewmt x Generate view transformation matrices
waterfall Waterfall plot

Plot Annotation and Grids

clabel Add contour labels to a contour plot
datetick Date formatted tick labels
grid Grid lines for 2-D and 3-D plots
gt ext Place text on a 2-D graph using a mouse
I e gend Graph legend for lines and patches

plotyy	Plot graphs with Y tick labels on the left and right
title	Titles for 2-D and 3-D plots
x\| abel	X-axis labels for 2-D and 3-D plots
ylabel	Y-axis labels for 2-D and 3-D plots
z\|abel	Z-axis labels for 3-D plots

Handle Graphics, General

bwoontr Contrasting black and/or color
copyobj Makea copy of a graphics object and its children
findobj Find objects with specified property values
gcbo Return object whose callback is currently executing
gco Return handle of current object
get Get object properties
rotate Rotate objects about specified origin and direction
ishandle Trueforgraphicsobjects
set Set object properties
treediag

Handle Graphics, Object Creation

axes Create axis at arbitrary positions
figure Create Figures (graph windows)
i mage Display image(create image object)
Iight Create light object
I ine Create line low-level objects
patch Create patch low-level objects
text Add text to the current plot

Handle Graphics, Figure Windows

capt ure	Screen capture of the current figure
cl c	Clear figure window
c f f	Clear Figure
$c \mid$ g	Clear Figure (graph window)
cl ose	Close specified window
gcf	Get current figure handle
newplot	Graphics M-file preamble for NextPlot property
refresh	Refresh figure

Handle Graphics, Axes
axis Plot axis scaling and appearance

```
cl a Clear axis
gca Get current axis handle
```


Object Manipulation

```
propedit Edit all properties of any selected object
reset Reset axis or figure
rotate3d Interactively rotate the view of a 3-D plot
s el ect moveresize Interactively select, move, or resize objects
shg Show graph window
```


Graphical User Interface Creation

dialog
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog
menu
menuedit
ms gbox
questdlg
textwrap Return wrapped string matrix for given UI Control
uicontrol Create user interface control
uiget file Display dialog box to retrieve name of file for reading
ui menu Create user interface menu
uiputfile Display dialog box to retrieve name of file for writing
uiresume Used with ui wait, controls program execution
ui setcolor Interactively set a ColorSpec via a dialog box
ui s et font Interactively set a font by displaying a dialog box
ui wait
waitbar Display wait bar
waitforbutt onpress W ait for key/buttonpress over figure
warndlg Create warning dialog box

Interactive User Input

ginput Graphical input from a mouse or cursor
zoom Zoom in and out on a 2-D plot

Interface Design

algntool Align uicontrols and axes
cbedit Callback Editor

guide	functions
toolpal	Initialization for Tool Palette

Region of Interest

dragrect
Drag XOR rectangles with mouse drawnow Complete any pending drawing rbbox Rubberband box

Micellaneous Graphics Commands

convhull	Convex hull
delaunay	Delaunay triangulation
dsearch	Search Delaunay triangulation for nearest point
inpolygon	Truefor points insidea polygonal region
polyarea	Area of polygon
tsearch	Search for enclosing Delaunay triangle
voronoi	Voronoi diagram

Reference

This chapter describes all MATLAB operators, commands, and functions in alphabetical order.

Arithmetic Operators + - * / \^'

Purpose Matrix and array arithmetic

Syntax | | $A+B$ | |
| :--- | :--- | :--- |
| | $A-B$ | |
| | $A * B$ | $A . * B$ |
| | A / B | $A . / B$ |
| | $A \mid B$ | $A . \mid B$ |
| | $A^{\wedge} B$ | $A . \wedge B$ |
| | A^{\prime} | $A .{ }^{\prime}$ |

Description
MATLAB has two different types of arithmetic operations. Matrix arithmetic operations are defined by the rules of linear algebra. Array arithmetic operations are carried out element-by-el ement. The period character (.) distinguishes the array operations from the matrix operations. However, since the matrix and array operations are the same for addition and subtraction, the character pairs . + and. - are not used.
$+\quad$ Addition or unary plus. $A+B$ adds A and $B . A$ and B must have the same size, unless one is a scalar. A scalar can be added to a matrix of any size.

- \quad Subtraction or unary minus. $A-B$ subtracts B from A. A and B must have the same size, unless one is a scalar. A scalar can be subtracted from a matrix of any size.
* Matrix multiplication. $C=A * B$ is the linear algebraic product of the matrices A and B. M ore precisely,

$$
C(i, j)=\sum_{k=1}^{n} A(i, k) B(k, j)
$$

For nonscalar A and B, the number of columns of A must equal the number of rows of B. A scalar can multiply a matrix of any size.
. * Array multiplication. A .*B is the element-by-element product of the arrays A and $B . A$ and B must have the same size, unless one of them is a scalar.

I Slash or matrix right division. B / A is roughly the same as $B * i \operatorname{nv}(A)$. More precisely, $B / A=\left(A^{\prime} \mid B^{\prime}\right)^{\prime}$. See \backslash.

Arithmetic Operators + - * / \^'

. I Array right division. A. / B is the matrix with elements $A(i, j) / B(i, j)$. A and B must have the same size, unless one of them is a scalar.
1 Backslash or matrix left division. If A is a square matrix, $A \backslash B$ is roughly the same as inv(A)*B, except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n components, or a matrix with several such columns, then $X=A \backslash B$ is the solution to the equation $A X=B$ computed by Gaussian elimination (see "Algorithm" for details). A warning message prints if A is badly scaled or nearly singular.

If A is an m-by- n matrix with $m \sim=n$ and B is a column vector with m components, or a matrix with several such columns, then $X=A \backslash B$ is the solution in the least squares sense to the under- or overdetermined system of equations $A X=B$. The effective rank, k, of A, is determined from the QR decomposition with pivoting (see "Algorithm" for details). A solution X is computed which has at most k nonzero components per column. If k < n, this is usually not the same solution as pinv(A) *B, which is the least squares solution with the smallest norm, $\| X| |$.

Array left division. $A . \ B$ is the matrix with elements $B(i, j) / A(i, j)$. A and B must have the same size, unless one of them is a scalar.

Matrix power. $x^{\wedge} p$ is x to the power p, if p is a scalar. If p is an integer, the power is computed by repeated multiplication. If the integer is negative, X is inverted first. For other values of p, the calculation involves eigenvalues and eigenvectors, such that if $[V, D]=$ ei $g(X)$, then $x^{\wedge} p=V * D$. $\wedge p / V$.

If x is a scalar and P is a matrix, $x^{\wedge} P$ is x raised to the matrix power P using eigenvalues and eigenvectors. $X^{\wedge} P$, where X and P are both matrices, is an error.

Array power. A. ${ }^{\wedge} B$ is the matrix with elements $A(i, j)$ to the $B(i, j)$ power. A and B must have the same size, unless one of them is a scalar.

Matrix transpose. A^{\prime} is the linear algebraic transpose of A. For complex matrices, this is the complex conjugate transpose.

Array transpose. A. ' is the array transpose of A. For complex matrices, this does not involve conjugation.

Arithmetic Operators + - * / へ '

Remarks	The arithmetic operators have M-file function equivalents, as shown:		
	Binary addition	$A+B$	plus (A, B)
	Unary plus	+A	uplus (A)
	Binary subtraction	A-B	minus (A, B)
	Unary minus	- A	uminus (A)
	Matrix multiplication	A*B	mt imes (A, B)
	Array-wise multiplication	A. *B	times (A, B)
	Matrix right division	A/B	mrdivide(A, B)
	Array-wise right division	A. 1 B	rdivide(A, B)
	Matrix left division	$A \backslash B$	ml divide(A, B)
	Array-wise left division	A. 1 B	I divide(A, B)
	Matrix power	$A^{\wedge} B$	mpower (A, B)
	Array-wise power	A. ${ }^{\wedge} \mathrm{B}$	power (A, B)
	Complex transpose	A^{\prime}	ctranspose(A)
	Matrix transpose	A. '	transpose(A)

Arithmetic Operators + - * / へ '

Examples
Here aretwo vectors, and the results of various matrix and array operations on them, printed with format rat.

Arithmetic Operators + - */\^'

Matrix Operations				Array Operations	
x / y		0	1/6	x. 1 y	1/4
		0	1/3		2/5
		0	1/2		$1 / 2$
$x / 2$	1/2			x. 12	1/2
	1				1
	312				3/2
$x^{\wedge} y$	Error			$x . \wedge y$	1
					32
					729
$x^{\wedge} 2$	Error			$x . \wedge 2$	1
					4
					9
$2^{\wedge} x$	Error			2. ${ }^{\wedge}$	2
					4
					8
$(x+i * y)^{\prime}$			2	3	
$(x+i * y) . '$	1	4 i	2	$3+$	

[^0]\section*{Arithmetic Operators + - * / \}

definite matrices are usually detected almost immediately, sothis check also requires little time. If successful, the Cholesky factorization is

$$
A=R^{\prime} * R
$$

where R is upper triangular. The solution X is computed by solving two triangular systems,

$$
X=R \backslash\left(R^{\prime} \backslash B\right)
$$

- If A issquare, but not a permutation of a triangular matrix, or is not Hermitian with positive elements, or theCholesky factorization fails, then a general triangular factorization is computed by Gaussian elimination with partial pivoting (seel u). If A is sparse, a nonsymmetric minimum degree preordering is applied (seec ol mmd and spparms). This results in

$$
A=L * U
$$

where L is a permutation of a lower triangular matrix and U is an upper triangular matrix. Then x is computed by solving two permuted triangular systems.

```
X = U\(L\B)
```

- IfA is not square and isfull, then H ouseholder reflections areused to computean orthog-onal-triangular factorization.

$$
A * P=Q * R
$$

where P is a permutation, Q is orthogonal and R is upper triangular (seeqr). The least squares solution X is computed with

$$
X=P *\left(R \backslash\left(Q^{\prime} * B\right)\right.
$$

- If A is not square and is sparse, then the augmented matrix is formed by:

$$
S=\left[\begin{array}{llll}
C * & A ; & A^{\prime} & 0
\end{array}\right]
$$

The default for the residual scaling factor isc $=\max (\max (a b s(A))) / 1000$ (see spparms). The least squares solution X and the residual $R=B-A * X$ are computed by

$$
S *[R / C ; X]=[B ; 0]
$$

with minimum degree preordering and sparseGaussian elimination with numerical pivoting.

The various matrix factorizations are computed by MATLAB implementations of the algorithms employed by LINPACK routines ZGECO, ZGEFA and ZGESL for

Arithmetic Operators + - */\^'

square matrices and ZQRDC and ZQRSL for rectangular matrices. See the LINPACK Users' Guidefor details.

Diagnostics From matrix division, if a square A is singular:

```
Matrix is singular to working precision.
```

From element-wise division, if the divisor has zero elements:

```
Divide by zero.
```

On machines without IEEE arithmetic, like the VAX, the above two operations generate the error messages shown. On machines with IEEE arithmetic, only warning messages are generated. The matrix division returns a matrix with each element set tol nf ; the element-wise division produces $\mathrm{Na} N \mathrm{~N}$ or I nf S where appropriate.

If the inverse was found, but is not reliable:

```
Warning: Matrix is close to singular or badly scaled.
    Results may be inaccurate. RCOND = xxx
```

From matrix division, if a nonsquare A is rank deficient:

```
Warning: Rank deficient, rank = xxx tol = xxx
```

See Also	det	Matrix determinant
inv	Matrix inverse	
	Iu	LU matrix factorization
	qrith	Range space of a matrix
	rref	Orthogonal-triangular decomposition
		Reduced row echelon form

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979.

Purpose Relational operations

Syntax | A | $<B$ |
| ---: | :--- |
| A | $>B$ |
| A | $<=B$ |
| A | $>B$ |
| A | $=B$ |
| A | $\sim B$ |

Description

Examples
Therelational operators are $<, \leq,>, \geq,==$, and $\sim=$. Relational operators perform element-by-element comparisons between two arrays. They return an array of the same size, with elements set to logical true (1) where the relation is true, and elements set to logical false (0) where it is not.

The operators $<, \leq,>$, and \geq use only the real part of their operands for the comparison. The operators == and $\sim=$ test real and imaginary parts.

The relational operators have precedence midway between the logical operators and the arithmetic operators.

To test if two strings are equivalent, use str cmp, which allows vectors of dissimilar length to be compared.

If one of the operands is a scalar and the other a matrix, the scalar expands to the size of the matrix. For example, the two pairs of statements:

```
X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5*ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]
```

produce the same result:
ans =

1	1	1
1	1	0
0	0	0

Relational Operators $<><=>===\sim$

See Also	Logical Operators \& \| al।	Test to determine if all elements are nonzero
	any	Test for any nonzeros
	find	Find indices and values of nonzero elements
	strcmp	Compare strings

Logical Operators \&

Purpose Logical operations

Syntax	$A \& B$
	A \mid B
	$\sim A$

Description The symbols $\&, \mid$, and \sim are the logical operators AND, OR, and NOT. They work element-wise on arrays, with 0 representing logical false (F), and anything nonzero representing logical true (T). The \& operator does a logical AND, the operator does a logical OR, and $\sim A$ complements the elements of A. The function xor (A, B) implements the exclusive OR operation. Truth tables for these operators and functions follow.

Inputs A	B	and $A \& B$	or $A \mid B$	xor $\operatorname{xor}(A, B)$	NOT $\sim A$
0	0	0	0	0	1
0	1	0	1	1	1
1	0	0	1	1	0
1	1	1	1	0	0

The logical operators have the lowest precedence, with arithmetic operators and relational operators being evaluated first.
The precedence for the logical operators with respect to each other is:
1 not has the highest precedence.
2 and and or have equal precedence, and are evaluated from left to right.

Remarks

The logical operators have M-file function equivalents, as shown:

and	$A \& B$	$\operatorname{and}(A, B)$
or	$A \mid B$	$\operatorname{or}(A, B)$
not	$\sim A$	$\operatorname{not}(A)$

Logical Operators \&

Examples

See Also
The relational operators: <, <=, >, >=, ==, ~=, as well as:
all
any
find Find indices and values of nonzero elements
logical Convert numeric values to logical
xor

Test to determine if all elements are nonzero
Test for any nonzeros
Find indices and values of nonzero elements
Convert numeric values to logical
Exclusive or

Purpose Special characters

Syntax [] () \{\} = ' , ; \% !

Description

[] Brackets are used to form vectors and matrices.[6.9 9.64 sqrt(-1)] is a vector with three elements separated by blanks. [6.9, 9.64, i] is the same thing. $\left[\begin{array}{lll}1+j & 2-j & 3\end{array}\right]$ and $\left[\begin{array}{llll}1+j & 2 & -j & 3\end{array}\right]$ are not the same. The first has three elements, the second has five.
[11 12 13; 2122 23] is a 2-by-3 matrix. The semicolon ends the first row.
Vectors and matrices can be used inside [] brackets. [A B; C] is allowed if the number of rows of A equals the number of rows of B and the number of columns of A plus the number of columns of B equals the number of columns of C. This rule generalizes in a hopefully obvious way to allow fairly complicated constructions.
$A=[\quad]$ stores an empty matrix in $A . A\left(m_{1}:\right)=[]$ deletes row m of A. $A(:, n)=[1$ deletes column n of $A . A(n)=[]$ reshapes A into a column vector and deletes the third element.
[A1, A2, A3...] = function assigns function output to multiple variables.
For the use of [and] on the left of an " $=$ " in multiple assignment statements, seelu, eig, svd, and so on.
\{ \} Curly braces are used in cell array assignment statements. F or example.,
$A(2,1)=\{[123 ; 456]\}$, or $A\{2,2\}=\left({ }^{2}\right.$ str'). Seehelp paren for more information about \{ \} .

Special Characters [] () \}= ' , ; \% !

() Parentheses are used to indicate precedence in arithmetic expressions in the usual way. They are used to enclose arguments of functions in the usual way. They are also used to enclose subscripts of vectors and matrices in a manner somewhat more general than usual. If x and v are vectors, then $X(V)$ is $[X(V(1)), X(V(2)), \ldots, X(V(n))]$. The components of V must be integers to be used as subscripts. An error occurs if any such subscript is less than 1 or greater than the size of x. Some examples are

- $X(3)$ is the third element of X.
- $\left.X\left(\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)$ is the first three elements of X.

Seehelp paren for more information about ().
If X has n components, $X(n:-1: 1)$ reverses them. The same indirect subscripting works in matrices. If V has m components and W has n components, then $\mathrm{A}(\mathrm{V}, \mathrm{W})$ is the m-by-n matrix formed from the elements of A whose subscripts are the elements of V and w. For example, $A([1,5],:)=A([5,1],:)$ interchanges rows 1 and 5 of A.
$=\quad$ Used in assignment statements. B = A stores the elements of A in B. $==$ is the relational equals operator. See the Relational Operators page.

Matrix transpose. X^{\prime} is the complex conjugate transpose of X.X.' is the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are the ASCII codes for the characters. A quotation mark within the text is indicated by two quotation marks.

Decimal point. 314/100,3.14 and. 314 e 1 are all the same. Element-by-element operations. These are obtained using .* , .^, . l, or . I . See the Arithmetic Operators page.

Field access.A. (field) andA(i).field, when A is a structure, access the contents of $f i$ el d.

Parent directory. See cd.
Continuation. Three or more points at the end of a line indicate continuation.

Comma. Used to separate matrix subscripts and function arguments. U sed to separate statements in multistatement lines. For multi-statement lines, the comma can be replaced by a semicolon to suppress printing.
; Semicolon. Used inside brackets to end rows. Used after an expression or statement to suppress printing or to separate statements.
\% Percent. The percent symbol denotes a comment; it indicates a logical end of line. Any following text is ignored. MATLAB displays the first contiguous comment lines in a M -file in response to a hel p command.
! Exclamation point. Indicates that the rest of the input line is issued as a command to the operating system.

Remarks

See Also
Arithmetic, relational, and logical operators.

Colon :

Purpose

Description

Create vectors, array subscripting, and f or iterations
The colon is one of the most useful operators in MATLAB. It can create vectors, subscript arrays, and specify for iterations.

The col on operator uses the following rules to create regularly spaced vectors:

```
j:k is the same as [ j, j+1,\ldots,k]
j:k is empty if j > k
j:i:k is the same as [j,j+i,j+2i, ...,k]
j:i:k is empty if i>0 and j > k or if i < 0 and j < k
```

where i, j, and k are all scalars.
Below are the definitions that govern the use of the col on to pick out selected rows, columns, and elements of vectors, matrices, and higher-dimensional arrays:

$A(:, j)$	is the j-th column of A
$A(i,:)$	is the i-th row of A
$A(:,:)$	is the equivalent two-dimensional array. For matrices this is the same as A.
$A(j: k)$	is $A(j), A(j+1), \ldots, A(k)$
$A(:, j: k)$	is $A(:, j), A(:, j+1), \ldots, A(:, k)$
$A(:,:, k)$	is the k th page of three-dimensional array A.
$A(i, j, k,:)$	is a vector in four-dimensional array A. The vector includes $A(i, j, k, 1), A(i, j, k, 2), A(i, j, k, 3)$, and so on.
$A(:)$	is all the elements of A, regarded as a single column. On the left side of an assignment statement, $A(:)$ fills A, preserving its shape from before. In this case, the right side must contain
the same number of elements as A.	

Colon :

Examples
 Using the col on with integers,

$$
D=1: 4
$$

results in
D =
$13 \quad 3 \quad 4$
U sing two col ons to create a vector with arbitrary real increments between the elements,

```
E = 0:.1:.5
```

results in
E =
$\begin{array}{llllll}0 & 0.1000 & 0.2000 & 0.3000 & 0.4000 & 0.5000\end{array}$

The command

$$
A(:,:, 2)=\text { pascal (3) }
$$

generates a three-dimensional array whose first page is all zeros.

$A(:,:, 1)$		
0	0	0
0	0	0
0	0	0
$A(:,:, 2)$		
1	1	1
1	2	3
1	3	6

See Also

for
Iinspace
Iogspace
reshape

Repeat statements a specific number of times Generate linearly spaced vectors Generate logarithmically spaced vectors Reshape array

abs

Purpose Absolute value and complex magnitude

Syntax $\quad Y=\operatorname{abs}(X)$

Description $\quad a b s(X)$ returns the absolute value, $|X|$, for each element of X.
If X is complex, $\operatorname{abs}(X)$ returns the complex modulus (magnitude):

```
abs(X) = sqrt(real(X).^2 + imag(X).^2)
```

abs $(-5)=5$
abs $(3+4 i)=5$

See Also

angle
sign
unwrap

Phase angle
Signum function
Correct phase angles

Purpose Inverse cosine and inverse hyperbolic cosine

Syntax
 $Y=\operatorname{acos}(X)$
 $Y=\operatorname{acosh}(X)$

Description

Examples

Algorithm

Theacos and acosh functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
$Y=\operatorname{acos}(X)$ returns the inverse cosine (arccosine) for each element of X. For real elements of X in the domain $[-1,1], \operatorname{acos}(X)$ is real and in the range $[0, \pi]$. F or real elements of x outside the domain $[-1,1], \operatorname{acos}(X)$ is complex.
$Y=\operatorname{acosh}(X)$ returns the inverse hyperbolic cosine for each element of X.
Graph the inverse cosine function over the domain $-1 \leq x \leq 1$, and the inverse hyperbolic cosine function over the domain $1 \leq x \leq \pi$.

```
x = - 1:. 05: 1; plot(x, acos(x))
x = 1:pi/40:pi; plot(x,acosh(x))
```


$$
\begin{aligned}
& \cos ^{-1}(z)=-i \log \left[z+i\left(1-z^{2}\right)^{\frac{1}{2}}\right] \\
& \cosh ^{-1}(z)=\log \left[z+\left(z^{2}-1\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

[^1]Purpose Inverse cotangent and inverse hyperbolic cotangent

Syntax
 $Y=\operatorname{acot}(X)$
 $Y=\operatorname{acoth}(X)$

Description

Examples

Theacot and acoth functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
$Y=\operatorname{acot}(X)$ returns the inverse cotangent (arccotangent) for each element of X.
$Y=\operatorname{acoth}(X)$ returns the inverse hyperbolic cotangent for each element of X.
Graph the inverse cotangent over the domains $-2 \pi \leq x<0$ and $0<x \leq 2 \pi$, and the inverse hyperbolic cotangent over the domains $-30 \leq x<-1$ and $1<x \leq 30$.

```
x1 = -2*pi:pi/30:-0.1; x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2))
x1 = -30:0.1:-1.1; x2 = 1.1:0.1:30;
plot(x1,acoth(x1), x2,acoth(x2))
```


Algorithm

$$
\begin{aligned}
& \cot ^{-1}(z)=\tan ^{-1}\left(\frac{1}{z}\right) \\
& \operatorname{coth}^{-1}(z)=\tanh ^{-1}\left(\frac{1}{z}\right)
\end{aligned}
$$

See Also
Cotangent and hyperbolic cotangent

Purpose Inverse cosecant and inverse hyperbolic cosecant

Syntax

Description

```
Y = acsc(X)
Y = acsch(X)
```

Theacsc andacsch functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
$Y=\operatorname{acsc}(X)$ returns the inverse cosecant (arccosecant) for each element of X.
$Y=\operatorname{acsch}(X)$ returns the inverse hyperbolic cosecant for each element of X.
Graph the inverse cosecant over the domains $-10 \leq x<-1$ and $1<x \leq 10$, and the inverse hyperbolic cosecant over the domains $-20 \leq x \leq-1$ and $1 \leq x \leq 20$.

```
x1 = -10:0.01:-1.01; x2 = 1.01:0.01:10;
plot(x1, acsc(x1), x2,acsc(x2))
x1 = - 20:0.01:-1; x2 = 1:0.01:20;
plot(x1, acsch(x1), x2,acsch(x2))
```


Algorithm

$$
\begin{aligned}
& \csc ^{-1}(z)=\sin ^{-1}\left(\frac{1}{z}\right) \\
& \operatorname{csch}^{-1}(z)=\sinh ^{-1}\left(\frac{1}{z}\right)
\end{aligned}
$$

See Also

Purpose
Add directories to MATLAB's search path

Syntax
 Description

```
addpath('directory')
addpath('dir1','dir2','dir3',...)
addpath(...,' - flag')
```

addpath ('directory') prepends the specified directory to MATLAB's current search path.
addpath ('dir1','dir2','dir3',....) prepends all the specified directories to the path.
addpath (...,'-fIag') either prepends or appendsthe specified directories to the path depending the value of $f \mathrm{I}$ ag :

0 or begin	Prepend specified directories
1 or end	Append specified directories

Examples

path
MATLABPATH
c: \matlabltool box|general
$c:$ \matlabltool box\ops
c: \matlabltoolbox\strfun
addpath('c:\mat|ab|myfiles')
path
MATLABPATH
$c: \mid$ mat $|a b| m y f i l e s$
c: \matlabltool box|general
$c:$ | matlabltool box\ops
c: \mat|ab|toolbox|strfun

See Also
 path

rmpath

Control MATLAB's directory search path Remove directories from MATLAB's search path

Purpose Airy functions

Syntax

```
W = airy(Z)
W = airy(k, z)
[W,ierr] = airy(k,Z)
```


Definition

The Airy functions form a pair of linearly independent solutions to:

$$
\frac{d^{2} \mathrm{~W}}{d \mathrm{Z}^{2}}-\mathrm{ZW}=0
$$

The relationship between the Airy and modified Bessel functions is:

$$
\mathrm{Ai}(Z)=\left[\frac{1}{\pi} \sqrt{Z / 3}\right] \mathrm{K}_{1 / 3}(\zeta)
$$

where,

$$
\zeta=\frac{2}{3} z^{3 / 2}
$$

Description

$W=\operatorname{airy}(Z)$ returns the Airy function, $\mathrm{Ai}(\mathrm{Z})$, for each element of the complex array z.
$W=\operatorname{airy}(k, Z)$ returns different results depending on the value of k :

k Returns

$0 \quad$ The same result asairy(Z).
1 The derivative, $\mathrm{Ai}^{\prime}(\mathrm{Z})$.
2 The Airy function of the second kind, $\mathrm{Bi}(Z)$.
3 The derivative, $\mathrm{Bi}^{\prime}(Z)$.

> [W, i err] = airy(k, Z) also returns an array of error flags.

ierr $=1$	Illegal arguments.
ierr $=2$	
ierr $=3$	Overflow. Return Inf.
ierr $=4$	Some loss of accuracy in argument reduction.
ierr $=5$	

See Also	besseli	Modified Bessel functions of the first kind		
besselj				
besselk				
bessely			\quad	Bessel functions of the first kind
:---				

References [1] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," Sandia National Laboratory Report, SAND85-1018, May, 1985.
[2] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order," Trans. Math. Software, 1986.

Purpose Test to determine if all elements are nonzero

Syntax
 ```B = all(A) \\ B = all(A,dim)```

Description $\quad B=a l l(A)$ tests whether all the elements along various dimensions of an array are nonzero or logical true (1).

If A is a vector, all(A) returns logical true (1) if all of the elements are nonzero, and returns logical false (0) if one or more elements are zero.
If A is a matrix, all(A) treats the columns of A as vectors, returning a row vector of 1 s and 0 s .

If A is a multidimensional array, all (A) treats the values along the first non-singleton dimension as vectors, returning a logical condition for each vector.
$B=a l l(A, d i m)$ tests along the dimension of A specified by scalar dim.

1	1	1
1	1	0

A

1	1	0

all(A,1)

all(A,2)

Examples

Given,

```
A = [lllllll}0.530.67 0.01 0.38 0.07 0.42 0.69]
```

then $B=\left(\begin{array}{ll}A & 0.5\end{array}\right)$ returns logical true (1) only where A is less than one half:

0	0	1	1	1	1	0

Theal। function reduces such a vector of logical conditions to a single condition. In this case, all(B) yields 0 .

This makes all particularly useful in if statements,

```
if all(A<0.5)
    do something
end
```

where code is executed depending on a single condition, not a vector of possibly conflicting conditions.

Applying theal। function twice to a matrix, as inal। (all(A)), always reduces it to a scalar condition.

```
all(all(eye(3)))
ans =
    0
```

See Also The logical operators: \& | , ~, and:
any Test for any nonzeros

Other functions that collapse an array's dimensions include:
max, mean, median, min, prod, std, sum,trapz

Purpose Phase angle

Syntax $\quad P=$ angle(Z)

Description $\quad P=$ angle (Z) returns the phase angles, in radians, for each element of complex array Z. The angles lie between $\pm \pi$.

For complex Z, the magnitude and phase angle are given by

```
R = abs(Z) % magnitude
theta = angle(Z) % phase angle
```

and the statement

```
Z = R. *exp(i *t heta)
```

converts back to the original complex Z.

Examples

$Z=$			
$1.0000-1.0000 i$	$2.0000+1.0000 i$	$3.0000-1.0000 i$	$4.0000+1.0000 i$
$1.0000+2.0000 i$	$2.0000-2.0000 i$	$3.0000+2.0000 i$	$4.0000-2.0000 i$
$1.0000-3.0000 i$	$2.0000+3.0000 i$	$3.0000-3.0000 i$	$4.0000+3.0000 i$
$1.0000+4.0000 i$	$2.0000-4.0000 i$	$3.0000+4.0000 i$	$4.0000-4.0000 i$
$P=$ angle($Z)$			
$P=$			

-0.7854	0.4636	-0.3218	0.2450
1.1071	-0.7854	0.5880	-0.4636
-1.2490	0.9828	-0.7854	0.6435
1.3258	-1.1071	0.9273	-0.7854

Algorithm angle can be expressed as:

```
    angle(z)=imag(|og(z))= atan2(imag(z),real(z))
```


See Also

abs
unwr ap

Absolute value and complex magnitude Correct phase angles
Purpose The most recent answer
Syntax ans
Description The ans variable is created automatically when no output argument is speci- fied.
Examples The statement$2+2$
is the same as
ans $=2+2$

Purpose Test for any nonzeros

Syntax
 $B=a n y(A)$
 $B=\operatorname{any}(A, d i m)$

Description $\quad B=a n y(A)$ tests whether any of the elements along various dimensions of an array are nonzero or logical true (1).

If A is a vector, $\operatorname{any}(A)$ returns logical true (1) if any of the elements of A are nonzero, and returns logical false (0) if all the elements are zero.
If A is a matrix, $a n y(A)$ treats the columns of A as vectors, returning a row vector of 1 s and 0 s .

If A is a multidimensional array, any (A) treats the values along the first non-singleton dimension as vectors, returning a logical condition for each vector.
$B=\operatorname{any}(A, d i m)$ tests along the dimension of A specified by scalar dim.

1	0	1
0	0	0

A

1	0	1

$\operatorname{any}(A, 1)$

any ($\mathrm{A}, 2$)

Examples

Given,

```
A = [llllllll
```

then $B=(A<0.5)$ returns logical true (1) only where A is less than one half:

```
0
```

The any function reduces such a vector of logical conditions to a single condition. In this case, any (B) yields 1.

This makes any particularly useful in if statements,

```
if any(A<0.5)
    do something
end
```

where code is executed depending on a single condition, not a vector of possibly conflicting conditions.

Applying theany function twice to a matrix, as inany (any (A)), always reduces it to a scalar condition.

```
any(any(eye(3)))
ans =
    1
```

See Also The logical operators \& \mid, \sim, and:
Test to determine if all elements are nonzero

Other functions that collapse an array's dimensions include:
max, mean, median, min, prod, std, sum,trapz

applescript

Purpose Load a compiled AppleScript from a file and execute it

```
Syntax applescript(filename)
result = applescript(filename)
applescript(filename,'VarName1','VarValue1', ...)
```

Description applescript(filename) loads a compiled AppleScript from the file filename and executesit.Iffilename is not a full path name, then applescript searches forfilename along the MATLAB path.
result = applescript(filename) returnsinresult the value that the AppleScript returns, converted to a string.
applescript(filename, 'VarName1', 'VarValue1',...) sets the value of the AppleScript's property or variable whose name is specified in Var Na me to the value specified in Var Value.

Remarks

applescript is available on the Macintosh only.

Examples Compile an AppleScript and save it to the file rename:

```
tel| application "Finder"
    set name of item itemName to newName
end tel|
```

Theapplescript command renames filehello on volume My Disk to the new nameworld.

```
applescript('rename', 'itemName', '"MyDisk:hel|o"', ...
    'newName', '"world"');
```

Purpose

Syntax

Description

I nverse secant and inverse hyperbolic secant

```
Y = asec(X)
Y = asech(X)
```

Theasec and asech functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
$Y=\operatorname{asec}(X)$ returns the inverse secant (arcsecant) for each element of X.
$Y=\operatorname{asech}(X)$ returns the inverse hyperbolic secant for each element of X.
Graph the inverse secant over the domains $1 \leq x \leq 5$ and $-5 \leq x \leq-1$, and the inverse hyperbolic secant over the domain $0<x \leq 1$.

```
x1 = -5:0.01:-1; x2 = 1:0.01:5;
plot(x1, asec(x1), x2, asec(x2))
x = 0.01:0.001:1; plot(x, asech(x))
```


$$
\begin{aligned}
& \sec ^{-1}(z)=\cos ^{-1}\left(\frac{1}{z}\right) \\
& \operatorname{sech}^{-1}(z)=\cosh ^{-1}\left(\frac{1}{z}\right)
\end{aligned}
$$

See Also

Purpose Inverse sine and inverse hyperbolic sine

Syntax

Description

Examples

```
Y = asin(X)
Y = asinh(X)
```

Theasin and asinh functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
$Y=\operatorname{asin}(X)$ returns the inverse sine (arcsine) for each element of X. For real elements of X in the domain $[-1,1]$, asi $n(X)$ is in therange $[-\pi / 2, \pi / 2]$. For real elements of x outside the range $[-1,1]$, asin(x) is complex.
$Y=\operatorname{asinh}(X)$ returns the inverse hyperbolic sine for each element of X.
Graph the inverse sine function over the domain $-1 \leq x \leq 1$, and the inverse hyperbolic sine function over the domain $-5 \leq x \leq 5$.

```
x = - 1:.01:1; plot(x, asin(x))
x = - 5:.01:5; plot(x,asinh(x))
```


Algorithm

$$
\begin{aligned}
& \sin ^{-1}(z)=-i \quad \log \left[i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right] \\
& \sinh ^{-1}(z)=\log \left[z+\left(z^{2}+1\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

See Also

sin,sinh
Sine and hyperbolic sine

Purpose

Assign value to variable in workspace

Syntax
 assignin(ws,'name', v)

assignin(ws,'name', v) assigns the variable'name' in the workspacews the valuev. 'name'is created if it doesn't exist. ws can be either'caller' or'base'.

Examples

Here's a function that creates a variable with a user-chosen name in the base workspace. The variable is assigned the value $\sqrt{\pi}$.

```
function sqpi
var = inputdlg('Enter variable name','Assignin Example',1,{'A'})
assignin('base','var',sqrt(pi))
```

Assignin Esample	
Enter variable name	
A	
Cancel	OK

See Also
evalin
Evaluate expression in workspace.

Purpose Inverse tangent and inverse hyperbolic tangent

Syntax

Description

Examples

Algorithm

$$
\begin{aligned}
& \tan ^{-1}(z)=\frac{i}{2} \log \left(\frac{i+z}{i-z}\right) \\
& \tanh ^{-1}(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
\end{aligned}
$$

Purpose Four-quadrant inverse tangent

Syntax $\quad P=\operatorname{atan} 2(Y, X)$

Description $\quad P=\operatorname{atan} 2(Y, X)$ returns an array P the same size as X and Y containing the element-by-element, four-quadrant inverse tangent (arctangent) of the real parts of Y and X. Any imaginary parts are ignored.

Elements of p lie in the half-open interval $[-\pi, \pi]$. The specific quadrant is determined by sign(Y) andsign(X):

This contrasts with the result of a $\tan (Y / X)$, which is limited to the interval $[-\pi / 2, \pi / 2]$, or the right side of this diagram.

Examples

Any complex number $z=x+i y$ is converted to polar coordinates with

```
r = abs(z)
theta = atan2(i mag(z),real(z))
```

To convert back to the original complex number:

```
z = r *exp(i *theta)
```

This is a common operation, so MATLAB provides a function, angle(z), that simply computes atan2(imag(z), real(z)).

See Also

atan, atanh
tan,tanh

Inverse tangent and inverse hyperbolictangent Tangent and hyperbolic tangent

Purpose
Read NeXT/SUN (. au) sound file
$y=$ auread(aufile)
$[y, F s, b i t s]=$ auread(aufile)
[...] = auread(aufile,N)
$[\ldots]=$ auread(aufile,[N1, N2])
siz = auread(aufile,'size')
Description Supports multi-channel data in the following formats:

- 8-bit mu-law
- 8-, 16-, and 32-bit linear
- floating-point
y = auread(aufile) loads a sound file specified by the stringaufile, returning the sampled data in y. The. au extension is appended if no extension is given. Amplitude values are in the range $[-1,+1]$.
[y, Fs,bits] = auread(aufile) returns the sample rate (Fs) in Hertz and the number of bits per sample (bits) used to encode the data in the file.
$[. .]=$. auread(aufile, N) returns only the first N samples from each channel in the file.
[...] = auread(aufile,[N1 N2]) returns only samples N1 through N2 from each channel in the file.
siz = auread(aufile,'size') returnsthesize of theaudiodata containedin the file in place of the actual audio data, returning the vector siz = [s amples channels].

See Also

auwrite
wavread
Write NeXT/SUN (. au) sound file Read M icrosoft WAVE (. wav v) sound file
Purpose Write NeXT/SUN (. au) sound file

```
Syntax auwrite(y,aufile)
auwrite(y, Fs,aufile)
auwrite(y,Fs,N, aufile)
auwrite(y,Fs,N, method,aufile)
```


Description auwrite supports multi-channel data for 8-bit mu-law, and 8-and 16-bit linear

 formats.auwrite(y, aufile) writes a sound file specified by the stringaufile. The data should be arranged with one channel per column. Amplitude values outside the range $[-1,+1]$ are clipped prior to writing.
auwrite(y, Fs, aufile) specifies the sample rate of the data in Hertz.
auwrite(y, Fs, N, aufile) selects the number of bits in the encoder. Allowable settings are $N=8$ and $N=16$.
auwrite(y, Fs, N, method, aufile) allows selection of the encoding method, which can be either ' mu' or 'linear'. Note that mu-law files must be 8 -bit. By default, method=' mu'.

See Also

auread
wavwrite

Read NeXT/SUN (. au) sound file Write Microsoft WAVE (. wav) sound file
Purpose Improve accuracy of computed eigenvalues

Syntax	$[D, B]=$ balance (A)
	$B=$ balance (A)

Description

Remarks

$[D, B]=$ balance(A) returns a diagonal matrix D whose elements are integer powers of two, and a balanced matrix B so that $B=D \backslash A * D$. If A is symmetric, then $B==A$ and D is the identity matrix.
$B=b a l a n c e(A)$ returns just the balanced matrix B.
Nonsymmetric matrices can have poorly conditioned eigenvalues. Small perturbations in the matrix, such as roundoff errors, can lead to large perturbations in the eigenvalues. The quantity which relates the size of the matrix perturbation to the size of the eigenvalue perturbation is the condition number of the eigenvector matrix,

```
cond(V)= norm(V)*norm(inv(V))
```

where

```
[V,D] = eig(A)
```

(The condition number of A itself is irrelevant to the eigenvalue problem.)
Balancing is an attempt to concentrate any ill conditioning of the eigenvector matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric matrix into a symmetric matrix; it only attempts to make the norm of each row equal to the norm of the corresponding column. Furthermore, the diagonal scale factors are limited to powers of two so they do not introduce any roundoff error.

MATLAB's eigenvalue function, ei $g(A)$, automatically balances A before computing its eigenvalues. Turn off the balancing with eig(A, 'nobalance').

Examples

This example shows the basic idea. The matrix A has large elements in the upper right and small elements in the lower left. It is far from being symmetric.

```
A = [lllllllll
A =
    1.0e+04*
        0.0001 0.0100 1.0000
        0.0000 0.0001 0.0100
        0.0000 0.0000 0.0001
```

Balancing produces a diagonal D matrix with elements that are powers of two and a balanced matrix B that is closer to symmetric than A.

```
[D,B] = balance(A)
D =
    1.0e+03 *
    2.0480 0 0
        0 0.0320 0
B =
    1.0000 1.5625 1.2207
    0.6400 1.0000 0.7812
    0.8192 1.2800 1.0000
```

To see the effect on eigenvectors, first compute the eigenvectors of A.

```
[V,E] = eig(A); V
V =
    -1.0000 0.9999 -1.0000
    0.0050 0.0100 0.0034
    0.0000 0.0001 0.0001
```

Note that all three vectors have the first component the largest. This indicates V is badly conditioned; in fact cond (V) is $1.7484 \mathrm{e}+05$. Next, look at the eigenvectors of B.

```
[V,E] = eig(B); V
V =
    0.8873 0.6933 0.8919
    0.2839 0.4437 -0.3264
    0.3634 0.5679 - 0.3129
```

Algorithm | bal ance is built into the MATLAB interpreter. It uses the al gorithm in [1] orig- |
| :--- |
| inally published in Algol, but popularized by the Fortran routines BALANC and |
| BALBAK from EISPACK. |
| Successive similarity transformations via diagonal matrices are applied toA to |
| produceB. The transformations are accumulated in the transformation matrix |
| D. |
| The eig function automatically uses balancing to prepare its input matrix. |

Limitations
Balancing can destroy the properties of certain matrices; use it with some care.
If a matrix contains small elements that are due to roundoff error, balancing
may scale them up to make them as significant as the other elements of the
original matrix.

Purpose Base to decimal number conversion

Syntax $\quad d=$ base2dec('strn',base)

Description $d=$ base2dec('strn', base) convertsthestringnumberstrn of the specified base into its decimal (base 10) equivalent. base must be an integer between 2 and 36. If' strn' is a character array, each row is interpreted as a string in the specified base.

Examples The expression base $2 \mathrm{dec}\left({ }^{\prime} 212^{\prime}, 3\right)$ converts 212_{3} to decimal, returning 23.
See Also dec2base

Purpose Bessel functions of the third kind (Hankel functions)

Syntax

```
H = besselh(nu,K,Z)
H = besselh(nu,z)
H = besselh(nu, l, Z, 1)
H = besselh(nu, 2, Z,1)
[H,ierr] = besselh(...)
```

Definitions The differential equation

$$
z^{2} \frac{d^{2} y}{d z^{2}}+z \frac{d y}{d z}-\left(z^{2}+v^{2}\right) y=0
$$

where v is a nonnegative constant, is called Bessel 's equation, and its solutions are known as Bessel functions. $J_{v}(z)$ and $J_{-v}(z)$ form a fundamental set of solutions of Bessel's equation for noninteger $v . Y_{v}(z)$ is a second solution of Bessel's equation-linearly independent of $J_{v}(z)$ - defined by:

$$
Y_{v}(z)=\frac{J_{v}(z) \cos (v \pi)-J_{-v}(z)}{\sin (v \pi)}
$$

The relationship between the Hankel and Bessel functions is:

$$
H 1_{v}(z)=J_{v}(z)+i Y_{v}(z)
$$

Description

$H=$ bessel $h(n u, K, Z)$ for $K=1$ or 2 computes the Hankel functions $H 1_{v}(z)$ or $\mathrm{H} 2_{v}(z)$ for each element of the complex array z. If $n u$ and z are arrays of the same size, the result is also that size. If either input is a scalar, it is expanded to the other input's size. If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values.

```
H = besselh(nu,Z) uses K = 1.
H = besselh(nu,1, Z,1) scales H1 (z) byexp(-i*z).
H = besselh(nu, 2, Z,1) scales H2v(z) byexp(+i*z).
```

```
[H,ierr] = besselh(...) also returns an array of error flags:
i err = 1 Illegal arguments.
ierr = 2 Overflow. ReturnInf.
i err = 3 Some loss of accuracy in argument reduction.
i err = 4 Unacceptable loss of accuracy, z or nu too large.
i err = 5 Noconvergence. Return NaN.
```


Purpose Modified Bessel functions

Syntax

```
I = besseli(nu,Z) Modified Bessel function of the 1st kind
K = besselk(nu,Z) Modified Bessel function of the 3rd kind
E = besseli(nu, Z, 1)
K = besselk(nu,Z,1)
[l,ierr] = besseli(...)
[k,ierr] = besselk(...)
```


Definitions The differential equation

$$
z^{2} \frac{d^{2} y}{d z^{2}}+z \frac{d y}{d z}-\left(z^{2}+v^{2}\right) y=0
$$

where v is a nonnegative constant, is called themodified Bessel's equation, and its solutions are known as modified Bessel functions.
$I_{v}(z)$ and $I_{-v}(z)$ form a fundamental set of solutions of the modified Bessel's equation for noninteger $v . K_{v}(z)$ is a second solution, independent of $I_{v}(z)$.
$I_{v}(z)$ and $K_{v}(z)$ are defined by:

$$
\begin{aligned}
& I_{v}(z)=\left(\frac{z}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{\left(\frac{z^{2}}{4}\right)^{k}}{k!\Gamma(v+k+1)}, \quad \text { where } \Gamma(a)=\int_{0}^{\infty} e^{-t} t^{a-1} d t \\
& K_{v}(z)=\left(\frac{\pi}{2}\right) \frac{I_{-v}(z)-I_{v}(z)}{\sin (v \pi)}
\end{aligned}
$$

Description

I = besseli(nu, Z) computes modified Bessel functions of the first kind, $I_{v}(z)$, for each element of the array z. The order nu need not be an integer, but must be real. The argument Z can be complex. The result is real wherez is positive.

If $n u$ and z arearrays of the samesize, the result is also that size. If either input is a scalar, it is expanded to the other input's size.If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values.

```
K = bessel k(nu,Z) computes modified Bessel functions of the second kind,
K
E = besseli(nu,Z,1) computesbesseli(nu,Z).*exp(-Z).
K = besselk(nu,Z,1) computes bessel k(nu,Z). *exp(-Z).
[l,ierr] = besseli(...) and[k,ierr] = besselk(...) alsoreturn an
array of error flags.
i err = 1 Illegal arguments.
ierr = 2 Overflow. ReturnInf.
i er r = 3 Some loss of accuracy in argument reduction.
i err = 4 Unacceptable loss of accuracy, Z or nu too large.
i er r = 5 No convergence. Return NaN.
```

Algorithm Thebesseli andbesselk functions use a Fortran MEX-file to call a library developed by D. E. Amos [3] [4].

See Also

References

airy	Airy functions
besselj, bessely	Bessel functions

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series \#55, Dover Publications, 1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.
[2] Carrier, K rook, and Pearson, F unctions of a Complex Variable: Theory and Technique, Hod Books, 1983, section 5.5.
[3] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," Sandia National Laboratory Report, SAND85-1018, May, 1985.
[4] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and N onnegative Order," Trans. Math. Software, 1986.

Purpose Bessel functions

Syntax J = besselj(nu, Z) Bessel function of the 1st kind
 $Y=$ bessely(nu, $Z) \quad$ Bessel function of the 2nd kind
 [J, ierr] = besselj(nu, Z)
 [Y,ierr] = bessely(nu, Z)

Definition The differential equation

$$
z^{2} \frac{d^{2} y}{d z^{2}}+z \frac{d y}{d z}-\left(z^{2}+v^{2}\right) y=0
$$

where v is a nonnegative constant, is called Bessel 's equation, and its solutions are known as Bessel functions.
$J_{v}(z)$ and $J_{-v}(z)$ form a fundamental set of solutions of Bessel's equation for noninteger v.
$Y_{v}(z)$ is a second solution of Bessel's equation-linearly independent of $J_{v}(z)$ - defined by:

$$
Y_{v}(z)=\frac{J_{v}(z) \cos (v \pi)-J_{-v}(z)}{\sin (v \pi)}
$$

Description

J = besselj(nu, Z) computes Bessel functions of thefirst kind, $\mathrm{J}_{\mathrm{v}}(\mathrm{z})$, for each element of the complex array z. The order nu need not be an integer, but must be real. The argument Z can be complex. Theresult is real where Z is positive.

If $n u$ and Z arearrays of the same size, the result is also that size. If either input is a scalar, it is expanded to the other input's size. If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values.
$Y=$ bessely $(n u, Z)$ computes Bessel functions of the second kind, $Y_{v}(z)$, for real, nonnegative order $n u$ and argument Z.
[J, ierr] = besselj(nu, Z) and [Y, ierr] = bessely(nu, Z) alsoreturn an array of error flags.
ierr=1 Illegal arguments.
ierr $=2$ Overflow. Return Inf.
i er $r=3$ Some loss of accuracy in argument reduction.
i err r Unacceptable loss of accuracy, z or nu too large.
ierr = 5 Noconvergence. Return NaN.

Remarks The Bessel functions are related to the Hankel functions, also called Bessel

 functions of the third kind:$$
\begin{aligned}
& H_{v}^{(1)}(z)=J_{v}(z)+i Y_{v}(z) \\
& H_{v}^{(2)}(z)=J_{v}(z)-i Y_{v}(z)
\end{aligned}
$$

where $J_{v}(z)$ isbessel j, and $Y_{v}(Z)$ isbessely. The Hankel functions also form a fundamental set of solutions to Bessel's equation (seebes sel h).

Examples

See Also

References

Algorithm Thebesselj andbessely functions use a Fortran MEX-file to call a library developed by D. E. Amos [3] [4].
besselj($3: 9,(0: .2: 10)$ ') generates the entire table on page 398 of Abramowitz and Stegun, Handbook of Mathematical Functions.. airy Airy functions besseli, besselk Modified Bessel functions
[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series \#55, Dover Publications, 1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.
[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and Technique, Hod Books, 1983, section 5.5.
[3] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," Sandia National Laboratory Report, SAND85-1018, May, 1985.
[4] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order," Trans. Math. Software, 1986.

beta, betainc, betaln

Purpose Beta functions

Syntax \quad| B | $=\operatorname{betal}(Z, W)$ |
| ---: | :--- |
| | $=\operatorname{betainc}(X, Z, W)$ |
| | L |
| | $=\operatorname{betal}(\mathrm{n}(Z, W)$ |

Definition The beta function is:

$$
\mathrm{B}(\mathrm{z}, \mathrm{w})=\int_{0}^{1} \mathrm{t}^{\mathrm{z}-1}(1-\mathrm{t})^{\mathrm{w}-1} \mathrm{dt}=\frac{\Gamma(\mathrm{z}) \Gamma(\mathrm{w})}{\Gamma(\mathrm{z}+\mathrm{w})}
$$

where $\Gamma(z)$ is the gamma function. The incomplete beta function is:

$$
I_{x}(z, w)=\frac{1}{B(z, w)} \int_{0}^{x} t^{z-1}(1-t)^{w-1} d t
$$

Description

$B=$ bet $a(Z, W)$ computes the beta function for corresponding elements of the complex arrays Z and W. The arrays must be the same size (or either can be scalar).

I = bet ainc(X,Z,W) computes the incomplete beta function. The elements of X must be in the closed interval $[0,1]$.
$\mathrm{L}=$ betal $\mathrm{n}(\mathrm{Z}, \mathrm{W})$ computes the natural logarithm of the beta function, $\log ($ beta $(Z, W))$, without computing bet a($Z, W)$. Since the bet a function can range over very large or very small values, its logarithm is sometimes more useful.
Examples

format rat

beta($\left.(0: 10))^{\prime}, 3\right)$

ans =

 \(1 / 0\)

 1/3

 1/12

 1/30

 1/60

 1/105

 1/ 168

 1/252

 1/360

 1/495

 1/660
 In this case, with integer arguments,

```
beta(n,3)
=(n-1)!*2!/(n+2)!
=2/(n*(n+1)*(n+2))
```

is theratio of fairly small integers and the rational format is ableto recover the exact result.

For $x=510$, betal $n(x, x)=-708.8616$, which, on a computer with IEEE arithmetic, is slightly less than $\log (r$ eal min $)$. Herebet $a(x, x)$ would underflow (or be denormal).

Algorithm

beta $(z, w)=\exp (g a m m a l n(z)+g a m m a l n(w)-g a m m a l n(z+w))$
betaln($z, w)=$ gammal $n(z)$ tgammal $n(w)-g a m m a l n(z+w)$

Purpose BiConjugate Gradients method

```
Syntax
x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol, maxit)
bicg(A,b,tol, maxit,M)
bicg(A,b,tol, maxit,M1,M2)
bicg(A,b,tol, maxit,M1,M2, x 0)
x = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,tol, maxit,M1,M2,x0)
[x,f|ag,re|res] = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = bicg(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = bicg(A,b,tol, maxit,M1,M2,x0)
```


Description $\quad x=\operatorname{bicg}(A, b)$ attempts to solve the system of linear equations $A^{*} x=b$ for x.

 The coefficient matrix A must besquare and the right hand side (column) vector b must havelength n , whereA is $n-\mathrm{by}-\mathrm{n}$. bicg will start iterating from an initial estimate that by default is an all zero vector of length n. Iterates are produced until the method either converges, fails, or has computed the maximum number of iterations. Convergence is achieved when an iterate x has relative residual norm($\left.b-A^{*} x\right) / \operatorname{norm}(b)$ less than or equal to the tolerance of the method. The default tolerance is $1 \mathrm{e}-6$. The default maximum number of iterations is the minimum of n and 20 . No preconditioning is used.
bicg(A,b,tol) specifies the tolerance of the method, tol.

bicg(A, b, tol, maxit) additionally specifies the maximum number of iterations, maxit.
bicg(A,b,tol, maxit, M) andbicg(A, b, tol, maxit, M1, M2) useleft preconditioner M or $M=M 1 * M 2$ and effectively solve the system inv(M) *A*x = inv(M)*b for x. If M1 or M2 is given as the empty matrix ([]), it is considered to be the identity matrix, equivalent to no preconditioning at all. Since systems of equations of the form $\mathrm{M}^{*} \mathrm{y}=\mathrm{r}$ aresolved using backslash within bi cg, it is wise to factor preconditioners into their LU factors first. F or example, replace bicg(A, b, tol, maxit, M) with:

```
[M1,M2] = I U(M);
bicg(A,b,tol,maxit,M1,M2).
```

bicg(A,b,tol, maxit, M1, M2, x0) specifies the initial estimate $\times 0$. If $\times 0$ is given as the empty matrix ([]), the default all zero vector is used.
$x=b i c g(A, b, t o l, m a x i t, M 1, M 2, x 0)$ returns a solution x.If bicg converged, a message to that effect is displayed. If bi c g failed to converge after the maximum number of iterations or halted for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at which the method stopped or failed.
$[x, f \mid a g]=\operatorname{bicg}(A, b, t o l$, maxit, M1, M2, x0) returns a solution x and a flag that describes the convergence of bicg:

Flag	Convergence
0	bicg converged to the desired tolerancet ol within maxit iterations without failing for any reason.
1	bicg iterated maxit times but did not converge.
2	One of the systems of equations of the form $M^{*} y=r$ involving the preconditioner was ill-conditioned and did not return a useable result when solved by \backslash (backslash).
3	The method stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during bi cg became too small or too large to continue computing.

Whenever fl ag is not 0 , the solution \times returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.
$[x, f l a g, r e l r e s]=b i c g(A, b, t o l$, maxit, M1, M2, x0) also returns therelativeresidual norm(b-A*x)/norm(b).Ifflag is 0 , then relres $\leq t o l$.
$[x, f l a g, r e l r e s, i t e r]=\operatorname{bicg}(A, b, t o l$, maxit, M1, M2, x0) alsoreturnsthe iteration number at which x was computed. This always satisfies $0 \leq i t e r \leq$ maxit.
$[x, f l a g, r e l r e s, i t e r, r e s v e c]=b i c g(A, b, t o l, m a x i t, M 1, M 2, x 0)$ also returns a vector of the residual norms at each iteration, starting from
 resvec(end) \leq tol*norm(b).

Examples

Start with A = west 0479 and make the true solution the vector of all ones.

```
load west0479
A = west0479
b = sum(A,2)
```

We could accurately solve $A * x=b$ using backslash since A is not so large.

```
x = A \ b
norm(b-A*x) / norm(b) =
6.8476e-18
```

Now try to solve $A^{*} x=b$ with bicg.

```
[x,flag,relres,iter,resvec] = bicg(A,b)
flag =
l
relres =
1
iter =
0
```

The value of fl ag indicates that bicg iterated the default 20 times without converging. The value of iter shows that the method behaved so badly that the initial all zero guess was better than all the subsequent iterates. The value of relres supportsthis:relres $=\operatorname{norm}\left(b-A^{*} x\right) / \operatorname{norm}(b)=\operatorname{norm}(b) / \operatorname{norm}(b)=1$.

The plot semilogy $\left(0: 20\right.$, resvec/norm(b), ' -0^{\prime}) below confirms that the unpreconditioned method oscillated rather wildly.

Try an incomplete LU factorization with a drop tolerance of 1e-5 for the preconditioner.

```
[L1,U1] = Iuinc(A, 1e-5)
nnz(A) =
1887
nnz(L1) =
5562
nnz(U1) =
4 3 2 0
```

A warning message indicates a zero on the main diagonal of the upper triangular U1. Thus it is singular. When we try to use it as a preconditioner:

```
[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1, U1)
flag =
2
relres =
1
iter =
O
resvec =
7.0557e+005
```

the method fails in the very first iteration when it tries to solve a system of equations involving the singular U1 with backslash. It is forced to return the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner:

```
[L2,U2] = |uinc(A, 1e-6)
nnz(L2) =
623
nnz(U2) =
4559
```

This time there is no warning message. All entries on the main diagonal of U 2 are nonzero

```
[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)
flag =
0
relres =
2.8664e-16
iter =
8
```

and bicg converges to within the desired tolerance at iteration number 8.
Decreasing the value of the drop tolerance increases the fill-in of the incomplete factors but also increases the accuracy of the approximation to the original matrix. Thus, the preconditioned system becomes closer to $\operatorname{inv}(U) * \operatorname{inv}(L) * L * U * x=\operatorname{inv}(U) * \operatorname{inv}(L) * b$, where L and U are the true LU factors, and closer to being solved within a single iteration.

The next graph shows the progress of bi cg using six different incomplete LU factors as preconditioners. E ach line in the graph is labelled with the drop tolerance of the preconditioner used in bi cg.

This does not give us any idea of the time involved in creating the incomplete factors and then computing the solution. The following graph plots drop tolerance of the incomplete LU factors against the time to compute the preconditioner, the timetoiterate once the preconditioner has been computed, and their sum, the total time to solve the problem. The time to produce the factors does not increase very quickly with the fill-in, but it does slow down the average time for an iteration. Since fewer iterations are performed, the total time to
solve the problem decreases. west 0479 is quite a small matrix, only 139-by-139, and preconditioned bi cg still takes longer than backslash.

See Also

bicgstab
cgs
gmres
Iuinc
pcg
qmr
1

BiConjugate Gradients Stabilized method Conjugate Gradients Squared method Generalized Minimum Residual method (with restarts) I ncomplete LU matrix factorizations Preconditioned Conjugate Gradients method Quasi-Minimal Residual method Matrix left division

References
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SI AM, Philadelphia, 1994.

Purpose
BiConjugate Gradients Stabilized method

```
Syntax
```

```
x = bicgstab(A, b)
```

x = bicgstab(A, b)
bicgstab(A,b,tol)
bicgstab(A,b,tol)
bicgstab(A,b,tol, maxit)
bicgstab(A,b,tol, maxit)
bicgstab(A,b,tol, maxit,M)
bicgstab(A,b,tol, maxit,M)
bicgstab(A,b,tol, maxit,M1,M2)
bicgstab(A,b,tol, maxit,M1,M2)
bicgstab(A,b,tol, maxit,M1,M2,x0)
bicgstab(A,b,tol, maxit,M1,M2,x0)
x = bicgstab(A,b,tol,maxit,M1,M2,x0)
x = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,tol, maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres] = bicgstab(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres] = bicgstab(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres,iter] = bicgstab(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres,iter] = bicgstab(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = bicgstab(A,b,tol, maxit,M1,M2,x0)

```
[x,flag,relres,iter,resvec] = bicgstab(A,b,tol, maxit,M1,M2,x0)
```


Description

$x=b i c g s t a b(A, b)$ attempts to solve the system of linear equations
$A^{*} x=b$ for x. The coefficient matrixA must be square and the right hand side (column) vector b must have length n, where A is $n-b y-n$. bicgstab will start iterating from an initial estimate that by default is an all zero vector of length n. Iterates are produced until the method either converges, fails, or has computed the maximum number of iterations. Convergence is achieved when an iteratex has relative residual nor $m\left(b-A^{*} x\right) / \operatorname{norm}(b)$ less than or equal to the tolerance of the method. The default tolerance is $1 \mathrm{e}-6$. The default maximum number of iterations is theminimum of n and 20 . No preconditioning is used.
bicgstab(A, b, tol) specifies the tolerance of the method, tol .
bicgstab(A, b,tol, maxit) additionally specifies the maximum number of iterations, maxit.
bicgstab(A, b, tol, maxit, M) andbicgstab(A, b, tol, maxit, M1, M2) useleft preconditioner M or $M=M 1 * M 2$ and effectively solve the systeminv(M) *A*x = inv(M)*b for x. If M1 or M2 is given as the empty matrix ([]), it is considered to be the identity matrix, equivalent to no preconditioning at all. Since systems of equations of the form $M^{*} y=r$ are solved using backslash within bicgstab, it
is wise tofactor preconditioners into their LU factorsfirst. For example, replace bicgstab(A, b, tol, maxit, M) with:
[M1, M2] = Iu(M);
bicgstab(A, b, tol, maxit, M1, M2).
bicgstab(A, b, tol, maxit, M1, M2, x0) specifies the initial estimatex0. If $\times 0$ is given as the empty matrix ([]) , the default all zero vector is used.
$x=b i \operatorname{cgstab}(A, b, t o l$, maxit, M1, M2, x0) returns a solution x. If bicgstab converged, a messagetothat effect is displayed. Ifbicgstab failed to converge after the maximum number of iterations or halted for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at which the method stopped or failed.
$[x, f \mid a g]=b i c g s t a b(A, b, t o l, \operatorname{maxit}, M 1, M 2, x 0)$ returns a solution x and a flag that describes the convergence of bicgstab:

Flag	Convergence
0	bicgstab converged to the desired tolerancetol within maxit iterations without failing for any reason.
1	bicgstab iterated maxit times but did not converge.
2	One of the systems of equations of the form $M^{*} y=r$ involving the preconditioner was ill-conditioned and did not return a useable result when solved by
(backslash).	
3	The method stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during bicgstab became too small or too large to continue computing.

Whenever $f \mathrm{I}$ ag is not 0 , the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag output is specified.
$[x, f l a g, r e l r e s]=b i c g s t a b(A, b, t o l, m a x i t, M 1, M 2, x 0)$ alsoreturns the relative residual norm($\left.b-A^{*} x\right) / \operatorname{nor} m(b)$. If $f I a g$ is 0 , then relres $\leq t o l$.
[x,flag, relres,iter] = bicgstab(A, b,tol, maxit, M1, M2, x0) also returns the iteration number at which x was computed. This always satisfies $0 \leq i t e r \leq m a x i t$.iter maybean integer or an integer +0.5 , sincebicgstab may converge half way through an iteration.
$[x, f \mid a g, r e l r e s, i t e r, r e s v e c]=\operatorname{bicgstab}(A, b, t o l$, maxit, M1, M2, x 0) also returns a vector of the residual norms at each iteration, starting from resvec(1) = norm($b-A^{*} \times 0$). Ifflag is 0 , res vecis of length $2 * i t e r+1$, whether iter is an integer or not. In this case, resvec(end) $\leq t$ ol*norm(b).

Example

```
load west 0479
A = west0479
b = sum(A, 2)
[x,f|ag] = bicgstab(A,b)
```

flag is 1 sincebicgstab will not converge to the default tolerancele- 6 within the default 20 iterations.

```
[L1,U1] = |uinc(A,1e-5)
[x1,flag1] = bicgstab(A,b,1e-6, 20,L1,U1)
```

flag1 is 2 since the upper triangular U1 has a zero on its diagonal sobicgstab fails in the first iteration when it tries to solve a system such as U1*y $=r$ with backslash.

```
[L2,U2] = |uinc(A,1e-6)
[x2,flag2,relres 2,iter 2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)
```

flag 2 is 0 sincebicgstab will converge to the tolerance of $2.9 \mathrm{e}-16$ (the value of relres 2) at the sixth iteration (the value of i ter 2) when preconditioned by the incomplete LU factorization with a drop tolerance of $1 \mathrm{e}-6 . \mathrm{resvec} 2(1)=$ norm(b) andresvec 2(7) = norm(b-A*x2). You may follow the progress of bicgstab by plotting the relative residuals at the half way point and end of
each iteration starting from the intial estimate (iterate number 0) with semilogy(0:0.5:iter2, resvec2/norm(b), '-0')

See Also

bicg
BiConjugate Gradients method cgs

gmres

I uinc
$p \subset g$
q mr
1
Conjugate Gradients Squared method

Generalized Minimum Residual method (with restarts)
Incomplete LU matrix factorizations
Preconditioned Conjugate Gradients method
Quasi-Minimal Residual method Matrix left division
van der Vorst, H. A., BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., March 1992,Vol. 13, No. 2, pp. 631-644.

Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

Purpose Binary to decimal number conversion

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary stringbinarystr and returns the equivalent decimal number.

Examples bin2dec('010111') returns 23.

See Also dec2bin

bitand

Purpose Bit-wise AND

Syntax
 $C=b i t a n d(A, B)$

Description $\quad C=b i t a n d(A, B)$ returns the bit-wise AND of two nonnegative integer arguments A and B. To ensure the operands are integers, use the ceil, fix,floor, andround functions.

Examples
The five-bit binary representations of the integers 13 and 27 are 01101 and 11011, respectively. Performing a bit-wise AND on these numbers yields 01001, or 9.

C = bitand(13,27)
$C=$
9

See Also	bitcmp	Complement bits
bitget	Get bit	
bitmax	Maximum floating-point integer	
bitor	Bit-wise OR	
	bitset	Set bit
	bitshift	Bit-wise shift
	bitxor	Bit-wise XOR

Purpose Complement bits

Syntax
 $C=b i t c m p(A, n)$

Description

Example
$C=$ bitcmp(A, n) returns the bit-wise complement of A as an n-bit floating-point integer (flint).

With eight-bit arithmetic, the ones' complement of 01100011 (99, decimal) is 10011100 (156, decimal).
$C=\operatorname{bitcmp}(99,8)$
$C=$
156
See Also
bitand
bitget
bit max
bitor
bitset
bitshift
bitxor

Bit-wise AND
Get bit
Maximum floating point integer
Bit-wise OR
Set bit
Bit-wise shift
Bit-wise XOR

Purpose Get bit

Syntax $\quad C=$ bitget $(A, b i t)$

Description $\quad C=b i t g e t(A, b i t)$ returns the value of the bit at position bit in A. Operand A must be a nonnegative integer, and bit must be a number between 1 and the number of bits in the floating-point integer (flint) representation of A (52 for IEEE flints). To ensure the operand is an integer, usethec eil , fix floor, and round functions.

Example Thedeczbin function converts decimal numbers to binary. However, you can also use the bit get function to show the binary representation of a decimal number. J ust test successive bits from most to least significant:

```
disp(dec2bin(13))
1101
C = bitget(13,4:-1:1)
C =
    1 1 0 1
```


See Also

bitand
bit cmp
bit max
bitor
bitset
bitshift
bitxor

Bit-wise AND
Complement bits
Maximum floating-point integer
Bit-wise OR
Set bit
Bit-wise shift
Bit-wise XOR
Purpose Maximum floating-point integer

Syntax bit max

Description bitmax returns the maximum unsigned floating-point integer for your computer. It is the value when all bits are set. On IEEE machines, this is the value $2^{53}-1$.

See Also | bitand | Bit-wise AND | |
| :--- | :--- | :--- |
| | bitcmp | Complement bits |
| bitget | Get bit | |
| bitor | Bit-wise OR | |
| | bitset | Set bit |
| | bitshift | Bit-wise shift |
| | bitxor | Bit-wise XOR |

Purpose Bit-wise OR

Syntax
 $C=$ bitor(A, B)

Description $\quad C=$ bitor (A, B) returns the bit-wise OR of two nonnegative integer arguments A and B. To ensure the operands are integers, use the ceil, fix, floor, andround functions.

Examples

The five-bit binary representations of the integers 13 and 27 are 01101 and 11011, respectively. Performing a bit-wise OR on these numbers yields 11111, or 31.

C = bitor(13,27)
$C=$

31

See Also

bitand
bitcmp
bitget
bitmax
bitset
bitshift
bitxor

Bit-wise AND
Complement bits
Get bit
Maximum floating-point integer
Set bit
Bit-wise shift
Bit-wise XOR

Purpose
 Set bit

Syntax
 $C=b i t s e t(A, b i t)$
 $C=b i t s e t(A, b i t, v)$

Description

Examples

$C=$ bitset(A, bit) sets bit position bit in A to 1 (on). A must bea nonnegative integer and bit must be a number between 1 and the number of bits in the floating-point integer (flint) representation of A (52 for IEEE flints). To ensure the operand is an integer, use the ceil, fix,floor, and round functions.
$\mathrm{C}=\mathrm{bitset}(\mathrm{A}, \mathrm{bit}, \mathrm{v})$ sets the bit at position bit to the valuev, which must be either 0 or 1 .

Setting thefifth bit in the five-bit binary representation of the integer 9 (01001) yields 11001, or 25.
$C=b i t s e t(9,5)$
$C=$

25
See Also
bitand
bitcmp
bitget
bit max
bitor
bitshift
bitxor

Bit-wise AND
Complement bits
Get bit
Maximum floating-point integer
Bit-wise OR
Bit-wise shift
Bit-wise XOR

Purpose Bit-wise shift

Syntax
 $C=b i t s h i f t(A, n)$

Description $\quad C=b i t s h i f t(A, n)$ returns the value of A shifted by n bits. If $n>0$, this is same as a multiplication by 2^{n} (left shift). If $n<0$, this is the same as a division by 2^{n} (right shift). A must be a nonnegative integer, which you can ensure by using theceil, fix, floor, andround functions.

Examples
Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal).
C = bitshift(12,2)
$C=$
48

See Also

bitand
bit cmp
bitget
bit max
bitor
bitset
bitxor

Bit-wise AND
Complement bits
Get bit
Maximum floating-point integer
Bit-wise OR
Set bit
Bit-wise XOR
Purpose Bit-wise XOR

Syntax
 $C=b i t x o r(A, B)$

Description
$C=$ bitxor($A, B)$ returns the bit-wise XOR of the two arguments A and B. Both A and B must be integers. You can ensure this by using theceil, fix, floor, andround functions.

Examples

The five-bit binary representations of the integers 13 and 27 are 01101 and 11011, respectively. Performing a bit-wise XOR on these numbers yields 10110, or 22.

C = bitxor (13,27)
$C=$
22

See Also

bitand	Bit-wise AND
bitcmp	Complement bits
bitget	Get bit
bitmax	Maximum floating-point integer
bitor	Bit-wise OR
bitset	Set bit
bitshift	Bit-wise shift

Purpose A string of blanks

Syntax blanks(n)

Description $\quad b \mid a n k s(n)$ is a string of n blanks.
Examples blanks is useful with thedisplay function. For example, disp(['xxx' blanks(20) 'yyy'])
displays twenty blanks between the strings ' $x x x^{\prime}$ and 'yyy'.
disp(blanks(n)') moves the cursor down n lines.

See Also

cl c
home
format

Clear command window
Send the cursor home
Seecompact option for suppression of blank lines

Purpose Break out of flow control structures

Syntax break

Description break terminates the execution of f or and while loops. In nested loops, break exits from the innermost loop only.

Examples

The indented statements are repeatedly executed until nonpositiven is entered.

```
while 1
    n = input('Enter n. n <= 0 quits. n = ')
    if n <= 0,break,end
    r = rank(magic(n))
end
disp('That''s all.')
```


See Also
 end

error Display error messages
if Conditionally execute statements
return Return to the invoking function
while
for Repeat statements a specific number of times
switch Switch among several cases based on expression
Terminatefor, while, andif statements and indicate the last index

Repeat statements an indefinite number of times

builtin

Purpose Execute builtin function from overloaded method

Syntax	builtin(function, x1, ..., xn)
	$[y 1, \ldots, y n]=$ builtin(function, $x 1, \ldots, x n)$
Description	builtin is used in methods that overload builtin functions to execute the original builtin function. If function is a string containing the name of a builtin function, then:
	builtin(function, x1, ..., xn) evaluates that function at the given arguments.
	$[y 1, \ldots, y n]=$ builtin(function, $x 1, \ldots, x n)$ returns multiple output arguments.
Remarks	builtin(...) is the same as feval (...) except that it calls the original builtin version of the function even if an overloaded one exists. (F or this to work you must never overload builtin.)
See Also	feval Function evaluation

builtin

calendar

Purpose Calendar

```
Syntax c = calendar
c = calendar(d)
c = calendar(y,m)
calendar(...)
```

Description $\quad c=c a l$ endar returns a 6-by-7 matrix containing a calendar for the current month. The calendar runs Sunday (first column) to Saturday.
$\mathrm{c}=\mathrm{calendar}(\mathrm{d})$, whered is a serial date number or a date string, returns a calendar for the specified month.
$c=c a l e n d a r(y, m)$, wherey and m are integers, returns a calendar for the specified month of the specified year.
calendar(...) displays the calendar on the screen.

Examples The command:

calendar(1957,10)
reveals that the Space Age began on a Friday (on October 4, 1957, when Sputnik 1 was launched).

Oct 1957						
S	M	Tu	W	Th	F	S
0	0	1	2	3	$\underline{4}$	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31	0	0
0	0	0	0	0	0	0

See Also

Serial date number

Purpose Transform Cartesian coordinates to polar or cylindrical
Syntax

Description

Algorithm Themapping from two-dimensional Cartesian coordinates to polar coordinates, and from three-dimensional Cartesian coordinates to cylindrical coordinates is:

Two-Dimensional Mapping
theta $=\operatorname{atan} 2(y, x)$
rho $=\operatorname{sqrt}\left(x, \wedge^{2}+y . \wedge 2\right)$

Three-Dimensional Mapping
theta $=\operatorname{atan} 2(y, x)$
rho $=\operatorname{sqrt}\left(x . \wedge^{\wedge}+y . \wedge 2\right)$ $z=z$

See Also cart2sph
 pol2cart
 sph2cart

Transform Cartesian coordinates to spherical Transform polar or cylindrical coordinates to Cartesian Transform spherical coordinates to Cartesian
Purpose Transform Cartesian coordinates to spherical

Syntax
 [THETA, PHI, R] = cart2sph(X,Y,Z)

Description [THETA, PHI, R] $=\operatorname{cart2sph}(X, Y, Z)$ transforms Cartesian coordinates stored in corresponding elements of arrays X, Y, and Z into spherical coordinates.
Azimuth THETA and elevation PHI are angular displacements in radians measured from the positive x-axis, and the x - y plane, respectively; and R is the distance from the origin to a point.

Arrays X, Y, and Z must be the same size.
Algorithm The mapping from three-dimensional Cartesian coordinates to spherical coordinates is:

$$
\begin{gathered}
\text { theta }=\operatorname{atan} 2(y, x) \\
\text { phi }=\operatorname{atan2}(z, \operatorname{sgrt}(x, \wedge 2+y, \wedge 2)) \\
r=\operatorname{sqrt}(x, \wedge 2+y, \wedge 2+z, \wedge 2)
\end{gathered}
$$

See Also
 cart2pol
 pol $2 c a r t$
 sph2cart
 Transform Cartesian coordinates to polar or cylindrical Transform polar or cylindrical coordinates to Cartesian Transform spherical coordinates to Cartesian

Purpose

Description

Examples

The general form of the s wit ch statement is:

```
switch switch_expr
    case case_expr
            statement,..., st at ement
        case {case_expr1,case_expr 2,case_expr 3,...}
            statement,..., st at ement
    otherwise
        statement,..., statement
    end
```

Seeswitch for more details.
See Also switch Switch among several cases based on expression

Syntax \quad| C | $=\operatorname{cat}(\operatorname{dim}, A, B)$ |
| ---: | :--- |
| C | $=c a t(\operatorname{dim}, A 1, A 2, A 3, A 4 \ldots)$ |

Description $\quad C=C$ at $(\operatorname{di} m, A, B)$ concatenates the arrays A and B alongdim.
$C=c a t(\operatorname{dim}, A 1, A 2, A 3, A 4, \ldots)$ concatenates all theinput arrays (A1, A2, A3, A4, and so on) along di m.
cat $(2, A, B)$ is the same as $[A, B]$ and $c a t(1, A, B)$ is the same as $[A ; B]$.
Remarks When used with comma separated list syntax, cat (dim, C\{:\}) or cat (dim, C.field) is a convenient way to concatenate a cell or structure array containing numeric matrices into a single matrix.

Examples
$A=$
$\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$ B =
$5 \quad 6$
78
concatenating along different dimensions produces:

1	2
3	4
5	6
7	8

$C=C a t(2, A, B)$

$C=C a t(3, A, B)$

The commands

$$
\begin{aligned}
& A=\operatorname{magi} C(3) ; B=\operatorname{pascal}(3) ; \\
& C=C a t(4, A, B) ;
\end{aligned}
$$

produce a 3-by-3-by-1-by-2 array.

See Also

[]
num2cell
(Special characters) Build arrays
Convert a numeric array into a cell array

Purpose Change working directory

Syntax \quad| $c d$ |
| :--- |
| $c d$ directory |
| $c d$ |

Description

Examples

See Also
dir
path
what
cd, by itself, prints out the current directory.
cd directory sets the current directory to the one specified. On UNIX platforms, the character ~is interpreted as the user's root directory.
cd . . changes to the directory above the current one.

UNIX:cd /usr/|ocal/mat|ab/toolbox/demos
DOS:cd C: MATLAB\DEMOS
VMS: cd DISK1:[MATLAB.DEMOS]
Macintosh: cd Toolbox: Demos
To specify a Macintosh directory name that includes spaces, enclose the name in single quotation marks, as in 'Tool box: New M- Files'.

Directory listing
Control MATLAB's directory search path
Directory listing of M-files, MAT-files, and MEX-files

Purpose Convert complex diagonal form to real block diagonal form

Syntax
 $[V, D]=c d f 2 r d f(V, D)$

Description If the eigensystem [V, D] = ei $g(X)$ has complex eigenvalues appearing in complex-conjugate pairs, cdf 2 rdf transforms the system sod is in real diagonal form, with 2-by-2 real blocks along the diagonal replacing the complex pairs originally there. The eigenvectors are transformed so that

```
X = V*D/V
```

continues to hold. The individual columns of V are no longer eigenvectors, but each pair of vectors associated with a 2-by-2 block in D spans the corresponding invariant vectors.

Examples The matrix

$X=$

1	2	3
0	4	5
0	-5	4

has a pair of complex eigenvalues.

```
[V,D] = eig(X)
```

$V=$
$1.0000 \quad 0.4002-0.0191 i \quad 0.4002+0.0191 i$
$0 \quad 0.6479 \quad 0.6479$
$0 \quad 0+0.6479 i$
$0-0.6479 i$
D $=$
1.000
$0 \quad 4.0000+5.0000 i$
$0 \quad 0 \quad 4.0000-5.0000 i$

Converting this to real block diagonal form produces

```
[V,D]=cdf2rdf(V,D)
V =
            1.0000 0.4002 -0.0191
            0 0.6479 0
            0 0 0.6479
D =
            1 0 0
            0 4
            0 -5 4
```

Algorithm \quad| The real diagonal form for the eigenvalues is obtained from the complex form |
| :--- |
| using a specially constructed similarity transformation. | using a specially constructed similarity transformation.

See Also

Eigenvalues and eigenvectors
Convert real Schur form to complex Schur form

Purpose Round toward infinity

Syntax $\quad B=\operatorname{ceil}(A)$

Description $\quad B=c$ eil(A) rounds the elements of A to the nearest integers greater than or equal to A. F or complex A , the imaginary and real parts are rounded independently.
a $=$
Columns 1 through 4
$\begin{array}{llll}-1.9000 & -0.2000 & 3.4000 & 5.6000\end{array}$

Columns 5 through 6
$7.0000 \quad 2.4000+3.6000 i$
ceil(a)
ans =

Columns 1 through 4
$\begin{array}{llll}-1.0000 & 4.0000 & 6.0000\end{array}$

Columns 5 through 6
$7.0000 \quad 3.0000+4.0000 i$
See Also
fix
floor
Round toward zero
round Round to nearest integer

Purpose

```
Syntax
```


Description
 Description

Examples

```
    A = ones(2,2)
```

 \(A=\)
 11
 \(1 \quad 1\)
 c = cell(size(A))
 \(c=\)
 [] []
 [] []
 See Also
ones
rand
$r a n d n$
zeros

Create an array of all ones
Uniformly distributed random numbers and arrays N ormally distributed random numbers and arrays Create an array of all zeros
Purpose Cell array to structure array conversion

Syntax $\quad s=c e l l 2 s t r u c t(c, f i e l d s$, dim)

Description $s=c e l l 2 s t r u c t(c, f i e l d s, d i m)$ converts the cell arrayc into the structure s by folding the dimension dim of c into fields of s. The length of c along the specified dimension (size(c, dim)) must match the number of fields names in fields. Argument fields can be character array or a cell array of strings.

Examples

```
c = {'tree', 37.4,'birch'};
f = {'category','height','name'};
s = cell2struct(c,f,2)
s =
category: 'tree'
        height: 37.4000
            name: 'birch'
```

See Also	fieldnames	Field names of a structure
struct $2 c e l l$	Structure to cell array conversion	

Purpose

Syntax

Description
Example
$C\{2,1\}=$
12
34
$C\{1,2\}=$
Tony
$C\{2,2\}=$

- 5
$C\{1,3\}=$
$3.0000+4.0000 i$
$C\{2,3\}=$
$a b c$
See Also
cellplot
Graphically display the structure of cell arrays

Purpose Graphically display the structure of cell arrays

```
Syntax cellplot(c)
cellplot(c,'legend')
handles = cellplot(...)
```

Description

Limitations
Examples
cellplot (c) displays a figure window that graphically represents the contents of c . Filled rectangles represent elements of vectors and arrays, while scalars and short text strings are displayed as text.
cellplot(c,'legend') also puts a legend next to the plot.
handles = cellplot(c) displays a figure window and returns a vector of surface handles.

Thecell pl ot function can display only two-dimensional cell arrays.
Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings:

```
c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));
```

The commandcell plot(c) produces:

Purpose Create cell array of strings from character array

Syntax
 c = cellstr(S)

Description

Examples Given the string matrix
$S=$
abc
defg
hi
The command $c=c e l l s t r(s)$ returns the 3-by-1 cell array:

```
```

c =

```
```

c =
abc'
abc'
'defg'
'defg'
'hi'

```
```

 'hi'
    ```
```

$c=c e l l s t r(S)$ places each row of the character arrays into separate cells of c. Use thestring function to convert back to a string matrix.
iscellstr string

True for cell array of strings
Convert numeric values to string

Purpose Conjugate Gradients Squared method

```
Syntax
x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A, b, tol, maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
x = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = cgs(A,b,tol,maxit,M1,M2,x0)
```


Description $\quad x=\operatorname{cgs}(A, b)$ attempts to solve the system of linear equations $A^{*} x=b$ for x.

 The coefficient matrixa must besquare and the right hand side(column) vector b must have length n, where A is $n-b y-n$. cgs will start iterating from an initial estimate that by default is an all zero vector of length n. Iterates are produced until the method either converges, fails, or has computed the maximum number of iterations. Convergence is achieved when an iterate x has relative residual $\operatorname{norm}\left(b-A^{*} x\right) / \operatorname{norm}(b)$ less than or equal to the tolerance of the method. The default tolerance is $1 \mathrm{e}-6$. The default maximum number of iterations is the minimum of n and 20. No preconditioning is used.$\operatorname{cgs}(A, b, t o l)$ specifies the tolerance of the method, $t o l$.
$\operatorname{cgs}(A, b, t o l$, maxit) additionally specifies the maximum number of iterations, maxit.
$\operatorname{cgs}(A, b, t o l, m a x i t, M)$ andcgs(A, b,tol, maxit, M1, M2) use left preconditioner M or $M=M 1 * M 2$ and effectively solve the systeminv(M)*A*x=inv(M)*b for x . If M 1 or M2 is given as the empty matrix ([]), it is considered to be theidentity matrix, equivalent to no preconditioning at all. Since systems of equations of the form $M^{*} y=r$ are solved using backslash within cgs,it is wise to factor preconditioners into their LU factors first. F or example, replace $\operatorname{cgs}(A, b, t o l, m a x i t, M)$ with:

```
[M1, M2] = Iu(M);
cgs(A, b, tol, maxit, M1, M2).
```

$\operatorname{cgs}(A, b, t o l, \operatorname{maxit}, M 1, M 2, x 0)$ specifies the initial estimate $\times 0$. If $\times 0$ is given as the empty matrix ([]), the default all zero vector is used.
$x=\operatorname{cgs}(A, b, t o l, \operatorname{maxit}, M 1, M 2, x 0)$ returns a solutionx.Ifcgs converged, a message to that effect is displayed. Ifcgs failed to converge after the maximum number of iterations or halted for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at which the method stopped or failed.
$[x, f \mid a g]=\operatorname{cgs}(A, b, t o l$, maxit, M1, M2, x 0) returns a solution x and a flag that describes the convergence of cgs :
\(\left.\left.$$
\begin{array}{ll}\hline \text { Flag } & \text { Convergence } \\
\hline 0 & \begin{array}{l}\text { cgs converged to the desired tolerance } t \text { ol within maxi t } \\
\text { iterations without failing for any reason. }\end{array} \\
\hline 1 & \text { cgs iterated maxi t times but did not converge. }\end{array}
$$\right\} \begin{array}{l}One of the systems of equations of the form \mathrm{M}^{*} \mathrm{y}=\mathrm{r}

involving the preconditioner was ill-conditioned and did not

return a useable result when solved by \backslash (backslash).\end{array}\right\}\)| The method stagnated. (Two consecutive iterates were the |
| :--- |
| same.) |
| 3 | | One of the scalar quantities calculated during cgs became |
| :--- |
| too small or too large to continue computing. |

Whenever fl ag is not 0 , the solution \times returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.
$[x, f l a g, r e l r e s]=c g s(A, b, t o l, m a x i t, M 1, M 2, x 0)$ alsoreturns therela-

$[x, f l a g, r e l r e s, i t e r]=\operatorname{cgs}(A, b, t o l, \operatorname{maxit}, M 1, M 2, x 0)$ alsoreturns the iteration number at which x was computed. This always satisfies

```
0 \leqiter \leqmaxit.
```

$[x, f \mid a g$, relres,iter, resvec] $=c g s(A, b, t o l$, maxit, M1, M2, x 0) also returns a vector of the residual norms at each iteration, starting from resvec(1) $=\operatorname{norm}\left(b-A^{*} \times 0\right)$. Ifflag is $0, r e s v e c ~ i s ~ o f ~ l e n g t h i t e r+1 ~ a n d ~$ resvec(end) \leq tol* norm(b).

Examples

```
load west 0479
A = west0479
b = sum(A, 2)
[x,f|ag] =cgs(A,b)
```

fl ag is 1 sincecgs will not converge to the default tolerance 1e-6 within the default 20 iterations.

```
[L1,U1] = |uinc(A, le-5)
[x1,flag1] = cgs(A,b,1e-6, 20,L1,U1)
```

flag is 2 since the upper triangular U1 has a zero on its diagonal so cgs fails in the first iteration when it tries to solve a system such $\operatorname{as\cup } \cup 1^{*} y=r$ for y with backslash.

```
[L2,U2] = |uinc(A, 1e-6)
[x2,flag2,relres 2, iter 2, resvec2] = cgs(A,b,1e-15,10,L2,U2)
```

flag2 is 0 sincecgs will converge to the tolerance of $7.9 \mathrm{e}-16$ (the value of relres 2) at the fifth iteration (the value of iter 2) when preconditioned by the incomplete LU factorization with a drop tolerance of $1 \mathrm{e}-6 . \mathrm{resvec} 2(1)=$ norm(b) andresvec $2(6)=\operatorname{norm}\left(b-A^{*} \times 2\right)$. You may follow the progress of $c g s$
by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0) with semilogy (0:iter 2 , res $\left.2 / \operatorname{lnorm}(b),{ }^{\prime}-0^{\prime}\right)$.

| See Also | bicg | BiConjugate Gradients method |
| :--- | :--- | :--- |
| bicgstab | BiConjugate Gradients Stabilized method | |
| gmres | Generalized Minimum Residual method (with restarts) | |
| | luinc | Incomplete LU matrix factorizations |

Purpose \quad Create character array (string)

Syntax \quad| S | $=\operatorname{char}(X)$ |
| ---: | :--- |
| S | $=\operatorname{char}(C)$ |
| S | $=\operatorname{char}(t 1, t 2, t 3 \ldots)$ |

Description

Remarks

Examples

S = char(X) converts the array X that contains positive integers representing character codes intoa MATLAB character array (thefirst 127 codes areASCII). The actual characters displayed depend on the character set encoding for a given font. The result for any elements of x outside the range from 0 to 65535 is not defined (and may vary from platform to platform). Usedoubl e to convert a character array into its numeric codes.
$S=c h a r(C)$ when C is a cell array of strings, places each element of C into the rows of the character arrays. Usecell str to convert back.
$\mathrm{S}=\mathrm{char}(\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3, .$.$) forms the character array \mathrm{S}$ containing the text strings $T 1, T 2, T 3, \ldots$ as rows, automatically padding each string with blanks to form a valid matrix. E ach text parameter, Ti , can itself be a character array. This allows the creation of arbitarily large character arrays. Empty strings are significant.

Ordinarily, the elements of A are integers in the range 32:127, which are the printable ASCII characters, or in the range 0:255, which are all 8-bit values. For noninteger values, or values outside the range 0:255, the characters printed are determined by fix(rem(A, 256)).

To print a 3-by-32 display of the printable ASCII characters:

```
ascii=char(reshape(32:127,32,3)')
ascii=
! " # $ % & ' ( ) * + , - . l 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B CDEF GHI J KLMNOP Q R S T U V WX Y Z [ | ]^^_
' a b cdefgghi j k | m n o p q r s t u v w x y z { | } ~
```


See Also

get, set, and text in the online MATLAB Function Reference, and:

| cellstr | Create cell array of strings from character array |
| :--- | :--- |
| double | Convert to double precision |
| strings | MATLAB string handling |
| strvcat | Vertical concatenation of strings |

Purpose Cholesky factorization

Syntax

```
R = chol(X)
[R,p] = chol(X)
```

Description Thechol function uses only the diagonal and upper triangle of x. The lower triangular is assumed to be the (complex conjugate) transpose of the upper. That is, X is Hermitian.
$R=c h o l(X)$, where X is positive definite produces an upper triangular R so that $R^{\prime} * R=X$. If X is not positive definite, an error message is printed.
$[R, p]=\operatorname{chol}(X)$, with two output arguments, never produces an error message. If X is positive definite, then p is 0 and R is the same as above. If X is not positive definite, then p is a positive integer and R is an upper triangular matrix of order $q=p-1$ so that $R^{\prime} * R=X(1: q, 1: q)$.

Examples The binomial coefficients arranged in a symmetric array create an interesting

 positive definite matrix.```
n = 5;
X = pascal(n)
X =
\begin{tabular}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 6 & 10 & 15 \\
1 & 4 & 10 & 20 & 35 \\
1 & 5 & 15 & 35 & 70
\end{tabular}
```

It is interesting because its Cholesky factor consists of the same coefficients, arranged in an upper triangular matrix.

$R=\operatorname{chol}(X)$				
$R$	$=$			
1	1	1	1	1
0	1	2	3	4
0	0	1	3	6
0	0	0	1	4
0	0	0	0	1

Destroy the positive definiteness (and actually make the matrix singular) by subtracting 1 from the last element.

$X(n, n)$		n)		
$X=$				
1	1	1	1	1
1	2	3	4	5
1	3	6	10	15
1	4	10	20	35
1	5	15	35	69

Now an attempt to find the Cholesky factorization fails.

Algorithm

References
chol uses the algorithm from the LINPACK subroutineZPOFA. For a detailed description of the use of the Cholesky decomposition, see Chapter 8 of the LINPACK Users' Guide.
[1] Dongarra, J J ., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadel phia, 1979.
Purpose Incomplete Cholesky factorizations

Syntax	cholinc( $\mathrm{X}, \mathrm{O} \mathrm{O}^{\prime}$ )
	$\mathrm{R}=$ cholinc( $\left.\mathrm{X},{ }^{\prime} \mathrm{O}^{\prime}\right)$
	$[R, p]=$ cholinc( $\mathrm{X}, \mathrm{l}^{\prime}$ ')
	$R=$ cholinc(X, droptol)
	$\mathrm{R}=$ cholinc(X,options)

Description
cholinc( X,' O') produces the incomplete Cholesky factorization of a real symmetric positive definite sparse matrix with 0 level of fill-in.
cholinc( $\mathrm{X},{ }^{\prime} \mathrm{O}^{\prime}$ ) produces an upper triangular matrix. The lower triangle of X is assumed to be the transpose of the upper ( X is symmetric).
$R=c h o l i n c\left(X, O^{\prime}\right)$ returns an upper triangular matrix which has the same sparsity pattern as the upper triangle of $X$. The product $R^{\prime} * R$ agrees with $X$ over its sparsity pattern. The positive definiteness of $X$ is not sufficient to guarantee the existence of the incomplete factor, and, in this case, an error message is printed.
[R, p] = cholinc(X,' 0') never produces an error message. If the incomplete factor exists, then $p=0$ and $R$ is the upper triangular factor. If the calculation of $R$ breaks down dueto a zero or negative pivot, then $p$ is a positive integer and $R$ is an upper triangular matrix of size $q$-by-n where $q=p-1$. The sparsity pattern of $R$ is the same as theq-by-n upper triangle of $X$ and then -by-n product $R^{\prime} * R$ agrees with $x$ over the sparsity pattern of its first $q$ rows and columns $X(1: q,:)$ and $X(:, 1: q)$.
$R=$ cholinc(X, droptol) computes theincompleteCholesky factorization of any sparse matrix using a drop tolerance. dropt ol must be a non-negative scalar. cholinc(X, droptol) produces an approximation to the complete Cholesky factor returned by chol (X). For increasingly smaller values of the drop tolerance, this approximation improves, until the drop tolerance is 0 , at which time the complete Cholesky factorization is produced, as in chol (X).

The off-diagonal entries $R(i, j)$ which are smaller in magnitude than the local drop tolerance, which is given bydroptol *norm(X(: j) )/R(i,i), aredropped from the factor. The diagonal entries are preserved even if they are too small in an attempt to avoid a singular factor.
$R=$ cholinc(X,options) specifies a structure with up to three fields which may be used in any combination:dropt ol , mi chol , rdiag. Additional fields are ignored.
droptol is the drop tolerance of the incomplete factorization.
If michol is 1, chol inc produces the modified incomplete Cholesky factorization which subtracts the dropped elements in any column from the diagonal element of the upper triangular factor. The default value is 0 .

If rdiag is 1 , any zeros on the diagonal of the upper triangular factor are replaced by the square root of the product of the drop tolerance and the norm of that column of $X$, sqrt (droptol *norm( $X(:, j))$ ). Thedefault is 0 . Note that thet hresh option available in the incomplete LU factorization (seel ui nc ) is not here as it is always set to 0 . There are never any row interchanges during the formation of the incomplete Cholesky factor.
$R=c h o l i n c(X, d r o p t o l)$ and $R=c h o l i n c(X, o p t i o n s)$ return an upper triangular matrix in $R$. The product $R^{\prime} * R$ is an approximation to the matrix $X$.

## Remarks

## Examples

These incomplete factorizations may be useful as preconditioners for solving largesparsesystems of linear equations. A single0 on the diagonal of the upper triangular factor makes it singular. The incomplete factorization with a drop tolerance prints a warning message if the upper triangular factor has zeros on the diagonal. Similarly, using ther di ag option to replace a zero diagonal only gets rid of the symptoms of the problem, but it does not solve it. The preconditioner may not be singular, but it probably is not useful, and a warning message is printed.

Start with a symmetric positive definite matrix, S .

```
S = delsq(numgrid('C',15));
```

$S$ is the two-dimensional, five-point discrete negative Lapacian on the grid generated by numgrid('C', 15).

Compute the Cholesky factorization and the incomplete Cholesky factorization of level 0 to comparethe fill-in. Makes singular by zeroing out a diagonal entry and compute the (partial) incomplete Cholesky factorization of level 0 .

```
C = chol(S);
RO = chol(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');
```

There is fill-in within the bands of S in the complete Cholesky factor, but none in the incomplete Cholesky factor. The incomplete factorization of the singular s2 stopped at row $p=101$ resulting in a 100-by-139 partial factor.

```
D1 = (RO'*R0).*spones(S)-S;
D2 = (R'*R).*spones(S2)-S2;
```

D1 has elements of the order of eps, showing that RO ' * R0 agrees with S over its sparsity pattern. D2 has elements of the order of eps over its first 100 rows and first 100 columns, D2(1:100,:) and D2(:, 1:100).


The first subplot below shows that chol inc ( $\mathrm{S}, 0$ ) , the incomplete Cholesky factor with a drop tolerance of 0 , is the same as the Cholesky factor of $S$.

I ncreasing the drop tolerance increases the sparsity of the incomplete factors, as seen below.


Unfortunately, the sparser factors are poor approximations, as is seen by the plot of drop tolerance versus norm( $\left.R^{\prime} * R-S, 1\right) /$ norm( $\left.S, 1\right)$ in the next figure.



Limitations	cholinc works on square matrices only. For cholinc( $\mathrm{X}^{\prime} \mathrm{O}^{\prime}$ ) , X must be real.
Algorithm	$R=$ cholinc(X, droptol) is obtained from $[L, U]=$ Iuinc(X, options), where options.droptol = droptol andoptions.thresh $=0$. Therows of the uppertriangular $U$ are scaled by the square root of the diagonal in that row, and this scaled factor becomes R.   $R=c h o l i n c(X$, options $)$ is produced in a similar manner, except therdiag option translates into the udi ag option and the mi l u option takes the value of themichol option.   chol inc( $\mathrm{X}, \mathrm{I}^{\prime} 0$ ') is based on the "KJI" variant of the Cholesky factorization. Updates are made only to positions which are nonzero in the upper triangle of X.
See Also	chol Cholesky factorization   luinc Incomplete LU matrix factorizations   pcg Preconditioned Conjugate Gradients method
References	Saad, Y ousef, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996, Chapter 10 - Preconditioning Techniques.

Purpose

```
Syntax
```

Description
The possible object classes are:
cell Multidimensional cell array
double Multidimensional double precision array
sparse Two-dimensional real (or complex) sparse array
char Array of alphanumeric characters
struct Structure
'class_name' User-defined object class
obj = class(s,'class_name') creates an object of class'class_name' using
structures as a template. This syntax is only valid in a function named
class_name.min a directory named @class_name (where'class_name' is the
same as the string passed into cl as s ).

NOTE On VMS, the method directory is named \#cl as s name.
obj = class(s,'class_name', parent 1, parent 2,...) creates an object of class' class_name' using structures as a template, and also ensures that the newly created object inherits the methods and fields of the parent objects parent 1, parent 2, and so on.

## See Also

Inferior class relationship
Detect an object of a given class
Superior class relationship

Purpose Remove items from memory

## Syntax <br> clear <br> clear name <br> clear namel name2 name3... <br> clear global name

clear keyword $\quad$ wherekeyword is one of: $\left\{\begin{array}{l}\text { functions } \\ \text { varitables } \\ \text { mex } \\ \text { global } \\ \text { all }\end{array}\right.$

Description
clear, by itself, clears all variables from the workspace.
clear name removesjust theM-fileor MEX-filefunction or variablena me from the workspace. If na me is global, it is removed from the current workspace, but left accessible to any functions declaring it global.
clear namel name 2 name 3 removesname1, name2, andname 3 from the workspace.
clear global name removes the global variablename.
clear keyword clears the indicated items:
clear functions Clears all the currently compiled M-functions from memory.
clear variables Clears all variables from the workspace.
clear mex Clears all MEX-files from memory.
clear global Clears all global variables.
clear all Removes all variables, functions, and MEX-files from memory, leaving the workspace empty.

Remarks
You can use wildcards (*) to remove items selectively. For instance, clear my * removes any variables whose names begin with the string "my." The function form of the syntax, cl ear (' name'), is also permitted.

## Limitations clear doesn't affect the amount of memory allocated to the MATLAB process under UNIX.

See Also<br>pack<br>Consolidate workspace memory

Purpose Current time as a date vector

## Syntax <br> c = clock

Description $\quad c=c l o c k$ returns a 6-element date vector containing the current date and time in decimal form:

```
c = [year month day hour mi nute seconds]
```

The first five elements are integers. The seconds element is accurateto several digits beyond the decimal point. The statement fi (clock) rounds to integer display format.

See Also | cputime | CPU time in seconds |  |
| :--- | :--- | :--- |
| datenum |  |  |
| datevec | Serial date number |  |
| etime | Date components |  |
| tic | Elapsed time |  |
|  | toc | Start a stopwatch timer |
|  | Read the stopwatch timer |  |

## Purpose Sparse column minimum degree permutation

## Syntax $\quad p=\operatorname{col} m m d(S)$

Description

## Algorithm

Examples $A^{\prime} * A$, but does not actually form $A^{\prime} * A$. stages. To speed up the process, several heuristics are used to carry out multiple stages simultaneously.

The Harwell-B oeing collection of sparse matrices includes a test matrix

The minimum degree algorithm for symmetric matrices is described in the review paper by George and Liu [1]. For nonsymmetric matrices, MATLAB's minimum degree algorithm is new and is described in the paper by Gilbert, Moler, and Schreiber [2]. It is roughly like symmetric minimum degree for

Each stage of the algorithm chooses a vertex in the graph of A' *A of lowest degree (that is, a column of A having nonzero elements in common with the fewest other columns), eliminates that vertex, and updates the remainder of the graph by adding fill (that is, merging rows). If the input matrix 5 is of size $m$-by-n , the columns are all eliminated and the permutation is complete after n ABB313. It is a rectangular matrix, of order 313-by-176, associated with least squares adjustments of geodesic data in the Sudan. Sincethis is a least squares problem, form the augmented matrix (see spaugment), which is square and of order 489. Thespy plot shows that the nonzeros in the original matrix are concentrated in two stripes, which are reflected and supplemented with a scaled identity in the augmented matrix. The col mmd ordering scrambles this
structure. (Note that this example requires the Harwell-Boeing collection of software.)

```
load('abb313.mat')
S = spaugment(A);
p = colmmd(S);
spy(S)
spy(s(:, p))
```




Comparing the spy plot of the LU factorization of the original matrix with that of the reordered matrix shows that minimum degree reduces the time and
storage requirements by better than a factor of 2.6. The nonzero counts are 18813 and 7223 , respectively.

```
spy(|u(S))
spy(|u(S(:, p)))
```




See Also

References

1 Backslash or matrix left division
colperm
Iu
spparms
symmmd
symrcm

Sparse column permutation based on nonzero count LU matrix factorization
Set parameters for sparse matrix routines Sparse symmetric minimum degree ordering Sparse reverse Cuthill-McK ee ordering
[1] George, Alan and Liu, J oseph, "The Evolution of the Minimum Degree Ordering Algorithm," SIAM Review, 1989, 31:1-19,.
[2] Gilbert, J ohn R., Cleve M oler, and Robert Schreiber, "Sparse Matrices in MATLAB: Design and Implementation," SIAM J ournal on Matrix Analysis and Applications 13, 1992, pp. 333-356.

Purpose Sparse column permutation based on nonzero count

## Syntax $\quad j=$ colperm(S)

Description

## Algorithm

Examples

## See Also

chol
col mmd
Iu
symr cm

Cholesky factorization
Sparse minimum degree ordering
LU matrix factorization
Sparse reverse Cuthill-McKee ordering

Purpose Companion matrix

## Syntax <br> A = compan(u)

Description

Examples
A = compan(u) returns the corresponding companion matrix whose first row is $-u(2: n) / u(1)$, whereu is a vector of polynomial coefficients. Theeigenvalues of compan(u) are the roots of the polynomial.

The polynomial $(x-1)(x-2)(x+3)=x^{3}-7 x+6$ has a companion matrix given by

```
u = [lllll
A = compan(u)
A =
 0 -6
 1 0
 0}
```

The eigenvalues are the polynomial roots:

```
eig(compan(u))
ans =
 -3.0000
 2.0000
 1.0000
```

This is alsoroots(u).

## See Also

eig	Eigenvalues and eigenvectors
poly	Polynomial with specified roots
polyval	Polynomial evaluation
roots	Polynomial roots

Purpose Identify the computer on which MATLAB is running

Syntax	str $=$ computer
$[$ str, maxsize $]=$ computer	

Description
str = computer returns a string with the computer typeon which MATLAB is running.
[str, maxsize] = computer returns the integer maxsize, which contains the maximum number of elements allowed in an array with this version of MATLAB.

The list of supported computers changes as new computers are added and others become obsolete.

String	Computer
SUN4	Sun4 SPARC workstation
SOL2	Solaris 2 SPARC workstation
PCWI N	MS-Windows
MAC2	All Macintosh
HP700	HP 9000/700
ALPHA	DEC Alpha
AXP_VMSG	Alpha VMS G_float
AXP_VMSIEEE	Alpha VMS IEEE
VAX_VMSD	VAXNMS D_float


String	Computer
VAX_ VMSG	VAXNMS G_float
LNX86	Linux Intel
SGI	Silicon Graphics (R4000)
SGI 64	Silicon Graphics (R8000)
I BM_RS	IBM RS6000 workstation

[^2]Purpose Condition number with respect to inversion

Syntax	$c=\operatorname{cond}(X)$	
	$c=$ cond	
Description	The condi system of accuracy Values of $c=c o n d(x)$ singular   $c=c o n d$   norm(X	mber of a matrix measures the sensi equations to errors in the data. It giv esults from matrix inversion and the andcond( $X, p$ ) near 1 indicate a w   urns the 2 -norm condition number, $x$ to the smallest.   returns the matrix condition number   norm(inv(X), p
	If $p$ is...	Then $\operatorname{cond}(X, p)$ returns the...
	1	1-norm condition number
	2	2-norm condition number
	'fro'	Frobenius norm condition number
	i nf	Infinity norm condition number


Algorithm	The algorithm for cond (when $p=2$ ) uses the singular value decomposition, svd.
See Also	condeig Condition number with respect to eigenvalues
	condest 1-norm matrix condition number estimate
	norm Vector and matrix norms
	rank Rank of a matrix
	svd Singular value decomposition
References	[1] Dongarra, J.J ., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979.

2-118

Purpose Condition number with respect to eigenvalues

Syntax	$\begin{aligned} & c=\text { condeig(A) } \\ & {[V, D, s]=\operatorname{condeig}(A)} \end{aligned}$
Description	$c=$ condeig(A) returns a vector of condition numbers for the eigenvalues of A. These condition numbers are the reciprocals of the cosines of the angles between the left and right eigenvectors.
	$[V, D, S]=$ condeig(A) is equivalent to: $[\mathrm{V}, \mathrm{D}]=$ eig(A); $\mathrm{S}=$ condeig(A) ;
	Large condition numbers imply that $A$ is near a matrix with multiple eigenvalues.
See Also	balance Improve accuracy of computed eigenvalues
	cond Condition number with respect to inversion
	eig Eigenvalues and eigenvectors

Purpose 1-norm matrix condition number estimate

Syntax	$c=\operatorname{condest}(A)$
	$[C, V]=\operatorname{condest}(A)$

Description $c=$ condest (A) uses Higham's modification of Hager's method to estimate the condition number of a matrix. The computed c is a lower bound for the condition of $A$ in the 1-norm.
$[\mathrm{C}, \mathrm{v}]=$ condest (A) estimates the condition number and also computes a vector $v$ such that $\|A v\|=\|A\|\|v\| / c$.
Thus, $v$ is an approximate null vector of $A$ if $c$ is large.
This function handles both real and complex matrices. It is particularly useful for sparse matrices.

| See Also | cond <br> normest |
| :--- | :--- | :--- |
| Reference | [1] Higham, N.J. "Fortran Codes for Estimating the One-Norm of a Real or <br> 2-norm estimate |
|  | Complex Matrix, with Applications to Condition Estimation." ACM Trans. <br> Math. Soft., 14, 1988, pp. 381-396. |

2-120

Purpose Complex conjugate

## Syntax <br> $Z C=\operatorname{conj}(Z)$

Description $\quad Z C=\operatorname{conj}(Z)$ returns the complex conjugate of the elements of $Z$.
Algorithm
If $Z$ is a complex array:

```
conj(Z) = real(Z) - i *i mag(Z)
```

See Also	i, j	Imaginary unit $(\sqrt{-1})$
	i mag	Imaginary part of a complex number
real	Real part of a complex number	

## See Also i, j

real Real part of a complex number

## Purpose Convolution and polynomial multiplication

## Syntax $\quad w=\operatorname{conv}(u, v)$

Description

## Definition

## Algorithm

See Also
$w=\operatorname{conv}(u, v)$ convolves vectors $u$ and $v$. Algebraically, convolution is the same operation as multiplying the polynomials whose coefficients are the elements of $u$ and $v$.

Let $m=$ length(u) and $n=1$ ength(v). Then $w$ is the vector of length $m+n-1$ whose $k$ th element is

$$
w(k)=\sum_{j} u(j) v(k+1-j)
$$

The sum is over all the values of $j$ which lead to legal subscripts for $u(j)$ and $v(k+1-j)$, specifically $j=\max (1, k+1-n): \min (k, m)$. When $m=n$, this gives

```
w(1) = u(1) *v(1)
w(2) =u(1) *v(2)+u(2)*v(1)
w(3)=u(1)}\mp@subsup{}{}{*}v(3)+u(2)*v(2)+u(3)*v(1
w(n) =u(1) *v(n)+u(2)*v(n-1)+\ldots +u(n)*v(1)
w(2*n-1) = u(n)*v(n)
```

The convolution theorem says, roughly, that convolving two sequences is the same as multiplying their Fourier transforms. In order to make this precise, it is necessary to pad the two vectors with zeros and ignore roundoff error. Thus, if
$X=f f([x z e r o s(1, l e n g t h(y)-1)])$ and $Y=f f([y z e r o s(1, l e n g t h(x)-1)])$
thenconv( $x, y$ ) $=i f f t(X, * Y)$
convmt x, xconv2, xcorr, in the Signal Processing Toolbox, and:
deconv Deconvolution and polynomial division
filter Filter data with an infinite impulse response (IIR) or finite impulse response (FIR) filter

## Purpose Two-dimensional convolution

```
Syntax C = conv2(A,B)
C = conv2(hcol,hrow, A)
C = conv2(...,'shape')
```

Description $\quad C=\operatorname{conv2}(A, B)$ computes the two-dimensional convolution of matrices $A$ and B. If one of these matrices describes a two-dimensional FIR filter, the other matrix is filtered in two dimensions.

The size of $C$ in each dimension is equal to the sum of the corresponding dimensions of the input matrices, minus one. That is, if the size of $A$ is [ ma, na] and the size of $B$ is [ $m b, n b]$, then the size of $C$ is $[m a+m b-1, n a+n b-1]$.
$C=$ conv2(hcol, hrow, A) convolves A separably with hcol in the column direction and hrow in the row direction. hcol and hrow should both be vectors.
$C=$ conv2(...,'shape') returns a subsection of the two-dimensional convolution, as specified by the shape parameter:
full Returns the full two-dimensional convolution (default).
s a me Returns the central part of the convolution of the same size as A.
valid Returns only those parts of the convolution that are computed without the zero-padded edges. Using this option, C has size[ ma $m b+1, n a-n b+1]$ whensize(A) >size(B).

## Examples

In image processing, the Sobel edge finding operation is a two-dimensional convolution of an input array with the special matrix

```
s = [lllllolllll
```

These commands extract the horizontal edges from a raised pedestal:

```
A = zeros(10);
A(3:7,3:7) = ones(5);
H=conv2(A,s);
mesh(H)
```

These commands display first the vertical edges of A, then both horizontal and vertical edges.

```
V = conv2(A, s');
mesh(V)
mesh(sqrt(H.^2+V.^^2))
```


## See Also

conv
deconv
filter 2
xcorr 2

Convolution and polynomial multiplication Deconvolution and polynomial division Two-dimensional digital filtering Two-dimensional cross-correlation (see Signal Processing Tool box)

Purpose

## Syntax <br> Description

Convex hull

```
K = convhull(}x,y\mathrm{)
K = convhull(x,y,TRI)
```

$K=$ convhull( $x, y$ ) returns indices into the $x$ and $y$ vectors of the points on the convex hull.

K = convhull(x,y, TRI) uses the triangulation (as obtained from del aunay) instead of computing it each time.

## Examples

```
xx = -1:.05:1; yy = abs(sqrt(xx));
 [x,y] = pol 2cart(xx,yy);
 k = convhull(x,y);
 plot(x(k),y(k),'r-', x,y,'b+')
```



## See Also

Delauney triangulation
Area of polygon
Voronoi diagram
Purpose $\quad N$-dimensional convolution

Syntax $\quad$| $C$ | $=\operatorname{convn}(A, B)$ |
| ---: | :--- |
| $C$ | $=\operatorname{convn}\left(A, B\right.$, ' shape' $\left.^{\prime}\right)$ |

Description $\quad C=\operatorname{convn}(A, B)$ computes the $N$-dimensional convolution of the arrays $A$ and $B$. The size of the result is size $(A)+s i z e(B)-1$.
$C=\operatorname{convn}(A, B, ' s h a p e ')$ returns a subsection of the N -dimensional convolution, as specified by the shape parameter:

- ' full' returns the full N -dimensional convolution (default).
- ' s a me' returns the central part of the result that is the same size as A.
- ' valid' returns only those parts of the convolution that can be computed without assuming that the array A is zero-padded. The size of the result is $\max (\operatorname{size}(A)-s i z e(B)+1,0)$.
$\begin{array}{lll}\text { See Also conv } & \text { conv2 } & \text { Convolution and polynomial multiplication } \\ & \text { Two-dimensional convolution }\end{array}$

2-126

## Purpose Correlation coefficients

Syntax $\quad$| $S$ | $=\operatorname{corrcoef}(x)$ |
| ---: | :--- |
| $S$ | $=\operatorname{corrcoef}(x, y)$ |

## Description

## See Also

xcorr, xcov in the Signal Processing Tool box, and:

cov	Covariance matrix
mean	Average or mean value of arrays
std	Standard deviation

Purpose
Syntax

Description

Algorithm

$$
\begin{aligned}
& \cos (x+i y)=\cos (x) \cosh (y)-i \sin (x) \sin (y) \\
& \cos (z)=\frac{\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-i z}}{2} \\
& \cosh (z)=\frac{\mathrm{e}^{z}+\mathrm{e}^{-z}}{2}
\end{aligned}
$$

See Also acos,acosh Inverse cosine and inverse hyperbolic cosine

2-128

Purpose

## Syntax <br> Description

## Examples

Cotangent and hyperbolic cotangent
$Y=\cot (X)$
$Y=\operatorname{coth}(X)$
The cot and coth functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
$Y=\cot (X)$ returns the cotangent for each element of $X$.
$Y=\operatorname{coth}(X)$ returns the hyperbolic cotangent for each element of $X$.
Graph the cotangent and hyperbolic cotangent over the domains $-\pi<x<0$ and $0<x<\pi$.

```
x1 = -pi+0.01:0.01:-0.01; x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1), x2, cot(x2))
plot(x1,coth(x1), x2,\operatorname{coth(x2))}
```



## Algorithm

$$
\begin{aligned}
& \cot (z)=\frac{1}{\tan (z)} \\
& \operatorname{coth}(z)=\frac{1}{\tanh (z)}
\end{aligned}
$$

See Also
acot, acoth
I nverse cotangent and inverse hyperbolic cotangent
Purpose Covariance matrix

Syntax $\quad$| $C$ | $=\operatorname{cov}(X)$ |
| ---: | :--- |
| $C$ | $=\operatorname{cov}(x, y)$ |

Description $\quad c=\operatorname{cov}(x)$ where $x$ is a vector returns the variance of the vector elements.
For matrices where each row is an observation and each column a variable, $\operatorname{cov}(x)$ is the covariance matrix. di ag(cov(x)) is a vector of variances for each column, andsqrt(diag(cov(x))) is a vector of standard deviations.
$C=\operatorname{cov}(x, y)$, wherex and $y$ are column vectors of equal length, is equivalent tocov([x y]).

## Remarks

Examples

See Also
cov removes the mean from each column before calculating the result.
The covariancefunction is defined as
where $E$ is the mathematical expectation and $\mu_{i}=E x_{i}$.
Consider $A=\left[\begin{array}{llllllll}-1 & 1 & 2 & -2 & 3 & 1 & 4 & 0\end{array}\right]$. To obtain a vector of variances for each column of $A$ :

```
v=diag(cov(A))'
v =
 10.3333 2.3333 1.0000
```

Compare vector v with covariance matrix c :

```
C =
 10.3333 -4.1667 3.0000
 -4.1667 2.3333 -1.5000
 3.0000 -1.5000 1.0000
```

The diagonal elements $\mathrm{C}(\mathrm{i}, \mathrm{i})$ represent the variances for the columns of A . The off-diagonal elements $\mathrm{C}(\mathrm{i}, \mathrm{j})$ represent the covariances of columns $i$ and $j$.
$x \operatorname{corr}, x \operatorname{cov}$ in the Signal Processing Toolbox, and:
corrcoef Correlation coefficients
mean Average or mean value of arrays
std Standard deviation

Purpose

Syntax $\quad$| $B$ | $=c p l x p a i r(A)$ |
| ---: | :--- |
| $B$ | $=c p l x p a i r(A, t o l)$ |
| $B$ | $=c p l x p a i r(A,[1$, dim $)$ |
| $B$ | $=c p l x p a i r(A, t o l$, dim $)$ |

```
B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)
```

Sort complex numbers into complex conjugate pairs

Diagnostics

## Description

$B=c p l x p a i r(A)$ sorts the elements along different dimensions of a complex array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the element with negative imaginary part comes first. The purely real values are returned following all the complex pairs. The complex conjugate pairs are forced to be exact complex conjugates. A default tolerance of 100 *eps relative toabs(A(i)) determines which numbers are real and which elements are paired complex conjugates.

IfA is a vector, cplxpair(A) returns A with complex conjugate pairs grouped together.

IfA is a matrix, cplxpair(A) returnsA with its columns sorted and complex conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along the first non-singleton dimension as vectors, returning an array of sorted elements.
$B=c p l x p a i r(A, t o l)$ overrides the default tolerance.
$B=c p l x p a i r(A,[]$, dim) sorts A along the dimension specified by scalar dim.
$B=c p l x p a i r(A, t o l, d i m)$ sorts A along the specified dimension and overrides the default tolerance.

If there are an odd number of complex numbers, or if the complex numbers cannot be grouped into complex conjugatepairs within the tolerance, cpl xpair generates the error message:

## cputime

Purpose Elapsed CPU time

## Syntax <br> cputime

Description cput i me returns the total CPU time (in seconds) used by MATLAB from the time it was started. This number can overflow the internal representation and wrap around.

## Examples

For example
$\mathrm{t}=\mathrm{cputime} ; \operatorname{surf}($ peaks(40)); $\mathrm{e}=\mathrm{cputime}-\mathrm{t}$
e =
0.4667
returns the CPU time used to run surf(peaks(40)).

See Also	cl ock	Current time as a date vector
et i me	tic, toc	Elapsed time
	Stopwatch timer	

## Purpose Vector cross product

Syntax $\quad$| $W$ | $=\operatorname{cross}(U, V)$ |
| :--- | :--- |
|  | $W=\operatorname{cross}(U, V, \operatorname{dim})$ |

## Description

## Remarks

## Examples

The cross and dot products of two vectors are calculated as shown:

```
a = [l 2 3]; b = [l4 5 6];
c = cross(a,b)
c =
 -3 6 - 3
d = sum(a.*b)
d =
```

Purpose Cosecant and hyperbolic cosecant

## Syntax <br> Description

Examples

```
Y = csc(x)
Y = csch(x)
```

Thecsc andcsch functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
$Y=\csc (x)$ returns the cosecant for each element of $x$.
$Y=\operatorname{csch}(x)$ returns the hyperbolic cosecant for each element of $x$.
Graph the cosecant and hyperbolic cosecant over the domains $-\pi<x<0$ and $0<x<\pi$.
$x 1=-p i+0.01: 0.01:-0.01 ; x 2=0.01: 0.01: \mathrm{pi}-0.01 ;$
plot (x1, csc (x1), x2, csc(x2))
plot (x1, csch(x1), x2, csch(x2))



See Also
acsc,acsch
Inverse cosecant and inverse hyperbolic cosecant

## Purpose Cumulative product

Syntax $\quad$| $B$ | $=\operatorname{cumprod}(A)$ |
| ---: | :--- |
| $B$ | $=\operatorname{cumprod}(A, d i m)$ |

Description

## Examples

$B=c u m p r o d(A)$ returns thecumulative product along different dimensions of an array.

If $A$ is a vector, cumprod(A) returns a vector containing the cumulative product of the elements of $A$.

IfA is a matrix, cumprod(A) returns a matrix the same size as A containing the cumulative products for each column of $A$.

IfA is a multidimensional array, cumprod (A) works on the first nonsingleton dimension.
$B=c u m p r o d(A, d i m)$ returns the cumulative product of the elements along the dimension of A specified by scalar dim. For example, cumprod( $A, 1$ ) increments the first (row) index, thus working along the rows of A.

```
cumprod(1:5)}=[\begin{array}{lllll}{1}&{2}&{6}&{24}&{120}\end{array}
A = [1 2 3; 4 5 6];
disp(cumprod(A))
 1 2 3
 4 10}1
disp(cumprod(A,2))
 1 2 6
 4O}12
```


## See Also

cumsum	Cumulative sum
prod	Product of array elements
sum	Sum of array elements

Purpose Cumulative sum

Syntax | $B$ | $=c u m s u m(A)$ |
| ---: | :--- |
| $B$ | $=c u m s u m(A, d i m)$ |

Description $\quad B=c u m s u m(A)$ returns the cumulative sum along different dimensions of an array.

If A is a vector, cumsum( A) returns a vector containing the cumulative sum of the elements of $A$.

If A is a matrix, cums um(A) returns a matrix the same size as A containing the cumulative sums for each column of $A$.

If A is a multidimensional array, cumsum(A) works on the first nonsingleton dimension.
$B=c u m s u m(A, d i m)$ returns the cumulative sum of the elements along the dimension of A specified by scalar di m. F or example, cums um( $\mathrm{A}, 1$ ) works across the first dimension (the rows).

## Examples



```
A = [1 2 3; 4 5 6];
disp(cumsum(A))
 1 2 3
 5 7 9
disp(cumsum(A,2))
 1 3 6
 4 9 15
```


## See Also

sum	Sum of array elements
prod	Product of array elements
cumprod	Cumulative product of elements

2-136

Purpose Cumulative trapezoidal numerical integration

Syntax $\quad$| $Z$ | $=\operatorname{cumtrapz}(Y)$ |
| ---: | :--- |
| $Z$ | $=\operatorname{cumtrapz}(X, Y)$ |
| $Z$ | $=c u m t r a p z(\ldots$ dim $)$ |

Description

See Also
cumsum
trapz
 via the trapezoidal method with unit spacing. (This is similar to cumsum(Y), except that trapezoidal approximation is used.) To compute the integral with other than unit spacing, multiply $z$ by the spacing increment.

For vectors, cumtrapz $(Y)$ is the cumulative integral of $Y$.
For matrices, cumtrapz $(Y)$ is a row vector with the cumulative integral over each column.

For multidimensional arrays, cumt rapz(Y) works across thefirst nonsingleton dimension.
$Z=c u m t r a p z(X, Y)$ computes the cumulative integral of $Y$ with respect to $X$ using trapezoidal integration. $X$ and $Y$ must be vectors of the same length, or $X$ must be a column vector and $Y$ an array.

If $X$ is a column vector and $Y$ an array whose first nonsingleton dimension is I ength(X), cumtrapz(X,Y) operates across this dimension.
$Z=c u m t r a p z(\ldots$ dim) integrates across the dimension of $Y$ specified by scalar dim. The length of $X$ must be the same as size ( $Y$, dim).

Cumulative sum
Trapezoidal numerical integration
Purpose Current date string
Syntax str = date

Description str = date returns a string containing the date in dd-mmm- yyy format.

## See Also

clock	Current time as a date vector
datenum	Serial date number
now	Current date and time

## Purpose Serial date number

Syntax $\quad$| $N$ | $=\operatorname{datenum}(s t r)$ |
| ---: | :--- |
|  | $N=\operatorname{datenum}(Y, M, D)$ |
|  | $N=\operatorname{datenum}(Y, M, D, H, M I, S)$ |

Description Thedatenum function converts date strings and date vectors into serial date numbers. Date numbers are serial days elapsed from some reference date. By default, the serial day 1 corresponds to 1-J an-0000.
$N=$ datenum(str) converts the date string str into a serial date number.

NOTE The string str must be in one of the date formats $0,1,2,6,13,14,15$, or 16 as defined bydatestr.
$N=$ datenum( Y, M, D) returns the serial date number for corresponding elements of the Y, M, and D (year, month, day) arrays. Y, $M$, and $D$ must be arrays of the same size (or any can be a scalar). Values outside the normal range of each array are automatically "carried" to the next unit.
$N=\operatorname{datenum}(Y, M, D, H, M I, S)$ returns the serial date number for corresponding elements of the $Y, M, D, H, M I$, and $S$ (year, month, hour, minute, and second) array values. Y, M, D, H, MI , and S must be arrays of the same size (or any can be a scalar).

## Examples

n = datenum('19-May-1995') returnsn $=728798$.
n = datenum(1994,12,19) returnsn = 728647 .
$n=\operatorname{datenum}(1994,12,19,18,0,0)$ returnsn $=7.2865 e+05$.

## See Also

datestr
datevec
now

Date string format
Date components
Current date and time

Purpose Date string format

## Syntax str = datestr(D,dateform)

Description
str = datestr( $D$, dateform) converts each element of the array of serial date numbers (D) to a string. Optional argument dat ef or m specifies the date format of the result, wheredat ef or m can be either a number or a string:

dat ef orm (number)	dat eform (string)	Example
0	'dd-mmm- yyyy HH: MM: SS'	$\begin{aligned} & 01-M a r-1995 \\ & 03: 45 \end{aligned}$
1	'dd-mmm- yyy ${ }^{\text {c }}$	01-Mar-1995
2	'mm/dd/yy'	03/01/95
3	' mmm'	Mar
4	' m'	M
5	'mm'	3
6	'mm/dd'	03/01
7	'dd'	1
8	'ddd'	We d
9	'd'	W
10	'yyyy'	1995
11	'yy'	95
12	' mmmy y	Mar 95
13	' HH: MM: SS'	15:45:17


dateform (number)	dateform (string)	Example
14	'HH:MM: SS PM'	$03: 45: 17$ PM
15	'HH:MM'	$15: 45$
16	'HH:MM PM'	$03: 45$ PM
17	' QQ- YY'	Q1-96
18	'QQ'	Q1

NOTE datef or m numbers $0,1,2,6,13,14,15$, and 16 produce a string suitable for input todatenum or datevec. Other date string formats will not work with these functions.

Time formats like' $\mathrm{h}: \mathrm{m}: \mathrm{s}^{\prime}, \mathrm{\prime} \mathrm{~h}: \mathrm{m}: \mathrm{s} . \mathrm{s}^{\prime}, \mathrm{\prime} \mathrm{~h}: \mathrm{mpm} \mathrm{m}, \ldots$ may also be part of the input array $D$. If you do not specify dat ef or $m$, the date string format defaults to

- 1 , if $D$ contains date information only (01-Mar-1995)
- 16 , if $D$ contains time information only (03:45 PM)
- 0 , if D contains both date and time information (01-Mar-1995 03:45)

See Also

## date

datenum datevec

Current date string
Serial date number
Date components

Purpose $\quad$| Date components |  |
| :--- | :--- |
|  | $C=\operatorname{datevec}(A)$ |
| $[Y, M, D, H, M I, S]=\operatorname{datevec}(A)$ |  |

Description $\quad C=$ datevec (A) splits its input into an $n$-by- 6 array with each row containing the vector [ Y, M, D, H, MI , S] . The first five date vector elements are integers. Input A can either consist of strings of the sort produced by the datestr function, or scalars of the sort produced by the dat enum and now functions.
$[Y, M, D, H, M I, S]=$ datevec(A) returns the components of the date vector as individual variables.

When creating your own date vector, you need not make the components integers. Any components that lie outsidetheir conventional ranges affect the next higher component (so that, for instance, the anomalous J une 31 becomes J uly 1). A zeroth month, with zero days, is allowed.

## Examples

Let

$$
\begin{aligned}
& d=' 12 / 24 / 1984^{\prime} \\
& t=1725000.00 '
\end{aligned}
$$

Thendatevec(d) anddatevec(t) generate[1984 12240000$]$.

See Also	clock		
datenum			
datestr		$\quad$	Current time as date vector
:---			

## Purpose Clear breakpoints

## Syntax <br> Description

dbclear
dbclear at lineno in function
dbclear all in function
dbclear all
dbclear in mfilename
dbclear if keyword $\quad$ wherekeyword is one of: $\left\{\begin{array}{l}\text { error } \\ \text { naninf } \\ \text { infnan } \\ \text { warning }\end{array}\right.$

Theat, in, and if keywords, familiar to users of the UNIX debugger dbx, are optional.
dbclear, by itself, clears the breakpoint(s) set by a correspondingdbst op command.
dbclear at lineno in function clears the breakpoint set at the specified line in the specified $M$-file. function must bethename of an $M$-filefunction or a MATLABPATH relative partial pathname.
dbclear all in function clears all breakpoints in the specified M-file.
dbclear all clears all breakpoints in all M-filefunctions, except for errors and warning breakpoints.
dbclear in function clears the breakpoint set at the first executableline in the specified M -file.
dbclear if keyword clears the indicated statement or breakpoint:
dbclear if error Clears thedbstoperror statement, if set. If a runtime error occurs after this command, MATLAB terminates the current operation and returns to the base workspace.
dbclear if naninf Clears thedbstop naninf statement, if set.
dbclear if infnan
dbclear if warning

Clears thedbst op inf nan statement, if set.
Clears warning breakpoints.

See Also
dbcont
dbdown
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
See also partial path.

Resume execution
Change local workspace context (down)
Quit debug mode
Display function call stack
List all breakpoints
Execute one or more lines from a breakpoint
Set breakpoints in an M-file function
List $M$-file with line numbers
Change local workspace context (up)
Purpose Resume execution

## Syntax dbcont

Description
dbcont resumes execution of an M-filefroma breakpoint. Execution continues until either another breakpoint is encountered, an error occurs, or MATLAB returns to the base workspace prompt.

See Also	dbclear	Clear breakpoints
dbdown	Change local workspace context (down)	
dbquit	Quit debug mode	
dbstack	Display function call stack	
dbstatus	List all breakpoints	
dbstep	Execute one or more lines from a breakpoint	
dbstop	Set breakpoints in an M-file function	
dbtype	List M-file with line numbers	
dbup	Change local workspace context (up)	

Purpose Change local workspace context

## Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the called M-file when a breakpoint is encountered. You must have issued the dbup command at least once before you issue this command. dbdown is the opposite of $d b u p$.

Multipledbdown commands change the workspace context to each successively executed M -file on the stack until the current workspace context is the current breakpoint. It is not necessary, however, to move back to the current breakpoint to continue execution or to step to the next line.

See Also	dbclear	Clear breakpoints
$d b c o n t$	Resume execution	
dbquit	Quit debug mode	
dbstack	Display function call stack	
dbstatus	List all breakpoints	
dbstep	Execute one or more lines from a breakpoint	
$d b s t o p$	Set breakpoints in an M-file function	
$d b t y p e$	List M-file with line numbers	
dbup	Change local workspace context (up)	

## Purpose

Numerical double integration


Description

Example result $=$ dblquad('integrnd', pi, $2 * \mathrm{pi}, 0, \mathrm{pi})$ integrates the function $y^{*} \sin (x)+x^{*} \cos (y)$, where $x$ ranges from $\pi$ to $2 \pi$, and $y$ ranges from 0 to $\pi$, assuming:

- x is the inner variable in the integration.
- $y$ is the outer variable.
- the M-fileint egrnd. mis defined as:

```
function out = integrnd(x, y)
out = y*sin(x)+x*\operatorname{cos}(y);
```

Notethatintegrnd. $m$ is valid when $x$ is a vector and $y$ is a scalar. Also, $x$ must be the first argument to integrnd. m since it is the inner variable.

[^3]Purpose Enable MEX-file debugging

Syntax | $d b m e x$ on |  |
| :--- | :--- |
|  | $d b m e x$ of $f$ |
|  | $d b m e x$ stop |
|  | $d b m e x$ print |

Description

See Also
dbstop
dbclear
dbcont
dbdown
dbquit
dbstack
dbstatus
dbstep
dbtype
dbup

Set breakpoints in an M-file function
Clear breakpoints
Resume execution
Change local workspace context (down)
Quit debug mode
Display function call stack
List all breakpoints
Execute one or more lines from a breakpoint
List M-file with line numbers
Change local workspace context (up)

## dbquit

Purpose Quit debug mode

## Syntax <br> dbquit

Description dbquit immediately terminates the debugger and returns control to the base workspace prompt. The M -file being processed is not completed and no results are returned.

All breakpoints remain in effect.

See Also | dbclear | Clear breakpoints |  |
| :--- | :--- | :--- |
| $d b c o n t$ | Resume execution |  |
| dbdown | Change local workspace context (down) |  |
| $d b s t a c k$ | Display function call stack |  |
|  | $d b s t a t u s$ | List all breakpoints |
|  | $d b s t e p$ | Execute one or more lines from a breakpoint |
| $d b s t o p$ | Set breakpoints in an M-file function |  |
| $d b t y p e$ | List $M$-file with line numbers |  |
| $d b u p$ | Change local workspace context (up) |  |

Purpose Display function call stack

## Syntax <br> Description

dbstack
$[S T, I]=d b s t a c k$
dbstack displays the line numbers and M-file names of the function calls that led to the current breakpoint, listed in the order in which they were executed. In other words, the line number of the most recently executed function call (at which the current breakpoint occurred) is listed first, followed by its calling function, which is followed by its calling function, and so on, until the topmost $M$-file function is reached.
$[S T, I]=d b s t a c k$ returns thestack trace information in an m-by-1 structure ST with the fields:
name function name
I ine function line number
The current workspace index is returned in I .

## Examples

```
>> dbstack
> | n /usr||oca|/mat|ab/toolbox/mat|ab/cond.m at |ine 13
 | n test1.m at line 2
 | n test.m at |ine 3
```

See Also
dbclear
dbcont
dbdown
dbquit
dbstatus
dbstep
dbstop Set breakpoints in an M-file function
dbtype List M-file with line numbers
dbup

Clear breakpoints
Resume execution
Change local workspace context (down)
Quit debug mode
List all breakpoints
Execute one or more lines from a breakpoint

Change local workspace context (up)
Purpose List all breakpoints

Syntax $\quad$| dbstatus |  |
| :--- | :--- |
|  | dbstatus function |
|  | $s=d b s t a t u s(\ldots)$ |

Description dbstatus, by itself, lists all breakpoints in effect includingerror, warning, andnaninf.
dbstatus function displays a list of the line numbers for which breakpoints are set in the specified $M$-file.
$s=\operatorname{dbstatus(...)~returns~the~breakpoint~information~in~an~m-by-1~struc-~}$ ture with the fields:
name function name
I ine vector of breakpoint line numbers
cond condition string (error,warning, ornaninf)
Usedbstatus class/function ordbstatus privatelfunction or dbstatus class/private/function to determine the status for methods, private functions, or private methods (for a class namedclass). In all of these forms you can further qualify the function name with a subfunction name as in dbstatus function/subfunction.

See Also	dbclear	Clear breakpoints
$d b c o n t$	Resume execution	
$d b d o w n$	Change local workspace context (down)	
$d b q u i t$	Quit debug mode	
dbstack	Display function call stack	
$d b s t e p$	Execute one or more lines from a breakpoint	
$d b s t o p$	Set breakpoints in an M-file function	
$d b t y p e$	List M-file with line numbers	
$d b u p$	Change local workspace context (up)	

2-152

## Purpose <br> Execute one or more lines from a breakpoint

Syntax $\quad$|  | dbstep |
| :--- | :--- |
|  | dbstep nl ines |
|  | dbstep in |

Description This command allows you to debug an M-file by following its execution from the current breakpoint. At a breakpoint, the dbst ep command steps through execution of the current M-file one line at a time or at the rate specified by nlines.
dbstep, by itself, executes the next executable line of the current M-file. dbstep steps over the current line, skipping any breakpoints set in functions called by that line.
dbstep nlines executes the specified number of executable lines.
dbstep in steps to the next executable line. If that line contains a call to another M -file, execution resumes with the first executable line of the called file. If there is no call to an $M$-file on that line, dbstep in is the same asdbstep.

See Also | dbclear | Clear breakpoints |  |
| :--- | :--- | :--- |
| $d b c o n t$ | Resume execution |  |
| $d b d o w n$ | Change local workspace context (down) |  |
| dbquit | Quit debug mode |  |
| dbstack | Display function call stack |  |
|  | $d b s t a t u s$ | List all breakpoints |
|  | $d b s t o p$ | Set breakpoints in an M-file function |
| $d b t y p e$ | List M-file with line numbers |  |
| $d b u p$ | Change local workspace context (up) |  |

## Purpose Set breakpoints in an M-file function

## Syntax dbstop at lineno in function dbstop in function

dbstop if keyword $\quad$ wherekeyword is one of: $\left\{\begin{array}{l}\text { error } \\ \text { naninf } \\ \text { infnan } \\ \text { warning }\end{array}\right.$

## Description

Thedbstop command sets up MATLAB's debugging mode. dbst op sets a breakpoint at a specified location in an $M$-file function or causes a break in case an error or warning occurs during execution. When the specified dbst op condition is met, the MATLAB prompt is displayed and you can issue any valid MATLAB command.
dbstop at lineno in function stopsexecution just prior toexecution of that line of the specified $M$-file function. f unction must be the name of an M-file function or a MATLABPATH relative partial pathname.
dbstop in function stops execution before the first executable line in the $M$-file function when it is called.
dbstop if keyword stops execution under the specified conditions:
dbstop if error Stops execution if a runtime error occurs in any M-file function. You can examine the local workspace and sequence of function calls leading to the error, but you cannot resume M-file execution after a runtime error.
dbstop if naninf Stops execution when it detects Not-a-Number ( NaN ) or Infinity (I nf ).
dbstop if infnan Stops execution when it detects Not-a-Number ( NaN ) or Infinity ( lnf ).
dbstop if warning Stops execution if a runtime warning occurs in any M-file function.

Regardless of the form of thedbst op command, when a stop occurs, the line or error condition that caused the stop is displayed. To resume M-file function
execution, issue adbcont command or step to another line in the file with the dbstep command.

Any breakpoints set by the first two forms of thed bst op command are cleared if the $M$-file function is edited or cleared.

The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are optional.

## Examples

Here is a short example, printed with thed bt ype command to produce line numbers.

```
dbtype buggy
1 function z = buggy(x)
2 n = length(x);
3 z = (1:n)./x;
```

The statement

```
dbstop in buggy
```

causes execution to stop at line 2, the first executable line. The command dbstep
then advances to line 3 and allows the value of $n$ to be examined.
The examplefunction only works on vectors; it produces an error if the input x is a full matrix. So the statements

```
dbstop if error
buggy(magic(3))
```

produce

```
Error using ==>.l
Matrix dimensions must agree.
Error in ==> buggy.m
On line 3 ==> z = (1:n)./ x;
```

Finally, if any of the elements of the input x are zero, a division by zero occurs. For example, consider

```
dbstop if naninf
buggy(0:2)
```

which produces

```
Warning: Divide by zero
NaN/Inf debugging breakpoint hit on line 2.
Stopping at next line.
2 n = length(x);
3 z = (1:n)./x;
```


## See Also

dbclear	Clear breakpoints
dbcont	Resume execution
dbdown	Change local workspace context (down)
dbquit	Quit debug mode
dbstack	Display function call stack
dbstatus	List all breakpoints
dbstep	Execute one or more lines from a breakpoint
dbtype	List M-file with line numbers
dbup	Change local workspace context (up)
See also partialpath.	

## dbtype

Purpose List M-file with line numbers

Purpose Change local workspace context

## Syntax <br> dbup

Description This command allows you to examine the calling $M$-file by using any other MATLAB command. In this way, you determine what led to the arguments being passed to the called function.
dbup changes the current workspace context (at a breakpoint) to the workspace of the calling M -file.

Multipledbup commands change the workspace context to each previous calling M-file on the stack until the base workspace context is reached. (It is not necessary, however, to move back to the current breakpoint to continue execution or to step to the next line.)

See Also	$d b c l e a r$	Clear breakpoints
$d b c o n t$	Resume execution	
$d b d o w n$	Change local workspace context (down)	
$d b q u i t$	Quit debug mode	
dbstack	Display function call stack	
$d b s t a t u s$	List all breakpoints	
$d b s t e p$	Execute one or more lines from a breakpoint	
$d b s t o p$	Set breakpoints in an M-file function	
$d b t y p e$	List $M$-file with line numbers	

## Purpose

## Description

## Arguments

```
Syntax rc = ddeadv(channel,'item','callback')
```

rc = ddeadv(channel,'item','callback','upmtx')

```
rc = ddeadv(channel,'item','callback','upmtx')
rc = ddeadv(channel,'item','callback','upmtx',format)
rc = ddeadv(channel,'item','callback','upmtx',format)
rc = ddeadv(channel,'item','callback','upmtx',format,timeout)
```

```
rc = ddeadv(channel,'item','callback','upmtx',format,timeout)
```

```

Set up advisory link
ddeadv sets up an advisory link between MATLAB and a server application. When the data identified by the it em argument changes, the string specified by thecall back argument is passed to theeval function and evaluated. If the advisory link is a hot link, DDE modifies up mt x, the update matrix, to reflect the data in it em.

If you omit optional arguments that are not at theend of the argument list, you must substitute the empty matrix for the missing argument(s).
r c Return code: 0 indicates failure, 1 indicates success.
channel Conversation channel fromddeinit.
it em String specifying the DDE item name for the advisory link. Changing the data identified by it em at the server triggers the advisory link.
callback String specifying the callback that is evaluated on update notification. Changing the data identified by it em at the server causes callback to get passed to theeval function to be evaluated.
up mt x (optional)

String specifying the name of a matrix that holds data sent with an update notification. If upmt x is included, changing it em at the server causes upmt x to be updated with the revised data. Specifying up mt x creates a hot link. Omitting up mt x or specifying it as an empty string creates a warm link. If up mt \(x\) exists in the workspace, its contents are overwritten. If up mt x does not exist, it is created.
\begin{tabular}{ll}
f or mat \\
(optional) & \begin{tabular}{l}
Two-element array specifying the format of the data to be sent \\
on update. The first element specifies the Windows clipboard \\
format to usefor the data. The only currently supported format \\
is cf_t ext, which corresponds to a value of 1 . The second
\end{tabular} \\
& \begin{tabular}{l}
element specifies the type of the resultant matrix. Valid types \\
arenumeric (the default, which corresponds to a value of 0)
\end{tabular} \\
andstring (which corresponds to a value of 1). The default \\
format array is [1 0].
\end{tabular}

\section*{Examples}

See Also
ddeexec
ddeinit
ddepoke
ddereq
ddeterm
ddeunadv

Send string for execution
Initiate DDE conversation
Send data to application
Request data from application
Terminate DDE conversation
Release advisory link

\section*{Purpose Send string for execution}
\begin{tabular}{|c|c|}
\hline Syntax & \(r c=d d e e x e c(c h a n n e l, ~ ' c o m m a n d ') ~\) \\
\hline & \(r c=\) ddeexec(channel, 'command', 'item') \\
\hline & \\
\hline
\end{tabular}

Description ddeexec sends a string for execution to another application via an established DDE conversation. Specify the string as the command argument.

If you omit optional arguments that are not at theend of the argument list, you must substitute the empty matrix for the missing argument(s).

Arguments \(\quad r c \quad\) Return code: 0 indicates failure, 1 indicates success.
channel Conversation channel fromddeinit.
command String specifying the command to be executed.
it em String specifying the DDE item name for execution. This
(optional) argument is not used for many applications. If your application requires this argument, it provides additional information for command. Consult your server documentation for more information.
t i meout Scalar specifying the time-out limit for this operation. t i me out (optional) is specified in milliseconds. (1000 milliseconds \(=1\) second). The default value of t i meout is three seconds.

\section*{Examples}

Given the channel assigned to a conversation, send a command to Excel:
```

rc=ddeexec(channel,'[formula.goto("rlcl")]')

```

Communication with Excel must have been established previously with a ddeinit command.
See Also \begin{tabular}{lll}
ddeadv & Set up advisory link \\
ddeinit & Initiate DDE conversation \\
ddepoke & Send data to application \\
ddereq & Request data from application \\
& ddeterm & Terminate DDE conversation \\
& deunadv & Release advisory link
\end{tabular}

\section*{ddeinit}

Purpose Initiate DDE conversation

\section*{Syntax channel = ddeinit('service','topic')}

Description channel = ddeinit('service','topic') returnsa channel handleassigned to the conversation, which is used with other MATLAB DDE functions.
'service' is a string specifying the service or application name for the conversation. 't opic' is a string specifying the topic for the conversation.

\section*{Examples}

To initiate a conversation with Excel for the spreadsheet 'stocks.x|s':
```

channel = ddeinit('excel','stocks.x|s')
channel =
0.00

```
See Also \begin{tabular}{lll}
ddeadv & Set up advisory link \\
ddeexec & Send string for execution \\
ddepoke & Send data to application \\
ddereq & Request data from application \\
& ddeterm & Terminate DDE conversation \\
& ddeunadv & Release advisory link
\end{tabular}

\section*{Purpose Send data to application}
Syntax \(\quad\)\begin{tabular}{rl}
\(r c\) & \(=\) ddepoke(channel, ' item', data) \\
\(r c\) & \(=\) ddepoke(channel, ' item', data, format) \\
\(r c\) & \(=\) ddepoke(channel, 'item', data, format, timeout)
\end{tabular}

Description

\section*{Arguments}
r c (optional)
t i meout
(optional)
channel Conversation channel fromddeinit.
\(\begin{array}{ll}\text { it em } & \text { String specifying the DDE item for the data sent. Item is the } \\ \text { server data entity that is to contain the data sent in the data }\end{array}\)
String specifying the DDE item for the data sent. Item is the
server data entity that is to contain the data sent in the dat a argument.

Matrix containing the data to send.
for mat Scalar specifying the format of the data requested. The value
Return code: 0 indicates failure, 1 indicates success. indicates the Windows clipboard format to use for the data transfer. The only format currently supported is cf _ text , which corresponds to a value of 1 .

Scalar specifying the time-out limit for this operation. ti me out is specified in milliseconds. (1000 milliseconds \(=1\) second). The default value of t i meout is three seconds.

\section*{ddepoke}

\author{
Examples
}

Assume that a conversation channel with Excel has previously been established with ddei nit. To send a 5-by-5 identity matrix to Excel, placing the data in Row 1, Column 1 through Row 5, Column 5:
```

rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

```

\section*{See Also}
ddeadv
ddeexec
ddeinit
ddereq
ddeterm
ddeunadv

Set up advisory link
Send string for execution
Initiate DDE conversation
Request data from application
Terminate DDE conversation
Release advisory link
Purpose Request data from application
Syntax \(\quad\)\begin{tabular}{rl}
\(d a t a\) & \(=\) ddereq(channel, 'item') \\
data & \(=\) ddereq(channel, 'item', format) \\
data & \(=\) ddereq(channel, 'item', format, timeout)
\end{tabular}

Description

\section*{Arguments}

Examples
ddereq requests data from a server application via an established DDE conversation. ddereq returns a matrix containing the requested data or an empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at theend of the argument list, you must substitute the empty matrix for the missing argument(s).
dat a Matrix containing requested data, empty if function fails.
channel Conversation channel fromddeinit.
it em String specifying the server application's DDE item name for the data requested.
for mat Two-element array specifying the format of the data requested.
(optional) The first element specifies the Windows clipboard format to use. The only currently supported format is cf _t ext, which corresponds to a value of 1 . The second element specifies the type of the resultant matrix. Valid types arenumeric (the default, which corresponds to 0) and string (which corresponds to a value of 1). The default format array is [100\(]\).
timeout Scalar specifying the time-out limit for this operation. ti me out (optional) is specified in milliseconds. (1000 milliseconds \(=1\) second). The default value of t meout is three seconds.

Assume that we have an Excel spreadsheet stocks. xl s. This spreadsheet contains the prices of three stocks in row 3 (columns 1 through 3) and the number of shares of these stocks in rows 6 through 8 (column 2). I nitiate conversation with Excel with the command:
```

channel = ddeinit('excel','stocks.x|s')

```

DDE functions require the \(x\) cy reference style for Excel worksheets. In Excel terminology the prices are in r3c1:r3c3 and the shares in r 6 c 2 : r 8 c 2 .

To request the prices from Excel:
```

prices = ddereq(channel,'r3c1:r3c3')
prices =
42.50 15.00
78.88

```

To request the number of shares of each stock:
```

shares = ddereq(channel, 'r6c2:r8c2')
shares =
100.00
500.00
300.00

```

\section*{See Also}
\begin{tabular}{ll}
ddeadv & Set up advisory link \\
ddeexec & Send string for execution \\
ddeinit & Initiate DDE conversation \\
ddepoke & Send data to application \\
ddeterm & Terminate DDE conversation \\
ddeunadv & Release advisory link
\end{tabular}
Purpose Terminate DDE conversation

\section*{Syntax \(\quad r c=\) ddeterm(channel)}

Description \(\quad r c=d d e t e r m(c h a n n e l)\) accepts a channel handle returned by a previous call toddeinit that established the DDE conversation. ddeterm terminates this conversation. rc is a return code where 0 indicates failure and 1 indicates success.

\section*{Examples}

To close a conversation channel previously opened with ddeinit:
```

rc = ddeterm(channel)
rc =

```
1.00
See Also \begin{tabular}{lll}
ddeadv & Set up advisory link \\
ddeexec & Send string for execution \\
ddeinit & Initiate DDE conversation \\
ddepoke & Send data to application \\
ddereq & Request data from application \\
& ddeunadv & Release advisory link
\end{tabular}
\begin{tabular}{ll}
Purpose & Release advisory link \\
Syntax & \(r c=\operatorname{ddeunadv(channel,~'~item')~}\) \\
& \(r c=\operatorname{ddeunadv(channel,~'item',~format)~}\) \\
& \(r c=\) ddeunadv(channel, 'item', format, timeout)
\end{tabular}

Description ddeunadv releases the advisory link between MATLAB and the server application established by an earlier ddeadv call. Thechannel, item, and for mat must be the same as thosespecified in the call toddeadv that initiated the link. If you include the i me out argument but accept the default for mat, you must specify for mat as an empty matrix.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{Arguments} & r \({ }^{\text {c }}\) & Return code: 0 indicates failure, 1 indicates success. \\
\hline & channel & Conversation channel fromddeinit. \\
\hline & item & String specifying the DDE item name for the advisory link. Changing the data identified by it em at the server triggers the advisory link. \\
\hline & format (optional) & Two-element array. This must be the same as the for mat argument for the corresponding ddeadv call. \\
\hline & timeout (optional) & Scalar specifying the time-out limit for this operation. t i me out is specified in milliseconds. (1000 milliseconds \(=1\) second). The default value of \(t\) meout is three seconds. \\
\hline \multirow[t]{3}{*}{Example} & \multicolumn{2}{|l|}{To release an advisory link established previously with ddeadv :} \\
\hline & \[
\begin{aligned}
& r c=d d \\
& r c=
\end{aligned}
\] & dv(channel, 'r1c1:r5c5') \\
\hline & 1.0 & \\
\hline \multirow[t]{6}{*}{See Also} & ddeadv & Set up advisory link \\
\hline & ddeexec & Send string for execution \\
\hline & ddeinit & Initiate DDE conversation \\
\hline & ddepoke & Send data to application \\
\hline & ddereq & Request data from application \\
\hline & ddeterm & Release advisory link \\
\hline
\end{tabular}

2-168

\section*{Purpose Deal inputs to outputs}

\section*{Syntax}

Description
\([Y 1, Y 2, Y 3, \ldots]=\) deal \((X)\) copies the single input to all the requested outputs. It is the same as \(Y 1=X, Y 2=X, Y 3=X, \ldots\)
\([Y 1, Y 2, Y 3, \ldots]=\) deal \((X 1, X 2, X 3, \ldots)\) is the same as \(Y 1=X 1 ; Y 2=X 2\); \(Y 3=X 3 ; \ldots\)

\section*{Remarks}
deal is most useful when used with cell arrays and structures via comma separated list expansion. Here are some useful constructions:
[S.field] = deal(X) sets all the fields with the namef ield in the structure array s to the valuex.If S doesn't exist, use[s(1:m).field] = deal(X).
[\(\mathrm{X}\{:\}\)] = deal(A.field) copies the values of the field with namefield to the cell array \(x\). If \(x\) doesn't exist, use \([x\{1: m\}]=\operatorname{deal}(A . f i e l d)\).
\([Y 1, Y 2, Y 3, \ldots]=\) deal (X\{:\}) copies the contents of the cell array \(X\) to the separate variables Y \(1, Y 2, Y 3, \ldots\)
\([Y 1, Y 2, Y 3, \ldots]=\) deal (S.field) copies the contents of the fields with the name fi eld to separate variables Y1, Y2, Y \(3, \ldots\)

Usedeal to copy the contents of a 4-element cell array intofour separateoutput variables.
```

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})
a =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
b =
1
1
1
c =
1 0
0}1
0}0
d =
0
0
0

```
```

Usedeal to obtain the contents of all the name fields in a structure array:
A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1, name2] = deal(A(:). name)
name1 =
Pat
name2 =

```
 Tony

Purpose Strip trailing blanks from the end of a string
Syntax \(\quad\)\begin{tabular}{l}
str \(=\operatorname{deblank}(s t r)\) \\
\(c=\operatorname{deblank}(c)\)
\end{tabular}

Description The deblank function is useful for cleaning up the rows of a character array.
str = deblank(str) removes the trailing blanks from the end of a character stringstr.
c = deblank(c), when c is a cell array of strings, applies deblank to each element of \(c\).

\section*{Examples}
Purpose Decimal number to base conversion
Syntax str = dec2base(d,base)
str \(=\) dec \(2 b a s e(d, b a s e, n)\)
Descriptionstr = dec2base(d,base) converts the nonnegative integer d to the specifiedbase.d must be a nonnegativeinteger smaller than \(2^{\wedge} 52\), and base must be aninteger between 2 and 36 . The returned argument \(s t r\) is a string.
str \(=\) dec2base(d,base, n) produces a representation with at least \(n\) digits.
Examples The expression dec 2 base \((23,2)\) converts \(23_{10}\) to base 2 , returning the string '10111'.
See Also base2dec
\begin{tabular}{|c|c|}
\hline Purpose & Decimal to binary number conversion \\
\hline Syntax & str \(=\operatorname{dec} 2 \mathrm{bin}(\mathrm{d})\) \\
\hline & str \(=\operatorname{dec} 2 \mathrm{bin}(\mathrm{d}, \mathrm{n})\) \\
\hline \multirow[t]{2}{*}{Description} & str \(=\operatorname{dec} 2 b i n(d)\) returns the binary representation of \(d\) as a string. \(d\) must be a nonnegative integer smaller than \(2^{52}\). \\
\hline & str \(=\) dec \(2 \mathrm{bin}(\mathrm{d}, \mathrm{n})\) produces a binary representation with at least n bits. \\
\hline Examples & dec 2 bin(23) returns'10111'. \\
\hline See Also & bin2dec Binary to decimal number conversion \\
\hline & dec2hex Decimal to hexadecimal number conversion \\
\hline
\end{tabular}
Purpose Decimal to hexadecimal number conversion
\begin{tabular}{|c|c|}
\hline Syntax & str \(=\) dec \(2 \mathrm{hex}(\mathrm{d})\) \\
\hline & str \(=\) dec 2 hex(d, \(n\)) \\
\hline Description & str \(=\operatorname{dec} 2 \mathrm{hex}(\mathrm{d})\) converts the decimal integer \(d\) toits hexadecimal representation stored in a MATLAB string. d must be a nonnegative integer smaller than \(2^{52}\). \\
\hline & str \(=\operatorname{dec} 2 h e x(d, n)\) produces a hexadecimal representation with at least \(n\) digits. \\
\hline Examples & dec \(2 \mathrm{hex}(1023)\) is the string \(3 \mathrm{ff} \mathrm{f}^{\prime}\). \\
\hline See Also & dec2bin Decimal to binary number conversion \\
\hline & format Control the output display format \\
\hline & hex2dec IEEE hexadecimal to decimal number conversion \\
\hline & hex2num Hexadecimal to double number conversion \\
\hline
\end{tabular}
Purpose Deconvolution and polynomial division

\section*{Syntax \(\quad[q, r]=\operatorname{deconv}(v, u)\)}

Description \([q, r]=\operatorname{deconv}(v, u)\) deconvolves vector \(u\) out of vector \(v\), using long division. The quotient is returned in vector \(q\) and the remainder in vector \(r\) such that \(v\) \(=\operatorname{conv}(u, q)+r\).

If \(u\) and \(v\) are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials, and deconvolution is polynomial division. The result of dividing \(v\) by \(u\) is quotient \(q\) and remainder \(r\).

\section*{Examples If}

```

v = [10 20 30]

```
the convolution is
```

c = conv(u,v)
c =
10 40 100 160 170 120

```

Use deconvolution to recover u:
```

[q,r] = deconv(c,u)
q =
10 20 30

```
r =
 \(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\)

This gives a quotient equal to v and a zero remainder.

\section*{Algorithm deconv uses thefilter primitive.}

See Also
convmt x, conv2, andfilter in the Signal Processing Toolbox, and:
conv Convolution and polynomial multiplication
residue
Convert between partial fraction expansion and polynomial coefficients

Purpose

\section*{Syntax}

Definition

\section*{Description}
\(L=\operatorname{del} 2(U)\) where \(U\) is a rectangular array is a discrete approximation of
\[
I=\frac{\nabla^{2} u}{4}=\frac{1}{4}\left(\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}\right)
\]

The matrix \(L\) is the same size as \(U\) with each element equal to the difference between an element of \(u\) and the average of its four neighbors.
\(L=\operatorname{del} 2(U)\) when \(U\) is an multidimensional array, returns an approximation of
\(\frac{\nabla^{2} u}{2 N}\)
where N isndims(u).
\(L=\operatorname{del} 2(U, h)\) where \(H\) is a scalar uses \(H\) as the spacing between points in each direction (\(h=1\) by default).
\(L=\) del \(2(U, h x, h y)\) when \(U\) is a rectangular array, uses the spacing specified by \(h x\) and \(h y\). If \(h x\) is a scalar, it gives the spacing between points in the \(x\)-direction. If \(h x\) is a vector, it must be of length size(\(u, 2)\) and specifies the \(x\)-coordinates of the points. Similarly, if \(h y\) is a scalar, it gives the spacing between points in the y-direction. If hy is a vector, it must be of length size(u, 1) and specifies the \(y\)-coordinates of the points.
\(L=\operatorname{del} 2(U, h x, h y, h z, \ldots)\) where \(U\) is multidimensional uses the spacing given by \(h x\), hy, hz, ...

\section*{Examples The function}
\[
u(x, y)=x^{2}+y^{2}
\]
has
\[
\nabla^{2} \mathrm{u}=4
\]

For this function, \(4 * \operatorname{del} 2(U)\) is also 4.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\(u=x \cdot * x+y\) * \({ }^{\text {d }}\)} \\
\hline \(U=\) & & & & & & & & \\
\hline 25 & 18 & 13 & 10 & 9 & 10 & 13 & 18 & 25 \\
\hline 20 & 13 & 8 & 5 & 4 & 5 & 8 & 13 & 20 \\
\hline 17 & 10 & 5 & 2 & 1 & 2 & 5 & 10 & 17 \\
\hline 16 & 9 & 4 & 1 & 0 & 1 & 4 & 9 & 16 \\
\hline 17 & 10 & 5 & 2 & 1 & 2 & 5 & 10 & 17 \\
\hline 20 & 13 & 8 & 5 & 4 & 5 & 8 & 13 & 20 \\
\hline 25 & 18 & 13 & 10 & 9 & 10 & 13 & 18 & 25 \\
\hline
\end{tabular}
\begin{tabular}{lllllllll}
\(V=\) & \(4 *\) del \(2(U)\) \\
\(V=\) & & & & & & & \\
& 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4
\end{tabular}

\section*{See Also}
diff
gradient

Differences and approximate derivatives Numerical gradient
Purpose Delaunay triangulation
```

Syntax TRI = delaunay(x,y)
TRI = delaunay(x,y,'sorted')

```

Definition

\section*{Description}

\section*{Remarks}

Given a set of data points, the Delaunay triangulation is a set of lines connecting each point to its natural neighbors. The Delaunay triangulation is related to the Voronoi diagram - the circle circumscribed about a Delaunay triangle has its center at the vertex of a Voronoi polygon.

- Delaunay triangle
- Voronoi polygon

TRI = del aunay (\(x, y\)) returns a set of triangles such that no data points are contained in any triangle's circumscribed circle. Each row of the m-by-3 matrix TRI defines one such triangle and contains indices into the vectors \(x\) and \(y\).

TRI = delaunay(\(x, y\), sorted') assumes that the points \(x\) and \(y\) are sorted first by y and then by \(x\) and that duplicate points have already been eliminated.

The Delaunay triangulation is used with: griddat a (to interpolate scattered data), convhull, voronoi (to compute thevoronoi diagram), and is useful by itself to create a triangular grid for scattered data points.

The functions dsearch and tsearch search the triangulation to find nearest neighbor points or enclosing triangles, respectively.

\section*{Examples}

See Also
```

```
rand('state',0);
```

```
rand('state',0);
x = rand(1,10);
x = rand(1,10);
y = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
TRI = delaunay(x,y);
subplot(1, 2,1),...
subplot(1, 2,1),...
trimesh(TRI,x,y,zeros(size(x))); viem(2),...
trimesh(TRI,x,y,zeros(size(x))); viem(2),...
axis([0 1 0 1]); hold on;
axis([0 1 0 1]); hold on;
plot(x,y,'o');
plot(x,y,'o');
set(gca,'box','on');
```

```
set(gca,'box','on');
```

```

Compare the Voronoi diagram of the same points:
This code plots the Delaunay triangulation for 10 randomly generated points.
```

[vx, vy] = voronoi(x,y,TRI);

```
[vx, vy] = voronoi(x,y,TRI);
subplot(1, 2,2),...
subplot(1, 2,2),...
plot(x,y,'r+',vx,vy,'b-'),...
plot(x,y,'r+',vx,vy,'b-'),...
axis([0 1 0 1])
```

axis([0 1 0 1])

```

convhul।
Convex hull
\begin{tabular}{ll}
dsearch & Search for nearest point \\
griddata & Data gridding \\
tsearch & Search for enclosing Delaunay triangle \\
voronoi & Voronoi diagram
\end{tabular}
Purpose Delete files and graphics objects
\begin{tabular}{|c|c|}
\hline Syntax & delete filename delete(h) \\
\hline \multirow[t]{3}{*}{Description} & delete filename deletes the named file. Wildcards \\
\hline & delete(h) deletes the graphics object with handleh object without requesting verification even if the obj \\
\hline & Use the functional form of delete, such as del et e(' f name is stored in a string. \\
\hline \multirow[t]{3}{*}{See Also} & Operating system command \\
\hline & dir Directory listing \\
\hline & type List file \\
\hline
\end{tabular}
Purpose Matrix determinant

\section*{Syntax \(\quad d=\operatorname{det}(x)\)}

Description \(\quad d=\operatorname{det}(X)\) returns the determinant of the square matrix \(x\). If \(x\) contains only integer entries, the result d is also an integer.

Remarks Usingdet \((X)==0\) as a test for matrix singularity is appropriate only for matrices of modest order with small integer entries. Testing singularity using \(\operatorname{abs}(\operatorname{det}(X))\) <= tolerance is not recommended as it is difficult to choose the correct tolerance. The function cond (\(X\)) can check for singular and nearly singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by Gaussian elimination
```

[L,U] = Iu(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

```
Examples \(\quad\) The statement \(A=\left[\begin{array}{lllllllll}1 & 2 & 3 ; & 4 & 5 & 6 ; & 7 & 8 & 9\end{array}\right]\)
produces
A =
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{tabular}

This happens to be a singular matrix, sod \(=\operatorname{det}(A)\) produces \(d=0\).
Changing \(A(3,3)\) with \(A(3,3)=0\) turns A into a nonsingular matrix. Now \(d=\operatorname{det}(A)\) produces \(d=27\).
\begin{tabular}{lll}
See Also & I & Matrix left division (backslash) \\
& cond & Matrix right division (slash) \\
& condest & Condition number with respect to inversion \\
& inv & 1-norm matrix condition number estimate \\
& Iu & Matrix inverse \\
& rref & LU matrix factorization \\
& & Reduced row echelon form
\end{tabular}

\section*{Purpose Diagonal matrices and diagonals of a matrix}

\section*{Syntax \\ ```
X = diag(v,k) \\ X = diag(v) \\ v = diag(X,k) \\ v = diag(X)
```}

\section*{Description}

Examples
\(X=\operatorname{diag}(v, k)\) when \(v\) is a vector of \(n\) components, returns a square matrix \(X\) of order \(n+a b s(k)\), with the elements of \(v\) on thek th diagonal. \(k=0\) represents the main diagonal, \(k>0\) above the main diagonal, and \(k<0\) below the main diagonal.

\(\mathrm{X}=\operatorname{diag}(\mathrm{v})\) puts v on the main diagonal, same as above with \(\mathrm{k}=0\).
\(v=\operatorname{diag}(X, k)\) for matrix \(X\), returns a column vector \(v\) formed from the elements of the \(k\) th diagonal of \(x\).
\(v=\operatorname{diag}(X)\) returns the main diagonal of \(X\), same as above with \(k=0\).
diag(diag(X)) is a diagonal matrix.
sum( \(\operatorname{diag}(X))\) is the trace of \(X\).
The statement
```

diag(-m:m) +diag(ones(2*m, 1),1) +diag(ones(2*m, 1), -1)

```
produces a tridiagonal matrix of order \(2 * \mathrm{~m}+1\).
See Also spdiags, tril,triu
Purpose Save session in a disk file
Syntax \(\quad\)\begin{tabular}{l} 
diary \\
diary filename \\
diary off \\
diary on
\end{tabular}

Description Thediary command creates a log of keyboard input and system responses. The output of di ary is an ASCII file, suitable for printing or for inclusion in reports and other documents.
di ary, by itself, toggles di ary mode on and off.
diary filename writes a copy of all subsequent keyboard input and most of the resulting output (but not graphs) to the named file. If thefilealready exists, output is appended to the end of the file.
diary off suspends the diary.
diary on resumes diary mode using the current filename, or the default filenamediary if none has yet been specified.

Remarks The function form of the syntax, diary('filename'), is also permitted.
Limitations You cannot put a diary into the files named of \(f\) and on.

\section*{Purpose Differences and approximate derivatives}
Syntax \(\quad\)\begin{tabular}{rl}
\(Y\) & \(=\operatorname{diff}(X)\) \\
\(Y\) & \(=\operatorname{diff}(X, n)\) \\
\(Y\) & \(=\operatorname{diff}(X, n, \operatorname{dim})\)
\end{tabular}

Description

Remarks
\(Y=\operatorname{diff}(X)\) calculates differences between adjacent elements of \(X\).
If \(X\) is a vector, then \(\operatorname{dif} f(X)\) returns a vector, one element shorter than \(X\), of differences between adjacent elements:
```

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]

```

If \(X\) is a matrix, then \(\operatorname{dif} f(X)\) returns a matrix of column differences:
```

[$\mathrm{X}(2: \mathrm{m},:)-\mathrm{X}(1: \mathrm{m}-1,:)]$

```

In general, \(\operatorname{di} f f(X)\) returns the differences calculated along the first non-singleton (size( \(X\), dim) >1) dimension of \(X\).
\(Y=\operatorname{dif} f(X, n)\) applies diff recursively \(n\) times, resulting in the \(n\)th differ-

\(Y=\operatorname{diff}(X, n, d i m)\) is the nth differencefunction calculated along the dimension specified by scalar dim. If order \(n\) equals or exceeds thelength of dimension dim,diff returns an empty array.

Since each iteration of \(d i f f\) reduces the length of \(x\) along dimension dim, it is possible to specify an order \(n\) sufficiently high to reduce di \(m\) to a singleton (size (X, di m) = 1) dimension. When this happens, diff continues calculating along the next nonsingleton dimension.

\section*{diff}

\section*{Examples}

The quantity \(\operatorname{diff}(y)\). \(/ \operatorname{diff(x)}\) is an approximate derivative.
```

x = [llllll}
y=\operatorname{diff(x)}
y =
1 1 1 1 1
z=\operatorname{diff(x,2)}
z =
0 0

```

Given,
\[
A=r a n d(1,3,2,4) ;
\]
diff(A) is the first-order difference along dimension 2.
\(\operatorname{dif} f(A, 3,4)\) is the third-order difference along dimension 4.

\section*{See Also}
\begin{tabular}{ll} 
gradient & Approximate gradient. \\
int & Integrate (see Symbolic Tool box). \\
prod & Product of array elements \\
sum & Sum of array elements
\end{tabular}
Purpose Directory listing
Syntax \(\quad\)\begin{tabular}{ll} 
dir \\
& dirdirname \\
names \(=\) dir \\
names \(=\) dir('dirname' \()\)
\end{tabular}

Description
dir, by itself, lists the files in the current directory.
dir dirname lists the files in the specified directory. Use pathnames, wildcards, and any options available in your operating system.
names = dir('dirname') ornames = dir returns theresults in an m-by-1 structure with the fields:
\begin{tabular}{ll} 
name & Filename \\
date & Modification date \\
bytes & Number of bytes allocated to the file \\
isdir & 1 if name is a directory; 0 if not
\end{tabular}

\section*{Examples}
cd / Mat|ab/Toolbox/Local; dir

Contents.m matlabrc.m siteid.m userpath.m
names \(=\) dir
names =
\(4 \times 1\) struct array with fields:
n a me
date
bytes
isdir

\section*{See Also}
!, cd, delete, type, what

Purpose Display text or array

\section*{Syntax \\ disp(X)}

Description
di \(\operatorname{sp}(\mathrm{X})\) displays an array, without printing the array name. If \(X\) contains a text string, the string is displayed.

Another way to display an array on the screen is to type its name, but this prints a leading " \(X=\)," which is not always desirable.

\section*{Examples}

One use of disp in an M-file is to display a matrix with column labels:
```

disp(' Corn Oats Hay')
disp(rand(5,3))

```
which results in
\begin{tabular}{lll} 
Corn & Oats & Hay \\
0.2113 & 0.8474 & 0.2749 \\
0.0820 & 0.4524 & 0.8807 \\
0.7599 & 0.8075 & 0.6538 \\
0.0087 & 0.4832 & 0.4899 \\
0.8096 & 0.6135 & 0.7741
\end{tabular}

\section*{See Also}
format
int \(2 s t r\)
num2str
\(r\) ats
sprintf

Control the output display format Integer to string conversion Number to string conversion Rational fraction approximation Write formatted data to a string

\section*{Purpose}

Read an ASCII delimited file into a matrix

\section*{Syntax}

Description
\(M=d l m r e a d(f i l e n a m e, d e l i m i t e r)\)
\(M=d l m r e a d(f i l e n a m e, d e l i m i t e r, r, c)\)
\(M=d l m r e a d(f i l e n a m e, d e l i m i t e r, r, c, r a n g e)\)
range = [UpperLeftRow UpperLeftColumn LowerRight Row
LowerRight Column]


Arguments delimiter
Arguments delimiter

See Also
\(r, c\)
range
dl mwrite
wk1read
wklwrite
delimiter
\(M=d l m e a d(f i l e n a m e, d e l i m i t e r)\) reads data from the ASCII delimited format filename, using the delimiter delimiter. Use'\t' to specify a tab.
\(M=d \mid m r e a d(f i l e n a m e, d e l i m i t e r, r, c)\) reads data from the ASCII delimited format fil ename, using the delimiter deli miter, starting at file offset \(r\) and \(c . r\) and \(c\) are zero based so that \(r=0, c=0\) specifies the first value in thefile.
 named range of ASCII-delimited data. To use the cell range, specify \(r\) ange by:

The character separating individual matrix elements in the ASCII-format spreadsheet file. A comma (,) is the default delimiter.

The spreadsheet cell from which the upper-left-most matrix element is taken.

A vector specifying a range of spreadsheet cells.

\section*{dlmw rite}

Purpose

\section*{Syntax \\ Description}

Arguments

Write a matrix to an ASCII delimited file
```

dl mwrite(filename,A, delimiter)
dl mwrite(filename,A, delimiter,r,c)

```

Thedl mwrit e command converts a MATLAB matrix into an ASCII-format file readable by spreadsheet programs.
dl mwrite(filename, A, delimiter) writes matrixA into the upper left-most cell of the ASCII-format spreadsheet filef il e na me, and uses the delimiter to separate matrix elements. Specify ' \(\mid\) t ' to produce tab-delimited files. Any
 appear in a file as ' 1,2 , \({ }^{\prime}\) when the delimiter is a comma.
dl mwrite(filename, A, delimiter, r, c) writes A intofilename, starting at spreadsheet cell \(r\) and \(c\), with delimiter used to separate matrix elements.

delimiter
\(r, c \quad\) The spreadsheet cell into which the upper-left-most matrix element is written.

See Also
dl mread
wk1read
wk 1write

Read an ASCII delimited file into a matrix Read a Lotus123 WK 1 spreadsheet file into a matrix Write a matrix to a Lotus123 WK 1 spreadsheet file

\section*{Purpose Dulmage-Mendelsohn decomposition}
\begin{tabular}{ll} 
Syntax & \(p=\operatorname{dmperm}(A)\) \\
& {\([p, q, r]=\operatorname{dmperm}(A)\)} \\
& {\([p, q, r, s]=\operatorname{dmperm}(A)\)}
\end{tabular}

Description If \(A\) is a reducible matrix, the linear system \(A x=b\) can be solved by permuting A to a block upper triangular form, with irreducible diagonal blocks, and then performing block backsubstitution. Only the diagonal blocks of the permuted matrix need to be factored, saving fill and arithmetic in the blocks above the diagonal.
\(p=d m p e r m(A)\) returns a row permutation \(p\) so that if \(A\) has full column rank, \(A(p,:)\) is square with nonzero diagonal. This is also called a maximum matching.
\([p, q, r]=d m p e r m(A)\) where \(A\) is a square matrix, finds a row permutation \(p\) and a column permutation \(q\) so that \(A(p, q)\) is in block upper triangular form. The third output argument \(r\) is an integer vector describing the boundaries of the blocks: The kth block of \(A(p, q)\) has indices \(r(k): r(k+1)-1\).
\([p, q, r, s]=d m p e r m(A)\), where \(A\) is not square, finds permutations \(p\) and \(q\) and index vectors \(r\) and \(s\) so that \(A(p, q)\) is block upper triangular. The blocks have indices (r(i):r(i+1)-1, s(i):s(i+1)-1).

In graph theoretic terms, the diagonal blocks correspond to strong Hall components of the adjacency graph of \(A\).
Purpose Load hypertext documentation

\section*{Syntax \\ doc}
doc command
Description doc, by itself, loads hypertext-based reference documentation. Y ou'll be presented with an index of MATLAB's main categories of functions.
doc command loads documentation about a specific command or function.

See Also help
type

Online help for MATLAB functions and M-files List file

Purpose Convert to double precision

\section*{Syntax double( X)}

Description double(x) returns the double precision value for \(x\). If \(x\) is already a double precision array, doubl e has no effect.

Remarks double is called for the expressionsinfor, if, andwhile loops if theexpression isn't al ready double precision. double should beoverloaded for any object when it makes sense to convert it to a double precision value.
Purpose Search for nearest point
Syntax \(\quad\)\begin{tabular}{ll}
\(K\) & \(=d \operatorname{search}(x, y\), TRI, xi, yi) \\
& \(K=d s e a r c h(x, y\), TRI, \(x i, y i, S)\)
\end{tabular}

Description
\(K=d \operatorname{search}(x, y\), TRI, \(x i, y i)\) returns the index of the nearest \((x, y)\) point to the point (xi,yi).dsearch requires a triangulation TRI of the points \(x, y\) obtained from del aunay.
\(K=d s e a r c h(x, y, T R I, x i, y i, S)\) uses the sparse matrix S instead of computing it each time:
\[
\left.\left.\left.S=\text { sparse(TRI(:,[llllll} 1 \begin{array}{llll}
1 & 2 & 2 & 3
\end{array}\right]\right), T R I\left(:,\left[\begin{array}{llllll}
2 & 3 & 1 & 3 & 1 & 2
\end{array}\right]\right), 1, n x y, n x y\right)
\]
wherenxy = prod(size(x)).

\section*{See Also}
del aunay
tsearch
voronoi

Delaunay triangulation
Search for enclosing Delaunay triangle Voronoi diagram

\section*{echo}

Purpose Echo M-files during execution
Syntax \begin{tabular}{ll} 
& echo on \\
& echo off \\
& echo \\
& echo fonname on \\
& echo fonname of \(f\) \\
& echo fcnname \\
& echo on all \\
& echo of fall
\end{tabular}

Description
Theecho command controls theechoing of M-files during execution. Normally, the commands in M-files do not display on the screen during execution.
Command echoing is useful for debugging or for demonstrations, allowing the commands to be viewed as they execute.

Theecho command behaves in a slightly different manner for script files and function files. For script files, the use of e cho is simple; echoing can be either on or of \(f\), in which case any script used is affected:
echo on Turns on the echoing of commands in all script files.
echo of \(f \quad\) Turns off the echoing of commands in all script files.
echo Toggles the echo state.
With function files, the use of echo is more complicated. Ifecho is enabled on a function file, the file is interpreted, rather than compiled. E ach input line is then displayed as it is executed. Since this results in inefficient execution, use echo only for debugging.
\begin{tabular}{ll} 
echo fcnname on & Turns on echoing of the named function file. \\
echo fcnname off & Turns off echoing of the named function file. \\
echo fcnname & Toggles the echo state of the named function file. \\
echo on all & Set echoing on for all function files. \\
echo offall & Set echoing off for all function files.
\end{tabular}

See Also function
```

Purpose Edit an M-file
Syntax
edit
edit fun
edit file.ext
edit class/fun
edit private/fun
edit class/private/fun

```

\section*{Description edit opens a new editor window.}
```

edit fun opens the M-filefun. m in a text editor.
edit file.ext opens the specified text file.
edit class/fun, edit private/fun, oredit class/private/fun can be used to edit a method, private function, or private method (for the class named class.)

```

\section*{Purpose Eigenvalues and eigenvectors}
```

Syntax d = eig(A)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
d = eig(A,B)
[V,D] = eig(A,B)

```

Description \(d=e i g(A)\) returns a vector of the eigenvalues of matrix \(A\).
\([V, D]=\) eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of matrix \(A\), so that \(A * V=V * D\). Matrix \(D\) is the canonical form of \(A-a\) diagonal matrix with A 's eigenvalues on the main diagonal. Matrix \(V\) is the modal matrix-its columns are the eigenvectors of A.

The eigenvectors are scaled so that the norm of each is 1.0. Use [ W, D] = eig(A'); W = W' to compute the left eigenvectors, which satisfy \(W * A=D * W\).
[V, D] = eig(A,'nobalance') finds eigenvalues and eigenvectors without a preliminary balancing step. Ordinarily, balancing improves the conditioning of the input matrix, enabling more accurate computation of the eigenvectors and eigenvalues. However, if a matrix contains small elements that are really due to roundoff error, balancing may scale them up to make them as significant as the other elements of the original matrix, leading to incorrect eigenvectors. Use thenobalance option in this event. Seethebal ance function for more details.
\(d=\) eig(A,B) returns a vector containing the generalized eigenvalues, if \(A\) and \(B\) are square matrices.
\([V, D]=\) ei \(g(A, B)\) produces a diagonal matrix \(D\) of generalized eigenvalues and a full matrix \(V\) whose columns are the corresponding eigenvectors so that \(A * V=B * V * D\). The eigenvectors are scaled so that the norm of each is 1.0.

Remarks The eigenvalue problem is to determine the nontrivial solutions of the equation:
\[
A x=\lambda x
\]
where \(A\) is an \(n-b y-n\) matrix, \(x\) is a length \(n\) column vector, and \(\lambda\) is a scalar. The \(n\) values of \(\lambda\) that satisfy the equation are the eigenvalues, and the corresponding values of \(x\) are the right eigenvectors. In MATLAB, the function ei \(g\) solves for the eigenvalues \(\lambda\), and optionally the eigenvectors \(x\).

The generalized eigenvalue problem is to determine the nontrivial solutions of the equation
\[
A x=\lambda B x
\]
where both \(A\) and \(B\) are \(n-\) by-n matrices and \(\lambda\) is a scalar. The values of \(\lambda\) that satisfy the equation are the generalized eigenvalues and the corresponding values of \(x\) are the generalized right eigenvectors.

If \(B\) is nonsingular, the problem could be solved by reducing it to a standard eigenvalue problem
\[
B^{-1} A x=\lambda x
\]

Because \(B\) can be singular, an alternative algorithm, called the QZ method, is necessary.

When a matrix has no repeated eigenvalues, the eigenvectors are always independent and the eigenvector matrix \(V\) diagonalizes the original matrix \(A\) if applied as a similarity transformation. However, if a matrix has repeated eigenvalues, it is not similar to a diagonal matrix unless it has a full (independent) set of eigenvectors. If the eigenvectors are not independent then the original matrix is said to be defective Even if a matrix is defective, the solution fromeig satisfies \(A * X=X * D\).

\section*{Examples The matrix}
\(\mathrm{B}=[3-2-.9\) 2*eps;-2 4 -1 -eps;-eps/4 eps/2-1 0;-.5 -. 5 . 1 1];
has elements on the order of roundoff error. It is an example for which the nobalance option is necessary to compute the eigenvectors correctly. Try the statements
```

[VB,DB] = eig(B)
B*VB - VB*DB
[VN,DN] = eig(B,'nobalance')
B*VN - VN*DN

```
\begin{tabular}{|c|c|}
\hline Algorithm & For real matrices, ei \(g(X)\) uses the EISPACK routines BALANC, BALBAK, ORTHES, ORTRAN, and HQR2. BALANC and BALBAK balance the input matrix. ORTHES converts a real general matrix to Hessenberg form using orthogonal similarity transformations. ORTRAN accumulates the transformations used by ORTHES. HQR2 finds the eigenvalues and eigenvectors of a real upper Hessenberg matrix by the QR method. The EISPACK subroutine HQR2 is modified to make computation of eigenvectors optional. \\
\hline & When eig is used with two input arguments, the EISPACK routines QZHES, QZI T, QZVAL, and QZVEC solve for the generalized eigenvalues via the QZ algorithm. Modifications handle the complex case. \\
\hline & When ei \(g\) is used with one complex argument, the solution is computed using the QZ algorithm as ei \(g(X\), eye( \(X\) ) ). Modifications to the QZ routines handle the special case \(B=1\). \\
\hline & For detailed descriptions of these algorithms, see the EISPACK Guide \\
\hline Diagnostics & If the limit of 30 n iterations is exhausted while seeking an eigenvalue: Solution will not converge. \\
\hline See Also & balance Improve accuracy of computed eigenvalues \\
\hline & condeig Condition number with respect to eigenvalues \\
\hline & hess Hessenberg form of a matrix \\
\hline & qz QZ factorization for generalized eigenvalues \\
\hline & schur Schur decomposition \\
\hline References & [1] Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag, 1976. \\
\hline & [2] Garbow, B. S., J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines - EISPACK GuideExtension, Lecture Notes in Computer Science, Vol. 51, Springer-Verlag, 1977. \\
\hline & [3] Moler, C. B. and G.W. Stewart, "An Algorithm for Generalized Matrix Eigenvalue Problems", SIAM J . Numer. Anal., Vol. 10, No. 2, April 1973. \\
\hline
\end{tabular}
Purpose Find a few eigenvalues and eigenvectors
```

Syntax [V, D] = eigs(A)
[V,D] = eigs('Afun',n)
[V,D] = eigs(A, B, k, sigma,options)
[V,D] = eigs('Afun',n, B, k, sigma,options)

```

Description eigs solves the eigenvalue problem \(A^{*} v=1 a \mathrm{mbda}{ }^{*} v\) or the generalized eigenvalue problem \(A * v=1\) ambda*B*v. Only a few selected eigenvalues, or eigenvalues and eigenvectors, are computed.
[V, D] = eigs(A) or [V, D] = eigs('Afun', n) solvestheeigenvalue problem where the first input argument is either a square matrix (which can be full or sparse, symmetric or nonsymmetric, real or complex), or a string containing the name of an M-file which applies a linear operator to the columns of a given matrix. In the latter case, the second input argument must be \(n\), the order of the problem. For example, eigs('fft', ...) is much faster than eigs(F, ...) whereF is the explicit FFT matrix.

With one output argument, D is a vector containing k eigenvalues. With two output arguments, \(D\) is a \(k-b y-k\) diagonal matrix and \(V\) is a matrix with \(k\) columns so that \(A * V=V * D\) or \(A * V=B * V * D\).

The remaining input arguments are optional and can be given in practically any order:
\begin{tabular}{|c|c|}
\hline Argument & Value \\
\hline B & A matrix the same size as \(A\). If \(B\) is not specified, \(B=\) eye(size(A)) is used. \\
\hline k & An integer, the number of eigenvalues desired. If \(k\) is not specified, \(k=6\) eigenvalues are computed. \\
\hline sigma & A scalar shift or a two letter string. If si g ma is not specified, the \(k\)-th eigenvalues largest in magnitude are computed. If sigma is 0 , the \(k\)-th eigenvalues smallest in magnitude are computed. If sigma is a real or complex scalar, the shift, the k -th eigenvalues nearest sigma, are computed. If sigma is one of the following strings, it specifies the desired eigenvalues: \\
\hline
\end{tabular}

Theoptions structure specifies certain parameters in the algorithm.
\begin{tabular}{ll|l}
\hline Parameter & Description & Value \\
options.tol & \begin{tabular}{l} 
Convergence tolerance \\
norm( \(\left.{ }^{*} \mathrm{~V}-\mathrm{V}^{*} \mathrm{D}\right)<=\mathrm{tol}\)
\end{tabular} & \begin{tabular}{l}
\(1 \mathrm{e}-10\) (symmetric) \\
\(\mathrm{e}-6\) (nonsymmetric)
\end{tabular} \\
\hline options.p & Dimension of the Arnoldi basis & \(2 * \mathrm{k}\) \\
\hline options.maxit & \begin{tabular}{l} 
Maximum number of iterations
\end{tabular} & 300 \\
\hline options.disp & \begin{tabular}{l} 
Number of eigenvalues \\
displayed at each iteration. Set \\
too for no intermediate output.
\end{tabular} & 20 \\
\hline options.issym & \begin{tabular}{l} 
Positive ifAfun is symmetric
\end{tabular} & 0 \\
\hline options.cheb & \begin{tabular}{l} 
Positive ifA is a string, sigma is \\
'Ir', sr', or a shift, and polyno- \\
mial acceleration should be \\
applied.
\end{tabular} & 0 \\
\hline options.vo & \begin{tabular}{l} 
Starting vector for the Arnoldi \\
factorization
\end{tabular} & rand(n, 1)-.5
\end{tabular}

\section*{See Also \\ eig \\ svds}

Eigenvalues and eigenvectors
Singular value decomposition

\section*{Purpose J acobi elliptic functions}

\section*{Syntax [SN, CN, DN] = ellipj(U,M)}
\([S N, C N, D N]=\) ellipj(U,M,tol)

\section*{Definition}
\[
u=\int_{0}^{\phi} \frac{d \theta}{\left(1-m \sin ^{2} \theta\right)^{\frac{1}{2}}}
\]

Then
\[
\operatorname{sn}(u)=\sin \phi, c n(u)=\cos \phi, d n(u)=\left(1-\sin ^{2} \phi\right)^{\frac{1}{2}}, a m(u)=\phi
\]

Some definitions of the elliptic functions use the modulus \(k\) instead of the parameter \(m\). They are related by:
\[
\mathrm{k}^{2}=\mathrm{m}=\sin ^{2} \alpha
\]

The J acobi elliptic functions obey many mathematical identities; for a good sample, see [1].

Description \([S N, C N, D N]=\) ellipj(U,M) returnstheJ acobi ellipticfunctions \(S N, C N\), and DN, evaluated for corresponding elements of argument \(U\) and parameter \(M\). Inputs \(U\) and \(M\) must be the same size (or either can be scalar).
\([S N, C N, D N]=\) ellipj(U,M,tol) computes the Jacobi elliptic functions to accuracy tol. The default is eps; increase this for a less accurate but more quickly computed answer.

\section*{Algorithm \\ ell i ipj computes theJ acobi elliptic functions using the method of the arith-} metic-geometric mean [1]. It starts with the triplet of numbers:
\[
a_{0}=1, b_{0}=(1-m)^{\frac{1}{2}}, c_{0}=(m)^{\frac{1}{2}}
\]
ell i pj computes successive iterates with:
\[
\begin{aligned}
& a_{i}=\frac{1}{2}\left(a_{i-1}+b_{i-1}\right) \\
& b_{i}=\left(a_{i-1} b_{i-1}\right)^{\frac{1}{2}} \\
& c_{i}=\frac{1}{2}\left(a_{i-1}-b_{i-1}\right)
\end{aligned}
\]

Next, it calculates the amplitudes in radians using:
\[
\sin \left(2 \phi_{n-1}-\phi_{n}\right)=\frac{c_{n}}{a_{n}} \sin \left(\phi_{n}\right)
\]
being careful to unwrap the phases correctly. TheJ acobian elliptic functions are then simply:
\[
\begin{aligned}
& \operatorname{sn}(u)=\sin \phi_{0} \\
& \mathrm{cn}(\mathrm{u})=\cos \phi_{0} \\
& \mathrm{dn}(\mathrm{u})=\left(1-\mathrm{m} \cdot \operatorname{sn}(\mathrm{u})^{2}\right)^{\frac{1}{2}}
\end{aligned}
\]

Limitations

See Also
References

Theellipj function is limited to theinput domain \(0 \leq m \leq 1\). Map other values of \(M\) into this range using the transformations described in [1], equations 16.10 and 16.11. \(U\) is limited to real values.
ellipke
Complete elliptic integrals of the first and second kind
[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, 17.6.

Purpose Complete elliptic integrals of the first and second kind

\section*{Syntax}
```

K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

```

Definition The completeelliptic integral of the first kind [1] is:
\[
K(m)=F(\pi / 2 \mid m),
\]
where \(F\), the elliptic integral of the first kind, is:
\[
K(m)=\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-m t^{2}\right)\right]^{\frac{-1}{2}} d t=\int_{0}^{\frac{\pi}{2}}\left(1-m \sin ^{2} \theta\right)^{\frac{-1}{2}} d \theta
\]

The complete elliptic integral of the second kind,
\[
E(m)=E(K(m))=E\langle\pi / 2 \mid m\rangle,
\]
is:
\[
E(m)=\int_{0}^{1}\left(1-t^{2}\right)^{\frac{-1}{2}}\left(1-m t^{2}\right)^{\frac{1}{2}} d t=\int_{0}^{\frac{\pi}{2}}\left(1-m \sin ^{2} \theta\right)^{\frac{1}{2}} d \theta
\]

Somedefinitions of \(k\) and \(E\) use the modulus kinstead of the parameter \(m\). They are related by:
\[
k^{2}=m=\sin ^{2} \alpha
\]

\section*{Description}

K = ellipke(M) returns the complete elliptic integral of the first kind for the elements of \(M\).
\([K, E]=\) ellipke(M) returns the complete elliptic integral of the first and second kinds.
[K, E] = ellipke(M,tol) computestheJ acobian ellipticfunctionstoaccuracy tol. The default is eps; increase this for a less accurate but more quickly computed answer.

\section*{Algorithm}

Limitations
See Also
References
ell i pke computes the complete elliptic integral using the method of the arith-metic-geometric mean described in [1], section 17.6. It starts with the triplet of numbers:
\[
a_{0}=1, b_{0}=(1-m)^{\frac{1}{2}}, c_{0}=(m)^{\frac{1}{2}}
\]
ell i pke computes successive iterations of \(a_{i}, b_{i}\), and \(c_{i}\) with:
\[
\begin{aligned}
& a_{i}=\frac{1}{2}\left(a_{i-1}+b_{i-1}\right) \\
& b_{i}=\left(a_{i-1} b_{i-1}\right)^{\frac{1}{2}} \\
& c_{i}=\frac{1}{2}\left(a_{i-1}-b_{i-1}\right)
\end{aligned}
\]
stopping at iteration \(n\) when \(c n \approx 0\), within the tolerance specified by eps. The complete elliptic integral of the first kind is then:
\[
K(m)=\frac{\pi}{2 a_{n}}
\]
ellipke is limited to the input domain \(0 \leq m \leq 1\).
ellipjJ Jacobi elliptic functions
[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, 17.6.
Purpose Conditionally execute statements
```

Syntax if expression
statements
el se
statements
end
Description The el se command is used to delineate an alternate block of statements.

```
```

if expression

```
if expression
    statements
    statements
else
else
    statements
    statements
end
end
The second set of statements is executed if theexpression has any zero elements. The expression is usually the result of
```

```
expression rop expression
```

expression rop expression
whererop is ==, <, >, <=, >=, or ~=.
See Also

break	Break out of flow control structures
elseif	Conditionally execute statements
end	Terminatef or, while, and if statements and indicate
the last index	
for	Repeat statements a specific number of times
if	Conditionally execute statements
return	Return to the invoking function
switch	Switch among several cases based on expression
while	Repeat statements an indefinite number of times

```

\section*{elseif}

Purpose Conditionally execute statements

\section*{Syntax \\ ```
if expression \\ statements \\ elseif expression \\ statements \\ end
```}

Description The elseif command conditionally executes statements.
```

if expression
statements
elseif expression
statements
end

```

The second block of statements executes if the first expression has any zero elements and the secondexpression has all nonzero elements. The expression is usually the result of
```

expression rop expression

```
whererop is \(==,\langle\rangle,,<=,>=\), or \(\sim=\).
el se if, with a space between the el se and the if, differs from el seif, with nospace. The former introduces a new, nested, if , which must havea matching end. The latter is used in a linear sequence of conditional statements with only one terminating end.

The two segments
```

if A
x = a
else
if B
x = b
else
if C
x = c
else
x = d
end
end
end

```
produce identical results. Exactly one of the four assignments to x is executed, depending upon the values of the three logical expressions, \(A, B\), and \(C\).

See Also
break
else
end
for
if
return
switch
while

Break out of flow control structures Conditionally execute statements
Terminatef or, while, andif statements and indicate the last index
Repeat statements a specific number of times Conditionally execute statements
Return to the invoking function
Switch among several cases based on expression Repeat statements an indefinite number of times
Purpose Terminatefor, while, switch, and if statements or indicate last index
Syntax \begin{tabular}{rl}
while expression \% (orif orfor) \\
& statements \\
end \\
\(B\) & \(=A(i n d e x: e n d, i n d e x)\)
\end{tabular}

Description

\section*{Examples}
end is used toterminatef or, while, switch, andif statements. Without an end statement, for, while, switch, andif wait for further input. Each end is paired with the closest previous unpaired for, while, switch, or if and serves to delimit its scope.
Thee nd command also serves as the last index in an indexing expression. In that context, end \(=(\operatorname{size}(x, k))\) when used as part of the kth index.

This example shows end used with for and if.Indentation provides easier readability.
```

for i = 1:n
if a(i)== 0
a(i) = a(i) + 2;
end
end

```

Here, end is used in an indexing expression:
```

A = rand(5,4)
B = A(end, 2: end)

```

In this example, \(B\) is a 1-by-3 vector equal to \([A(5,2) A(5,3) A(5,4)]\).
break
for
if
return
switch
while

Break out of flow control structures
Repeat statements a specific number of times
Conditionally execute statements
Return to the invoking function
Switch among several cases based on expression
Repeat statements an indefinite number of times

\section*{Purpose End of month}

\section*{Syntax \(\quad E=\operatorname{eomday}(Y, M)\)}

Description \(\quad E=\operatorname{eomday}(Y, M)\) returns the last day of the year and month given by corresponding elements of arrays \(Y\) and \(M\).

Examples Because 1996 is a leap year, the statement eomday 1996,2\()\) returns 29.
To show all the leap years in this century, try:
```

y = 1900:1999;
E = eomday(y, 2 *ones(length(y), 1)');
y(find(E==29))'
ans=
Columns 1 through 6
1904 1908 1912 1916 1920 1924
Columns 7 through 12
1928 1932 1936 1940 1944
Columns 13 through 18
1952 1956 1960 1964 196
Columns 19 through 24
1976 1980 1984 1988 1992

```
See Also
datenum
datevec
weekday

Serial date number Date components
Day of the week
\begin{tabular}{ll}
Purpose & Floating-point relative accuracy \\
Syntax & eps \\
Description & \begin{tabular}{l}
eps returns the distance from 1.0 to the next largest floating-point number. \\
\\
\\
The valueeps is a default tolerance for pi nv and rank , as well as several other \\
MATLAB functions. On machines with IEEE floating-point arithmetic, \\
eps \(=2 \wedge(-52)\), which is roughly \(2.22 \mathrm{e}-16\).
\end{tabular} \\
See Also & \begin{tabular}{l}
real max \\
real min \(n\)
\end{tabular}
\end{tabular}

Purpose
Syntax
```

Y = erf(X)
Y}=\operatorname{erfc}(X
Y = erfcx(X)
X = erfinv(Y)

```

Error function
Complementary error function
Scaled complementary error function Inverse of the error function

Definition The error function erf(x) is defined as the integral of the Gaussian distribution function from 0 tox:
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]

The complementary error function er \(\mathrm{f}(\mathrm{x})\) is defined as:
\[
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t=1-\operatorname{erf}(x)
\]

The scaled complementary error function erf \(\mathrm{cx}(\mathrm{X})\) is defined as:
\[
\operatorname{erfcx}(x)=e^{x^{2}} \operatorname{erfc}(x)
\]

For large \(x, \operatorname{erfcx}(x)\) is approximately \(\left(\frac{1}{\sqrt{\pi}}\right) \frac{1}{x}\).

\section*{Description}

\section*{Examples}
\(Y=\operatorname{erf}(X)\) returns the value of the error function for each element of real array X .
\(Y=\operatorname{erfc}(X)\) computes the value of the complementary error function.
\(Y=\operatorname{erfcx}(X)\) computes the value of the scaled complementary error function.
\(X=\operatorname{erfinv}(Y)\) returns the value of the inverseerror function for each element of \(Y\). The elements of \(Y\) must fall within the domain \(-1<Y<1\).
```

erfinv(1) islnf

```
erfinv(-1) is-Inf.

Forabs(Y) > 1 ,erfinv(Y) isNaN.

\section*{erf, erfc, erfcx, erfinv}
\begin{tabular}{|c|c|}
\hline Remarks & The relationship between the error function and the standard normal probability distribution is: \\
\hline & ```
x = - 5:0.1:5;
standard_normal_cdf = (1 + (erf(x*sqrt(2))))./2;
``` \\
\hline Algorithms & For the error functions, the MATLAB code is a translation of a Fortran program by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN, March 19, 1990. The main computation evaluates near-minimax rational approximations from [1]. \\
\hline & For the inverse of the error function, rational approximations accurate to approximately six significant digits are used to generate an initial approximation, which is then improved to full accuracy by two steps of Newton's method. The M-file is easily modified to eliminate the Newton improvement. The resulting code is about three times faster in execution, but is considerably less accurate. \\
\hline References & [1] Cody, W. J ., "Rational Chebyshev Approximations for the Error Function," Math. Comp., pgs. 631-638, 1969 \\
\hline
\end{tabular}

\section*{Purpose Display error messages}

\section*{Syntax error('error_message')}

Description error('error_message') displays an error message and returns control to the keyboard. The error message contains the input string er ror _ message.

The error command has no effect if error_message is a null string.
Examples
Theer ror command provides an error return from M-files.
```

function foo(x,y)
if nargin ~= 2
error('Wrong number of input arguments')
end

```

The returned error message looks like:
```

" foo(pi)
??? Error using ==> foo
Wrong number of i nput arguments

```

\section*{See Also}
dbstop
disp
lasterr
warning

Set breakpoints in an M-file function
Display text or array
Last error message
Display warning message

\section*{errortrap}

Purpose Continue execution after errors during testing
Syntax \(\quad\) errortrap on

Description
errortrap on continues execution after errors when they occur. Execution continues with the next statement in a top level script.
errortrap off (the default) stops execution when an error occurs.
Purpose Elapsed time

\section*{Syntax \(\quad e=\) etime(t2, t 1 )}

Description e = etime(t 2, t 1 ) returnsthetime in seconds between vectorst 1 and t 2 . The two vectors must be six elements long, in the format returned by clock :
```

T = [Year Month Day Hour Mi nute Second]

```

Examples

Limitations

See Also
clock
cputime
tic,toc

Current time as a date vector
Elapsed CPU time Stopwatch timer

\section*{Purpose Interpret strings containing MATLAB expressions}
```

Syntax

```
```

a = eval('expression')

```
a = eval('expression')
[a1,a2,a3...] = eval('expression')
[a1,a2,a3...] = eval('expression')
eval(string,catchstring)
```

eval(string,catchstring)

```

Description a = eval('expression') returns the value ofexpression, a MATLAB expression, enclosed in single quotation marks. Create'expres sion' by concatenating substrings and variables inside square brackets.
[a1, a2, a3...] = eval('expression') evaluates and returns the results in separate variables. Use of this syntax is recommended over:
```

eval('[a1, a2,a3...] = expression')

```
which hides information from the MATLAB parser and can produce unexpected behavior.
eval(string, catchstring) provides the ability to catch errors. It executes string and returns if the operation was successful. If the operation generates an error, catchstring is evaluated beforereturning. Usel asterr to obtain the error string produced by string.

\section*{Examples}
```

A = '1+4'; eval(A)
ans=
5
P = 'pwd'; eval(P)
ans =
/ home/ myname

```

The loop
```

for n = 1:12
eval(['M',int2str(n),' = magic(n)'])
end

```
generates a sequence of 12 matrices named M1 through M12 .

The next example runs a selected \(M\)-file script. Note that the strings making up the rows of matrix \(D\) must all have the same length.
```

D = [' odedemo
'quaddemo'
'zerodemo'
'fitdemo '];
n = input('Select a demo number: ');
eval(D(n,:))

```

\section*{See Also}
feval | asterr

Function evaluation
Last error message.
Purpose Evaluate expression in workspace.
\begin{tabular}{|c|c|}
\hline Syntax & evalin(ws, 'expression') \\
\hline & evalin(ws, 'try', 'catch') \\
\hline Description & evalin(ws,'expression') evaluatesexpression in the context of the wor spacews.ws can be either'caller' or'base'. \\
\hline & evalin(ws,'try', 'catch') tries to evaluate thetry expression and if tha fails it evaluates the cat ch expression in the specified workspace. \\
\hline & eval in is useful for getting values from another workspace whileassigin useful for depositing values into another workspace. \\
\hline See Also & assignin Assign variable in workspace. \\
\hline & evalin Interpret strings containing MATLAB expressions \\
\hline
\end{tabular}

Purpose
Check if a variable or file exists
```

Syntax

```
```

a = exist('item')

```
a = exist('item')
ident = exist('item', kind)
```

ident = exist('item', kind)

```

Description
\(a=\) exist('item') returns the status of the variable or file item:
\(0 \quad\) Ifitem does not exist.
1 If the variable item exists in the workspace.
2 Ifitem is an M-file or a file of unknown type.
3 Ifitemis a MEX-file.
4 Ifitemisa MDL-file.
5 Ifitem is a built-in MATLAB function.
\(6 \quad\) Ifitemis a \(P\)-file.
7 Ifitem is a directory.
exist('item') or exist('item.ext') returns 2 ifitemis on the MATLAB search path but the filename extension (ext) is not m, p, or mex. it em may be a MATLABPATH relative partial pathname.
ident = exist('item','kind') returns logical true (1) if an item of the specified kind is found, and returns 0 otherwise. ki nd may be:
'var' Checks only for variables.
'builtin' Checks only for built-in functions.
'file' Checks only for files.
'dir' Checks only for directories.

\section*{exist}

\section*{Examples}
exist can check whether a MATLAB function is built-in or a file:
```

ident = exist('plot')
ident =
5

```
plot is a built-in function.

\section*{See Also}
\begin{tabular}{ll} 
dir & Directory listing \\
help & Online help for MATLAB functions and M-files \\
lookfor & Keyword search through all help entries \\
what & Directory listing of M-files, MAT-files, and MEX-files \\
which & Locate functions and files \\
who & List directory of variables in memory \\
See also partial path. &
\end{tabular}
\begin{tabular}{|c|c|}
\hline Purpose & Exponential \\
\hline Syntax & \(Y=\exp (X)\) \\
\hline \multirow[t]{2}{*}{Description} & Theexp function is an elementary function that operates element-wise on arrays. Its domain includes complex numbers. \\
\hline & \(Y=\exp (X)\) returns the exponential for each element of \(X\). F or complex \(z=x+i * y\), it returns the complex exponential: \(\mathrm{e}^{\mathrm{z}}=\mathrm{e}^{\mathrm{x}}(\cos (\mathrm{y})+\mathrm{i} \sin (\mathrm{y}))\) \\
\hline Remark & Useexpm for matrix exponentials. \\
\hline \multirow[t]{4}{*}{See Also} & expm Matrix exponential \\
\hline & \(\log\) Natural logarithm \\
\hline & \(\log 10\) Common (base 10) logarithm \\
\hline & expint Exponential integral \\
\hline
\end{tabular}

Purpose Exponential integral

\section*{Syntax \(\quad Y=\operatorname{expint}(X)\)}

Definitions The exponential integral is defined as:
\[
\int_{x}^{\infty} \frac{e^{-t}}{t} d t
\]

Another common definition of the exponential integral function is the Cauchy principal value integral:
\[
E_{i}(x)=\int_{-\infty}^{x} e^{-t} d t
\]
which, for real positive \(x\), is related to expint as follows:
```

expint(-x+i*0)=-Ei(x) - i *pi
Ei}(x)=real(-expint(-x)

```

\section*{Description}

\section*{Algorithm}

\section*{References}

For elements of \(x\) in the domain \([-38,2]\), expint uses a series expansion representation (equation 5.1.11 in [1]):
\[
E_{i}(x)=-\gamma-\ln x-\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n n!}
\]

For all other elements of \(x\), expint uses a continued fraction representation (equation 5.1.22 in [1]):
\[
\mathrm{E}_{\mathrm{n}}(\mathrm{z})=\mathrm{e}^{-\mathrm{z}}\left(\frac{1}{\mathrm{z}+} \frac{\mathrm{n}}{1+} \frac{1}{\mathrm{z}+} \frac{\mathrm{n}+1}{1+} \frac{2}{\mathrm{z}+} \cdots\right), \mid \text { angle }(\mathrm{z}) \mid<\pi
\]
[1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions. Chapter 5, New York: Dover Publications, 1965.

Purpose Matrix exponential

\section*{Syntax \(\quad Y=\operatorname{expm}(X)\)}

Description \(\quad Y=\operatorname{expm}(X)\) raises the constant \(e\) to the matrix power \(X\). Complex results are produced if \(X\) has nonpositive eigenvalues.

Useexp for the element-by-element exponential.

Algorithm

Examples

The expm function is built-in, but it uses the Padé approximation with scaling and squaring algorithm expressed in the file expm. m.

A second method of calculating the matrix exponential uses a Taylor series approximation. This method is demonstrated in the file expm2.m. The Taylor series approximation is not recommended as a general-purpose method. It is often slow and inaccurate.

A third way of calculating the matrix exponential, found in the file expm3. m, is to diagonalize the matrix, apply the function to the individual eigenvalues, and then transform back. This method fails if the input matrix does not have a full set of linearly independent eigenvectors.

References [1] and [2] describe and compare many algorithms for computing \(\operatorname{expm}(X)\). The built-in method, expm1, is essentially method 3 of [2].

Suppose A is the 3-by-3 matrix
\begin{tabular}{llrl}
1 & 1 & 0 & \\
0 & 0 & 2 & \\
0 & 0 & -1 & \\
then \(\operatorname{expm}(A)\) & is \\
2.7183 & 1.7183 & \\
0 & 1.0000 & 1.0862 \\
0 & 0 & 0.3642 \\
0 & & 0.3679
\end{tabular}
whileexp(A) is
\begin{tabular}{lll}
2.7183 & 2.7183 & 1.0000 \\
1.0000 & 1.0000 & 7.3891 \\
1.0000 & 1.0000 & 0.3679
\end{tabular}

Notice that the diagonal elements of the two results are equal; this would be true for any triangular matrix. But the off-diagonal elements, including those bel ow the diagonal, are different.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{See Also} & exp & Exponential \\
\hline & funm & Evaluate functions of a matrix \\
\hline & 10 gm & Matrix logarithm \\
\hline & sqrtm & M atrix square root \\
\hline \multirow[t]{2}{*}{References} & \multicolumn{2}{|l|}{[1] Golub, G. H. and C. F. Van L oan, Matrix Computation, p. 384, J ohns Hopkins University Press, 1983.} \\
\hline & [2] Mo Expon & F. Van Loan, "Nineteen Dubious Ways to Comput x," SIAM Review 20, 1979, pp. 801-836. \\
\hline
\end{tabular}

Purpose Identity matrix
Syntax \(\quad\)\begin{tabular}{rl}
\(y\) & \(=\operatorname{eye}(n)\) \\
\(y\) & \(=\operatorname{eye}(m, n)\) \\
\(y\) & \(=\operatorname{eye}(\operatorname{size}(A))\)
\end{tabular}

Description \(\quad Y=e y e(n)\) returns then-by-n identity matrix.
\(Y=\) eye(m,n) oreye([mn]) returns an m-by-n matrix with 1 's on the diagonal and 0 's elsewhere.
\(Y=\) eye(size(A)) returns an identity matrix the same size as A.
Limitations The identity matrix is not defined for higher-dimensional arrays. The assignment \(y=\) eye( \([2,3,4])\) results in an error.

See Also
ones
rand
randn
zeros

Create an array of all ones
Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Create an array of all zeros

\section*{factor}
Purpose Prime factors
Syntax \(\quad\)\begin{tabular}{rl}
\(f\) & \(=f a c t o r(n)\) \\
\(f\) & \(=\operatorname{factor}(\mathrm{symb})\)
\end{tabular}

Description
\(f=f a c t o r(n)\) returns a row vector containing the prime factors of \(n\).
Examples
\[
\begin{aligned}
f & =\text { factor (123) } \\
f & =3
\end{aligned}
\]

\section*{See Also}
isprime True for prime numbers
primes
Generate list of prime numbers

\section*{Purpose Close one or more open files}
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{\[
\begin{aligned}
\text { status } & =\mathrm{fclose}(f i d) \\
\text { status } & =\mathrm{fclose}\left(\text { 'all' }^{\prime}\right)
\end{aligned}
\]} \\
\hline \multirow[t]{2}{*}{Description} & \multicolumn{2}{|l|}{status \(=\mathrm{fclose}(\mathrm{fid})\) closes the specified file, if it is open, returning 0 if successful and -1 if unsuccessful. Argument \(f i d\) is a file identifier associated with an open file (Seef open for a complete description).} \\
\hline & status = and error & \[
\begin{aligned}
& 1 ') \\
& 0 \text { if } 5 l
\end{aligned}
\] \\
\hline \multirow[t]{8}{*}{See Also} & ferror & Que \\
\hline & fopen & Op \\
\hline & fprintf & Writ \\
\hline & fread & Read \\
\hline & fscanf & Read \\
\hline & fseek & \\
\hline & ftell & Get \\
\hline & f write & \\
\hline
\end{tabular}
Purpose Test for end-of-file
Syntax eofstat \(=\) feof(fid)

Description eofstat \(=f e o f(f i d)\) tests whether the end-of-file indicator is set for the file with identifier fid. It returns 1 if the end-of-fileindicator is set, or 0 if it is not. (Seef open for a complete description of \(f i d\).)

The end-of-file indicator is set when there is no more input from the file.
See Also
fopen
Open a file or obtain information about open files

Purpose
Query MATLAB about errors in file input or output
Syntax \(\quad\)\begin{tabular}{l} 
message \(=\) ferror (fid) \\
message \(=\) ferror (fid, 'clear') \\
{\([\) message, errnum \(]=\) ferror (...) }
\end{tabular}

Description message \(=\) ferror(fid) returnstheerror messagemessage. Argumentfid is a file identifier associated with an open file (See fopen for a complete description).
message = ferror(fid,'clear') clears the error indicator for the specified file.
[message, errnum] = ferror(...) returnstheerror status numbererrnum of the most recent file I/O operation associated with the specified file.

If the most recent I/O operation performed on the specified file was successful, the value of message is empty and ferror returns an errnum value of 0 .

A nonzero er r num indicates that an error occurred in the most recent file I/O operation. The value of mes sage is a string that may contain information about the nature of the error. If the message is not hel pful, consult the \(C\) runtime library manual for your host operating system for further details.
\begin{tabular}{lll} 
See Also & fclose & Close one or more open files \\
& fopen & Open a file or obtain information about open files \\
& fprintf & Write formatted data to file \\
& fread & Read binary data from file \\
& fseek & Read formatted data from file \\
& ftell & Set file position indicator \\
& fwrite & Get file position indicator \\
& Write binary data from a MATLAB matrix to a file
\end{tabular}
folose
fopen
fprintf
fread
fscanf
fseek
fwrite

Close one or more open files
Open a file or obtain information about open files Write formatted data to file
Read binary data from file
Read formatted data from file
Set file position indicator
Get file position indicator
Write binary data from a MATLAB matrix to a file
Purpose Function evaluation
```

Syntax [y1,y2, ...] = feval(function,x1,···..,xn)

```

Description \(\quad[y 1, y 2 \ldots]=\) feval (function, \(x 1, \ldots, x n\) ) Iffunction is a string containing the name of a function (usually defined by an M -file), then feval (function, x1, ..., xn) evaluates that function at the given arguments.

\section*{Examples Thestatements:}
```

[V,D] = feval('eig',A)
[V,D] = eig(A)

```
are equivalent. f eval is useful in functions that accept string arguments specifying function names. F or example, the function:
```

function plotf(fun,x)
y = feval(fun,x);
plot(x,y)

```
can be used to graph other functions.
\begin{tabular}{lll} 
See Also & assignin & Assign value to variable in workspace \\
builtin & Execute builtin function from overloaded method \\
eval & Interpret strings containing MATLAB expressions \\
evalin & Evaluate expression in workspace.
\end{tabular}

\section*{Purpose One-dimensional fast F ourier transform}
```

Syntax
Y = fft(X)
Y = fft(X,n)
Y = fft(X,[], dim)
Y = fft(X,n,dim)

```

\section*{Definition}
is an nth root of unity.

\section*{Description}
where

The functions \(X=f f t(x)\) and \(x=i f f t(X)\) implement the transform and inverse transform pair given for vectors of length \(N\) by:
\[
\begin{aligned}
& X(k)=\sum_{j=1}^{N} x(j) \omega(j-1)(k-1) \\
& x(j)=(1 / N) \sum_{k=1}^{N} x(k) \omega_{N}^{-(j-1)(k-1)}
\end{aligned}
\]
\(Y=f f t(X)\) returns the discrete Fourier transform of vector \(X\), computed with a fast F ourier transform (FFT) algorithm.

If \(x\) is a matrix, \(f f\) returns the F ourier transform of each column of the matrix.
If X is a multidimensional array, \(f \mathrm{ft}\) operates on the first nonsingleton dimension.
\(Y=f f t(X, n)\) returns the \(n\)-point \(F F T\). If the length of \(X\) is less than \(n, X\) is padded with trailing zeros to length \(n\). If the length of \(X\) is greater than \(n\), the sequence \(x\) is truncated. When \(x\) is a matrix, the length of the columns are adjusted in the same manner.
\(Y=f f t(X,[], d i m)\) and \(Y=f f t(X, n, d i m)\) apply the \(F F T\) operation across the dimension di m.

\section*{Remarks}

Examples

Algorithm

The \(f f t\) function employs a radix- 2 fast Fourier transform algorithm if the length of the sequence is a power of two, and a slower mixed-radix algorithm if it is not. See "Algorithm."

A common use of F ourier transforms is to find the frequency components of a signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz . Form a signal containing 50 Hz and 120 Hz and corrupt it with some zero-mean random noise:
```

t = 0:0.001:0.6;
x = sin(2*pi*50*t) +sin(2*pi*120*t);
y=x + 2*randn(size(t));
plot(y(1:50))

```

It is difficult to identify the frequency components by looking at the original signal. Converting to the frequency domain, the discrete F ourier transform of the noisy signal y is found by taking the 512-point fast F ourier transform (FFT):
```

Y = fft(y,512);

```

The power spectral density, a measurement of the energy at various frequencies, is
```

Pyy = Y.* conj(Y) / 512;

```

Graph thefirst 257 points (the other 255 points are redundant) on a meaningful frequency axis.
```

f = 1000*(0:256)/512;
plot(f,Pyy(1:257))

```

This represents the frequency content of \(y\) in the range from DC up to and including the Nyquist frequency. (The signal produces the strong peaks.)

When the sequence length is a power of two, a high-speed radix-2 fast Fourier transform algorithm is employed. The radix-2 F FT routine is optimized to perform a real FFT if the input sequence is purely real, otherwise it computes the complex FFT. This causes a real power-of-two FFT to be about 40\% faster than a complex FFT of the same length.

When the sequence length is not an exact power of two, an alternate al gorithm finds the prime factors of the sequence length and computes the mixed-radix discrete F ourier transforms of the shorter sequences.

The time it takes to compute an FFT varies greatly depending upon the sequence length. TheFFT of sequences whose lengths have many prime factors is computed quickly; the FFT of those that have few is not. Sequences whose lengths are prime numbers are reduced to the raw (and slow) discrete F ourier transform (DFT) algorithm. F or this reason it is generally better to stay with power-of-two FFTs unless other circumstances dictate that this cannot be done. For example, on one machine a 4096-point real FFT takes 2.1 seconds and a complex FFT of the same length takes 3.7 seconds. The FFTs of neighboring sequences of length 4095 and 4097, however, take 7 seconds and 58 seconds, respectively.

\section*{See Also}
dftmtx,filter,freqz, specplot, and spectrumin the Signal Processing Toolbox, and:
\begin{tabular}{ll}
\(f f t 2\) & Two-dimensional fast F ourier transform \\
\(f f t s h i f t\) & Rearrange the outputs of \(f f t\) and \(f f t 2\) \\
\(i f f t\) & Inverse one-dimensional fast Fourier transform
\end{tabular}
Purpose Two-dimensional fast Fourier transform
Syntax \begin{tabular}{rl}
\(Y\) & \(=f f t 2(X)\) \\
\(Y\) & \(=f f t 2(X, m, n)\)
\end{tabular}

Description \(\quad Y=f f t 2(X)\) performs thetwo-dimensional FFT. The result \(Y\) is the same size as X .
\(Y=f f t 2(X, m, n)\) truncates \(X\), or pads \(X\) with zeros to create an m-by-n array before doing the transform. The result is \(m-b y-n\).

\section*{Algorithm \(\quad f f t 2(X)\) can be simply computed as}

\section*{fft(fft(X).').'}

This computes the one-dimensional FFT of each column \(x\), then of each row of the result. The time required to compute \(f \mathrm{ft} 2(\mathrm{X})\) depends strongly on the number of prime factors in \([\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{X})\). It is fastest when m and n are powers of 2.
\begin{tabular}{lll} 
See Also & \(f f t\) & One-dimensional fast Fourier transform \\
& \(f f t s h i f t\) & Rearrange the outputs of \(f f t\) and \(f f t 2\) \\
& \(i f f t 2\) & Inverse two-dimensional fast Fourier transform
\end{tabular}

\section*{Purpose Multidimensional fast Fourier transform}
Syntax \begin{tabular}{rl}
\(Y\) & \(=f f t n(X)\) \\
\(Y\) & \(=f f t n(X\), siz \()\)
\end{tabular}

Description

\section*{Algorithm}
\(f f t n(X)\) is equivalent to
\(Y=X ;\)
for \(p=1: \mid e n g t h(s i z e(X))\)
\(Y=f f t(Y,[], p) ;\)
end
This computes in-place the one-dimensional fast F ourier transform al ong each dimension of \(X\). The time required to computef \(f t n(X)\) depends strongly on the number of prime factors of the dimensions of \(x\). It is fastest when all of the dimensions are powers of 2.
\begin{tabular}{lll} 
See Also & \(f f t\) & One-dimensional fast Fourier transform \\
& \(f f t 2\) & Two-dimensional fast Fourier transform \\
& \(i f f t n\) & Inverse multidimensional fast Fourier transform
\end{tabular}

\section*{fftshift}

Purpose Move zero'th lag to center of spectrum.

\section*{Syntax \(\quad Y=f f t s h i f t(X)\)}

Description \(\quad Y=f f t s h i f t(X)\) rearranges the outputs of \(f f t\) and \(f f t 2\) by moving the zero frequency component to the center of the spectrum, which is sometimes a more convenient form.

If \(X\) is a vector, \(Y\) is a vector with the left and right halves swapped.
If \(X\) is a matrix, \(Y\) is a matrix with quadrants one and three swapped with quadrants two and four.

\section*{Examples For any matrix \(X\)}
\(Y=f f t 2(X)\)
has \(Y(1,1)=\operatorname{sum}(\operatorname{sum}(X))\); the DC component of the signal is in the upper-left corner of the two-dimensional FFT. For
\(Z=f f t s h i f t(Y)\)
this DC component is near the center of the matrix.

\section*{See Also}

\section*{\(f f t\)}

One-dimensional fast Fourier transform
\(f f t 2\)

Purpose \(\quad\) Return the next line of a file as a string without line terminator(s)

\section*{Syntax \\ line \(=\mathrm{fgetl}(\mathrm{fid})\)}

Description
Iine = fgetI(fid) returns the next line of the file with identifier fid. If f getl encounters the end of a file, it returns-1. (Seef open for a complete description of fid.)

The returned string | ine does not include the line terminator(s) with the text line (to obtain the line terminator(s), use f get s ).

See Also fgets \(\begin{aligned} & \text { Return the next line of a file as a string with line termi- } \\ & \text { nator(s) }\end{aligned}\)
Purpose \(\quad\) Return the next line of a file as a string with line terminator(s)
Syntax \(\quad\)\begin{tabular}{l} 
line \(=\operatorname{fgets}(f i d)\) \\
line \(=\operatorname{fgets}(f i d\), nchar \()\)
\end{tabular}

Description

See Also
Return the next line of a file as a string without line terminator(s)
Purpose Field names of a structure
Syntax names = fieldnames(s)

Description names = fieldnames (s) returns a cell array of strings containing the structure field names associated with the structures.

\section*{Examples \\ Given the structure:}
```

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

```

Then the command \(n=\) fieldnames(mystr) yields n \(=\)
' name'
' 1 D'

\author{
See Also
}
getfield
setfield

Get field of structure array Set field of structure array

\section*{Purpose Filter data with an infinite impulse response (IIR) or finite impulse response (FIR) filter}

\author{
Syntax
}
```

y = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
[...] = filter(b,a,X,[],dim)

```

\section*{Description}

Thef ilter function filters a data sequence using a digital filter which works for both real and complex inputs. Thefilter is a direct form II transposed implementation of the standard difference equation (see "Algorithm").
\(y=\) filter \((b, a, X)\) filters the data in vector \(X\) with the filter described by numerator coefficient vector b and denominator coefficient vector a. If a(1) is not equal tol, filter normalizes the filter coefficients by a(1). Ifa(1) equals 0, filter returns an error.

If X is a matrix, filter operates on the columns of X . If X is a multidimensional array, filter operates on the first nonsingleton dimension.
\([y, z f]=\) filter \((b, a, X)\) returns the final conditions, \(z f\), of the filter delays. Outputzf is a vector of max(size(a), size(b)) or an array of such vectors, one for each column of \(x\).
\([y, z f]=\) filter(b, a, X, zi) accepts initial conditions and returns the final conditions, zi andzf respectively, of the filter delays. Input zi is a vector (or an array of vectors) of length max (length(a), I ength(b))-1.
\(y=\) filter(b, a, X,zi,dim) and
\([\ldots]=\) filter(b,a, X,[], dim) operate across the dimension dim.

\section*{Algorithm}

or
\[
\begin{aligned}
y(n)=b(1) * x(n) & +b(2) * x(n-1)+\ldots+b(n b+1) * x(n-n b) \\
- & a(2) * y(n-1)-\ldots-a(n a+1) * y(n-n a)
\end{aligned}
\]
wheren-1 is the filter order, and which handles both FIR and IIR filters [1]. The operation of filter at sample \(m\) is given by the time domain difference equations
\[
\begin{aligned}
& y(m)=b(1) x(m)+z_{1}(m-1) \\
& z_{1}(m)=b(2) x(m)+z_{2}(m-1)-a(2) y(m) \\
& \vdots \quad=\quad \vdots \quad \vdots \\
& z_{n-2}(m)=b(n-1) x(m)+z_{n-1}(m-1)-a(n-1) y(m) \\
& z_{n-1}(m)=b(n) x(m)-a(n) y(m)
\end{aligned}
\]

The input-output description of this filtering operation in the \(z\)-transform domain is a rational transfer function,
\[
Y(z)=\frac{b(1)+b(2) z^{-1}+\ldots+b(n b+1) z^{-n b}}{1+a(2) z^{-1}+\ldots+a(n a+1) z^{-n a}} X(z)
\]

See Also filtfilt in the Signal Processing Toolbox, and:
filter 2 Two-dimensional digital filtering
References
[1] Oppenheim, A. V. and R.W. Schafer. Discrete-TimeSignal Processing, Englewood Cliffs, NJ : Prentice-Hall, 1989, pp. 311-312.
Purpose Two-dimensional digital filtering
Syntax \(\quad\)\begin{tabular}{rl}
\(Y\) & \(=\) filter \(2(B, X)\) \\
\(Y\) & \(=\) filter \(2(B, X\), shape' \()\)
\end{tabular}

Description \(\quad Y=\) filter \(2(B, X)\) filters the data in \(X\) with the two-dimensional FIR filter B. The result, \(Y\), is computed using two-dimensional convolution and is the same size as \(X\).
\(Y=\) filter \(2(B, X\), 'shape') returns \(Y\) computed via two-dimensional convolution with size specified by shape-one of three strings which determines the size of the output matrix:
- s a me returns the central part of the convolution that is the same size as X (default).
- full returns the full two-dimensional convolution, size(Y) >size(X).
- val id returns only those parts of the convolution that are computed without the zero-padded edges, size(Y) <size(X).
\begin{tabular}{ll} 
Algorithm & \begin{tabular}{l} 
Thef ilter 2 function uses conv 2 to compute the full two-dimensional convolu- \\
tion of the FIR filter with the input matrix. By default, filter 2 extracts and \\
returns the central part of the convolution that is the same size as the input \\
matrix. Usethes hape parameter to specify an alternate part of the convolution \\
for return.
\end{tabular} \\
See Also & \begin{tabular}{ll} 
conv2 \\
filter & \begin{tabular}{l} 
Two-dimensional convolution
\end{tabular} \\
\begin{tabular}{ll} 
Filter data with an infinite impulse response (IIR) or \\
finite impulse response (FIR) filter
\end{tabular}
\end{tabular}
\end{tabular}
Purpose Find indices and values of nonzero elements
\begin{tabular}{ll} 
Syntax & \(k=\operatorname{find}(x)\) \\
& {\([i, j]=\operatorname{find}(x)\)} \\
& {\([i, j, v]=\operatorname{find}(x)\)}
\end{tabular}

Description
\(k=f i n d(X)\) returns the indices of the array \(x\) that point to nonzero elements. If none is found, fi ind returns an empty matrix.
\([i, j]=f i n d(X)\) returns the row and column indices of the nonzeroentries in the matrix \(x\). This is often used with sparse matrices.
\([i, j, v]=f i n d(X)\) returns a column vector \(v\) of the nonzero entries in \(X\), as well as row and column indices.

In general, find(X) regards \(X\) as \(\mathrm{X}(\mathrm{i}\) ), which is the long column vector formed by concatenating the columns of \(x\).

\section*{Examples}
\([i, j, v]=f i n d(X \sim=0)\) produces a vectorv with all 1 s , and returns the row and column indices.

Some operations on a vector
```

x = [11 0 33 0 55]';
find(x)
ans =
1
3
5
find(x == 0)
ans =
2
4

```
```

 find(0 < x & x < 10*pi)
 ans =
 1
 And on a matrix
M = magic(3)
M =
8 1 6
3 5 7
4 9
[i,j,m] = find(M > 6)
i = j =

```
\(m=\)
1
1
2
\(3 \quad 3\)

See Also
The relational operators <, <=,>,>=,==, \(\sim=\), and:
nonzeros
Nonzero matrix elements
sparse
Create sparse matrix
Purpose Find one string within another
Syntax \(\quad k=\) findstr(stri, str2)

Description
\(k=f i n d s t r(s t r 1, s t r 2)\) finds the starting indices of any occurrences of the shorter string within the longer.

Examples
```

strl = 'Find the starting indices of the shorter string.';
str2 = 'the';
findstr(str1,str2)
ans =
6 30

```

See Also
strcmp
strmatch
strncmp

Compare strings
Find possible matches for a string
Compare the first n characters of two strings
Purpose Round towards zero

\section*{Syntax \\ \(B=f i x(A)\)}

Description
\(B=f i x(A)\) rounds the elements of \(A\) toward zero, resulting in an array of integers. F or complex A, the imaginary and real parts are rounded independently.

\section*{Examples \\ a \(=\)}

Columns 1 through 4
\(-1.9000\)
\(-0.2000\)
3.4000
5.6000

Columns 5 through 6
\(7.0000 \quad 2.4000+3.6000 i\)
fix(a)
ans \(=\)
Columns 1 through 4
\(\begin{array}{llll}-1.0000 & 0 & 3.0000 & 5.0000\end{array}\)
Columns 5 through 6
\(7.0000 \quad 2.0000+3.0000 i\)
\begin{tabular}{lll} 
See Also & ceil & Round toward infinity \\
& floor & Round towards minus infinity \\
& round & Round to nearest integer
\end{tabular}

Purpose Flip array along a specified dimension
\begin{tabular}{|c|c|c|c|}
\hline Syntax & \multicolumn{3}{|l|}{\(B=\mathrm{flipdim}(A, d i m)\)} \\
\hline Description & \multicolumn{3}{|l|}{\(B=\) flipdim(A, dim) returns A with dimension dimflipped.} \\
\hline & \multicolumn{3}{|l|}{When the value of dimis 1, the array is flipped row-wise down. When di m is 2, the array is flipped columnwise left to right. \(f 1\) i pdi \(m(A, 1)\) is the same as flipud(A), andflipdim(A,2) is the same asfliplr(A).} \\
\hline \multirow[t]{9}{*}{Examples} & \multicolumn{3}{|l|}{flipdim(A, 1) where} \\
\hline & \multicolumn{3}{|l|}{\(A=\)} \\
\hline & 1 & 4 & \\
\hline & 2 & 5 & \\
\hline & 3 & 6 & \\
\hline & \multicolumn{3}{|l|}{produces} \\
\hline & 3 & 6 & \\
\hline & 2 & 5 & \\
\hline & 1 & 4 & \\
\hline \multirow[t]{4}{*}{See Also} & \multicolumn{3}{|l|}{fliplr Flip matrices left-right} \\
\hline & \multicolumn{2}{|l|}{flipud} & Flip matrices up-down \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{permute}} & Rearrange the dimensions of a multidimensional array \\
\hline & & & Rotate matrix \(90^{\circ}\) \\
\hline
\end{tabular}

\section*{fliplr}

\section*{Purpose Flip matrices left-right}

\section*{Syntax \\ \(B=f l i p l r(A)\)}

Description \(\quad B=f|i p| r(A)\) returns A with columns flipped in the left-right direction, that is, about a vertical axis.

\section*{Examples}
\(A=\)
14
25
36
produces
41
\(5 \quad 2\)
63
Limitations Array A must be two dimensional.
\begin{tabular}{lll} 
See Also & flipdim & Flip array along a specified dimension \\
& flipud & rot 90
\end{tabular}
Purpose Flip matrices up-down

\section*{Syntax \\ \(B=f l i p u d(A)\)}

Description

Examples

Limitations
See Also
\(B=f l i p u d(A)\) returns A with rows flipped in the up-down direction, that is, about a horizontal axis.
\(A=\)
14
25
36
produces
36
25
14

Array A must be two dimensional.
\begin{tabular}{ll} 
fIIpdim & Flip array along a specified dimension \\
fIipIr & Flip matrices left-right \\
rot 90 & Rotate matrix \(90^{\circ}\)
\end{tabular}

Purpose Round towards minus infinity

\section*{Syntax \(\quad B=f \mid \operatorname{oor}(A)\)}

Description \(\quad B=f \mid \operatorname{lor}(A)\) rounds the elements of \(A\) to the nearest integers less than or equal to A. F or complex A, the imaginary and real parts are rounded independently.
```

a =

```
    Columns 1 through 4
    \(\begin{array}{llll}-1.9000 & -0.2000 & 3.4000 & 5.6000\end{array}\)
    Columns 5 through 6
        \(7.0000 \quad 2.4000+3.6000 i\)
        floor(a)
        ans =
        Columns 1 through 4
        \(\begin{array}{llll}-2.0000 & -1.0000 & 3.0000 & 5.0000\end{array}\)
        Columns 5 through 6
        \(7.0000 \quad 2.0000+3.0000 i\)
See Also
ceil
fix
round

Round toward infinity
Round towards zero
Round to nearest integer

Purpose

\section*{Syntax}

Description

Examples

Algorithm

Count floating-point operations
```

f = flops
flops(0)

```
\(f=\) flops returns the cumulative number of floating-point operations.
flops(0) resets the count to zero.
If \(A\) and \(B\) are real \(n\)-by- \(n\) matrices, some typical flop counts for different operations are:
\begin{tabular}{l|l}
\hline Operation & Flop Count \\
\hline\(A+B\) & \(n^{\wedge} 2\) \\
\(A * B\) & \(2 * n^{\wedge} 3\) \\
\hline\(A \wedge 100\) & \(99 *\left(2 * n^{\wedge} 3\right)\) \\
\hline \(\mid u(A)\) & \((2 / 3) * n^{\wedge} 3\) \\
\hline
\end{tabular}

MATLAB's version of the LINPACK benchmark is:
```

n = 100;
A = rand(n,n);
b = rand(n, 1);
flops(0)
tic;
x = A\b;
t = toc
megaflops = flops/t/1.e6

```

\section*{fmin}

Purpose Minimize a function of one variable
```

Syntax
x = fmin('fun', x1, x2)
x = fmin('fun',x1,x2,options)
x = fmin('fun', x1, x2,options,P1, P2, ...)
[x,options] = fmin(...)

```

\section*{Description}

\section*{Arguments}
x1, x2 Interval over which function is minimized.

P1, P2... Arguments to be passed tof unction.
fun A string containing the name of the function to be minimized.
options A vector of control parameters. Only three of the 18 components of opt i ons are referenced by f mi \(n\); Optimization Tool box functions use the others. The three control opt i ons used by fmin are:
- options(1) - If this is nonzero, intermediatesteps in the soIution are displayed. The default value of options(1) is 0 .
- options(2) - This is the termination tolerance. The default value is 1.e-4.
- options(14) - This is the maximum number of steps. The default value is 500 .

\section*{Examples}

Algorithm

See Also

References
f min('cos', 3,4 ) computes \(\pi\) to a few decimal places.
f min('cos', 3, 4, [1, 1.e-12]) displays the steps taken to compute \(\pi\) to 12 decimal places.
To find the minimum of the function \(f(x)=x^{3}-2 x-5\) on the interval \((0,2)\), write an M-file called \(f\). \(m\).
```

function y = f(x)
y = x.^3-2*x-5;

```

Then invokef min with
```

x = fmin('f', 0, 2)

```

The result is
```

x =
0.8165

```

The value of the function at the minimum is
```

y = f(x)
y =
-6.0887

```
f mins
fzero Zero of a function of one variable
foptions in the Optimization Toolbox (or typehelp foptions).
[1] F orsythe, G. E., M. A. M al colm, and C. B. Moler, Computer M ethods for Mathematical Computations, Prentice-Hall, 1976.

\section*{fmins}

Purpose Minimize a function of several variables
```

Syntax x = fmins('fun',x0)
x = fmins('fun',x0,options)
x = fmins('fun', x0,options,[],P1, P2, ...)
[x,options] = fmins(...)

```

Description \(\quad x=f\) mins ('fun', \(x 0\) ) returns a vector \(x\) which is a local minimizer of fun( \(x\) ) near \(x_{0}\).
\(x=f\) mins('fun', x0, options) does the same as the above, but uses options control parameters.
\(x=\) fmins('fun', x0, options,[], P1, P2,...) does the same as above, but passes arguments to the objective function, fun( \(x\), P1, P2, ...). . Pass an empty matrix for options to use the default value.
[x,options] = fmins(...) returns, inoptions(10), a count of thenumber of steps taken.

\section*{Arguments}
\(\times 0\)
P1, P2... Arguments to be passed to fun
[ ] Argument needed to provide compatibility with \(f\) mi nu in the Optimization Toolbox.
fun A string containing the name of the objective function to be minimized. \(f u n(x)\) is a scalar valued function of a vector variable.
options A vector of control parameters. Only four of the 18 components of options are referenced by fmins;
Optimization Tool box functions use the others. The four control options used by fins are:
- options(1) - Ifthis is nonzero, intermediatesteps in the solution are displayed. The default value of options(1) is 0.
- options(2) andoptions(3) - These arethetermination tolerances for \(x\) and \(f\) unction( \(x\) ), respectively. The default values are 1.e-4.
- options(14) - This is the maximum number of steps. The default value is 500 .

Examples A classic test example for multidimensional minimization is the Rosenbrock banana function:
\[
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
\]

The minimum is at ( 1,1 ) and has the value0. The traditional starting point is \((-1,2,1)\). The M-filebanana.m defines the function.
```

function f = banana(x)
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;

```

The statements
```

[x,out] = fmins('banana',[-1.2, 1]);
x
out(10)

```

\section*{fmins}
```

produce
x =
1.0000 1.0000
ans =
165

```

This indicates that the minimizer was found to at least four decimal places in 165 steps.

Move the location of the minimum to the point [ \(a, ~ a \wedge 2\) ] by adding a second parameter tobanana.m.
```

function f = banana(x,a)
if nargin < 2, a = 1; end
f = 100*(x(2)-x(1)^2)^2+(a-x(1))^2;

```

Then the statement
```

[x,out] = fmins('banana', [-1.2, 1], [0, 1.e-8], [], sqrt(2));

```
sets the new parameter to sqrt (2) and seeks the minimum to an accuracy higher than the default.
Algorithm \begin{tabular}{l} 
The algorithm is the Nelder-M ead simplex search described in th \\
ences. It is a direct search method that does not require gradients \\
derivative information. If \(n\) is the length of \(x\), a simplex in \(n\)-dimen \\
is characterized by the \(n+1\) distinct vectors which are its vertices. In \\
a simplex is a triangle; in three-space, it is a pyramid. \\
At each step of the search, a new point in or near the current simp \\
ated. The function value at the new point is compared with the fun \\
values at the vertices of the simplex and, usually, one of the vertices \\
by the new point, giving a new simplex. This step is repeated until \\
of the simplex is less than the specified tolerance.
\end{tabular}
See Also
\(\quad\)\begin{tabular}{l} 
Minimize a function of one variable \\
fopt ions in the Optimization Tool box (or typehelp foptions).
\end{tabular}

References [1] Nelder, J. A. and R. Mead, "A Simplex Method for Function Minimization," Computer J ournal, Vol. 7, p. 308-313.
[2] Dennis, J. E. J r. and D. J. Woods, "New Computing Environments: Microcomputers in Large-Scale Computing," edited by A. Wouk, SIAM, 1987, pp. 116-122.

\section*{Purpose Open a file or obtain information about open files}
```

Syntax fid = fopen(filename, permission)
[fid,message] = fopen(filename, permission,format)
fids = fopen('al|')
[filename, permission, format] = fopen(fid)

```

Description Iffopen successfully opens a file, it returns a file identifier fid, and the value of message is empty. The file identifier can be used as the first argument to other file input/output routines. If \(f\) open does not successfully open the file, it returnsa-1 value for fid. In that case, the value of message is a string that helps you determine the type of error that occurred.

Threefids are predefined and cannot be explicitly opened or closed:
- 0 - Standard input, which is always open for reading (permi s si on set to 'r'),
- 1- Standard output, which is always open for appending (per mi s si on set to 'a' ), and
- 2 - Standard error, which is always open for appending (per mi s sion set to 'a').
fid = fopen(filename, permission) opens the filefilename in the mode specified by permission and returnsfid, the file identifier. filename may a MATLABPATH relative partial pathname. If thefile is opened for reading and it is not found in the current working directory, fopen searches down MATLAB's search path.
permission is one of the strings:
\begin{tabular}{|c|c|}
\hline 'r' & Open the file for reading (default). \\
\hline 'r +' & Open the file for reading and writing. \\
\hline ' w' & Delete the contents of an existing file or create a new file and open it for writing. \\
\hline 'w+' & Delete the contents of an existing file or create new file, and open it for reading and writing. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
' a' & \begin{tabular}{l} 
Create and open a new file or open an existing file for \\
writing, appending to the end of the file.
\end{tabular} \\
' \(a^{\prime}\) ' \(^{\prime}\) & \begin{tabular}{l} 
Create and open new file or open an existing file for \\
reading and writing, appending to the end of the file.
\end{tabular} \\
Append without automatic flushing; used with tape drives
\end{tabular}

Add a ' t' to these strings, for example, 'rt', on systems that distinguish between text and binary files, to force the file to be opened in text mode. Under DOS and VMS, for example, you cannot read a text file unless you set the permission to 'rt'. Similarly, usea' b' to force the file to be opened in binary mode (the default).
[fid, message] = fopen(filename, permission, format) opens a fileas above, returning file identifier and message. In addition, you specify the numeric format with for mat, a string defining the numeric format of the file, allowing you to share files between machines of different formats. If you omit the for mat argument, the numeric format of the local machine is used. Individual calls to \(f r e a d\) or \(f\) write can override the numeric format specified in a call to f open. Permitted format strings are:
\begin{tabular}{ll} 
'native' or ' \(n\) ' & \begin{tabular}{l} 
Thenumeric format of the machine you are currently \\
running
\end{tabular} \\
'ifee-le' or 'l' & IEEE floating point with little-endian byte ordering
\end{tabular}
fids = fopen('all') returnsa row vector containing thefileidentifiers of all open files, not including 0,1 , and 2 (standard input, output, and error). The number of elements in the vector is equal to the number of open files.
[filename, permission, format] = fopen(fid) returns thefullfilename string, the permi ssion string, and thef or mat string associated with the specified file. An invalid \(f\) i \(d\) returns empty strings for all output arguments. Both permi ssion andformat are optional.
\begin{tabular}{lll} 
See Also & fclose & Close one or more open files \\
ferror & Query MATLAB about errors in file input or output \\
& fprintf & Write formatted data to file \\
& fscanf & Read binary data from file \\
& fseek & Read formatted data from file \\
& ftell & Set file position indicator \\
& fwrite & Get file position indicator \\
& See also partial path. & Write binary data from a MATLAB matrix to a file
\end{tabular}

Purpose
Repeat statements a specific number of times
```

Syntax
for variable = expression
statements
end

```Description

xamples

Description
```

The general format is

```
```

for variable = expression

```
for variable = expression
    statement
    statement
    stat ement
    stat ement
end
end
The columns of the expression are stored one at a time in the variable while the following statements, up to the end, are executed.
In practice, the expression is almost always of the formscalar :scalar, in which case its columns are simply scalars.
The scope of the or statement is always terminated with a matching end.
Assumen has already been assigned a value. Create the Hilbert matrix, using zeros to preallocate the matrix to conserve memory:
```

```
    a = zeros(n, n) % Preal|ocate matrix
```

 a = zeros(n, n) % Preal|ocate matrix
 for i = 1:n
 for i = 1:n
 for j = 1:n
 for j = 1:n
 a(i,j) = 1/(i +j -1);
 a(i,j) = 1/(i +j -1);
 end
 end
 end
    ```
    end
```

Step s with increments of -0.1

```
for s = 1.0: -0.1: 0.0,..., end
```

Successively set e to the unit n-vectors:

```
for e = eye(n),..., end
```

The line

```
for V = A,..., end
```

has the same effect as

```
for j = 1:n, V = A(:, j);..., end
```

except j is also set here.

See Also

break
end
if
return
switch
while

Break out of flow control structures
Terminatef or, while, switch, and if statements and indicate the last index
Conditionally execute statements
Return to the invoking function
Switch among several cases based on expression
Repeat statements an indefinite number of times

Purpose

Syntax
 Description

Algorithms

See Also

Control the output display format
MATLAB performs all computations in double precision.Thef or mat command described below switches among different display formats.

| Command | Result | Example |
| :---: | :---: | :---: |
| format | Default. Same as short. | |
| format short | 5 digit scaled fixed point | 3.1416 |
| format long | 15 digit scaled fixed point | 3.14159265358979 |
| format short e | 5 digit floating-point | 3.1416e+00 |
| format long e | 15 digit floating-point | $\begin{aligned} & 3.141592653589793 e+0 \\ & 0 \end{aligned}$ |
| format short g | Best of 5 digit fixed or floating | 3. 1416 |
| format long g | Best of 15 digit fixed or floating | 3.14159265358979 |
| format hex | Hexadecimal | 400921 fb 54442 d 18 |
| format bank | Fixed dollars and cents | 3. 14 |
| format rat | Ratio of small integers | 355/113 |
| format + | +,-, blank | + |
| format compact | Suppresses excess line feeds. | |
| format loose | Add line feeds. | |

The command f or mat + displays + , - , and blank characters for positive, negative, and zero elements. for mat hex displays the hexadecimal representation of a binary double-precision number. for mat r at uses a continued fraction algorithm to approximate floating-point values by ratios of small integers. See r at. m for the complete code.
fprintf, num2str, rat, sprintf, spy
Purpose Write formatted data to file

Syntax \quad| count $=$ fprintf(fid, format, $A, \ldots)$ |
| :--- |
| fprintf(format $, A, \ldots)$ |

Description
count = fprintf(fid,format, A,...) formats the data in the real part of matrix A (and in any additional matrix arguments) under control of the specified f or mat string, and writes it to the file associated with file identifier fid. fprintf returns a count of the number of bytes written.

Argument $f i d$ is an integer file identifier obtained from f open. (It may also be 1 for standard output (the screen) or 2 for standard error. See f open for more information.) Omitting fid from f print f's argument list causes output to appear on the screen, and is the same as writing to standard output ($f \mathrm{i} d=1$)
fprintf(format, A,...) writes to standard output-the screen.
Thef or mat string specifies notation, alignment, significant digits, field width, and other aspects of output format. It can contain ordinary alphanumeric characters; along with escape characters, conversion specifiers, and other characters, organized as shown below:

For more information see "Tables" and "References".

Remarks

Tables
Thef printf function behaves like its ANSI C languagef print f() namesake with certain exceptions and extensions. These include:

1 The following non-standard subtype specifiers are supported for conversion specifiers $\% 0, \% u$, $\% x$, and $\%$ x.
t The underlying C data type is a float rather than an unsigned integer.
b The underlying C data type is a double rather than an unsigned integer.

For example, to print a double-precision value in hexadecimal, use a format like $\%$ x ${ }^{\text {. }}$
2 Thef printf function is vectorized for the case when input matrixa is nonscalar. The format string is cycled through the elements of A (columnwise) until all the elements are used up. It is then cycled in a similar manner, without reinitializing, through any additional matrix arguments.

Thefol lowing tables describethe non-al phanumeric characters found in format specification strings.

Escape Characters

| Character | Description |
| :--- | :--- |
| In | New line |
| It | Horizontal tab |
| I b | Backspace |
| Ir | Carriage return |
| f | Form feed |
| I | Backslash |
| \" or " | Single quotation mark |
| $\% \%$ | Percent character |

fprintf

Conversion characters specify the notation of the output.

Conversion Specifiers

| Specifier | Description |
| :---: | :---: |
| \%c | Single character |
| \%d | Decimal notation (signed) |
| \%e | Exponential notation (using a lowercase e as in $3.1415 \mathrm{e}+00$) |
| \% E | Exponential notation (using an uppercase E as in 3. $1415 \mathrm{E}+00$) |
| \%f | Fixed-point notation |
| \%g | The more compact of \%e or \%f , as defined in [2]. Insignificant zeros do not print. |
| \%G | Same as \%g, but using an uppercase E |
| \% | Octal notation (unsigned) |
| \% | String of characters |
| \%u | Decimal notation (unsigned) |
| \%x | Hexadecimal notation (using lowercase letters a -f) |
| \%X | Hexadecimal notation (using uppercase letters A-F) |

Other characters can be inserted into the conversion specifier between the \% and the conversion character .

| O ther Characters | | Example |
| :--- | :--- | :--- |
| Character | Description | $\%-5.2 \mathrm{~d}$ |
| A minus sign (-) | Left-justifies the converted argument in
 its field. | $\%+5.2 \mathrm{~d}$ |
| A plus sign (+) | Always prints a sign character (+or -). | $\% 05.2 \mathrm{~d}$ |
| Zero (0) | Pad with zeros rather than spaces. | $\% 6 f$ |
| Digits (field
 width) | A digit string specifying the minimum
 number of digits to be printed. | $\% 6.2 \mathrm{f}$ |
| Digits (precision) | A digit string including a period (.)
 specifying the number of digits to be
 printed to the right of the decimal point. | |

For more information about format strings, refer to the printf() and fprintf() routines in the documents listed in "References".

Examples The statements

```
x = 0:. 1:1;
y = [x; exp(x)];
fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8f\n',y);
fclose(fid)
```

create a text file called exp.txt containing a short table of the exponential function:

```
0.00 1.00000000
0.10 1.10517092
1.00 2.71828183
```

The command

```
f printf('A unit circle has circumference %g.\ \', 2*pi)
```

displays a line on the screen:

```
A unit circle has circumference 6.283186.
```

To insert a single quotation mark in a string, use two single quotation marks together. For example,

```
fprint(1,'lt''s Friday.\n')
```

displays on the screen:

```
It's Friday.
```

The commands

```
B = [ 8.8 7.7; 8800 7700]
fprintf(1,'X is %%.2f meters or %8.3f mml n', 9.9,9900,B)
```

display the lines:

```
X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm
```

Explicitly convert MATLAB double-precision variables to integral values for use with an integral conversion specifier. For instance, to convert signed 32-bit data to hexadecimal format:

```
a = [6 10 14 44];
fprintf('%9X\n',a + (a<0)*2^32)
            6
            A
            E
            2C
```

| See Also | fclose | Close one or more open files |
| :--- | :--- | :--- |
| | ferror | Query MATLAB about errors in file input or output |
| | fopen | Open a file or obtain information about open files |
| | fseanf | Read formatted data from file |
| | ftell | Set file position indicator |
| | Get file position indicator | |

[1] Kernighan, B.W. and D.M. Ritchie, TheC Programming Language, Second Edition, Prentice-Hall, Inc., 1988.
[2] ANSI specification X3.159-1989: "Programming Language C," ANSI, 1430 Broadway, New Y ork, NY 10018.

Purpose Read binary data from file

Syntax \quad| $[A$, count $]$ | $=$ fread(fid, size, precision) |
| ---: | :--- |
| $[A$, count $]$ | $=$ fread(fid, size, precision, skip) |

Description

[A, count] = fread(fid, size, precision) reads binary data from the specified file and writes it into matrix A. Optional output argument count returns the number of elements successfully read. fi d is an integer file identifier obtained from fopen.
size is an optional argument that determines how much data is read. If size is not specified, f r ead reads to the end of the file. Valid options are:
$\mathrm{n} \quad$ Reads n elements into a column vector.
inf Reads to the end of the file, resulting in a column vector containing the same number of elements as are in the file.
[m, n n Reads enough elements to fill an m - by - n matrix, filling in elements in column order, padding with zeros if the file is too small to fill the matrix.

Iffread reaches the end of the file and the current input stream does not contain enough bits to write out a complete matrix element of the specified precision, fr ead pads the last byte or element with zero bits until the full value is obtained. If an error occurs, reading is done up to the last full value.
precision is a string representing the numeric precision of the values read, precision controls the number of bits read for each value and the interpretation of those bits as an integer, a floating-point value, or a character. The precision string may contain a positive integer repetition factor of the form ' n*' which prepends one of the strings above, like' 40*uchar'. Ifprecision is not specified, the default is ' uchar' (8-bit unsigned character) is assumed. See "Remarks" for more information.
[A, count] = fread(fid, size, precision, skip) includes an optional skip argument that specifies the number of bytes to skip after each read. This is useful for extracting data in noncontiguous fields from fixed length records. If precision is a bit format like'bitN' or'ubitN', skip is specified in bits.

Remarks

Numeric precisions can differ depending on how numbers are represented in your computer's architecture, as well as by the type of compiler used to produce executable code for your computer.

The tables below give C-compliant, platform-independent numeric precision string formats that you should use whenever you want your code to be portable.

F or convenience, MATLAB accepts some C and Fortran data type equivalents for the MATLAB precisions listed. If you are a C or Fortran programmer, you may find it more convenient to use the names of the data types in the language with which you are most familiar.

| MATLAB | C or Fortran | Interpretation |
| :---: | :---: | :---: |
| 'char' | 'char*1' | Character; 8 bits |
| 'schar' | 'signed char' | Signed character; 8 bits |
| 'uchar' | 'unsigned char' | U nsigned character; 8 bits |
| 'int 8' | 'integer*1' | Integer; 8 bits |
| 'int 16' | 'integer*2' | I nteger; 16 bits |
| 'int 32^{\prime} | 'integer*4' | Integer; 32 bits |
| 'int $64{ }^{\prime}$ | 'integer*8' | Integer; 64 bits |
| 'uint ${ }^{\text {' }}$ | 'integer*1' | Unsigned integer; 8 bits |
| 'uint 16' | 'integer*2' | Unsigned integer; 16 bits |
| 'uint $32{ }^{\prime}$ | 'integer*4' | Unsigned integer; 32 bits |
| 'uint 64' | 'integer*8' | Unsigned integer; 64 bits |
| 'float 32' | 'real *4' | Floating-point; 32 bits |
| 'float 64' | 'real *8' | Floating-point; 64 bits |

If you al ways work on the same platform and don't careabout portability, these platform-dependent numeric precision string formats are also available:

| MATLAB | C or Fortran | Interpretation |
| :--- | :--- | :--- |
| 'short' | 'short' | Integer; 16 bits |
| 'int' | 'int' | Integer; 32 bits |
| 'Iong' | 'Iong' | Integer; 32 or 64 bits |
| 'ushort' | 'usigned short' | Unsigned integer; 16 bits |
| 'uint' | 'unsigned int' | Unsigned integer; 32 bits |
| 'ulong' | 'unsigned Iong' | Unsigned integer; 32 or 64 bits |
| 'float' | 'float' | Floating-point; 32 bits |
| 'double' | 'double' | Floating-point; 64 bits |

Two formats map to an input steam of bits rather than bytes:

| MATLAB | C or Fortran | Interpretation |
| :--- | :--- | :--- |
| 'bitN' | Signed integer; N bits $(1 \leq N \leq 64)$ | |
| 'ubitN' | Unsigned integer; N bits $(1 \leq N \leq 64)$ | |

| See Also | fclose | Close one or more open files |
| :--- | :--- | :--- |
| | ferror | Query MATLAB about errors in file input or output |
| | fopen | Open a file or obtain information about open files |
| | fprintf | Write formatted data to file |
| | fseekf | Read formatted data from file |
| | ftell | Set file position indicator |
| | fwrite | Get file position indicator |
| | Write binary data from a MATLAB matrix to a file | |

Purpose Rewind an open file

Syntax frewind(fid)

Description $\quad f r e w i n d(f i d)$ sets the file position indicator to the beginning of the file specified by fid, an integer file identifier obtained from fopen.

Remarks Rewinding a fid associated with a tape device may not work even though $f r e w i n d$ does not generate an error message.

| See Also | fclose | Close one or more open files |
| :--- | :--- | :--- |
| | ferror | Query MATLAB about errors in file input or output |
| | fopen | Open a fileor obtain information about open files |
| | fprintf | Write formatted data to file |
| | fscanf | Read binary data from file |
| | fseek | Read formatted data from file |
| | ftell | Set file position indicator |
| | fwrite | Get file position indicator |
| | Write binary data from a MATLAB matrix to a file | |

Purpose
Read formatted data from file

Syntax
Description

Remarks

```
A = fscanf(fid,format)
[A,count] = fscanf(fid,format,size)
``` amount of data specified by size is read in.
\(A=\mathrm{fscanf}(f i d, f o r m a t)\) reads all the data from the file specified by fid, converts it according to the specified \(f\) or mat string, and returns it in matrix a. Argument \(f i d\) is an integer file identifier obtained from \(f\) open. \(f\) or mat is a string specifying the format of the data to be read. See "Remarks" for details.
[A, count] = fscanf(fid,format, size) reads the amount of data specified by size, converts it according to the specified for mat string, and returns it along with a count of elements successfully read. size is an argument that determines how much data is read. Valid options are:
n Read \(n\) elements into a column vector.
inf Read to the end of the file, resulting in a column vector containing the same number of elements as are in the file.
[m, n] Read enough elements to fill an m-by-n matrix, filling the matrix in column order. \(n\) can bel \(n f\), but not \(m\).
fscanf differs from its C language namesakes scanf() andfscanf() in an important respect - it is vectorized in order to return a matrix argument. The for mat string is cycled through the file until an end-of-file is reached or the

When MATLAB reads a specified file, it attempts to match the data in the file to the format string. If a match occurs, the data is written into the matrix in column order. If a partial match occurs, only the matching data is written to the matrix, and the read operation stops.

Thef or mat string consists of ordinary characters and/or conversion specifications. Conversion specifications indicate the type of data to be matched and
involve the character \%, optional width fields, and conversion characters, organized as shown below:

Add one or more of these characters between the \% and the conversion character:

An asterisk (*) Skip over the matched value, if the value is matched but not stored in the output matrix.
A digit string Maximum field width.
A letter The size of the receiving object; for example, h for short as in \%hd for a short integer, or I for long as in \%ld for a long integer or \% g for a double floating-point number.

Valid conversion characters are:
\begin{tabular}{|c|c|}
\hline \%c & Sequence of characters; number specified by field width \\
\hline \%d & Decimal numbers \\
\hline \%e, \%f, \%g & Floating-point numbers \\
\hline \% & Signed integer \\
\hline \% & Signed octal integer \\
\hline \%s & A series of non-white-space characters \\
\hline \%u & Signed decimal integer \\
\hline \%x & Signed hexadecimal integer \\
\hline [...] & Sequence of characters (scanlist) \\
\hline
\end{tabular}

If \(\%\) is used, an element read may use several MATLAB matrix elements, each holding one character. Use \%c to read space characters; the format \%s skips all white space.

Mixing character and numeric conversion specifications cause the resulting matrix to be numeric and any characters read to appear as their ASCII values, one character per MATLAB matrix element.

For more information about format strings, refer to thescanf() andfscanf() routines in a C language reference manual.

\section*{Examples}

The exampleinfprintf generates an ASCII text file calledexp.txt that looks like:
\begin{tabular}{ll}
0.00 & 1.00000000 \\
0.10 & 1.10517092 \\
1.00 & 2.71828183
\end{tabular}

Read this ASCII file back into a two-column MATLAB matrix:
```

fid = fopen('exp.txt');
a = fscanf(fid,'%g %g',[2 inf]) % It has two rows now.
a = a';
fclose(fid)

```
\begin{tabular}{lll}
See Also & fclose & Close one or more open files \\
& ferror & Query MATLAB about errors in file input or output \\
& fopen & Open a file or obtain information about open files \\
& frint & Write formatted data to file \\
& fseek & Read binary data from file \\
& ftell & Set file position indicator \\
& fwrite & Get file position indicator \\
& Write binary data froma MATLAB matrix to a file
\end{tabular}

Purpose Set file position indicator
Syntax \(\quad\) status \(=\) fseek(fid, offset, origin)
Description \(\quad\) status \(=f \operatorname{seck}(f i d\), offset, origin) repositions the file position indicator in the file with the given \(f i d\) to the byte with the specified of \(f\) set relative to origin.

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline fid & An integer file identifier obtained from fopen. \\
\hline offset & A value that is interpreted as follows: \\
\hline & offset > 0 Move position indicator of \(f\) set bytes toward the end of the file. \\
\hline & off set = 0 Do not change position. \\
\hline & offset < 0 Move position indicator of \(f s\) et bytes toward the beginning of the file. \\
\hline origin & A string whose legal values are: \\
\hline & ' bof ' \(\quad-1:\) Beginning of file. \\
\hline & 'cof' 0 : Current position in file. \\
\hline & 'eof' 1: End of file. \\
\hline status & A returned value that is 0 if thef seek operation is successful and - 1 if it fails. If an error occurs, use the function ferror to get more information about the nature of the error. \\
\hline
\end{tabular}

See Also fopen
Open a file or obtain information about open files ftell

Get file position indicator

\section*{Purpose Get file position indicator}

\section*{Syntax position = ftell(fid)}

Description position = ftell(fid) returns the location of the file position indicator for the file specified by fid, an integer file identifier obtained from fopen. The position is a nonnegative integer specified in bytes from the beginning of the file. A returned value of -1 for positi on indicates that the query was unsuccessful; use ferror to determine the nature of the error.
\begin{tabular}{lll}
See Also & fclose & Close one or more open files \\
& ferror & Query MATLAB about errors in file input or output \\
& fopen & Open a file or obtain information about open files \\
& frintf & Write formatted data to file \\
& fscanf & Read binary data from file \\
& fseek & Read formatted data from file \\
& fwrite & Set file position indicator \\
& Write binary data from a MATLAB matrix to a file
\end{tabular}
Purpose Convert sparse matrix to full matrix

\section*{Syntax \(\quad A=f u l l(S)\)}

Description \(\quad A=f u l l(S)\) converts a sparse matrix \(s\) to full storage organization. If \(s\) is a full matrix, it is left unchanged. If A is full, issparse(A) is 0 .

Remarks Let \(x\) be an \(m\)-by-n matrix with \(n z=n n z(X)\) nonzero entries. Then \(f u l l(X)\) requires space to store \(m * n\) real numbers whilesparse(\(X\)) requires space to store \(n z\) real numbers and \((n z+n)\) integers.

On most computers, a real number requires twice as much storage as an integer. On such computers, sparse(\(X\)) requires less storage than \(f u l l(X)\) if the density, \(n n z / \operatorname{prod}(\operatorname{size}(X))\), is less than one third. Operations on sparse matrices, however, require more execution time per element than those on full matrices, so density should be considerably less than two-thirds before sparse storage is used.

\section*{Examples Here is an example of a sparse matrix with a density of about two-thirds.} sparse(\(S\)) and full(S) require about the same number of bytes of storage.
```

S = sparse(rand(200,200) < 2/3);
A = full(S);
whos
Name Size Bytes Class
A 200\times200 320000 double array (logical)
S 200<200 318432 sparse array (logical)

```

See Also sparse Create sparse matrix

\section*{Purpose Build full filename from parts}

\section*{Syntax fullfile(dir1,dir2, ..., filename)}

Description

\section*{Example}
fullfile(dirl, dir2, ..., filename) builds a full filenamefrom the directories and filename specified. This is conceptually equivalent to
```

f = [dirl dirsep dir2 dirsep ... dirsep fi|ename]

```
except that care is taken to handle the cases when the directories begin or end with a directory separator. Specify the filename as ' ' to build a pathname from parts. On VMS, care is taken to handle the cases involving [or] .
fullfile(matlabroot,'toolbox/matlab/general/Contents.m') and fullfile(matlabroot,'toolbox','matlab','general','Contents.m')
produce the same result on UNIX, but only the second one works on all platforms.

Description You add new functions to MATLAB's vocabulary by expressing them in terms of existing functions. The existing commands and functions that compose the new function reside in a text file called an \(M\)-file.
\(M\)-files can be either scripts or functions. Scripts are simply files containing a sequence of MATLAB statements. Functions make use of their own local variables and accept input arguments.

The name of an \(M\)-file begins with an alphabetic character, and has a filename extension of.m. The M-file name, less its extension, is what MATLAB searches for when you try to use the script or function.

A line at the top of a function \(M\)-file contains the syntax definition. The name of a function, as defined in the first line of the M-file, should bethe same as the name of the file without the. m extension. For example, the existence of a file on disk called stat.m with
```

function [mean, stdev] = stat(x)
n = |ength(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^^2/n));

```
defines a new function called st at that calculates the mean and standard deviation of a vector. The variables within the body of the function are all local variables.

A subfunction, visible only to the other functions in the same file, is created by defining a new function with thef unction keyword after the body of the preceding function or subfunction. F or example, avg is a subfunction within the filestat.m:
```

function [mean, stdev] = stat(x)
n = length(x);
mean = avg(x,n);
stdev = sqrt(sum((x-avg(x,n)).^2)/n);
function mean = avg(x,n)
mean = sum(x)/n;

```

Subfunctions are not visible outside the file where they are defined. F unctions normally return when the end of the function is reached. Use a ret urn statement to force an early return.

When MATLAB does not recognize a function by name, it searches for a file of the same name on disk. If the function is found, MATLAB compiles it into memory for subsequent use. In general, if you input the name of something to MATLAB, the MATLAB interpreter:

1 Checks to see if the name is a variable.
2 Checks to see if the name is an internal function (ei \(g\), sin)that was not overloaded.
3 Checks to see if the name is a local function (local in sense of multifunction file).

4 Checks to see if the name is a function in a private directory.
5 Locates any and all occurrences of function in method directories and on the path. Order is of no importance.
At execution MATLAB:
6 Checks to see if the name is wired to a specific function (\(2,3, \& 4\) above)
7 Uses precedence rules to determine which instance from 5 above to call (we may default to an internal MATLAB function). Constructors have higher precedence than anything else.

When you call an M-file function from the command line or from within another M-file, MATLAB parses the function and stores it in memory. The parsed function remains in memory until cleared with the clear command or you quit MATLAB. Thepcode command performs the parsing step and stores the result on the disk as a P -file to be loaded later.
\begin{tabular}{lll}
See Also & nargin & Number of function arguments (input) \\
nargout & Number of function arguments(output) \\
pcode & Create preparsed pseudocode file (P-file) \\
& varargin & Pass or return variable numbers of arguments (input) \\
& varargout & Pass or return variable numbers of arguments (output) \\
& what & Directory listing of M-files, MAT-files, and MEX-files
\end{tabular}

\section*{Purpose Evaluate functions of a matrix}
```

Syntax Y = funm( X,'function')
[Y,esterr] = funm(X,'function')

```
Description \(\quad Y=\) funm(\(X\), 'function') evaluates \(f\) unction using Parlett's method [1]. \(X\)
must be a square matrix, and \(f\) unct ion any element-wise function.

The commands \(f u n m(X, ' s q r t ')\) and \(f u n m\left(X, ' \mid O g^{\prime}\right)\) are equivalent to the commands sartm(X) and \(\operatorname{logm}(X)\). Thecommandsfunm(\(X,{ }^{\prime}\) exp') andexpm(\(X\)) compute the same function, but by different algorithms. \(\operatorname{expm}(X)\) is preferred.
[Y, esterr] = funm(X,'function') does not print any message, but returns a very rough estimate of the relative error in the computer result. If \(X\) is symmetric or Hermitian, then its Schur form is diagonal, and \(f\) unm is able to produce an accurate result.

\section*{Examples The statements}
```

S = funm(X,'sin');
C = funm(X,'cos');

```
produce the same results to within roundoff error as
```

E = expm(i*X);
C = real(E);
S = imag(E);

```

In either case, the results satisfy \(s * S+C * C=1\), wherel \(=\) eye(size(X)).
\begin{tabular}{ll}
Algorithm & \begin{tabular}{l}
The matrix functions are evaluated using Pa \\
described in [1]. The al gorithm uses the Sch \\
may give poor results or break down complet \\
eigenvalues. A warning messageis printed w
\end{tabular} \\
See Also & \begin{tabular}{ll}
\(\operatorname{expm}\) & Matrix exponential \\
\(10 g \mathrm{~m}\) & Matrix logarithm \\
sqrtm & Matrix square root
\end{tabular}
\end{tabular}

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, J ohns Hopkins University Press, 1983, p. 384.
[2] M oler, C. B. and C. F. Van Loan, "Nineteen Dubious Ways to Compute the Exponential of a Matrix," SIAM Review 20, 1979, pp. 801-836.

\section*{fwrite}

Purpose Write binary data to a file
Syntax count \(\quad=\) fwrite(fid, A, precision) \(\quad\)\begin{tabular}{rl}
count & \(=\) fwrite(fid, \(A\), precision, skip)
\end{tabular}

Description
count = fwrite(fid, A, precision) writes the elements of matrixA to the specified file, translating MATLAB values to the specified numericpreci si on. (See "Remarks" for more information.)

The data are written to the file in column order, and a count is kept of the number of elements written successfully. Argument \(f i d\) is an integer file identifier obtained from fopen.
count = fwrite(fid, A, precision, skip) includes an optional skip argument that specifies the number of bytes to skip before each write. This is useful for inserting data into noncontiguous fields in fixed-length records. If precision is a bit format like'bitN' or 'ubit N', skip is specified in bits.

\section*{Remarks}

Numeric precisions can differ depending on how numbers are represented in your computer's architecture, as well as by the type of compiler used to produce executable code for your computer.

The tables below give C-compliant, platform-independent numeric precision string formats that you should use whenever you want your code to be portable.

For convenience, MATLAB accepts some \(C\) and F ortran data type equivalents for the MATLAB precisions listed. If you are a C or Fortran programmer, you may find it more convenient to use the names of the data types in the language with which you are most familiar.
\begin{tabular}{|c|c|c|}
\hline MATLAB & C or Fortran & Interpretation \\
\hline 'char' & 'char*1' & Character; 8 bits \\
\hline 'schar' & 'signed char' & Signed character; 8 bits \\
\hline 'uchar' & 'unsigned char' & Unsigned character; 8 bits \\
\hline 'int 8 ' & 'integer*1' & Integer; 8 bits \\
\hline 'int 16' & 'integer*2' & Integer; 16 bits \\
\hline 'int 32' & 'integer*4' & Integer; 32 bits \\
\hline 'int 64' & 'integer*8' & Integer; 64 bits \\
\hline 'uint 8 ' & 'integer*1' & Unsigned integer; 8 bits \\
\hline 'uint 16' & 'integer*2' & Unsigned integer; 16 bits \\
\hline 'uint 32' & 'integer*4' & Unsigned integer; 32 bits \\
\hline 'uint 64' & 'integer*8' & Unsigned integer; 64 bits \\
\hline 'float \(32{ }^{\prime}\) & 'real *4' & Floating-point; 32 bits \\
\hline 'float 64' & 'real *8' & Floating-point; 64 bits \\
\hline
\end{tabular}

If you always work on the same platform and don't careabout portability, these platform-dependent numeric precision string formats are also available:

\section*{fwrite}
\begin{tabular}{lll}
\hline MATLAB & C or Fortran & Interpretation \\
\hline 'short' & 'short' & Integer; 16 bits \\
\hline 'int' & 'int' & Integer; 32 bits \\
\hline 'Iong' & 'Iong' & Integer; 32 or 64 bits \\
\hline 'ushort' & 'usigned short' & Unsigned integer; 16 bits \\
\hline 'uint' & 'unsigned int' & Unsigned integer; 32 bits \\
\hline 'ulong' & 'unsigned Iong' & Unsigned integer; 32 or 64 bits \\
'float' & 'float' & Floating-point; 32 bits \\
\hline 'double' & 'double' & Floating-point; 64 bits \\
\hline
\end{tabular}

Two formats map to an input steam of bits rather than bytes:
\begin{tabular}{l|l}
\hline MATLAB & C or Fortran \\
\hline 'bitN' & Interpretation \\
\hline 'ubitN' & Signed integer; \(N\) bits \((1 \leq N \leq 64)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Examples} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { fid = fopen('magic5. bin', 'wb'); } \\
& \text { fwrite(fid, magic(5), 'integer *4') }
\end{aligned}
\]} \\
\hline & \multicolumn{2}{|l|}{creates a 100-byte binary file, containing the 25 elements of the 5 -by- 5 magic square, stored as 4-byte integers.} \\
\hline \multirow[t]{8}{*}{See Also} & fclose & Close one or more open files \\
\hline & ferror & Query MATLAB about errors in file input or output \\
\hline & fopen & Open a file or obtain information about open files \\
\hline & fprintf & Write formatted data to file \\
\hline & fread & Read binary data from file \\
\hline & fscanf & Read formatted data from file \\
\hline & fseek & Set file position indicator \\
\hline & ftell & Get file position indicator \\
\hline
\end{tabular}

\section*{Purpose Zero of a function of one variable}
```

Syntax z = fzero('fun',x)
z = fzero('fun',x,tol)
z = fzero('fun', x,tol,trace)
z = fzero('fun',x,tol,trace, P1, P2,...)

```

\section*{Description}
\(\begin{array}{ll}\text { Arguments fun } & \begin{array}{l}\text { A string containing the name of a file in which an arbitrary } \\ \text { function of one variable is defined. }\end{array} \\ x & \begin{array}{l}\text { Your initial estimate of the } x \text {-coordinate of a zero of the function } \\ \text { or an interval in which you think a zero is found. }\end{array}\end{array}\)
tol The relative error tolerance. By default, tol is eps.
trace A nonzero value that causes thefzero command to display information at each iteration of its calculations.

P1, P2 Additional arguments passed to the function

\section*{Examples \(\quad\) Calculate \(\pi\) by finding the zero of the sine function near 3.}
```

x = fzero('sin',3)
x =
3.1416

```

To find the zero of cosine between 1 and 2:
```

x = fzero('cos',[ 1 2])
x =
1.5708

```

Note that \(\cos (1)\) and \(\cos (2)\) differ in sign.
To find a zero of the function:
\[
f(x)=x^{3}-2 x-5
\]
write an M-file called \(\mathrm{f} . \mathrm{m}\).
```

function y = f(x)
y = x.^^3-2*x-5;

```

To find the zero near 2
```

z = fzero('f', 2)
z =
2.0946

```

Since this function is a polynomial, the statement roots([10-2-5]) finds the same real zero, and a complex conjugate pair of zeros.
2. 0946
\(-1.0473+1.1359 i\)
\(-1.0473-1.1359 i\)
fzero('abs \((x)+1^{\prime}\), 1) returns \(N a N\) since this function does not change sign anywhere on the real axis (and does not have a zero as well).
\begin{tabular}{|c|c|}
\hline Algorithm & Thefzero command is an M-file. The algorithm, which was originated by T. Dekker, uses a combination of bisection, secant, and inversequadratic interpoIation methods. An Algol 60 version, with some improvements, is given in [1]. A Fortran version, upon which thef zero \(M\)-file is based, is in [2]. \\
\hline Limitations & Thefzero command defines a zero as a point where the function crosses the \(x\)-axis. Points where the function touches, but does not cross, the \(x\)-axis are not valid zeros. F or example, \(y=x . \wedge 2\) is a parabola that touches the \(x\)-axis at (0,0). Since the function never crosses the \(x\)-axis, however, no zero is found. For functions with no valid zeros, fzero executes untill \(n f, \mathrm{NaN}\), or a complex value is detected. \\
\hline See Also & \begin{tabular}{ll}
eps & Floating-point relative accuracy \\
fmin & Minimize a function of one variable \\
roots & Polynomial roots
\end{tabular} \\
\hline References & \begin{tabular}{l}
[1] Brent, R., Al gorithms for Minimization Without Derivatives, Prentice-H all, 1973. \\
[2] F orsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, 1976.
\end{tabular} \\
\hline
\end{tabular}

\section*{Purpose Test matrices}

Description \(\quad[A, B, C, \ldots]=\) gallery('tmfun', P1, P2,...) returns the test matrices specified by string tmf un. \(\mathrm{tmf} u \mathrm{n}\) is the name of a matrix family selected from the table below. P1, P2,... are input parameters required by the individual matrix family. The number of optional parameters \(P 1\), P2, .. used in the calling syntax varies from matrix to matrix. The exact calling syntaxes are detailed in the individual matrix descriptions below.

The gallery holds over fifty different test matrix functions useful for testing algorithms and other purposes.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Test Matrices} \\
\hline cauchy & chebspec & chebvand & chow \\
\hline circul & clement & compar & condex \\
\hline cycol & dorr & dramadah & fiedler \\
\hline forsythe & frank & gearmat & grcar \\
\hline hanowa & house & invhess & invol \\
\hline ipjfact & jordb|oc & kahan & k ms \\
\hline krylov & l auchli & I ehmer & | esp \\
\hline lotkin & \(m i n i j\) & moler & neumann \\
\hline orthog & parter & pei & poisson \\
\hline prolate & rando & randhess & randsvd \\
\hline redheff & riemann & ris & rosser \\
\hline s moke & toeppd & tridi ag & triw \\
\hline vander & wathen & wilk & \\
\hline
\end{tabular}

\section*{cauchy- Cauchy matrix}
\(C=\) gallery('cauchy', \(x, y)\) returns an n-by-n matrix, \(C(i, j)=1 /\) \((x(i)+y(j))\). Arguments \(x\) and \(y\) are vectors of length \(n\). If you pass in scalars for \(x\) and \(y\), they are interpreted as vectors \(1: x\) and \(1: y\).
\(C=\) gallery('cauchy', x) returns the same as above with \(y=x\). That is, the command returns \(C(i, j)=1 /(x(i)+x(j))\).

Explicit formulas are known for the inverse and determinant of a Cauchy matrix. The determinant det (\(C\)) is nonzero if \(x\) and \(y\) both have distinct elements. \(C\) is totally positive if \(0<x(1)<\ldots<x(n)\) and \(0<y(1)<\ldots<y(n)\).

\section*{chebspec- Chebyshev spectral differentiation matrix}

C = gallery('chebspec', n, switch) returns a Chebyshev spectral differentiation matrix of order \(n\). Argument \(s\) witch is a variable that determines the character of the output matrix. By default, switch=0.

For switch \(=0\) ("no boundary conditions"), \(c\) is nilpotent (\(c^{n}=0\)) and has the null vector ones \((n, 1)\). The matrix c is similar to a J ordan block of sizen with eigenvalue zero.

Forswitch =1, C is nonsingular and well-conditioned, and its eigenvalues have negative real parts.

The eigenvector matrix \(v\) of the Chebyshev spectral differentiation matrix is ill-conditioned.

\section*{chebvand- Vandermonde-like matrix for the Chebyshev polynomials}

C = gallery('chebvand', p) producesthe(primal) Chebyshev Vandermonde matrix based on the vector of points \(p\), which define where the Chebyshev polynomial is calculated.

C = gallery('chebvand', m, p) wherem is scalar, produces a rectangular version of the above, with \(m\) rows.

If \(p\) is a vector, then: \(C(i, j)=T_{i-1}(p(j)) \quad\) where \(_{i-1}\) is the Chebyshev polynomial of degreei-1. If \(p\) is a scalar, then \(p\) equally spaced points on the interval [0,1] are used to calculate \(c\).

\section*{chow- Singular Toeplitz lower Hessenberg matrix}
\(A=\) gallery('chow', n, alpha, delta) returns A such that \(A=H(a \mid p h a)+\) delta*eye(n), where \(H_{i, j}(\alpha)=\alpha^{(i-j+1)}\). Argument \(n\) is the order of theChow matrix, whileal pha and delta are scalars with default values 1 and 0 , respectively.
\(H(a \mid p h a)\) has \(p=f l \operatorname{loor}(n / 2)\) eigenvalues that are equal to zero. Therest of the eigenvalues are equal to \(4 * a l p h a * \cos (k * p i /(n+2))^{\wedge} 2, k=1: n-p\).

\section*{circul- Circulant matrix}
\(C=\) gallery('circul', v) returns thecirculant matrix whosefirst row is the vector v.

A circulant matrix has the property that each row is obtained from the previous one by cyclically permuting the entries onestep forward. It is a special Toeplitz matrix in which the diagonals "wrap around."
If \(v\) is a scalar, then \(\mathrm{C}=\mathrm{gal} \mid\) ery('circul', \(1: \mathrm{v})\).
The eigensystem of \(\mathrm{c}(\mathrm{n}\)-by-n) is known explicitly: Ift is an \(n\)th root of unity, then the inner product of \(v\) with \(w=\left[1 t t^{2} \ldots t^{n}\right]\) is an eigenvalue of \(c\) and \(\mathrm{w}(\mathrm{n}:-1: 1)\) is an eigenvector.

\section*{clement- Tridiagonal matrix with zero diagonal entries}

A = gallery('clement', n, sym) returns an \(n\) by \(n\) tridiagonal matrix with zeros on its main diagonal and known eigenvalues. It is singular if order \(n\) is odd. About 64 percent of the entries of the inverse are zero. The eigenvalues include plus and minus the numbers \(n-1, n-3, n-5, \ldots\), as well as (for odd \(n\)) a final eigenvalue of 1 or 0 .
Argument sym determines whether the Clement matrix is symmetric. For sym \(=0\) (the default) the matrix is nonsymmetric, while for \(s y m=1\), it is symmetric.

\section*{compar- Comparison matrices}

A = gallery('compar', A, 1) returns A with each diagonal element replaced by its absolute value, and each off-diagonal element replaced by minus the absolute value of the largest element in absolute value in its row. However, if \(A\) is triangular compar \((A, 1)\) is too.
gallery('compar', \(A\)) isdiag(B) - tril(B,-1)-triu(B,1), whereB \(=a b s(A)\). compar (\(A\)) is often denoted by \(M(A)\) in the literature.
gallery('compar', \(A, 0\)) is the same ascompar(A).

\section*{condex-Counter-examples to matrix condition number estimators}

A = gallery('condex', n, k, theta) returnsa "counter-example" matrix to a condition estimator. It has order \(n\) and scalar parameter thet a (default 100).

The matrix, its natural size, and the estimator to which it applies are specified by \(k\) as follows:
\begin{tabular}{lll}
\(k=1\) & 4-by-4 & LINPACK (rcond) \\
\(k=2\) & \(3-b y-3\) & LINPACK (rcond) \\
\(k=3\) & arbitrary & LINPACK (rcond) (independent of \(t\) het a) \\
\(k=4\) & \(n \geq 4\) & SONEST (Higham 1988) (default)
\end{tabular}

If \(n\) is not equal to the natural size of the matrix, then the matrix is padded out with an identity matrix to order \(n\).

\section*{cycol- Matrix whose columns repeat cyclically}

A = gallery('cycol', [mn],k) returns an m-by-n matrix with cyclically repeating columns, where one "cycle" consists of \(\mathrm{randn}(\mathrm{m}, \mathrm{k})\). Thus, the rank of matrix a cannot exceed k.k must be a scalar.

Argument k defaults toround (\(n / 4\)), and need not evenly dividen.
\(A=\) gallery('cycol', \(n, k\)), wheren is a scalar, is the same as gallery('cycol',[n n],k).

\section*{dorr- Diagonally dominant, ill-conditioned, tridiagonal matrix}
\([c, d, e]=\) gallery('dorr', \(n\), theta) returns the vectors defining a row diagonally dominant, tridiagonal order \(n\) matrix that is ill-conditioned for small nonnegative values of \(t\) het a. The default value of thet a is 0.01 . The Dorr matrix itself is the same as gallery('tridiag', c, d, e).

A = gallery('dorr', n, theta) returns the matrix itself, rather than the defining vectors.

\section*{dramadah- Matrix of zeros and ones whose inverse has large integer entries}

A = gallery('dramadah', n, k) returns an n-by-n matrix of 0 's and 1 's for which mu(A) \(=\operatorname{norm}(\operatorname{inv}(A), ' f r o ')\) is relatively large, although not necessarily maximal. An anti-Hadamard matrix A is a matrix with elements 0 or 1 for which mu(A) is maximal.
n and k must both be scalars. Argument k determines the character of the output matrix:
\(k=1\) Default. A is Toeplitz, with abs \((\operatorname{det}(A))=1\), and \(m u(A)>c(1.75)^{\wedge} n\), where \(c\) is a constant. The inverse of \(A\) has integer entries.
\(k=2 \quad A\) is upper triangular and Toeplitz. The inverse of \(A\) has integer entries.
\(k=3 \quad A\) has maximal determinant among lower Hessenberg \((0,1)\) matrices.
\(\operatorname{det}(\mathrm{A})=\) thenth Fibonacci number. A is Toeplitz. The eigenvalues have an interesting distribution in the complex plane.

\section*{fiedler- Symmetric matrix}

A = gallery('fiedler', c), wherec is a length \(n\) vector, returns then-by-n symmetric matrix with elements abs(\(n(i)-n(j))\). For scalar \(c\), A = gallery('fiedler', l:c).

Matrix a has a dominant positive eigenvalue and all the other eigenvalues are negative.

Explicit formulas for \(\mathrm{inv}(\mathrm{A})\) and det (A) aregiven in [Todd, J ., Basic Numerical Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and Academic Press, New Y ork, 1977, p. 159] and attributed to Fiedler. These indicate that inv(A) is tridiagonal except for nonzero \((1, n)\) and \((n, 1)\) elements.

\section*{forsythe- Perturbed Jordan block}

A = gallery('forsythe', n, al pha, lambda) returns then-by-n matrix equal to theJ ordan block with eigenvaluel a mbda, excepting that \(A(n, 1)=a \mid p h a\). The default values of scalars al pha andlambda aresqrt(eps) and 0 , respectively.

The characteristic polynomial of \(A\) is given by:
```

det(A-t*|)=(Iambda-t )}^N=-alpha*(-1)^n.

```

\section*{frank- Matrix with ill-conditioned eigenvalues}
\(F=\) gallery('frank', \(n, k\)) returns the Frank matrix of order \(n\). It is upper Hessenberg with determinant 1 . If \(k=1\), the elements are reflected about the anti-diagonal (\(1, n\)) - (\(n, 1\)). The eigenvalues of \(F\) may be obtained in terms of the zeros of the Hermite polynomials. They are positive and occur in reciprocal pairs; thus if \(n\) is odd, 1 is an eigenvalue. \(F\) has \(f\) loor (\(n / 2\)) ill-conditioned eigen-values-the smaller ones.

\section*{gearmat- Gear matrix}
\(A=\) gallery('gearmat', \(n, i, j)\) returns then-by-n matrix with ones on the sub- and super-diagonals, sign(i) in the(1, abs(i)) position, sign(j) in the (\(n, n+1-a b s(j)\)) position, and zeros everywhereelse. Argumentsi andj default to \(n\) and - \(n\), respectively.

Matrix A is singular, can have double and triple eigenvalues, and can be defective.

All eigenvalues are of the form \(2 * \cos (\) a) and the eigenvectors are of the form [sin(w+a), sin(w+2a), ..., sin(w+Na)], wherea and w are given in Gear, C. W., "A Simple Set of Test Matrices for Eigenvalue Programs", Math. Comp., Vol. 23 (1969), pp. 119-125.

\section*{grcar- Toeplitz matrix with sensitive eigenvalues}

A = gallery('grcar', n, k) returnsann-by-n Toeplitz matrix with-1s on the subdiagonal, 1 s on the diagonal, and \(k\) superdiagonals of 1 s . The default is \(k=3\). The eigenvalues are sensitive.

\section*{hanowa- Matrix whose eigenvalues lie on a vertical line in the complex plane}

A = gallery('hanowa', n, d) returns an n-by-n block 2-by-2 matrix of the form:
```

[d*eye(m) -diag(1:m)
diag(1:m) d*eye(m)]

```

Argument \(n\) is an even integer \(n=2 * m\). Matrix a has complex eigenvalues of the form \(d \pm k * i\), for \(1<=k<=m\). The default value of \(d\) is -1 .

\section*{house- Householder matrix}
[v, beta] = gallery('house', x) takes x, a scalar or n-element column vector, and returns v and beta such that eye(n,n) - beta*v*v' is a House holder matrix.

A Householder matrix \(H\) satisfies the relationship
```

H*x = -sign(x(1))*norm(x)*el

```
where \(e 1\) is the first column of eye \((n, n)\). Note that if \(x\) is complex, then \(\operatorname{sig} g(x)=\exp (i * a r g(x))\) (which equals \(x . \mid a b s(x)\) when \(x\) is nonzero).

If \(x=0\), then \(v=0\) and beta \(=1\).

\section*{invhess- Inverse of an upper Hessenberg matrix}
\(A=\) gallery('invhess', \(x, y\)), wherex is alength \(n\) vector andy alengthn-1 vector, returns the matrix whose lower triangle agrees with that of ones \((n, 1) * x^{\prime}\) and whose strict upper triangle agrees with that of [1 y] *ones (\(1, n\)).
The matrix is nonsingular if \(x(1) \sim=0\) and \(x(i+1) \sim=y(i)\) for all \(i\), and its inverse is an upper Hessenberg matrix. Argument \(y\) defaults to \(-x(1: n-1)\).

If \(x\) is a scalar, invhess(\(x\)) is the same as invhess(1: \(x\)).

\section*{invol- Involutory matrix}

A = gallery('invol', n) returns ann-by-n involutory(A*A = eye(n)) and ill-conditioned matrix. It is a diagonally scaled version of hilb(n).
\(B=(\) eye \((n)-A) / 2\) and \(B=(e y e(n)+A) / 2\) areidempotent \((B * B=B)\).

\section*{ipjfact- Hankel matrix with factorial elements}
[A, d] = gallery('ipjfact', n, k) returnsA, ann-by-n Hankel matrix, andd, the determinant of \(A\), which is known explicitly. If \(k=0\) (the default), then the elements of \(A\) are \(A(i, j)=(i+j)!\quad\) If \(k=1\), then the elements of \(A\) are \(A(i, j)=1 /(i+j)\).

Note that the inverse of A is also known explicitly.

\section*{jordbloc- Jordan block}

A = gallery('jordbloc', n, lambda) returns then-by-n J ordan block with eigenvaluel ambda. The default value for 1 ambda is 1 .

\section*{kahan- Upper trapezoidal matrix}

A = gallery('kahan', n, theta, pert) returns an upper trapezoidal matrix that has interesting properties regarding estimation of condition and rank.

If \(n\) is a two-element vector, then \(A\) is \(n(1)\)-by-n (2) ; otherwise, \(A\) is \(n-b y-n\). The useful range of t het a is \(0<t\) het a pi , with a default value of 1.2 .

To ensure that the QR factorization with column pivoting does not interchange columns in the presence of rounding errors, the diagonal is perturbed by pert*eps*diag([n:-1:1]). The default pert is 25 , which ensures no interchanges for gallery('kahan', n) up to at least \(n=90\) in IEEE arithmetic.

\section*{kms- Kac-Murdock-Szego Toeplitz matrix}

A = gallery('kms', n, rho) returns then-by-n Kac-Murdock-Szego Toeplitz matrix such that \(A(i, j)=r h 0^{\wedge}(a b s(i-j))\), for real \(r h o\).

For complex rho, the same formula holds except that elements below the diagonal are conjugated. rho defaults to 0.5 .

\section*{gallery}

The KMS matrix A has these properties:
- An LDL'factorization with \(L=i n v(t r i w(n,-r h o, 1) ')\), and \(D(i, i)=\left(1-a b s(r h o)^{\wedge} 2\right)\) *eye(n), except \(D(1,1)=1\).
- Positive definite if and only if \(0<a b s(r h o)<1\).
- The inverse inv(A) is tridiagonal.

\section*{krylov- Krylov matrix}
```

B = gallery('krylov',A, x, j) returns the Krylov matrix
[x, Ax, A^2x, ..., A^(j-1) x]

```
where \(A\) is an \(n-b y-n\) matrix and \(x\) is a length \(n\) vector. The defaults are \(x=0\) nes \((n, 1)\), and \(j=n\).
\(B=\) gallery('krylov', n) is the same asgallery('krylov', (randn(n)).

\section*{lauchli- Rectangular matrix}
```

A = gallery('|auchli',n,mu) returnsthe(n+1) -by-n matrix
[ones(1,n); mu*eye(n)]

```

The Lauchli matrix is a well-known example in least squares and other problems that indicates the dangers of forming A' \(*\) A. Argument mu defaults to sqrt(eps).

\section*{lehmer- Symmetric positive definite matrix}
\(A=\) gallery('Iehmer', n) returns the symmetric positive definiten-by-n matrix such that \(A(i, j)=i / j\) for \(j>=i\).
The Lehmer matrixa has these properties:
- A is totally nonnegative.
- The inverse inv(A) is tridiagonal and explicitly known.
- The order \(n<=\operatorname{cond}(A)<=4 * n * n\).

\section*{lesp-Tridiagonal matrix with real, sensitive eigenvalues}
\(A=\) gallery('Iesp', n) returns an \(n\)-by-n matrix whose eigenvalues are real and smoothly distributed in the interval approximately [- \(2 * N-3,5,-4,5]\).

The sensitivities of the eigenvalues increase exponentially as the eigenvalues grow more negative. The matrix is similar to the symmetric tridiagonal matrix with the same diagonal entries and with off-diagonal entries 1, via a similarity transformation with \(D=\operatorname{di} \operatorname{ag}(1!, 2!, \ldots, n!)\).

\section*{lotkin- Lotkin matrix}
\(A=\) gallery('Iotkin', n) returns the Hilbert matrix with its first row altered to all ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and has many negative eigenvalues of small magnitude. Its inverse has integer entries and is known explicitly.

\section*{minij- Symmetric positive definite matrix}

A = gallery('minij',n) returns then-by-n symmetric positive definite matrix with \(A(i, j)=m i n(i, j)\).

Theminij matrix has these properties:
- Theinverse inv(A) is tridiagonal and equal to-1 times the second difference matrix, except its (\(n, n\)) element is 1 .
- Givens' matrix, 2 *A-ones (size(A)), has tridiagonal inverse and eigenvalues \(0.5 * \sec ((2 * r-1) * p i /(4 * n))^{\wedge} 2\), where \(r=1: n\).
- \((\mathrm{n}+1) * \mathrm{nes}(\operatorname{size}(\mathrm{A}))\) - A has elements that \(\operatorname{aremax(i,j)}\) and a tridiagonal inverse.

\section*{moler- Symmetric positive definite matrix}

A = gallery('moler', n, alpha) returns the symmetric positive definite n-by-n matrix \(U^{\prime} * U\), where \(U=t r i w(n, a l p h a)\).

For the defaultalpha \(=-1, A(i, j)=m i n(i, j)-2\), and \(A(i, i)=i\). One of the eigenvalues of \(A\) is small.

\section*{neumann- Singular matrix from the discrete \(\mathbf{N e u m a n n}\) problem (sparse)}

C = gallery('neumann', n) returns the singular, row-diagonally dominant matrix resulting from discretizing the Neumann problem with the usual five-point operator on a regular mesh. Argument \(n\) is a perfect square integer \(\mathrm{n}=\mathrm{m}^{2}\) or a two-element vector. c is sparse and has a one-dimensional null space with null vector ones \((n, 1)\).

\section*{orthog- Orthogonal and nearly orthogonal matrices}
\(Q=\) gallery('orthog', \(n, k\)) returns the kth type of matrix of order \(n\), where \(\mathrm{k}>0\) selects exactly orthogonal matrices, and k < 0 selects diagonal scalings of orthogonal matrices. Available types are:
```

k=1 Q(i,j) = sqrt(2/(n+1)) * sin(i*j*pi/(n+1))
Symmetric eigenvector matrix for second difference matrix. This
is the default.
k=2 Q(i,j)=2/(sqrt(2*n+1))*\operatorname{sin}(2*i*j*pi/(2*n+1))
Symmetric.
k = 3 Q(r,s) = exp(2*pi*i*(r-1)*(s-1)/n) | sqrt(n)
Unitary, the Fourier matrix. Q^4 is the identity. This is
essentially the same matrix asfft(eye(n))/sqrt(n)!
k = 4 Helmert matrix: a permutation of a lower Hessenberg matrix,
whose first row is ones(1:n)/sqrt(n).
k = 5 Q(i,j) = sin(2*pi*(i-1)*(j-1)/n) +
cos(2*pi*(i-1)*(j-1)/n)
Symmetric matrix arising in the Hartley transform.
k=-1 Q(i,j) = cos((i-1)*(j-1)*pi/(n-1))
Chebyshev Vandermondelike matrix, based on extrema of
T(n-1).
k=-2 Q(i,j) = cos((i-1)*(j-1/2)*pi/n))
Chebyshev Vandermonde-like matrix, based on zeros of T( }n)\mathrm{ .

```

\section*{parter- Toeplitz matrix with singular values near pi}
```

C = gallery('parter',n) returns the matrix C such that
C(i,j) = 1/(i-j+0,5).

```
c is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of C are very close to pi .

\section*{pei- Pei matrix}

A = gallery('pei', n, alpha), wherealpha is ascalar, returnsthesymmetric matrixalpha*eye(\(n\)) + ones \((n)\). The default for al pha is 1 . The matrix is singular for al pha equal to either 0 or \(-n\).
poisson- Block tridiagonal matrix from Poisson's equation (sparse)
\(A=\) gallery('poisson', n) returns the block tridiagonal (sparse) matrix of order \(n \wedge 2\) resulting from discretizing Poisson's equation with the 5-point operator on an \(n\)-by-n mesh.
prolate- Symmetric, ill-conditioned Toeplitz matrix
\(A=\) gallery('prolate', \(n, w)\) returns then-by-n prolate matrix with parameter w. It is a symmetric Toeplitz matrix.

If 0 < w < 0.5 then A is positive definite
- The eigenvalues of \(A\) are distinct, lie in \((0,1)\), and tend to cluster around 0 and 1 .
- The default value of \(w\) is 0.25 .

\section*{randhess- Random, orthogonal upper Hessenberg matrix}

H = gallery('randhess', n) returnsann-by-n real, random, orthogonal upper Hessenberg matrix.

H = gallery('randhess', \(x\)) if \(x\) is an arbitrary, real, length \(n\) vector with \(n>1\), constructs \(H\) nonrandomly using the elements of \(x\) as parameters.

Matrix \(H\) is constructed via a product of \(n-1\) Givens rotations.

\section*{rando- Random matrix composed of elements -1, 0 or 1}
\(A=\) gallery('rando', \(n, k\)) returns a random \(n-\) by-n matrix with elements from one of the following discrete distributions:
\(k=1 \quad A(i, j)=0\) or 1 with equal probability (default)
\(k=2 A(i, j)=-1\) or 1 with equal probability
\(k=3 \quad A(i, j)=-1,0\) or 1 with equal probability

Argument n may be a two-element vector, in which case the matrix is n(1) -by-n(2).

\section*{randsvd- Random matrix with preassigned singular values}

A = gallery('randsvd', n, kappa, mode, kl, ku) returnsa banded (multidiagonal) random matrix of order \(n\) with cond \((A)=k a p p a\) and singular values from the distribution mode. If \(n\) is a two-element vector, A is \(\mathrm{n}(1)\)-by-n (2).

Arguments kl and ku specify the number of lower and upper off-diagonals, respectively, in A. If they are omitted, a full matrix is produced. If only kl is present, ku defaults to kl .

Distribution mode may be:
1 One large singular value
2 One small singular value
3 Geometrically distributed singular values (default)
\(4 \quad\) Arithmetically distributed singular values

1 One large singular value
5 Random singular values with uniformly distributed logarithm
< 0 If mode is -1, \(-2,-3,-4\), or -5 , then randsvd treats mode as abs(mode), except that in the original matrix of singular values the order of the diagonal entries is reversed: small to large instead of large to small.

Condition number kappa defaults to sqrt(1/eps). In the special case where kappa < \(0, A\) is a random, full, symmetric, positive definite matrix with cond(A) = -kappa and eigenvalues distributed according tomode. Argumentskl and ku, if present, are ignored.

\section*{redheff- Redheffer's matrix of 1 s and 0 s}

A = gallery('redheff',n) returns an n-by-n matrix of 0 's and 1 's defined by \(A(i, j)=1, i f j=1\) or if \(i\) divides \(j\), and \(A(i, j)=0\) otherwise.

The Redheffer matrix has these properties:
- (\(n-f \operatorname{loor}(\log 2(n)))-1\) eigenvalues equal to 1
- A real eigenvalue (the spectral radius) approximately sqrt(n)
- A negative eigenvalue approximately - sqr t (n)
- The remaining eigenvalues are provably "small."
- The Riemann hypothesis is true if and only ifdet (\(A\)) \(=0\) (\(n \wedge\) (1/2+epsilon)) for every epsilon > 0 .

Barrett and J arvis conjecture that "the small eigenvalues all lie inside the unit circleabs \((z)=1\)," and a proof of this conjecture, together with a proof that some eigenvalue tends to zero as \(n\) tends to infinity, would yield a new proof of the prime number theorem.

\section*{riemann- Matrix associated with the Riemann hypothesis}

A = gallery('riemann', n) returns an n-by-n matrix for which the Riemann hypothesis is true if and only if \(\operatorname{det}(A)=O\left(n!n^{\wedge}(-1 / 2\right.\) +epsilon)) for every epsilon \(>0\).

\section*{gallery}

The Riemann matrix is defined by:
\[
A=B(2: n+1,2: n+1)
\]
where \(B(i, j)=i-1\) if \(i\) divides \(j\), and \(B(i, j)=-1\) otherwise.
The Riemann matrix has these properties:
- Each eigenvaluee(i) satisfiesabs(e(i)) <= m-1/m, wherem \(=n+1\).
- i <= e(i) <= \(\mathrm{i}+1\) with at most m -sqrt(m) exceptions.
- All integers in the interval (\(\mathrm{m} / 3, \mathrm{~m} / 2\)) are eigenvalues.

\section*{ris- Symmetric Hankel matrix}

A = gallery('ris', n) returns a symmetricn-by-n Hankel matrix with elements
```

A(i,j) = 0.5/(n-i-j+1.5)

```

The eigenvalues of \(A\) cluster around \(\pi / 2\) and \(-\pi / 2\). This matrix was invented by F.N. Ris.

\section*{rosser- Classic symmetric eigenvalue test matrix}
 matrix eigenvalue algorithms. But the Francis QR algorithm, as perfected by Wilkinson and implemented in EISPACK and MATLAB, has no trouble with it. The matrix is 8 -by- 8 with integer elements. It has:
- A double eigenvalue
- Three nearly equal eigenvalues
- Dominant eigenvalues of opposite sign
- A zero eigenvalue
- A small, nonzero eigenvalue

\section*{smoke- Complex matrix with a 'smoke ring' pseudospectrum}
\(A=\) gallery('smoke', n) returns an \(n-b y-n\) matrix with 1 's on the superdiagonal, 1 in the (\(n, 1\)) position, and powers of roots of unity along the diagonal.
\(A=\) gallery('smoke', \(n, 1)\) returns the same except that element \(A(n, 1)\) is zero.

The eigenvalues of smoke(\(n, 1)\) are the nth roots of unity; those of s moke \((n)\) are the \(n\)th roots of unity times \(2 \wedge(1 / n)\).

\section*{toeppd- Symmetric positive definite Toeplitz matrix}
\(A=\) gallery('toeppd', \(n, m, w, t h e t a)\) returns an \(n-b y-n\) symmetric, positive semi-definite (SPD) Toeplitz matrix composed of the sum of m rank 2 (or, for certain thet a , rank 1) SPD Toeplitz matrices. Specifically,
```

T = w(1)*T(theta(1)) + ... + w(m)*T(theta(m))

```
wheret(theta(k)) has(i,j) element cos(2 *pi *theta(k)*(i-j)).
By default: \(m=n, w=r a n d(m, 1)\), and thet \(a=r a n d(m, 1)\).

\section*{toeppen- Pentadiagonal Toeplitz matrix (sparse)}
\(P=\) gallery('toeppen', \(n, a, b, c, d, e)\) returns then-by-n sparse, pentadiagonal Toeplitz matrix with the diagonals: \(P(3,1)=a, P(2,1)=b, P(1,1)=c\), \(P(1,2)=d\), and \(P(1,3)=e\), where \(a, b, c, d\), and e are scalars.

By default, \((a, b, c, d, e)=(1,-10,0,10,1)\), yielding a matrix of Rutishauser. This matrix has eigenvalues lying approximately on the line segment \(2 * \cos (2 * t)+20 * i * \sin (t)\).

\section*{tridiag- Tridiagonal matrix (sparse)}
\(A=g a l l e r y(' t r i d i a g ', c, d, e)\) returns thetridiagonal matrix with subdiagonal c, diagonal d, and superdiagonal e. Vectorsc ande must havel ength(d)-1.
\(A=g a l l e r y(' t r i d i a g ', n, c, d, e)\), wherec, \(d\), ande areall scalars, yields the Toeplitz tridiagonal matrix of order \(n\) with subdiagonal elements \(c\), diagonal elements \(d\), and superdiagonal elements e. This matrix has eigenvalues
```

    d + 2*sqrt(c*e)*cos(k*pi/(n+1))
    wherek = 1: n. (see [1].)

```

A = gallery('tridiag', n) is the sameas
\(A=\) gallery('tridiag', \(n,-1,2,-1\)), which is a symmetric positive definite M -matrix (the negative of the second difference matrix).

\section*{triw - Upper triangular matrix discussed by Wilkinson and others}
\(A=\) gallery('triw', \(n, a l p h a, k)\) returns the upper triangular matrix with ones on the diagonal andalphas on the first \(\mathrm{k}>=0\) superdiagonals.
Order n may be a 2 -vector, in which case the matrix is \(\mathrm{n}(1)\)-by-n(2) and upper trapezoidal.
Ostrowski ["On the Spectrum of a One-parametricF Family of Matrices, J. Reine Angew. Math., 1954] shows that
```

cond(gal|ery('triw',n,2))= cot(pi/(4*n))^2,

```
and, for largeabs(alpha), cond(gallery('triw', n, alpha)) is approximately abs(alpha) ^n*sin(pi/(4*n-2)).
Adding - \(2^{\wedge}(2-n)\) to the \((n, 1)\) element makestriw(n) singular, as does adding \(-2^{\wedge}(1-n)\) to all the elements in the first column.

\section*{vander- Vandermonde matrix}

A = gallery('vander', c) returns the Vandermonde matrix whose second to last column is c . The \(j\) th column of a Vandermonde matrix is given by \(A(:, j)=C \wedge(n-j)\).

\section*{wathen- Finite element matrix (sparse, random entries)}
\(A=\) gallery('wathen', \(n x, n y)\) returns a sparse, random, \(n\)-by-n finite element matrix where
\[
n=3 * n x * n y+2 * n x+2 * n y+1
\]

Matrix A is precisely the "consistent mass matrix" for a regular nx-by-ny grid of 8 -node (serendipity) elements in two dimensions. A is symmetric, positive definite for any (positive) values of the "density," rho(nx, ny), which is chosen randomly in this routine.

A = gallery('wathen', nx, ny, 1) returns a diagonally scaled matrix such that
\(0.25<=\) eig(inv(D)*A) <= 4.5
whered \(=\operatorname{diag}(\operatorname{diag}(A))\) for any positive integers \(n x\) and \(n y\) and any densities rho(nx, ny).
wilk- Various matrices devised or discussed by Wilkinson
\([A, b]=\) gallery('wilk', n) returns a different matrix or linear system depending on the value of \(n\) :
\begin{tabular}{|c|c|c|}
\hline n & MATLAB Code & Result \\
\hline \(\mathrm{n}=3\) & \[
\begin{aligned}
& {[A, b]=} \\
& \text { gallery('wilk', 3) }
\end{aligned}
\] & Upper triangular system Ux =b illustrating inaccurate solution. \\
\hline \(n=4\) & \[
\begin{aligned}
& {[A, b]=} \\
& \text { gallery('wilk', 4) }
\end{aligned}
\] & Lower triangular system \(L x=b\), ill-conditioned. \\
\hline \(n=5\) & A = gallery ('wilk', 5) & hilb(6)(1:5, 2:6) *1.8144.A symmetric positive definite matrix. \\
\hline \(n=21\) & \(A=\) gallery('wilk', 21) & W2 \(1+\), tridiagonal matrix. Eigenvalue problem. \\
\hline
\end{tabular}

\section*{Purpose Gamma functions}
Syntax \(\quad\)\begin{tabular}{rl}
\(Y\) & \(=\operatorname{gamma}(A)\) \\
\(Y\) & \(=\operatorname{gammainc}(X, A)\) \\
\(Y\) & \(=\operatorname{gammaln}(A)\)
\end{tabular}

Gamma function
I ncomplete gamma function
L ogarithm of gamma function
Definition The gamma function is defined by the integral:
\[
\Gamma(a)=\int_{0}^{\infty} e^{-t} t^{a-1} d t
\]

The gamma function interpolates the factorial function. For integer \(n\) :
```

gamma(n+1)=n!=prod(1:n)

```

The incomplete gamma function is:
\[
P(x, a)=\frac{1}{\Gamma(a)} \int_{0}^{x} e^{-t} t^{a-1} d t
\]

\section*{Description}
\(Y=\operatorname{gamma}(A)\) returns the gamma function at the elements of A. A must be real.
\(Y=\) gammainc(X,A) returns the incomplete gamma function of corresponding elements of \(X\) and \(A\). Arguments \(X\) and \(A\) must be real and the same size (or either can be scalar).
\(Y=\) gammal \(n(A)\) returns the logarithm of the gamma function, gammal \(n(A)=\log (g a m m a(A))\). Thegammaln command avoids the underflow and overflow that may occur if it is computed directly usinglog(gamma (A)).

Algorithm The computations of gamma and gammaln are based on algorithms outlined in [1]. Several different minimax rational approximations are used depending upon the value of \(A\). Computation of the incomplete gamma function is based on the algorithm in [2].

\section*{gamma, gammainc, gammaln}

Purpose Greatest common divisor
\begin{tabular}{ll}
Syntax & \(G=\operatorname{gcd}(A, B)\) \\
& {\([G, C, D]=\operatorname{gcd}(A, B)\)}
\end{tabular}

Description

\section*{Examples}
\(G=\operatorname{gcd}(A, B)\) returns an array containing the greatest common divisors of the corresponding elements of integer arrays A and B. By convention, gcd (0,0) returns a value of 0 ; all other inputs return positive integers for \(G\).
\([G, C, D]=\operatorname{gcd}(A, B)\) returns both the greatest common divisor array \(G\), and the arrays \(C\) and \(D\), which satisfy the equation: \(A(i) \cdot * C(i)+B(i) \cdot * D(i)=\) \(G(i)\). These are useful for solving Diophantine equations and computing elementary Hermite transformations.

The first example involves elementary Hermite transformations.
For any two integers \(a\) and \(b\) thereis a 2 -by- 2 matrix \(E\) with integer entries and determinant \(=1\) (a unimodular matrix) such that:
```

E * [a;b] = [g,0],

```
where \(g\) is the greatest common divisor of \(a\) and \(b\) as returned by the command \([g, c, d]=\operatorname{cd}(a, b)\).

The matrix E equals:
```

c d
-b/g a/g

```

In the case where \(a=2\) and \(b=4\) :
```

[g,c,d] = gcd(2,4)
g =
2
c =
1
d =
0

```

So that:
E =
10
-2 1
In the next example, we solve for \(x\) and \(y\) in the Diophantine equation \(30 x+56 y=8\).
\([g, c, d]=\operatorname{gcd}(30,56)\)
\(\mathrm{g}=\)
2
\(c=\)
\(-13\)
d \(=\)
7
By the definition, for scalars \(c\) and \(d\) :
\(30(-13)+56(7)=2\),
Multiplying through by 8/2:
\(30(-13 * 4)+56(7 * 4)=8\)
Comparing this to the original equation, a solution can be read by inspection:
\(x=(-13 * 4)=-52 ; y=(7 * 4)=28\)

See Also 1 cm Least common multiple
References
[1] K nuth, Donald, TheArt of Computer Programming, Vol. 2, Addison-Wesley: Reading MA, 1973. Section 4.5.2, Algorithm X.

\section*{getfield}

Purpose Get field of structure array
```

Syntax f = getfield(s,'field')
f = getfield(s,{i,j},'field',{k})

```

Description \(\quad f=\) getfield(s,'field'), wheres isa 1-by-1 structure, returns the contents of the specified field. This is equivalent to the syntax \(f=\) s.field.
\(f=\) getfield(s,\{i,j\},'field',\{k\}) returns the contents of the specified field. This is equivalent to the syntax \(f=s(i, j)\). fiel \(d(k)\). All subscripts must be passed as cell arrays-that is, they must be enclosed in curly braces (similar to \(\{\mathrm{i}, \mathrm{j}\}\) and \(\{\mathrm{k}\}\) above). Pass field references as strings.

Examples
Given the structure:
```

mystr(1,1). name = 'alice';
mystr(1, 1).|D=0;
mystr(2,1).name = 'gertrude';
mystr(2,1).|D=1

```

Then the command \(f=\) getfield(mystr, \(\{2,1\}\), ' name') yields
\(f=\)
gertrude
To list the contents of all name (or other) fields, embed get field in a loop:
```

for i = 1:2
name{i} = getfield(mystr,{i,l},'name');
end
n a me
name =
'alice' 'gertrude'

```

\section*{See Also}
```

fields

```
setfield

Field names of a structure Set field of structure array

\section*{Purpose Define global variables}
\begin{tabular}{ll}
Syntax & global \(X Y Z\) \\
Description & \(g\) global \(X Y Z\) defines \(X, Y\), and \(Z\) as global in scope.
\end{tabular}

Ordinarily, each MATLAB function, defined by an M-file, has its own local variables, which are separate from those of other functions, and from those of the base workspace and nonfunction scripts. However, if several functions, and possibly the base workspace, all declare a particular name as global, they all share a single copy of that variable. Any assignment to that variable, in any function, is available to all the functions dedaring it global. If the global variable does not exist the first time you issue the global statement, it is initializied to the empty matrix. By convention, global variable names are often long with all capital letters (not required).

It is an error to declare a variable global if:
- in the current workspace, a variable with the same name exists.
- in an M-file, it has been referenced previously.

Useclear globalvariable to clear a global variablefrom the global workspace. Usecl ear variable to clear the global link from the current workspace without affecting the value of the global.

Touse a global within a callback, declaretheglobal, useit, then clear the global link from the workspace. This avoids declaring the global after it has been referenced. For example:
```

uicontrol('style','pushbutton','Call Back',...
'global MY_GLOBAL,disp(MY_GLOBAL),MY_GLOBAL = MY_GLOBAL+1,clear MY_GLOBAL',···..
'string','count')

```

Examples
Here is the code for the functions tic and toc (some comments abridged), which manipulatea stopwatch-liketimer. The global variableTI CTOC is shared
by the two functions, but it is invisible in the base workspace or in any other functions that do not declare it.
```

function tic
% TIC Start a stopwatch timer.
% TIC; any stuff; TOC
% prints the time required.
% See also: TOC, CLOCK.
global TICTOC
TICTOC = clock;
function t = toc
% TOC Read the stopwatch timer.
% TOC prints the elapsed time since TIC was used.
% t = TOC; saves elapsed time in t, does not print.
% See also: TIC, ETIME.
global TICTOC
if nargout < 1
elapsed_time= etime(clock,TICTOC)
else
t = etime(clock,T|CTOC);
end

```

See Also
clear, isglobal, who

Purpose
Syntax

\section*{Description}

Generalized Minimum Residual method (with restarts)
```

x = gmres(A, b, restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol, maxit)
gmres(A,b,restart,tol, maxit,M)
gmres(A,b,restart,tol, maxit,M1,M2)
gmres(A,b,restart,tol, maxit,M1,M2,x0)
x = gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,f|ag] = gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag,relres] = gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = gmres(A,b,restart,tol, maxit,M1,M2, x 0)
[x,flag,relres,iter,resvec] =
gmres(A,b,restart,tol,maxit,M1,M2,x0)

```
\(x=g \operatorname{mres}(A, b, r e s t a r t)\) attempts to solve the system of linear equations \(A^{*} x=b\) for \(x\). The coefficient matrix \(A\) must be square and the right hand side (column) vector b must have length \(n\), where A is \(n-b y-n . g \mathrm{mr}\) es will start iterating from an initial estimate that by default is an all zero vector of length \(n\). gmres will restart itself everyrestart iterations using thelast iteratefrom the previous outer iteration as the initial guess for the next outer iteration. Iterates are produced until the method either converges, fails, or has computed the maximum number of iterations. Convergence is achieved when an iteratex has relative residual norm(b-A*x)/norm(b) less than or equal to the tolerance of the method. The default tolerance is \(1 e-6\). The default maximum number of iterations is the minimum of \(n / r e s t a r t\) and 10. No preconditioning is used.
\(g \mathrm{mres}(A, b, r e s t a r t, t o l) \quad\) specifies the tolerance of the method, t 0 l .
gmres (\(A, b, r e s t a r t, t o l\), maxit) additionally specifies the maximum number of iterations, maxit.
\(g \operatorname{mres}(A, b, r e s t a r t, t o l, m a x i t, M)\) and gmres(\(A, b, r e s t a r t, t o l\), maxit, \(M 1, M 2\)) useleft preconditioner \(M\) or \(M=M 1 * M 2\) and effectively solve the system \(\operatorname{inv}(M) * A * x=i n v(M) * b\) for \(x\). If M1 or M2 is given as the empty matrix ([]), it is considered to be the identity matrix, equivalent to no preconditioning at all. Since systems of equations of the form \(M^{*} y=r\) are solved using backslash withing mr e \(s\), it is wise to factor precondi-
tioners into their LU factors first. For example, replace gmres(A, b, restart,tol, maxit, M) with:
[M1, M2] = Iu(M);
gmres(A, b, restart, tol, maxit, M1, M2).
gmres(A, b, restart,tol, maxit, M1, M2, x0) specifies the first initial estimate \(\times 0\). If \(\times 0\) is given as the empty matrix ([]), the default all zero vector is used.
\(x=\operatorname{gmres}(A, b, r e s t a r t, t o l, \operatorname{maxit}, M 1, M 2, x 0)\) returns a solution \(x\).Ifgmres converged, a message to that effect is displayed. If gmr es failed to converge after the maximum number of iterations or halted for any reason, a warning message is printed displaying the relative residual norm \(\left(b-A^{*} x\right) / \operatorname{norm}(b)\) and the iteration number at which the method stopped or failed.
\([x, f \mid a g]=g m r e s(A, b, r e s t a r t, t o l\), maxit, M1, M2, x 0) returns a solution \(x\) and a flag which describes the convergence of gmr es :
\begin{tabular}{ll}
\hline Flag & Convergence \\
\hline 0 & \begin{tabular}{l}
gmr es converged to the desired tolerancet ol within maxi t \\
iterations without failing for any reason.
\end{tabular} \\
\hline 1 & \(g\) mr es iterated maxit times but did not converge. \\
\hline 2 & \begin{tabular}{l}
One of the systems of equations of the form \(\mathrm{M}^{*} \mathrm{y}=\mathrm{r}\) \\
involving the preconditioner was ill-conditioned and did not \\
return a useable result when solved by \(\backslash\) (backslash).
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
The method stagnated. (Two consecutive iterates were the \\
same.)
\end{tabular} \\
\hline
\end{tabular}

Whenever fl ag is not 0 , the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.
\([x, f l a g, r e l r e s]=\operatorname{mres}(A, b, r e s t a r t, t o l, m a x i t, M 1, M 2, x 0)\) also returns the relative residual norm(b-A*x)/norm(b).|fflag is 0 , then relres \(\leq\) tol.
[\(x, f l a g, r e l r e s, i t e r]=g m r e s(A, b, r e s t a r t, t o l, m a x i t, M 1, M 2, x 0) ~ a l s o\) returns both the outer and inner iteration numbers at which \(x\) was computed. The outer iteration number iter (1) is an integer between 0 and maxit. The inner iteration number iter(2) is an integer between 0 andrestart.
[\(x, f l a g, r e l r e s, i t e r, r e s v e c] ~=~\)
 residual norms at each inner iteration, starting from resvec(1) \(=\) norm(b\(A^{*} \times 0\)). Ifflag is 0 and \(i t e r=[i j], r e s v e c ~ i s ~ o f ~ l e n g t h ~(i-1) * r e s t a r t ~+j+1 ~\) andresvec(end) \(\leq\) tol*norm(b).

\section*{Examples}
```

load west0479
A = west 0479
b = sum(A, 2)
[x,f|ag] = gmres(A,b,5)

```
fl ag is 1 sincegmres (5) will not converge to the default tolerance 1e-6 within the default 10 outer iterations.
```

[L1,U1] = Iuinc(A,1e-5);
[x1,flag1] = gmres(A,b,5,1e-6,5,L1,U1);

```
flagl is 2 since the upper triangular 11 has a zero on its diagonal sogmes (5) fails in the first iteration when it tries to solve a system such as U1*y \(=r\) for y with backslash.
```

[L2,U2] = |uinc(A,1e-6);
tol = 1e-15;
[x4,flag4,relres 4,iter 4,resvec4] = gmres(A, b, 4, tol, 5, L2, U2);
[x6,flag6,relres6,iter6,resvec6]=gmres(A,b,6,tol, 3,L2,U2);
[x8,flag8,relres 8,iter 8,resvec 8] = gmres(A,b, 8,tol, 3, L2, U2);

```
flag4,flag6, andflag8 areallo sincegmres converged when restarted at iterations 4,6 , and 8 while preconditioned by the incomplete LU factorization with a drop tolerance of \(1 \mathrm{e}-6\). This is verified by the plots of outer iteration number against relative residual. A combined plot of all three clearly shows the restarting at iterations 4 and 6 . The total number of iterations computed may
be morefor lower values of restart, but the number of length \(n\) vectors stored is fewer, and the amount of work done in the method decreases proportionally.

See Also

References
bicg
bicgstab
cgs
Iuinc
pcg
qmr
1

BiConjugate Gradients method
BiConjugate Gradients Stabilized method
Conjugate Gradients Squared method
Incomplete LU matrix factorizations
Preconditioned Conjugate Gradients method
Quasi-Minimal Residual method
Matrix left division
Saad, Youcef and Martin H. Schultz, GMRES: A generalized minimal residual algorithm for sol ving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., J uly 1986, Vol. 7, No. 3, pp. 856-869
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SI AM, Philadel phia, 1994.

Purpose Numerical gradient
```

Syntax FX = gradient(F)
[FX,FY] = gradient(F)
[Fx,Fy,Fz,...] = gradient(F)
[...] = gradient(F,h)
[...] = gradient(F,h1,h2,...)

```

\section*{Definition The gradient of a function of two variables, \(\mathrm{F}(\mathrm{x}, \mathrm{y})\), is defined as:}
\[
\nabla F=\frac{\partial F}{\partial x} \hat{i}+\frac{\partial F}{\partial y} \hat{j}
\]
and can be thought of as a collection of vectors pointing in the direction of increasing values of F. In MATLAB, numerical gradients (differences) can be computed for functions with any number of variables. For a function of N variables, \(F(x, y, z, \ldots)\),
\[
\nabla F=\frac{\partial F}{\partial x} \hat{i}+\frac{\partial F}{\partial y} \hat{j}+\frac{\partial F}{\partial z} \hat{k}+\ldots
\]

\section*{Description}

FX = gradient(F) whereF is a vector returns the one-dimensional numerical gradient of \(F . F X\) corresponds to \(\partial F / \partial x\), the differences in the \(x\) direction.
\([F X, F Y]=\operatorname{gradient}(F)\) where \(F\) is a matrix returns the \(x\) and \(y\) components of the two-dimensional numerical gradient. FX corresponds to \(\partial \mathrm{F} / \partial \mathrm{x}\), the differences in the \(x\) (column) direction. FY corresponds to \(\partial \mathrm{F} / \partial \mathrm{y}\), the differences in the \(y\) (row) direction. The spacing between points in each direction is assumed to be one.
[FX, FY, FZ,...] = gradient(F) where \(F\) has \(N\) dimensions returns the \(N\) components of the gradient of \(F\).

There are two ways to control the spacing between values in F :
A single spacing value, \(h\), specifies the spacing between points in every direction.
\(N\) spacing values (h1, h2, . .) specify the spacing for each dimension of \(F\). Scal ar spacing parameters specify a constant spacing for each dimension. Vector
parameters specify the coordinates of the values along corresponding dimensions of F . In this case, the length of the vector must match the size of the corresponding dimension.
[...] = gradient(F,h) where \(h\) is a scalar uses \(h\) as the spacing between points in each direction.
[...] = gradient(F,h1,h2,...) with \(N\) spacing parameters specifies the spacing for each dimension of \(F\).

\section*{Examples}

The statements
```

v = - 2:0.2:2;
[x,y] = meshgrid(v);
z = x .* exp(-x.^2 - y.^2);
[px, py] = gradient(z,.2,.2);
contour(v,v,z), hold on, quiver(px, py), hold off

```
produce

\section*{gradient}

Given,
```

F(:,:,1) = magic(3); F(:,:,2) = pascal(3);
gradient(F) takesdx = dy = dz = 1.
[PX, PY, PZ] = gradient(F, 0. 2, 0. 1, 0.2) takesdx = 0.2, dy = 0.1, and
dz = 0.2.

```

See Also
del 2
diff

Discrete Laplacian
Differences and approximate derivatives

Purpose Data gridding
```

Syntax ZI = griddata(x,y, z, XI, YI)
[XI,YI,ZI] = griddata(x,y,z,xi,yi)
[...] = griddata(...,method)

```

Description \(\quad Z I=\operatorname{griddata}(x, y, z, X I, Y I)\) fitsa surface of theformz \(=f(x, y)\) tothedata in the (usually) nonuniformly spaced vectors (\(x, y, z\)) .griddat a interpolates this surface at the points specified by (\(\mathrm{XI}, \mathrm{YI}\)) to produce \(Z 1\). The surface always passes through the data points. XI and YI usually form a uniform grid (as produced by meshgrid).

XI can be a row vector, in which case it specifies a matrix with constant columns. Similarly, y। can be a column vector, and it specifies a matrix with constant rows.
\([X I, Y I, Z I]=\operatorname{griddata}(x, y, z, x i, y i)\) returns theinterpolated matrixZI as above, and also returns the matrices XI and YI formed from row vector xi and column vector yi . These latter are the same as the matrices returned by me h . grid.
[...] = griddata(..., method) uses the specified interpolation method:
'Iinear' Triangle-based linear interpolation (default)
'cubic' Triangle-based cubic interpolation
'nearest' Nearest neighbor interpolation
'invdist' Inverse distance method

The met hod defines the type of surface fit to the data. The cubic' and 'invdist' methods produce smooth surfaces while'linear' and'nearest' have discontinuities in the first and zero'th derivatives, respectively. All the methods except ' invdist' are based on a Delaunay triangulation of the data.

\section*{Remarks}

XI and YI can be matrices, in which casegriddat a returns the values for the corresponding points (\(\mathrm{XI}(\mathrm{i}, j), Y I(i, j))\). Alternatively, you can pass in the row and column vectors xi and yi, respectively. In this case, griddat a inter-

\section*{griddata}
prets these vectors as if they were matrices produced by the command meshgrid(xi, yi).

\section*{Algorithm}

Thegriddata(...,'invdist') command uses the inverse distance method of [1]. The other methods are based on Delaunay triangulation (seedel a unay).

\section*{Examples}

Sample a function at 100 random points between \(\pm 2.0\) :
```

rand('seed',0)
x = rand(100,1)*4-2; y = rand(100,1)*4-2;
z = x.*exp(-x,^2-y,^2);

```
\(x, y\), and \(z\) are now vectors containing nonuniformly sampled data. Define a regular grid, and grid the data to it:
```

ti = -2:. 25:2;
[XI,YI] = meshgrid(ti,ti);
ZI = griddata(x, y, Z,XI, YI);

```

Plot the gridded data along with the nonuniform data points used to generate it:
```

mesh(XI,YI, ZI), hold
plot3(x,y,z,'o'), hold off

```


\section*{griddata}

\section*{See Also \\ del aunay, interp2, meshgrid}

References [1] Sandwell, David T., "Biharmonic Spline Interpolation of GE OS-3 and SEASAT Altimeter Data", Geophysical Research Letters, 2, 139-142,1987.
[2] Watson, David E., Contouring: A Guide to the Analysis and Display of Spatial Data, Tarrytown, NY: Pergamon (Elsevier Science, Inc.): 1992.
Purpose Hadamard matrix
Syntax \(\quad H=\operatorname{hadamard}(n)\)

Description \(\quad H=\) hadamard \((n)\) returns the Hadamard matrix of order \(n\).

\section*{Definition Hadamard matrices are matrices of 1 's and - 1 's whose col umns are orthogonal,}
```

H'*H = n*|

```
where[n \(n]=\) size(H) andl = eye(n,n).
They have applications in several different areas, including combinatorics, signal processing, and numerical analysis, [1], [2].

An \(n\)-by-n Hadamard matrix with \(n>2\) exists only ifrem(\(n, 4\)) \(=0\). This function handles only the cases where \(n, n / 12\), or \(n / 20\) is a power of 2 .

\section*{Examples The commandhadamard(4) produces the 4-by-4 matrix:}
\begin{tabular}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{tabular}
\begin{tabular}{lll}
See Also & compan & Companion matrix \\
hankel & Hankel matrix \\
toeplitz & Toeplitz matrix
\end{tabular}

References
[1] Ryser, H. J ., Combinatorial Mathematics, J ohn Wiley and Sons, 1963.
[2] Pratt, W. K., Digital Signal Processing, J ohn Wiley and Sons, 1978.

\section*{hankel}

Purpose Hankel matrix
Syntax \begin{tabular}{rl}
\(H\) & \(=\) hankel \((c)\) \\
\(H\) & \(=\) hankel \((c, r)\)
\end{tabular}

Description

Definition

Examples
A Hankel matrix with anti-diagonal disagreement is
```

c = 1:3; r = 7:10;
h = hankel(c,r)
h =

```
\begin{tabular}{rrrr}
1 & 2 & 3 & 8 \\
2 & 3 & 8 & 9 \\
3 & 8 & 9 & 10
\end{tabular}
\(p=\left[\begin{array}{llllll}1 & 2 & 3 & 8 & 9 & 10\end{array}\right]\)

\section*{See Also}
hada mard
Hadamard matrix
toeplitz Toeplitz matrix

\section*{Purpose}

Syntax help
help topic

\section*{Remarks}
to a directory name on MATLAB's search path.
help topic gives help on the specified topic. The topic can bea function name, a directory name, or a MATLABPATH relative partial pathname If it is a function name, hel \(p\) displays information on that function. If it is a directory name, hel p displays the contents file for the specified directory. It is not necessary to give the full pathname of the directory; the last component, or the last several components, is sufficient.

It's possible to write help text for your own M-files and tool boxes; see Remarks.
MATLAB's Help system, like MATLAB itself, is highly extensible. This allows you to write help descriptions for your own M-files and tool boxes - using the same self-documenting method that MATLAB's M-files and tool boxes use.

The command help, by itself, lists all help topics by displaying the first line (the H 1 line) of the contents files in each directory on MATLAB's search path. The contents files are the M-files named cont ents.m within each directory.

The command helptopic, wheret opic is a directory name, displays the comment lines in the cont ent s.mfile located in that directory. If a contents file does not exist, hel p displays the H 1 lines of all the files in the directory.

The command helptopic, wheret opic is a function name, displays help on thefunction by listing the first contiguous comment lines in theM-filet opic.m.

\section*{Creating Online Help for Your Own M-Files}

Create self-documenting online help for your own M-files by entering text on one or more contiguous comment lines, beginning with the second line of the file (first line if it is a script). (See Applying MATLAB for information about
creating M-files.) For example, an abridged version of the M-file angle.m provided with MATLAB could contain:
```

function p = angle(h)
% ANGLE Polar angle.
% ANGLE(H) returns the phase angles, in radians, of a matrix
% with complex elements. Use ABS for the magnitudes.
p= atan2(imag(h),real(h));

```

When you executehelp angle,lines 2, 3, and 4 display. These lines are the first block of contiguous comment lines. The help system ignores comment lines that appear later in an M-file, after any executablestatements, or after a blank line.

The first comment line in any M-file (the H1 line) is special. It should contain the function name and a brief description of the function. Thel ookf or command searches and displays this line, and hel p displays these lines in directories that do not contain a contents.m file.

\section*{Creating Contents Files for Your Own M-File Directories}

A contents.mfile is provided for each M-file directory included with the MATLAB software. If you create directories in which to store your own M-files, you should create cont ent s.m files for them too. To do so, simply follow the format used in an existing cont ent s.m file.

\section*{Examples The command}

Purpose Hessenberg form of a matrix
\begin{tabular}{ll}
Syntax & {\([P, H]=\operatorname{hess}(A)\)} \\
& \(H=\operatorname{hess}(A)\) \\
Description \(\quad H=\operatorname{hess}(A)\) finds \(H\), the Hessenberg form of matrix A.
\end{tabular}
\([P, H]=\) hess(A) produces a Hessenberg matrix H and a unitary matrix \(P\) so that \(A=P * H * P^{\prime}\) and \(P^{\prime} * P=e y e(s i z e(A))\).

Definition

Examples

Algorithm

See Also
elg
Eigenvalues and eigenvectors
QZ factorization for generalized eigenvalues
Schur decomposition

\title{
References [1] Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag, 1976.
}
[2] Garbow, B. S., J. M. Boyle, J . J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture Notes in Computer Science, Vol. 51, Springer-Verlag, 1977.
[3] Moler, C.B. and G. W. Stewart, "An Algorithm for Generalized Matrix Eigenvalue Problems," SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.

Purpose IEEE hexadecimal to decimal number conversion

\section*{Syntax \(\quad d=h e x 2 d e c\left(' h e x _v a l u e '\right)\)}

Description \(\quad d=\) hex2dec('hex_value') convertshex_value to its floating-point integer representation. The argument hex_val ue is a hexadecimal integer stored in a MATLAB string. If hex_val ue is a character array, each row is interpreted as a hexadecimal string.

Examples hex2dec('3ff') is 1023.
For a character array \(s\)
\(S=\)
OFF
2 DE
123
hex2dec(S)
\(a n s=\)
255
734
291
See Also
dec 2 hex
Decimal to hexadecimal number conversion
format
Control the output display format
hex2num Hexadecimal to double number conversion
sprintf Write formatted data to a string
Purpose Hexadecimal to double number conversion
Syntax \(\quad f=\) hex2num('hex_value')

Description \(\quad f=\) hex2num('hex_value') convertshex_value to the IEEE double precision floating-point number it represents. \(\mathrm{Na} \mathrm{N}, \mathrm{I} \mathrm{nf}\), and denormalized numbers are all handled correctly. Fewer than 16 characters are padded on the right with zeros.

\section*{Examples}

Limitations

See Also
format
hex2dec
sprintf

Control the output display format
IEEE hexadecimal to decimal number conversion Write formatted data to a string
Purpose Hilbert matrix

\section*{Syntax \(\quad H=h i l b(n)\)}

Description
Definition

Examples

Algorithm

See Also
References
\(H=h i l b(n)\) returns the Hilbert matrix of order \(n\).
TheHilbert matrix is a notable example of a poorly conditioned matrix [1]. The elements of the Hilbert matrices areH \((\mathrm{i}, \mathrm{j})=1 /(\mathrm{i}+\mathrm{j}-1)\).

Even the fourth-order Hilbert matrix shows signs of poor conditioning.
\[
\begin{gathered}
\text { cond(hi|b(4)) }= \\
1.5514 e+04
\end{gathered}
\]

See the M-file for a good example of efficient MATLAB programming where conventional for loops are replaced by vectorized statements.
invhilb Inverse of the Hilbert matrix
[1] F orsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall, 1967, Chapter 19.

\section*{Purpose Imaginary unit}

\section*{Syntax \\ i}
\(a+b i\)
\(x+i * y\)
Description As the basic imaginary unit sqrt(-1), i is used to enter complex numbers. Sincei is a function, it can be overridden and used as a variable. This permits you to usei as an index in for loops, etc.

If desired, use the character i without a multiplication sign as a suffix in forming a complex numerical constant.

You can also use the character j as the imaginary unit.

\section*{Examples}
```

z = 2+3i
z = x+i*y
z = r*exp(i*theta)

```

See Also
conj
i mag
j
real

Complex conjugate
Imaginary part of a complex number Imaginary unit
Real part of complex number

\section*{Purpose Conditionally execute statements}
```

Syntax if expression
statements
end
if expressionl
statements
elseif expression2
statements
else
statements
end

```

Description if conditionally executes statements.
The simple form is:
```

if expression
statements
end

```

More complicated forms use else or el seif. Each if must be paired with a matchingend.

\section*{Arguments}

A MATLAB expression, usually consisting of smaller expressions or variables joined by relational operators (\(==,<\), \(>,<=,>=\), or \(\sim=\)). Two examples are: count < I i mit and (height - offset) >=0.
Expressions may also include logical functions, as in: isreal(A).
Simple expressions can be combined by logical operators (\(\&, \mid, \sim\)) into compound expressions such as: (count < limit) \& ((height - offset) >=0).
statements One or more MATLAB statements to be executed only if the expression is true(or nonzero). See Examples for information about how nonscalar variables are evaluated.

\section*{Examples \\ Hereis an example showing if, else, and el seif:}
```

for i = 1:n
for j = 1:n
if i == j
a(i,j) = 2;
elseif abs([i j]) == 1
a(i,j) = 1;
else
a(i,j) = 0;
end
end
end

```

Such expressions are evaluated as fal se unless every element-wise comparison evaluates as true. Thus, given matrices A and B:
\(A=\)
B =
\(1 \quad 1\)

The expression:
\begin{tabular}{lll}
\(A<B\) & Evaluates as false & Since \(A(1,1)\) is not less than \(B(1,1)\). \\
\(A<(B+1)\) & Evaluates as true & \begin{tabular}{l}
Since no element of \(A\) is greater than \\
the corresponding element of \(B\).
\end{tabular} \\
\(A \& B\) & Evaluates as false & Since \(A(1,2) \mid B(1,2)\) is false \\
\(5>B\) & Evaluates as true & \begin{tabular}{l}
Since every element of \(B\) is less than \\
5.
\end{tabular}
\end{tabular}

See Also
break
else
end
for
return
switch
while

Break out of flow control structures
Conditionally execute statements
Terminate for, while, switch, and if statements or indicate last index
Repeat statements a specific number of times
Return to the invoking function
Switch among several cases based on expression
Repeat statements an indefinite number of times

\section*{Purpose Inverse one-dimensional fast Fourier transform}

\section*{Description}

Examples

Algorithm

See Also
\(y=i f f t(X)\) returns the inverse fast Fourier transform of vector \(X\).
If \(X\) is a matrix, \(i f f t\) returns the inverse Fourier transform of each column of the matrix.

If X is a multidimensional array, ifft operates on the first non-singleton dimension.
\(y=i f f t(X, n)\) returns then-point inverse fast Fourier transform of vector \(X\).
\(y=i f f t(X,[], \operatorname{dim})\) and \(y=i f f t(X, n, d i m)\) return the inverse discrete Fourier transform of \(x\) across the dimension dim.

For anyx, \(\mathrm{ifft}_{\mathrm{f}}(\mathrm{fft}(\mathrm{x}))\) equals x to within roundoff error. If x is real, ifft(fft(x)) may have small imaginary parts.

The al gorithm for \(\mathrm{iff}_{\mathrm{f}}(\mathrm{x})\) is the same as the algorithm for \(\mathrm{f} f(\mathrm{x})\), except for a sign change and a scale factor of \(n=1\) engt \(h(x)\). So the execution time is fastest when \(n\) is a power of 2 and slowest when \(n\) is a large prime.
dftmtx,freqz, specplot, andspectrumin the Signal Processing Toolbox, and:
\(f f t \quad\) One-dimensional fast F ourier transform
\(f f t 2\) Two-dimensional fast F ourier transform
\(\mathrm{fftshift} \quad\) Move zero'th lag to center of spectrum.
Purpose Inverse two-dimensional fast Fourier transform
Syntax \(\quad\)\begin{tabular}{rl}
\(y\) & \(=i f f t 2(X)\) \\
\(Y\) & \(=\operatorname{ifft} 2(X, m, n)\)
\end{tabular}

Description \(\quad Y=i f f t 2(X)\) returns the two-dimensional inverse fast Fourier transform of matrix \(x\).
\(Y=i f f t 2(X, m, n)\) returns the \(m-\) by- \(n\) inverse fast Fourier transform of matrix \(x\).

Examples

Algorithm

See Also

For any \(x, \operatorname{ifft}_{f}(f f t 2(X))\) equals \(X\) to within roundoff error. If \(X\) is real, ifft \(2(f f t 2(X))\) may havesmall imaginary parts.

The algorithm for \(i f f t 2(X)\) is the same as the algorithm for \(f f t 2(X)\), except for a sign change and scale factors of \([\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{X})\). The execution time is fastest when \(m\) and \(n\) are powers of 2 and slowest when they are large primes.
dftmtx, freqz, specplot, and spectrumin the Signal Processing Toolbox, and:
\(f f t 2\) Two-dimensional fast Fourier transform
\(\mathrm{fftshift} \quad\) Move zero'th lag to center of spectrum.
ifft Inverse one-dimensional fast Fourier transform

\section*{Purpose Inverse multidimensional fast Fourier transform}
Syntax \(\quad\)\begin{tabular}{rl}
\(Y\) & \(=\operatorname{ifftn}(X)\) \\
\(Y\) & \(=\operatorname{ifftn}(X\), siz \()\)
\end{tabular}

Description

Remarks
 ifftn(fftn(X)) may have small imaginary parts.

\section*{Algorithm}
ifftn(X) is equivalent to
```

    Y = X;
    for p = 1: length(size(X))
        Y = ifft(Y,[], p);
    end
    ```

This computes in-place the one-dimensional inverse fast Fourier transform al ong each dimension of \(x\). The time required to compute if \(f t n(X)\) depends strongly on the number of prime factors of the dimensions of \(x\). It is fastest when all of the dimensions are powers of 2 .
\begin{tabular}{lll}
See Also & \(f f t\) & One-dimensional fast Fourier transform \\
& \(f f t 2\) & Two-dimensional fast Fourier transform \\
& \(f f t n\) & Multidimensional fast Fourier transform
\end{tabular}

\section*{imag}
\begin{tabular}{ll}
Purpose & Imaginary part of a complex number \\
Syntax & \(Y=i \operatorname{mag}(Z)\) \\
Description & \(Y=i \operatorname{mag}(Z)\) returns the imaginary part of the elements of array \(Z\). \\
Examples & \begin{tabular}{ll}
\(i \operatorname{mag}(2+3 i)\) \\
ans \(=\) \\
3
\end{tabular} \\
See Also & \begin{tabular}{l}
conj \\
\(i, j\) \\
real
\end{tabular}
\end{tabular}

Purpose
Return information about a graphics file

\section*{Synopsis info = imfinfo(filename, fmt) \\ info = imfinfo(filename)}

\author{
Description
}
info = imfinfolfilename,fmt returnsa structure whose fields contain information about an imagein a graphics file. fil ena me is a string that specifies the name of the graphics file, and \(f \mathrm{mt}\) is a string that specifies the format of the file. The file must be in the current directory or in a directory on the MATLAB path. If imfinfo cannot find a file named fil ename, it looks for a file named filename.fmt.

This table lists the possible values for fm :
\begin{tabular}{ll}
\hline Format & File type \\
\hline 'bmp' & Windows Bitmap (BMP) \\
\hline 'hdf' & Hierarchical Data Format (HDF) \\
\hline 'jpg' or 'jpeg' & Joint Photographic Experts Group (JPEG) \\
\hline 'pcx' & Windows Paintbrush (PCX) \\
\hline 'tif' or'tiff' & Tagged Image File Format (TIFF) \\
\hline 'xwd' & X Windows Dump (XWD) \\
\hline
\end{tabular}

Iffilename is a TIFF or HDF file containing more than one image, info is a structure array with one element (i.e., an individual structure) for each image in the file. For example, info(3) would contain information about the third image in the file.

\section*{imfinfo}

The set of fields in info depends on the individual file and its format. However, the first nine fields are always the same. This table lists these fields and describes their values:
\begin{tabular}{ll}
\hline Field & Value \\
\hline Filename & \begin{tabular}{l}
A string containing the name of the file; if the file is \\
not in the current directory, the string contains the \\
full pathname of the file
\end{tabular} \\
\hline FilemodDate & \begin{tabular}{l}
A string containing the date when the file was last \\
modified
\end{tabular} \\
\hline Filesize & \begin{tabular}{l}
An integer indicating the size of the file in bytes
\end{tabular} \\
\hline Format & \begin{tabular}{l}
A string containing the file format, as specified by f mt ; \\
for JPEG and TIFF files, the three-letter variant is \\
returned
\end{tabular} \\
\hline Wormat Version & \begin{tabular}{l}
A string or number describing the version of the \\
format
\end{tabular} \\
\hline Height & \begin{tabular}{l}
An integer indicating the width of the image in pixels
\end{tabular} \\
\hline Bit Depth & \begin{tabular}{l}
An integer indicating the height of the image in pixels \\
An integer indicating the number of bits per pixel
\end{tabular} \\
\hline Color Type & \begin{tabular}{l}
A string indicating the type of image; either \\
't ruecol or for a truecolor RGB image, ' grays cal e ' \\
for a grayscale intensity image, or ' indexed' for an \\
indexed image
\end{tabular} \\
\hline
\end{tabular}
info = imfinfo(filename) attempts to infer the format of the file from its content.
```

Example
info=imfinfo('flowers.bmp')
info=
Filename: 'flowers.bmp'
FileModDate: '16-Oct.1996 11:41:38'
FileSize: 182078
Format: 'bmp'
FormatVersion: 'Version 3 (Microsoft Windows 3.x)'
Width: 500
Height: 362
BitDepth: 8
ColorType: 'indexed'
FormatSignature: ' BM'
NumColormapEntries: 256
Colormap: [256\times3 double]
RedMask: []
GreenMask: []
BlueMask: []
I mageDataOffset: 1078
BitmapHeaderSize: 40
NumPI年es: 1
CompressionType: 'none'
BitmapSize: 181000
HorzResolution: 0
VertResolution: O
NumColorsUsed: 256
Numl mportant Colors: 0
See Also
i mread
Read image from graphics file
Write an image to a graphics file

```

\section*{Purpose Read image from graphics file}

Synopsis \(\quad A=i m r e a d(f i l e n a m e, f m t)\)
\([X\), map] \(=i m r e a d(f i l e n a m e, f m t)\)
[...] = imread(filename)
\([. .]=.i \operatorname{mread}(. . ., i d x)\) (TIFF only)
\([\ldots]=i m r e a d(\ldots, r e f) \quad\) (HDF only)
Description \(\quad A=i m r e a d(f i l e n a m e, f m t)\) readstheimageinfilename intoA, whoseclass isuint 8 . If the file contains a grayscale intensity image, \(A\) is a two-dimensional array. If the file contains a truecolor (RGB) image, A is a three-dimensional (\(m\)-by-n -by-3) array. fil en a me is a string that specifies the name of the graphics file, and \(f \mathrm{mt}\) is a string that specifies the format of the file. The file must be in the current directory or in a directory in the MATLAB path. If i mr ead cannot find a file named fil ename, it looks for a file named fil ename. fmt.

This table lists the possible values for fmt :
\begin{tabular}{ll}
\hline Format & File type \\
\hline 'bmp' & Windows Bitmap (BMP) \\
\hline 'hdf' & Hierarchical Data Format (HDF) \\
\hline 'jpg' or'jpeg' & J oint Photographic Experts Group (JPEG) \\
\hline 'pcx' & Windows Paintbrush (PCX) \\
\hline 'tif' or'tiff' & Tagged Image File Format (TIFF) \\
\hline 'xwd' & X Windows Dump (XWD) \\
\hline
\end{tabular}
[\(X\), map] = imread(filename, \(f \mathrm{mt}\)) reads the indexedimageinfilename into \(X\) and its associated colormap into map. \(X\) is of class uint 8 , and map is of class double. The colormap values are rescaled to the range [0, 1].
[...] = imread(filename) attempts to infer the format of the file from its content.
\([\ldots]=i \operatorname{mread}(\ldots, i d x)\) reads in oneimage from a multi-image TIFF file. \(i d x\) is an integer value that specifies the order in which the image appears in the file. For example, ifidx is \(3, i \mathrm{mr}\) ead reads the third image in the file. If you omit this argument, \(i\) mr ead reads the first image in the file.
\([\ldots]=i \operatorname{mread}(\ldots\), ref \()\) reads in one image from a multi-image HDF file. \(r\) ef is an integer value that specifies the reference number used to identify the image. For example, if \(r\) ef is \(12, \mathrm{i}\) mr ead reads the image whose reference number is 12. (Note that in an HDF file the reference numbers do not necessarily correspond to the order of the images in the file.) If you omit this argument, \(i \mathrm{mr}\) ead reads the first image in the file.
This table summarizes the types of images that imr ead can read:
\begin{tabular}{ll}
\hline Format & Variants \\
\hline BMP & \begin{tabular}{l}
1-bit, 4-bit, 8-bit, and 24-bit uncompressed images; 4-bit \\
and 8-bit run-length encoded (RLE) images
\end{tabular} \\
\hline HDF & \begin{tabular}{l}
8-bit raster image datasets, with or without associated \\
colormap; 24-bit raster image datasets
\end{tabular} \\
\hline JPEG & \begin{tabular}{l}
Any baselineJ PEG image; J PEG images with some \\
commonly used extensions
\end{tabular} \\
\hline PCX & 1-bit, 8-bit, and 24-bit images
\end{tabular} \begin{tabular}{ll}
TIFF & \begin{tabular}{l}
Any baseline TIFF image, including 1-bit, 8-bit, and 24-bit \\
uncompressed images; 1-bit, 8-bit, and 24-bit images with \\
packbit compression; 1-bit images with CCITT compression
\end{tabular} \\
\hline XWD & 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps \\
\hline
\end{tabular}

\section*{imread}

\section*{Examples}

See Also

This example reads the sixth image in a TIFF file:
\[
[X, \text { map] }=\text { imread('flowers.tif', 6); }
\]

This example reads the fourth image in an HDF file:
```

info = imfinfo('skull.hdf');
[X,map] = imread('skull.hdf',info(4).Reference);

```
\[
\begin{array}{ll}
\text { imf info } & \text { Return information about a graphics file } \\
\text { imwrite } & \text { Write an image to a graphics file }
\end{array}
\]

\section*{Purpose Write an image to a graphics file}
```

Synopsis imwrite(A,filename,fmt)
i mwrite(X, map,filename, fmt)
i mwrite(..., filename)
i mwrite(..., Parameter,Value,...)

```

\section*{Description}
imwrite(A,filename,fmt writes theimageinA tofilename.filename is a string that specifies the name of the output file, and fmt is a string that specifies the format of the file. If A is a grayscale intensity image or a truecolor (RGB) image of class uint 8 , i mwrite writes the actual values in the array to the file. If A is of class double, i mwrite rescales the values in the array before writing, using uint 8 (round (\(255^{*}\) A)). This operation converts the floating-point numbers in the range [0,1] to 8 -bit integers in the range [0,255].
This table lists the possible values for fm :
\begin{tabular}{ll}
\hline Format & File type \\
\hline 'bmp' & Windows Bitmap (BMP) \\
\hline 'hdf' & Hierarchical Data Format (HDF) \\
\hline 'jpg' or'jpeg' & J oint Photographers Expert Group (JPEG) \\
\hline 'pcx' & Windows Paintbrush (PCX) \\
\hline 'tif' or'tiff' & Tagged Image File Format (TIFF) \\
\hline 'xwd' & X Windows Dump (XWD) \\
\hline
\end{tabular}
i mwrite(\(X\), map, filename, \(f\) mt) writes the indexed image in \(X\), and its associated colormap map, tofilename. If \(X\) is of classuint 8 , imwrite writes the actual values in the array to the file. If X is of classdouble, imwrite offsets the values in the array before writing, using ui nt \(8(X-1)\). map must be of class double; imwrite rescales the values in map usinguint \(8\left(\right.\) round (\(255^{*}\) map)).
i mwrite(,.., filename) writes the image tofilename, inferring the format to use from the filename's extension. The extension must be one of the legal values for fm .

\section*{imw rite}
i mwrite(..., Parameter, Value,...) specifies parameters that control various characteristics of the output file. Parameters are currently supported for HDF, JPEG, and TIFF files.

This table describes the available parameters for HDF files:
\begin{tabular}{l|l|l}
\hline Parameter & Values & Default \\
\hline 'Compression' & \begin{tabular}{l}
One of these strings: ' none' , 'rle', \\
'jpeg'
\end{tabular} & 'rle' \\
\hline ' Quality' & \begin{tabular}{l}
A number between 0 and 100; \\
parameter applies only if \\
'Compression' is'jpeg' ; higher \\
numbers mean quality is better (less \\
image degradation dueto \\
compression), but the resulting file \\
size is larger
\end{tabular} & 75 \\
\hline 'WriteMode' & \begin{tabular}{l}
One of these strings: ' overwrite', \\
'append'
\end{tabular} & 'overwrite' \\
\hline
\end{tabular}

This table describes the available parameters for J PEG files:
\begin{tabular}{l|l|l}
\hline Parameter & Values & Default \\
\hline ' Quality' & \begin{tabular}{l}
A number between 0 and 100; higher \\
numbers mean qual ity is better (less \\
image degradation due to \\
compression), but the resulting file \\
size is larger
\end{tabular} & 75 \\
\hline
\end{tabular}

This table describes the available parameters for TIFF files:
\begin{tabular}{l|l|l}
\hline Parameter & Values & Default \\
\hline 'Compression' & \begin{tabular}{l}
One of these strings:'none', \\
'packbits','ccitt';'ccitt' is \\
valid for binary images only
\end{tabular} & \begin{tabular}{l}
'ccitt' for \\
binaryimages; \\
'packbits'for all \\
other images
\end{tabular} \\
'Description' & \begin{tabular}{l}
Any string; fills in the \\
ImageDescription field returned \\
byimfinfo
\end{tabular} & empty \\
\hline
\end{tabular}

This table summarizes the types of images that i mwr it e can write:
\begin{tabular}{l|l}
\hline Format & Variants \\
\hline BMP & \begin{tabular}{l}
8-bit uncompressed images with associated col ormap; 24-bit \\
uncompressed images
\end{tabular} \\
\hline HDF & \begin{tabular}{l}
8-bit raster image datasets, with or without associated \\
colormap; 24-bit raster image datasets
\end{tabular} \\
\hline JPEG & BaselineJ PEG images \\
\hline PCX & \begin{tabular}{l}
8-bit images
\end{tabular} \\
\hline TIFF & \begin{tabular}{l}
Baseline TIFF images, including 1-bit, 8-bit, and 24-bit \\
uncompressed images; 1-bit, 8-bit, and 24-bit images with \\
packbit compression; 1-bit images with CCITT compression
\end{tabular} \\
\hline XWD & 8-bit ZPixmaps \\
\hline
\end{tabular}

\section*{Example}

See Also
i mwrite(X, map,'flowers.hdf','Compression',' none',...
'WriteMode', 'append')
\begin{tabular}{ll}
i mf info & Return information about a graphics file \\
i mread & Read image from graphics file
\end{tabular}

\section*{imw rite}

Purpose

\section*{Syntax}

Description

\section*{Examples}

The mapping from linear indexes to subscript equivalents for a 2-by-2-by-2 array is:

\section*{See Also}
sub2ind
find

Single index from subscripts
Find indices and values of nonzero elements
Purpose Infinity
Syntax Inf
Description Inf returns the IEEE arithmetic representation for positive infinity. Infinityresults from operations like division by zero and overflow, which lead to resultstoo large to represent as conventional floating-point values.
Examples \(1 / 0,1 . e 1000,2^{\wedge} 1000\), and \(\exp (1000)\) all produce \(\mathrm{nf}^{2}\).
log(0) produces-Inf.
Inf-Inf and Inf/Inf both produce NaN, Not-a-Number.
See Also is*
NaN
Detect state
Not-a-Number

\section*{Purpose Inferior class relationship}

\section*{Syntax inferiorto('class1','class2',...)}

Description Theinferiorto function establishes a hierarchy which determines the order in which MATLAB calls object methods.
inferiorto('class \(1^{\prime}\), 'class 2 ',....) invoked within a class constructor method (say my clas s.m) indicates that my c l as s 's method should not beinvoked if a function is called with an object of class my cl ass and one or more objects of classclass1, class2, and so on.
```

Remarks $\quad$ Suppose $A$ is of class 'class_a', $B$ is of class ' $c l a s s_{-} b^{\prime}$ and $C$ is of class
' class_c'. Also suppose the constructor clas s_c.m contains the statement:
inferiorto('class_a'). Thene $=f u n(a, c)$ ore $=f u n(c, a)$ invokes
class_a/fun.

```

If a function is called with two objects having an unspecified relationship, the two objects are considered to have equal precedence, and the leftmost object's method is called. So, fun (b, c) callsclass_b/fun, whilefun(\(c, b\)) calls class_c/fun.

See Also superiorto Superior class relationship

\section*{inline}

\section*{Purpose Construct an inline object}
```

Syntax g = inline(expr)
g = inline(expr,arg1,arg2, ...)
g = inline(expr,n)

```

Description inline(expr) constructs an inline function object from the MATLAB expression contained in the string expr. The input argument to the inline function is automatically determined by searching expr for an isolated lower case alphabetic character, other than \(i\) or \(j\), that is not part of a word formed from several alphabetic characters. If no such character exists, x is used. If the character is not unique, the one closest to \(x\) is used. If there is a tie, the one later in the alphabet is chosen.
inline(expr, arg1, arg2, ...) constructs an inlinefunction whose input arguments are specified by the strings arg1, arg2,.... Multicharacter symbol names may be used.
inline(expr,n), wheren is a scalar, constructs an inlinefunction whose input arguments arex, P1, P2, ...

Three commands related to i nl i ne allow you to examine an inline function object and determine how it was created.
char (\(f\) un) returns the string that can be used to recreate the inline function object. This is the opposite of the constructor inl ine.
argnames(f un) returns the names of the input arguments of the inline object fun as a cell array of strings.
for mula (f un) returns the formula for the inline object \(f\) un.

\section*{Examples Create a simple inline function to square a number:}
```

g = inline('t^2')
g =
Inline function:
g(t) = t^2
char(g)
ans =
inline('t^2', 't')

```
```

Create an inline function to compute the formula f = 3sin}(2\mp@subsup{x}{}{2})\mathrm{ :
g = inline('3*sin(2*x.^2)')
g =
Inline function:
g(x) = 3*sin(2*x,^2)
argnames(g)
ans =
'x'
formula(g)
ans =
3*\operatorname{sin}(2*x.^2)
g(pi)
ans=
2.3306
g(2*pi)
ans =
.1.2151
fmin(g,pi, 2*pi)
ans =
3.8630

```

\section*{inmem}
\begin{tabular}{|c|c|}
\hline Purpose & Functions in memory \\
\hline \multirow[t]{2}{*}{Syntax} & \(M=i n m e m\) \\
\hline & [M, mex] = inmem \\
\hline \multirow[t]{2}{*}{Description} & \(M=i n m e m\) returns a cell array of strings containing the names of the \(M\)-files that are in the \(P\)-code buffer. \\
\hline & [\(M\), mex] = inmem returns a cell array containing the names of the MEX-files that have been loaded. \\
\hline Examples & ```
clear all % start with a clean slate
erf(.5)
M = inmem
``` \\
\hline & lists the M-files that were required to run erf. \\
\hline
\end{tabular}

Purpose
Detect points inside a polygonal region

\section*{Syntax}

IN = inpolygon(X,Y, \(x v, y v)\)
Description
IN = inpolygon( \(X, Y, x v, y v)\) returns a matrix I \(N\) the same size as \(X\) and \(Y\). Each element of \(I N\) is assigned one of the values \(1,0.5\) or 0 , depending on whether the point ( \(X(p, q), Y(p, q)\) ) is inside the polygonal region whose vertices are specified by the vectors xv and yv . In particular:
\(I N(p, q)=1 \quad \operatorname{If}(X(p, q), Y(p, q))\) is inside the polygonal region
\(\operatorname{IN}(p, q)=0.5 \quad \operatorname{If}(X(p, q), Y(p, q))\) is on the polygon boundary
\(I N(p, q)=0 \quad \operatorname{If}(X(p, q), Y(p, q))\) is outside the polygonal region

\section*{Examples}
```

L = |inspace(0, 2.*pi, 6); xv = cos(L)';yv=sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
x = randn(250,1); y = randn(250,1);
in = inpolygon(x,y,xv,yv);
plot(xv,yv,x(in),y(in),'r+',x(~in),y(~in),'bo')

```

Purpose Request user input
Syntax \(\quad\)\begin{tabular}{rl} 
user_entry & \(=\) input ('prompt') \\
user_entry & \(=\) input('prompt', 's')
\end{tabular}

Description The response to the input prompt can be any MATLAB expression, which is evaluated using the variables in the current workspace.
user_entry = input ('prompt') displaysprompt as a prompt on the screen, waits for input from the keyboard, and returns the value entered in user_entry.
user_entry = input('prompt','s') returns the entered string as a text variable rather than as a variable name or numerical value.

\section*{Remarks}

\section*{Examples}

See Also

If you press the Return key without entering anything, in put returns an empty matrix.

The text string for the prompt may contain one or more ' \(\backslash \mathrm{n}\) ' characters. The ' I n' means to skip to the next line. This allows the prompt string to span several lines. To display just a backslash, use ' \(\backslash 1\) ' .

Press Return to select a default value by detecting an empty matrix:
```

i = input('Do you want more? Y/N [Y]: ',' s');
if i sempty(i)
i = 'Y';
end

```

Theginput anduicontrol commands in the MATLAB Graphics Guide, and:
keyboard Invoke the keyboard in an M-file
menu Generate a menu of choices for user input

\section*{Purpose Input argument name}

\section*{Syntax inputname(argnum)}

Description This command can be used only inside the body of a function.
inputname (argnum) returns the workspace variable name corresponding to the argument number argnum. If the input argument has no name (for example, if it is an expression instead of a variable), thei nput na me command returns the empty string (' ' ).

\section*{Examples}

See Also

Suppose the function my \(f\) un. \(m\) is defined as:
function \(c=\operatorname{myfun}(a, b)\)
disp(sprintf('First calling variable is "\%s".', inputname(1))
Then
```

x = 5; y = 3; myfun(x,y)

```
produces
```

First calling variable is "x".

```

But
```

myfun(pi+1, pi-1)

```
produces
```

First calling variable is "".

```

\section*{int2str}

Purpose Integer to string conversion

\section*{Syntax \(\quad\) str \(=\) int \(2 s t r(N)\)}

Description \(\quad \operatorname{str}=\) int \(2 \operatorname{str}(\mathrm{~N})\) converts an integer to a string with integer format. The input \(N\) can be a single integer or a vector or matrix of integers. Noninteger inputs are rounded before conversion.

\section*{Examples \\ int \(2 \mathrm{str}(2+3)\) is the string \({ }^{\prime} 5^{\prime}\).}

One way to label a plot is
title(['case number ' int2str(n)])
For matrix or vector inputs, int 2 str returns a string matrix:
int2str(eye(3))
ans \(=\)
100
010
\(0 \quad 0 \quad 1\)
\begin{tabular}{lll} 
See Also & fprintf & Write formatted data to file \\
num2str & sprintf & Number to string conversion \\
& Write formatted data to a string
\end{tabular}

\section*{Purpose}

\section*{Description}

One-dimensional data interpolation (table lookup)
```

Syntax yi = interpl(x, Y, xi)

```
Syntax yi = interpl(x, Y, xi)
yi = interpl(x,Y, xi,method)
```

yi = interpl(x,Y, xi,method)

```
yi = interpl(x, \(\mathrm{Y}, \mathrm{xi})\) returns vector yi containing elements corresponding to the elements of \(x i\) and determined by interpolation within vectors \(x\) and \(Y\). The vector \(x\) specifies the points at which the data \(Y\) is given. If \(Y\) is a matrix, then the interpolation is performed for each column of \(Y\) and \(y i\) will be I ength(xi) -by-size(Y, 2). Out of range values are returned as NaNs.
yi = interpl(x, y, xi, method) interpolates using alternative methods:
- 'nearest' for nearest neighbor interpolation
- 'Iinear' for linear interpolation
- 'spline' for cubic spline interpolation
- 'cubic' for cubicinterpolation

All the interpolation methods require that \(x\) be monotonic. For faster interpoIation when \(x\) is equally spaced, use the methods' \(*\) inear', ' *cubic', ' *nearest', or '*spline'.

Theinterpl command interpolates between data points. It finds values of a one-dimensional function \(f(x)\) underlying the data at intermediate points. This is shown below, along with the relationship between vectors \(x, y, x i\), and yi.


Interpolation is the same operation as table lookup. Described in table lookup terms, the tableis \(\operatorname{ab}=[x, y]\) and interpl looks up the elements of \(x i\) in \(x\),
and, based upon their locations, returns values yi interpolated within the elements of \(y\).

Here are two vectors representing the census years from 1900 to 1990 and the corresponding United States population in millions of people.
```

t = 1900:10:1990;
p = [l75.995 91.972 105.711 123.203 131.669···
150.697 179.323 203.212 226.505 249.633];

```

The expression int erpl(t, p, 1975) interpolates within the census data to estimate the population in 1975. The result is
ans =
214.8585

Now interpolate within the data at every year from 1900 to 2000, and plot the result.
```

x = 1900:1:2000;
y = interpl(t, p,x,'spline');
plot(t, p,'o',x,y)

```


Sometimes it is more convenient to think of interpolation in table lookup terms where the data are stored in a single table. If a portion of the census data is stored in a single 5-by-2 table,
```

tab =
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633

```
then the population in 1975, obtained by table lookup within the matrix \(t a b\), is
```

p=interpl(tab(:, 1),tab(:, 2),1975)
p =
214.8585

```

\section*{Algorithm}

See Also

References

Theinterpl command is a MATLAB M-file. The'nearest', 'linear' and 'cubic' methods have fairly straightforward implementations. For the 'spline' method, interpl calls a function spline that uses the M-filesppal, \(m k p p\), and \(u n m k p\). These routines form a small suite of functions for working with piecewise polynomials. spl ine uses them in a fairly simple fashion to perform cubic spline interpolation. F or access to the more advanced features, see these \(M\)-files and the Spline Toolbox.
\begin{tabular}{ll} 
interpft & One-dimensional interpolation using the FFT method. \\
interp2 & Two-dimensional data interpolation (table lookup) \\
interp3 & Three-dimensional data interpolation (table lookup) \\
interpn & Multidimensional data interpolation (table lookup) \\
spline & Cubicspline interpolation
\end{tabular}
[1] de Boor, C. A Practical Guideto Splines, Springer-Verlag, 1978.
Purpose Two-dimensional data interpolation (table lookup)
Syntax \(\quad\)\begin{tabular}{rl}
\(Z I\) & \(=\) interp2 \((X, Y, Z, X I, Y I)\) \\
\(Z I\) & \(=\) interp2(Z, XI, YI) \\
\(Z I\) & \(=\) interp2(Z,ntimes) \\
\(Z I\) & \(=\) interp2(X,Y, \(Z, X I, Y I\), method)
\end{tabular}

Description \(\quad Z I=\) interp2 \((X, Y, Z, X I, Y I)\) returns matrix \(Z 1\) containing elements corresponding to the elements of \(X I\) and \(Y I\) and determined by interpolation within the two-dimensional function specified by matrices \(X, Y\), and \(Z . X\) and \(Y\) must be monotonic, and have the same format ("plaid") as if they were produced by meshgrid. Matrices \(X\) and \(Y\) specify the points at which the data \(Z\) is given. Out of range values are returned as NaNs .

XI and YI can be matrices, in which casei nt erp2 returns the values of \(Z\) corresponding to the points ( XI ( i , j) , YI (i, j) ). Alternatively, you can pass in the row and column vectors xi andyi, respectively. In this case, int erp2 interprets these vectors as if you issued the command mes hgrid(xi, yi).
\(Z 1=i n t \operatorname{erp} 2(Z, X I, Y \mid)\) assumes that \(X=1: n\) and \(Y=1: m\) where \([m, n]=\) size(Z).

ZI = interp2(Z, ntimes) expandsz by interleaving interpolates between every element, working recursively for ntimes.interp2( \(Z\) ) is the same as interp2(z,1).
\(Z I=\) interp2(X,Y, Z, XI, YI, method) specifies an alternative interpolation method:
- 'linear' for bilinear interpolation (default)
- 'nearest' for nearest neighbor interpolation
- 'cubic' for bicubic interpolation

All interpolation methods require that \(X\) and \(Y\) be monotonic, and have the same format ("plaid") as if they were produced by mes hgrid. Variable spacing is handled by mapping the given values in \(X, Y, X I\), and \(Y I\) to an equally spaced domain before interpolating. For faster interpolation when \(X\) and \(Y\) are equally spaced and monotonic, use the methods' *linear',' *cubic', or ' *nearest'.

\section*{Remarks}

Theinterp2 command interpolates between data points. It finds values of a two-dimensional function \(f(x, y)\) underlying the data at intermediate points.


Interpolation is the same operation as table lookup. Described in table lookup terms, the table istab \(=[\mathrm{NaN}, Y ; X, Z]\) andinterp2 looks up the elements of \(X I\) in \(X, Y I\) in \(Y\), and, based upon their location, returns values \(Z I\) interpolated within the elements of \(Z\).

\section*{Examples}

Interpolate the peaks function over a finer grid:
```

 [X,Y] = meshgrid(-3:. 25:3);
 Z = peaks(X,Y);
 [XI,YI] = meshgrid(-3:.125:3);
 ZI = interp2(X,Y,Z,XI,YI);
 mesh(X,Y,Z), hold, mesh(XI,YI,ZI +15)
 hold off
 axis([-3 3 - 3 3 -5 20])
    ```


Given this set of employee data,
```

years = 1950:10:1990;
service = 10:10:30;
wage = [150.697 199.592 187.625
179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.2431;

```
it is possible to interpolateto find the wage earned in 1975 by an employee with 15 years' service:
```

w = interp2(service,years,wage, 15, 1975)
w =
190.6287

```

\section*{See Also}
griddata
interpl
interp3
interpn
meshgrid

Data gridding
One-dimensional data interpolation (table lookup) Three-dimensional data interpolation (table lookup) Multidimensional data interpolation (table lookup) Generation of \(X\) and \(Y\) arrays for three-dimensional plots.

Purpose Three-dimensional data interpolation (table lookup)
```

Syntax VI = interp3(X,Y,Z,V,XI, YI, ZI)
VI = interp3(V,XI,YI,ZI)
VI = interp3(V,ntimes)
VI = interp3(...,method)

```

\section*{Description}

\section*{Discussion}
\(V I=\) interp3( \(X, Y, Z, V, X I, Y I, Z I)\) interpolates to find \(V I\), the values of the underlying three-dimensional function \(V\) at the points in matrices \(X I, Y I\) and \(Z I\). Matrices \(X, Y\) and \(Z\) specify the points at which the data \(V\) is given. Out of range values are returned as Na N .
\(X I, Y I\), and \(Z I\) can be matrices, in which case interp3 returns the values of \(Z\) corresponding to the points ( \(\mathrm{XI}(\mathrm{i}, \mathrm{j}), Y \mathrm{Y}(\mathrm{i}, j), \mathrm{ZI}(\mathrm{i}, j))\). Alternatively, you can pass in the vectors xi y y , and zi. Vector arguments that are not the same size are interpreted as if you called meshgrid.
\(\mathrm{VI}=\) interp3(V,XI, YI, ZI) assumes \(X=1: N, Y=1: M, Z=1: P\) where \([M, N, P]=s i z e(V)\).

VI = interp3(V,ntimes) expands V by interleaving interpolates between every element, working recursively for \(n t\) i mes iterations. The command interp3(V,1) is the same asinterp3(V).

VI = interp3(..., method) specifies alternative methods:
- 'I inear' for linear interpolation (default)
- 'cubic' for cubic interpolation
- 'nearest' for nearest neighbor interpolation

All the interpolation methods require that \(X, Y\) and \(Z\) be monotonic and have the same format ("plaid") as if they were produced by mes hgrid. Variable spacing is handled by mapping the given values in \(X, Y, Z, X I, Y \mid\) and \(Z I\) to an equally spaced domain before interpolating. For faster interpolation when \(X, Y\), and \(Z\) are equally spaced and monotonic, use the methods '*linear', '*cubic', or '*nearest'.

Examples

\section*{See Also}
interpz
interpn
meshgrid

One-dimensional data interpolation (table lookup)
Two-dimensional data interpolation (table lookup) Multidimensional data interpolation (table lookup). Generate \(X\) and \(Y\) matrices for three-dimensional plots

\section*{interpft}

Purpose One-dimensional interpolation using the FFT method
Syntax \(\quad\)\begin{tabular}{rl}
\(y\) & \(=\) interpft \((x, n)\) \\
\(y\) & \(=\) interpft \((x, n, \operatorname{dim})\)
\end{tabular}

Description

\section*{Algorithm Theinterpft command uses the FFT method. The original vector x is transformed to the F ourier domain using \(f \mathrm{f} t\) and then transformed back with more points.}

\section*{See Also interpl One-dimensional data interpolation (table lookup)}
Purpose Multidimensional data interpolation (table lookup)
```

Syntax VI = interpn(X1,X2,X3,···.., V, Y1, Y2, Y3,···..)
VI = interpn(V,Y1,Y2,Y3,···...)
VI = interpn(V,ntimes)
VI = interpn(...,method)

```

\section*{Description}

Discussion

VI = interpn(X1, X2, X3, ... V, Y1, Y2, Y3, ...) interpolates to find VI, the values of the underlying multidimensional function \(V\) at the points in the arrays Y1, Y2, Y3 , etc. For a multidimensional \(V\), you should call int erpn with \(2 * N+1\) arguments, whereN is the number of dimensions in V. Arrays \(X 1, X 2, X 3, \ldots\) specify the points at which the data V is given. Out of rangevalues arereturned as NaN.
\(Y 1, Y 2, Y 3, \ldots\). can be matrices, in which case int erpn returns the values of VI corresponding to the points (Y1 (i, j), Y2 (i, j) , Y \(3(i, j), \ldots\) ). Alternatively, you can pass in the vectors y 1 , y 2 , y \(3, \ldots\) In this case, int erpn interprets these vectors as if you issued the command \(n d g r i d(y 1, y 2, y 3, \ldots)\).
\(\mathrm{VI}=\) interpn(V,Y1, Y2, Y3, ...) interpolates as above, assuming X1 \(=\) 1: size(V, 1), X2 = 1: size(V, 2), X3 = 1:size(V, 3), and so on.

VI = interpn(V, ntimes) expands V by interleaving interpolates between each element, working recursively for ntimes iterations. interpn(V,1) is the same asinterpn(V).

VI = interpn(..., method) specifies alternative methods:
- 'Iinear' for linear interpolation (default)
- 'cubic' for cubic interpolation
- 'nearest' for nearest neighbor interpolation

All the interpolation methods require that \(X, Y\) and \(Z\) be monotonic and have the same format ("plaid") as if they were produced by ndgrid. Variable spacing is handled by mapping the given values in \(X_{1}, X 2, X 3, \ldots\) and \(Y 1, Y 2, Y 3, \ldots\) to an equally spaced domain before interpolating. For faster interpolation when \(X 1, X 2, Y 3\), and so on are equally spaced and monotonic, use the methods '*l inear', '*cubic', or '*nearest'.

\section*{interpn}

\section*{See Also \\ interpl \\ interp2 \\ ndgrid}

One-dimensional data interpolation (table lookup)
Two-dimensional data interpolation (table lookup) Generate arrays for multidimensional functions and interpolation

Purpose Set intersection of two vectors
Syntax \(\quad\)\begin{tabular}{l}
\(c=\) intersect \((a, b)\) \\
\\
\(c=\) intersect \((a, b\), rows ' \()\) \\
\\
{\([c, i a, i b]=\) intersect \((\ldots)\)}
\end{tabular}

Description \(\quad c=\) intersect \((a, b)\) returns the values common to both \(A\) and \(B\). The resulting vector is sorted in ascending order. In set theoretic terms, this is \(a \cap b\). Non-vector input arrays are regarded as column vectors a \(=A(:)\) or \(b=B(:)\).
\(c=i n t e r \operatorname{sect}(a, b\), rows') when \(a\) and \(b\) are matrices with the same number of columns returns the rows common to both \(a\) and \(b\).
\([c, i a, i b]=i n t e r s e c t(a, b)\) also returns column index vectors \(i a\) and \(i b\) such that \(c=a(i a)\) and \(c=b(i b)\) (or \(c=a(i a,:)\) and \(c=b(i b,:)\) ).

\section*{Examples}
```

A =[lllll
[c,ia,ib] = intersect(A,B);
disp([c;ia;ib])
1 2 3 6
1 2 3 4
1 2 3 5

```

See Also
setxor
union
unique

Truefor a set member
Return the set difference of two vectors
Set exclusive-or of two vectors
Set union of two vectors
Unique elements of a vector
Purpose Matrix inverse

\section*{Syntax \(\quad Y=\operatorname{inv}(X)\)}

Description \(\quad Y=i n v(X)\) returns the inverse of the square matrix \(X\). A warning message is printed if \(X\) is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of \(i n v\) arises when solving the system of linear equations \(A x=b\). One way to solve this is with \(\mathrm{x}=\mathrm{i} \mathrm{nv}(\mathrm{A}) * \mathrm{~b}\). A better way, from both an execution time and numerical accuracy standpoint, is to use the matrix division operator \(x=A \backslash b\). This produces the solution using Gaussian elimination, without forming the inverse. See \and/for further information.

Here is an example demonstrating the difference between solving a linear system by inverting the matrix with inv(A)*b and solving it directly with \(A \backslash b\). A matrix A of order 100 has been constructed so that its condition number, cond ( \(A\) ), is 1. e 10 , and its norm, \(\operatorname{norm}(A)\), is 1 . The exact solution \(x\) is a random vector of length 100 and the right-hand side is \(b=A * x\). Thus the system of linear equations is badly conditioned, but consistent.

On a 20 MHz 386 SX notebook computer, the statements
```

tic, y = inv(A)*b, toc
err = norm(y-x)
res = norm(A*y-b)

```
produce
```

elapsed_time =
9.6600
err =
2.4321e-07
res =
1.8500e-09

```
while the statements
```

tic, z = Alb, toc
err = norm(z-x)
res = norm(A*z-b)

```
```

produce
elapsed_time =
3.9500
err =
6.6161e-08
res =
9.1103e-16

```

It takes almost two and one half times as long to compute the solution with \(y=\operatorname{inv}(A) * b\) as with \(z=A \backslash b\). Both produce computed solutions with about the same error, 1. e-7, reflecting the condition number of the matrix. But the size of the residuals, obtained by plugging the computed solution back into the original equations, differs by several orders of magnitude. The direct solution produces residuals on the order of the machine accuracy, even though the system is badly conditioned.

The behavior of this example is typical. Using A \(\backslash \mathrm{b}\) instead of \(\mathrm{inv}(\mathrm{A}) * \mathrm{~b}\) is two to three times as fast and produces residuals on the order of machine accuracy, relative to the magnitude of the data.

\section*{Algorithm}

Thei nv command uses the subroutines ZGEDI and ZGEFA from LINPACK. For more information, see the LINPACK Users' Guide

Diagnostics Frominv, if the matrix is singular,
```

Matrix is singular to working precision.

```

On machines with IEEE arithmetic, this is only a warning message. inv then returns a matrix with each element set to Inf. On machines without IEE E arithmetic, like the VAX, this is treated as an error.

If the inverse was found, but is not reliable, this message is displayed.
```

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = xxx

```
\begin{tabular}{lll} 
See Also & \(!\) & Matrix left division (backslash) \\
& det & Matrix right division (slash) \\
& I u & Matrix determinant \\
& rref & LU matrix factorization \\
& & Reduced row echelon form
\end{tabular}
References
[1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979.

\section*{Purpose Inverse of the Hilbert matrix}

\section*{Syntax \(\quad H=\operatorname{invilb}(n)\)}

Description

\section*{Limitations}

\section*{Examples}

See Also

References
\(H=i n v h i l b(n)\) generates the exact inverse of the exact Hilbert matrix for \(n\) less than about 15 . For larger \(n\), invhilb(n) generates an approximation to the inverse Hilbert matrix.

The exact inverse of the exact Hilbert matrix is a matrix whose elements are large integers. These integers may be represented as floating-point numbers without roundoff error as long as the order of the matrix, \(n\), is less than 15.

Comparinginvhilb(n) with inv(hilb(n)) involves the effects of two or three sets of roundoff errors:
- The errors caused by representing hil b(n)
- The errors in the matrix inversion process
- The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like 1/ 3 and \(1 / 5\) in floating-point, is the most significant.
invhilb(4) is
\begin{tabular}{rrrr}
16 & -120 & 240 & -140 \\
-120 & 1200 & -2700 & 1680 \\
240 & -2700 & 6480 & -4200 \\
-140 & 1680 & -4200 & 2800
\end{tabular}
hilb
Hilbert matrix
[1] F orsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-H all, 1967, Chapter 19.

\section*{ipermute}

Purpose Inverse permute the dimensions of a multidimensional array

\section*{Syntax \(\quad A=\) ipermute( \(B\), order)}

Description \(\quad A=\) ipermute( \(B\), order) is the inverse of permute.ipermute rearranges the dimensions of \(B\) so that permute( \(A\), order) will produce \(B . B\) has the same values as A but the order of the subscripts needed to access any particular element are rearranged as specified by order. All the elements of order must be unique.

Remarks permute andipermute are a generalization of transpose (. ' ) for multidimensional arrays.

Examples \(\quad\) Consider the 2-by-2-by-3 arraya:
```

a = cat(3,eye(2), 2*eye(2),3*eye(2))

```
\begin{tabular}{cccc}
\(a(:,:, 1)\) & & \(a(:,:, 2)\) & \(=\) \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{tabular}
```

a(:,:, 3) =
3 0
0 3

```

Permuting and inverse permuting a in the same fashion restores the array to its original form:
```

B = permute(a,[lllll);
C = ipermute(B,[$$
\begin{array}{lll}{3}&{2}&{1}\end{array}
$$);
isequal(a,C)
ans=

```

1
See Also permute Rearrange the dimensions of a multidimensional array

\section*{Purpose}

Detect state
\begin{tabular}{|c|c|c|}
\hline Syntax & \(k=i s c e l l(c)\) & \(k=i s l o g i c a l(A) ~\) \\
\hline & \(k=i s c e l l s t r(S)\) & TF \(=i \operatorname{snan}(\mathrm{~A})\) \\
\hline & \(k=i s c h a r(S)\) & \(k=i s n u m e r i c(A) ~\) \\
\hline & \(\mathrm{k}=\mathrm{i}\) sempty(A) & \(k=i s o b j e c t(A) ~\) \\
\hline & \(k=\) isequal ( \(A, B, \ldots)\) & \(\mathrm{k}=\mathrm{isppc}\) \\
\hline & \(k=\) isfield(S, field') & TF = isprime(A) \\
\hline & TF = isfinite(A) & \(k=i s r e a l(A) ~\) \\
\hline & \(k=\) isglobal (NAME) & TF = isspace('str') \\
\hline & TF = ishandle( H ) & \(k=\) issparse(s) \\
\hline &  & \(k=\) isstruct(s) \\
\hline & \(k=i s i e e e\) & \(k=\) isstudent \\
\hline & TF \(=\operatorname{isinf}(\mathrm{A})\) & \(k=\) isunixt \\
\hline & TF = isletter('str') & \(\mathrm{k}=\mathrm{isvms}\) \\
\hline
\end{tabular}

\section*{Description}
\(\mathrm{k}=\mathrm{iscell}(\mathrm{C})\) returns logical true (1) if C is a cell array and logical false (0) otherwise.
\(k=i s c e l l s t r(S)\) returns logical true (1) if \(s\) is a cell array of strings and logical false (0) otherwise. A cell array of strings is a cell array where every element is a character array.
\(k=i s c h a r(S)\) returns logical true (1) if \(s\) is a character array and logical false (0) otherwise.
\(k=i \operatorname{sempty}(A)\) returns logical true(1) if A is an empty array and logical false
(0) otherwise. An empty array has at least one dimension of size zero, for example, 0-by-0 or 0-by-5.
\(k\) = i s equal(A, B, ...) returns logical true (1) if the input arrays are the same type and size and hold the same contents, and logical false (0) otherwise.
\(k=i s f i e l d\left(S, f_{i} e^{\prime} d^{\prime}\right)\) returnslogical true(1)iffield isthename of a field in the structure array s .

TF = isfinite(A) returns an array the samesizeas A containing logical true (1) where the elements of the array A are finite and logical false (0) where they are infinite or NaN .

For any A, exactly one of the three quantities isfinite(A), isinf(A), and isnan(A) is equal to one.
k = i s global(NAME) returns logical true (1) if NAME has been dedared to be a global variable, and logical false (0) if it has not been so declared.

TF = i shandle(H) returns an array the same size as H that contains logical true (1) where the elements of H are valid graphics handles and logical false (0)where they are not.
\(k=i s h o l d\) returnslogical true(1)ifhold ison, and logical false(0) if it is of \(f\). When hold is on, the current plot and all axis properties are held so that subsequent graphing commands add to the existing graph. hol d on means theNextPI ot property of both figure and axes is set to add.
k = isieee returns logical true (1) on machines with IEEE arithmetic (e.g., IBM PC, most UNIX workstations, Macintosh) and logical false(0) on machines without IEEE arithmetic (e.g., VAX, Cray).

TF = isinf(A) returns an array the same size as A containing logical true (1) where the elements of \(A\) are +1 nf or -1 nf and logical false ( 0 ) where they are not.

TF = isletter('str') returns an array the same size as'str' containing logical true (1) where the elements of \(s t r\) are letters of the al phabet and logical false (0) where they are not.
k = islogical(A) returns logical true (1) if A is a logical array and logical false (0) otherwise.

TF = isnan(A) returns an array the same size as A containing logical true (1) where the elements of \(A\) are NaNs and logical false (0) where they are not.
\(k=i s n u m e r i c(A)\) returns logical true (1) if A is a numeric array and logical false (0) otherwise. F or example, sparse arrays, and double precision arrays are numeric while strings, cell arrays, and structure arrays are not.
k = isobject(A) returns logical true (1) if A is an object and logical false (0) otherwise.
\(\mathrm{k}=\mathrm{isppc}\) returns logical true (1) if the computer running MATLAB is a Macintosh Power PC and logical false (0) otherwise.

TF = i sprime(A) returns an array the same size as A containing logical true (1) for the elements of A which are prime, and logical false (0) otherwise.
\(k=i s r e a l(A)\) returns logical true (1) if all elements of A are real numbers, and logical false (0) if either A is not a numeric array, or if any element of A has a nonzero imaginary component. Since strings are a subclass of numeric arrays, isreal always returns 1 for a string input.

Because MATLAB supports complex arithmetic, certain of its functions can introduce significant imaginary components during the course of calculations that appear to be limited to real numbers. Thus, you should usei sreal with discretion.

TF = isspace('str') returns an array the same size as'str'containing logical true (1) where the elements of \(s t r\) are ASCII white spaces and logical false (0) where they are not. White spaces in ASCII arespace, newline, carriage return, tab, vertical tab, or formfeed characters.
k = issparse(S) returns logical true(1) if the storage class of \(S\) is sparse and logical false (0) otherwise.
\(k=i s s t r u c t(S)\) returns logical true(1) ifS is a structure and logical false(0) otherwise.
\(k\) = isstudent returns logical true (1) for student editions of MATLAB and logical false (0) for commercial editions.
\(k=\) isunix returns logical true(1) for UNIX versions of MATLAB and logical false (0) otherwise.
\(k=i s v m s\) returns logical true (1) for VMS versions of MATLAB and logical false (0) otherwise.

\section*{Examples}
```

s = 'A1,B2,C3';
isletter(s)
ans =
1}0
B = rand(2,2,2);
B(:,:,:) = [];
i sempty(B)
ans =
1

```

Given,
\begin{tabular}{lllllll} 
& & & \(B=\) & \(C=\) \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & & 0 & 1 & 0 & 0
\end{tabular}
i sequal \((A, B, C)\) returns 0 , and \(i\) sequal \((A, B)\) returns 1.

Let
```

a =[[-2 -1 0

```

Then
isfinite(1.|a) \(=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}\right]\)
isinf(1.|a) \(=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]\)
isnan(1.|a) \(=\left[\begin{array}{lllll}0 & 0 & 0 & 0\end{array}\right]\)
and
isfinite(0.1a) \(=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}\right]\)
isinf(0.1a) \(=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right]\)
\(i \operatorname{snan}(0.1 a)=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]\)
Purpose Detect an object of a given class
Syntax \(\quad K=i s a\left(o b j, ' c l a s s \_n a m e '\right)\)
 subclass of) cl as s _ name, and logical false (0) otherwise.

The argument clas s_ na me is the name of a user-defined or predefined class of objects. Predefined MATLAB classes include:
cell Multidimensional cell array
double Multidimensional double precision array
sparse Two-dimensional real (or complex) sparse array
char Array of alphanumeric characters
struct Structure
'class_name' User-defined object class

\section*{Examples \\ isa(rand(3,4),'double') returns 1.}

See Also
class
Create object or return class of object

\section*{ismember}
Purpose Detect members of a set
Syntax \(\quad\)\begin{tabular}{rl}
\(k\) & \(=i \operatorname{smember}(a, S)\) \\
\(k\) & \(=i \operatorname{smember}\left(A, S\right.\), ' rows \(\left.^{\prime}\right)\)
\end{tabular}

Description \(k=i s m e m b e r(a, S)\) returns an vector the same length as a containing logical true (1) where the elements of a are in the set \(S\), and logical false (0) el sewhere. In set theoretic terms, \(k\) is 1 where \(a \in S\).
\(k=i s m e m b e r(A, S, ' r o w s ')\) when A andS arematrices with the same number of columns returns a vector containing 1 where the rows of \(A\) are also rows of \(S\) and 0 otherwise.

\section*{Examples}
```

 set = [0 2 4 6 8 10 12 14 16 18 20];
 a = reshape(1:5,[5 1])
 a =
 1
 2
 3
 4
 5
 ismember(a,set)
 ans =
 0
 1
 0
 1
 0
    ```

\section*{See Also}
\begin{tabular}{ll} 
intersect & Set intersection of two vectors \\
setdiff & Return the set difference of two vectors \\
setxor & Set exclusive-or of two vectors \\
union & Set union of two vectors \\
unique & Unique elements of a vector
\end{tabular}
Purpose Imaginary unit

\section*{Syntax}
j
\(x+y j\)
\(x+j * y\)
Description Usethe character j in place of the character i , if desired, as the imaginary unit.
As the basic imaginary unit sqrt(-1),jis used to enter complex numbers.
Since \(j\) is a function, it can be overridden and used as a variable. This permits you to use \(j\) as an index in for loops, etc.

It is possible to use the character j without a multiplication sign as a suffix in forming a numerical constant.

\section*{Examples}
```

z = 2+3j
z = x +j *y
Z = r *exp(j *theta)

```

See Also
Complex conjugate
i
i mag
real

I maginary unit
I maginary part of a complex number
Real part of complex number

\section*{keyboard}
Purpose Invoke the keyboard in an M-file

\section*{Syntax keyboard}

Description keyboard, when placed in an M-file, stops execution of the file and gives control to the keyboard. The special status is indicated by a K appearing before the prompt. Y ou can examine or change variables; all MATLAB commands are valid. This keyboard mode is useful for debugging your M-files.

To terminate the keyboard mode, type the command:
return
then press the Return key.
\begin{tabular}{lll} 
See Also & dbstop \\
input & Set breakpoints in an \(M\)-filefunction \\
& quit & Request user input \\
& return & Terminate MATLAB \\
& Terminate keyboard mode
\end{tabular}

Purpose Kronecker tensor product

\section*{Syntax \(\quad k=\operatorname{kron}(X, Y)\)}

Description \(\quad K=\operatorname{kron}(X, Y)\) returns the \(K\) ronecker tensor product of \(X\) and \(Y\). The result is a large array formed by taking all possible products between the elements of \(X\) and those of \(Y\). If \(X\) is \(m\)-by-n and \(Y\) is \(p-b y-q\), then \(\operatorname{kron}(X, Y)\) is \(m * p-b y-n * q\).

\section*{Examples If \(X\) is 2-by-3, then \(\operatorname{kron}(X, Y)\) is}
```

[X(1,1)*Y X(1,2)*Y X(1,3)*Y
X(2,1)*Y X(2,2)*Y X(2,3)*Y]

```

The matrix representation of the discrete Laplacian operator on a two-dimensional, \(n\)-by-n grid is a \(n \wedge 2\)-by-n \(\wedge 2\) sparse matrix. There are at most five nonzero elements in each row or column. The matrix can be generated as the K ronecker product of one-dimensional difference operators with these statements:
```

| = speye(n,n);
E = sparse(2:n,1:n-1,1,n,n);
D = E+E'-2*|;
A = kron(D,I) +kron(I,D);

```

Plotting this with thespy function for \(n=5\) yields:


Purpose Last error message

\section*{Syntax \\ str = | asterr \\ |asterr('')}

\section*{Description}

\section*{Examples}
str = |asterr returns the last error message generated by MATLAB.
| asterr('') resets| asterr soit returns an empty matrix until the next error occurs.

Here is a function that examines thel asterr string and displays its own message based on the error that last occurred. This example deals with two cases, each of which is an error that can result from a matrix multiply.
```

function catch
| = |asterr;
j = findstr(l,'Inner matrix di mensions');
if j ~=[]
disp('Wrong dimensions for matrix multiply')
else
k = findstr(l,'Undefined function or variable')
if (k~=[])
disp('At | east one operand does not exist')
end
end

```

Thel asterr function is useful in conjunction with the two-argument form of theeval function:
```

eval('str','catchstr')

```
where catchstr examines thel asterr string to determine the cause of the error and take appropriate action. Theeval function evaluates the string str and returns if no error occurs. If an error occurs, eval executes catchstr. Usingeval with thecatch function above:
```

clear
A =[[1 2 3 3; 6 7 7 2; 0 -1 5];
B = [9 5 6; 0 4 9];
eval('A*B','catch')

```

MATLAB responds with Wrong dimensions for matrix multiply.

\section*{See Also}
error
eval
Display error messages
Interpret strings containing MATLAB expressions
Purpose Least common multiple
Syntax ..... \(L=\operatorname{lcm}(A, B)\)
Description \(\mathrm{L}=\mathrm{Icm}(\mathrm{A}, \mathrm{B})\) returns theleast common multiple of corresponding elements ofarrays \(A\) and \(B\). Inputs \(A\) and \(B\) must contain positive integer elements and mustbe the same size (or either can be scalar).
Examples \(\operatorname{lcm}(8,40)\)
ans \(=\)
40
Icm(pascal(3), magic(3))
ans \(=\)
\begin{tabular}{rrr}
8 & 1 & 6 \\
3 & 10 & 21 \\
4 & 9 & 6
\end{tabular}
See Also ..... gcd
Greatest common divisor

Purpose Associated Legendre functions

\section*{Syntax \(\quad P=\) I egendre( \(n, X)\)}
\(S=1\) egendre( \(\left.n, X, s^{\prime} h^{\prime}\right)\)
Definition The Legendre functions are defined by:
\[
P_{n}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{n}(x)
\]
where \(\mathrm{P}_{\mathrm{n}}(\mathrm{x})\) is the Legendre polynomial of degree \(n\) :
\[
P_{n}(x)=\frac{1}{2^{n} n!}\left[\frac{d^{n}}{d x}\left(x^{2}-1\right)^{n}\right]
\]

The Schmidt seminormalized associated Legendre functions are rel ated to the nonnormalized associated Legendre functions \(P_{n}^{m}(x)\) by:
\[
S_{n}^{m}(x)=\sqrt{\frac{2(n-m)!}{(n+m)!}} P_{n}^{m}(x)
\]

\section*{Description}
\(P=1\) egendre( \(n, X)\) computes the associated Legendre functions of degree \(n\) and order \(m=0,1, \ldots, n\), evaluated at \(x\). Argument \(n\) must be a scalar integer less than 256 , and \(x\) must contain real values in the domain \(-1 \leq x \leq 1\).

The returned array \(P\) has one more dimension than \(X\), and each element \(P(m+1, d 1, d 2 \ldots)\) contains the associated Legendre function of degreen and order \(m\) evaluated at \(x(d 1, d 2 \ldots)\).

If \(X\) is a vector, then \(P\) is a matrix of the form:
\[
\begin{array}{llll}
\mathrm{P}_{2}^{0}(\mathrm{x}(1)) & \mathrm{P}_{2}^{0}(\mathrm{x}(2)) & \mathrm{P}_{2}^{0}(\mathrm{x}(3)) & \ldots \\
\mathrm{P}_{2}^{1}(\mathrm{x}(1)) & \mathrm{P}_{2}^{1}(\mathrm{x}(2)) & \mathrm{P}_{2}^{1}(\mathrm{x}(3)) & \ldots \\
\mathrm{P}_{2}^{2}(\mathrm{x}(1)) & \mathrm{P}_{2}^{2}(\mathrm{x}(2)) & \mathrm{P}_{2}^{2}(\mathrm{x}(3)) & \ldots
\end{array}
\]

\section*{legendre}

S = |egendre(...,'sch') computes the Schmidt seminormalized associated Legendre functions \(S_{n}^{m}(x)\).

\section*{Examples}

The statement I egendre(2,0:0.1:0.2) returns the matrix:
\begin{tabular}{l|l|l|l}
\hline & \(\mathbf{x}=\mathbf{0}\) & \(\mathbf{x}=\mathbf{0 . 1}\) & \(\mathbf{x}=\mathbf{0 . 2}\) \\
\cline { 2 - 4 } \(\mathrm{m}=\mathbf{0}\) & 0.5000 & 0.4850 & 0.4400 \\
\hline \(\mathrm{~m}=1\) & 0 & 0.2985 & 0.5879 \\
\hline \(\mathrm{~m}=\mathbf{2}\) & 3.0000 & 2.9700 & 2.8800 \\
\hline
\end{tabular}

N ote that this matrix is of the form shown at the bottom of the previous page.
Given,
```

X = rand(2,4,5); N = 2;
P = | egendre(N, X)

```

Then size( \(P\) ) is 3-by-2-by-4-by-5, and \(P(:, 1,2,3)\) is the same as I egendre(n, X(1, 2, 3)).

Purpose Length of vector

\section*{Syntax \\ \(n=1\) ength(X)}

Description The statement length(X) is equivalent to max(size(X)) for nonempty arrays and 0 for empty arrays.
\(n=1\) engt \(h(X)\) returns the size of the longest dimension of \(X\). If \(X\) is a vector, this is the same as its length.

\section*{Examples}
```

x = ones(1, 8);
n = length(x)
n =
8
x = rand(2,10,3);
n = length(x)
n =
1 0

```
\begin{tabular}{lll} 
See Also & ndims & \begin{tabular}{l} 
Number of array dimensions
\end{tabular} \\
size & Array dimensions
\end{tabular}

\section*{lin2mu}

Purpose Linear to mu-law conversion.

\section*{Syntax mu \(=\operatorname{lin2mu}(\mathrm{y})\)}

Description mu \(=1 \mathrm{i} \mathrm{n} 2 \mathrm{mu}(\mathrm{y}) \quad\) converts linear audio signal amplitudes in the range \(-1 \leq Y \leq 1\) to mu-law encoded "flints" in the range \(0 \leq m u \leq 255\).

See Also
auwrite mu2lin

Write NeXT/SUN (.au) sound file Linear to mu-law conversion
Purpose Generate linearly spaced vectors
Syntax \(y=1 i n s p a c e(a, b)\)
\(y=1 i n s p a c e(a, b, n)\)
Description Thel inspace function generates linearly spaced vectors. It is similar to the col on operator ":", but gives direct control over the number of points.\(y=1\) inspace( \(a, b)\) generates a row vector y of 100 points linearly spacedbetween \(a\) and \(b\).
\(y=1 i n s p a c e(a, b, n)\) generates \(n\) points.
See Also ..... (Colon)
Create vectors, matrix subscripting, and \(f\) or iterations logspace Generate logarithmically spaced vectors
Purpose Retrieve variables from disk
\begin{tabular}{ll} 
Syntax & load \\
& load filename \\
& load (filename) \\
& load filename. ext \\
& load filename -asci \(i\) \\
& load filename -mat
\end{tabular}

\section*{Description}

\section*{Remarks}

Thel oad and save commands retrieve and store MATLAB variables on disk.
I oad by itself, loads all the variables saved in the file' mat I ab. mat'.
Ioad filename retrieves the variables from'filename. mat' given a full pathname or a MATLABPATH relative partial pathname.

Ioad (filename) loads a file whose name is stored in filename. The statements:
```

str = 'filename.mat'; | oad (str)

```
retrieve the variables from the binary file' fi I ename. mat ' .
Ioad filename.ext reads ASCII files that contain rows of space separated values. The resulting data is placed into an variable with the same name as the file (without the extension). ASCII files may contain MATLAB comments (lines that begin with \%).

Ioad filename -ascii or load filename -mat can be used toforceload to treat the file as either an ASCII file or a MAT file.

MAT-files are double-precision binary MATLAB format files created by the s ave command and readable by thel oad command. They can be created on one machine and later read by MATLAB on another machine with a different floating-point format, retaining as much accuracy and range as the disparate formats allow. They can also be manipulated by other programs, external to MATLAB.
\begin{tabular}{ll} 
Algorithm & \begin{tabular}{l} 
The Application Program InterfaceGuidediscusses the structure of MAT-fil \\
in detail. The Application Program Interface Libraries contain C and Fortran \\
callable routines to read and write MAT-files from external programs.
\end{tabular} \\
See Also & fprintf \\
fscanf & Write formatted data to file \\
save & Read formatted data from file \\
spconvert & Save workspace variables on disk \\
See also partial path. & Import matrix from sparse matrix external format
\end{tabular}

Purpose Natural logarithm

\section*{Syntax \(\quad Y=\log (X)\)}

Description Thel og function operates element-wise on arrays. Its domain includes complex and negative numbers, which may lead to unexpected results if used unintentionally.
\(Y=\log (X)\) returns the natural logarithm of the elements of \(X\). F or complex or negative \(z\), where \(z=x+y * i\), the complex logarithm is returned:
```

log(z)= log(abs(z)) +i*atan2(y,x)

```

\section*{Examples The statement abs ( \(1 \circ \mathrm{~g}(-1))\) is a clever way to generate \(\pi\) :}

\section*{ans =}
3.1416

\section*{See Also}
exp
\(\log 10\)
\(\log 2\)

10 gm

Exponential
Common (base 10) logarithm
Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
Matrix logarithm
\begin{tabular}{|c|c|}
\hline Purpose & Base 2 logarithm and dissect floating-point numbers into exponent and mantissa \\
\hline Syntax & \[
\begin{aligned}
& Y=\log 2(X) \\
& {[F, E]=\log 2(X)}
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
\(Y=\log 2(X)\) computes the base 2 logarithm of the elements of \(X\). \\
\([F, E]=\log 2(X)\) returns arrays \(F\) and \(E\). Argument \(F\) is an array of real values, usually in the range \(0.5 \leq a b s(F)<1\). For real \(X\), \(F\) satisfies the equation: \(X=F, * 2,{ }^{\wedge} E\). Argument \(E\) is an array of integers that, for real \(X\), satisfy the equation: \(X=F, * 2,{ }^{\wedge} E\).
\end{tabular} \\
\hline Remarks & This function corresponds to the ANSI C function \(f r \exp ()\) and the IEEE floating-point standard function \(\operatorname{logb}()\). Any zeros in \(X\) produce \(F=0\) and \(\mathrm{E}=0\). \\
\hline Examples & For IEEE arithmetic, the statement [F, E] \(=\log 2(X)\) yields the values: \\
\hline & X F E \\
\hline & \(11 / 2\) \\
\hline & pi pi/4 2 \\
\hline & \(\begin{array}{lll}-3 & -3 / 4 & \end{array}\) \\
\hline & eps 1/2 -51 \\
\hline & realmax 1-eps/2 1024 \\
\hline & \(\begin{array}{lll}\text { realmin } & 1 / 2 & -1021\end{array}\) \\
\hline See Also & \begin{tabular}{ll}
\(\log\) & Natural logarithm \\
pow2 & Base 2 power and scale floating-point numbers
\end{tabular} \\
\hline
\end{tabular}
Purpose Common (base 10) logarithm

\section*{Syntax \(\quad Y=\log 10(X)\)}

Description Thelog 10 function operates element-by-element on arrays. Its domain includes complex numbers, which may lead to unexpected results if used unintentionally.
\(Y=\log 10(X)\) returns the base 10 logarithm of the elements of \(X\).

\section*{Examples}

On a computer with IEEE arithmetic
\(\log 10(\) real max) is 308.2547
and
\(\log 10(\mathrm{eps})\) is -15.6536
See Also
exp
109
\(\log 2\)

10 gm

Exponential Natural logarithm
Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
Matrix logarithm
Purpose Convert numeric values to logical
\begin{tabular}{|c|c|}
\hline Syntax & \(K=10 g i c a l(A)\) \\
\hline Description & K = logical(A) returns an array that can be used for logical indexing or logical tests. The array K is the same size as A and is displayed using 1 where corresponding elements of A are nonzero, and 0 where corresponding elements of \(A\) are zero. \\
\hline Remarks & Logical arrays are also created by the relational operators (==,<,>,~, etc.) and functions likeany, all, isnan,isinf, andisfinite. \\
\hline \multirow[t]{5}{*}{Examples} & Given \(A=\left[\begin{array}{llllll}1 & 2 & 3 ; 4 & 6 ; 7 & 8\end{array}\right]\), the statement \(B=\) |ogical(eye(3)) returns a logical array \\
\hline & \(B=\) \\
\hline & 100 \\
\hline & 010 \\
\hline & \(0 \quad 0 \quad 1\) \\
\hline
\end{tabular}
which can be used in logical indexing that returns A 's diagonal elements:
A (B)
ans \(=\)
1
5
9

However, attempting to index into A using the numeric array e y e (3) results in:
```

A(eye(3))
??? Index into matrix is negative or zero.

```

\section*{Purpose Matrix logarithm}
\begin{tabular}{ll} 
Syntax & \(Y=\log m(X)\) \\
{\([Y, \operatorname{ester} r]=\log m(X)\)}
\end{tabular}

\section*{Description}

\section*{Remarks}

\section*{Limitations For most matrices:}
```

|ogm(expm(X))=X= expm(IOgm(X))

```

These identities may fail for some \(X\). F or example, if the computed eigenvalues of \(x\) include an exact zero, then \(\log m(X)\) generates infinity. Or, if the elements of \(X\) are too large, expm( X) may overflow.

\section*{Examples \\ Suppose A is the 3-by-3 matrix}
\begin{tabular}{rrr}
1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & -1
\end{tabular}
and \(x=\operatorname{expm}(A)\) is
X =
\begin{tabular}{rrr}
2.7183 & 1.7183 & 1.0862 \\
0 & 1.0000 & 1.2642 \\
0 & 0 & 0.3679
\end{tabular}

Then \(A=\operatorname{logm}(X)\) produces the original matrix \(A\).
\(A=\)
\begin{tabular}{rrr}
1.0000 & 1.0000 & 0.0000 \\
0 & 0 & 2.0000 \\
0 & 0 & -1.0000
\end{tabular}

But \(\log (X)\) involves taking the logarithm of zero, and so produces ans \(=\)
\begin{tabular}{rrr}
1.0000 & 0.5413 & 0.0826 \\
\(-\operatorname{Inf}\) & 0 & 0.2345 \\
\(-\operatorname{Inf}\) & \(-1 n f\) & -1.0000
\end{tabular}
Algorithm \begin{tabular}{l} 
The matrix functions areevaluated using an algorithm due to Parlett, which is \\
described in [1]. The algorithm uses the Schur factorization of the matrix and \\
may give poor results or break down completely when the matrix has repeated \\
eigenvalues. A warning messageis printed when the results may beinaccurate.
\end{tabular}

[2] Moler, C. B. and C. F. Van Loan, "Nineteen Dubious Ways to Compute the Exponential of a Matrix," SIAM Review 20, 1979,pp. 801-836.

Purpose Generate logarithmically spaced vectors
```

Syntax

```
```

y = logspace(a,b)

```
y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,b,n)
y = logspace(a,pi)
```

y = logspace(a,pi)

```Description
Remarks and the ":" or colon operator. points between decades \(10^{\wedge}\) a and \(10^{\wedge} b\). around the unit circle.

All the arguments tologspace must be scalars.

Thelogspace function generates logarithmically spaced vectors. Especially useful for creating frequency vectors, it is a logarithmic equivalent of I ins pace
\(y=1\) ogspace \((a, b)\) generates a row vector y of 50 logarithmically spaced
\(y=\operatorname{logspace}(a, b, n)\) generates \(n\) points between decades \(10^{\wedge} a\) and \(10^{\wedge} b\).
\(y=10 g s p a c e(a, p i)\) generates the points between \(10^{\wedge} a\) and pi, which is useful for digital signal processing where frequencies over this interval go

See Also : (Colon) Create vectors, matrix subscripting, and f or iterations Iinspace Generate linearly spaced vectors

\section*{Purpose Keyword search through all help entries}

\section*{Syntax
Description}

\section*{Examples}

See Also
dir
hel \(p\)
what
which
who

Directory listing
Online help for MATLAB functions and M-files
Directory listing of M-files, MAT-files, and MEX-files
Locate functions and files
List directory of variables in memory
Purpose Convert string to lower case
Syntax \(\quad t=10 w e r(' s t r ')\)

Description \(\quad t=10 w e r(' s t r ')\) returns the string formed by converting any upper-case characters in str to the corresponding lower-case characters and leaving all other characters unchanged.

\section*{Examples Iower('MathWorks') is mathworks.}

Remarks Character sets supported:
- Mac: Standard Roman
- PC: Windows Latin-1
- Other: ISO Latin-1 (ISO 8859-1)

See Also
upper
Convert string to upper case

Purpose Least squares solution in the presence of known covariance
\begin{tabular}{ll} 
Syntax & \(x=1 \operatorname{scov}(A, b, V)\) \\
& {\([x, d x]=\operatorname{scov}(A, b, V)\)}
\end{tabular}

\section*{See Also}

Reference

Algorithm The vector \(x\) minimizes the quantity \(\left.\left(A^{*} x-b\right)\right)^{*} \operatorname{inv}(V) *(A * x-b)\). The classical linear algebra solution to this problem is
```

x = inv(A'*inv(V)*A)*A'*inv(V)*b

```
but the Iscov function instead computes the QR decomposition of \(A\) and then modifies \(Q\) by \(V\).
\(x=\mid \operatorname{scov}(A, b, V)\) returns the vector \(x\) that solves \(A^{*} x=b+e\) wheree is normally distributed with zero mean and covarianceV. Matrix A must bem-by-n wherem > \(n\). This is the over-determined least squares problem with covariance \(V\). The solution is found without inverting \(v\).
\([x, d x]=\mid \operatorname{scov}(A, b, V)\) returns thestandard errors of \(x\) in \(d x\). Thestandard statistical formula for the standard error of the coefficients is:
```

mse = B'*(inv(V)-inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B.l(m-n)
dx = sqrt(diag(inv(A'*inv(V)*A)*mse))

```
\(1 \quad\) Matrix left division (backslash)
nnls \(\quad\) Nonnegative least squares
qr Orthogonal-triangular decomposition

Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge, 1986, p. 398.
Purpose LU matrix factorization
\begin{tabular}{ll} 
Syntax & {\([L, U]=I u(X)\)} \\
& {\([L, U, P]=I u(X)\)} \\
& \(I u(X)\)
\end{tabular}

Description Thel u function expresses any squarematrix \(x\) as the product of two essentially triangular matrices, one of them a permutation of a lower triangular matrix and the other an upper triangular matrix. The factorization is often called the \(L U\), or sometimes the LR, factorization.
\([L, U]=I u(X)\) returns an upper triangular matrix in \(U\) and a psychologically lower triangular matrix (i.e., a product of lower triangular and permutation matrices) in \(L\), so that \(X=L * U\).
\([L, U, P]=I u(X)\) returns an upper triangular matrix in \(U\), a lower triangular matrix in \(L\), and a permutation matrix in \(P\), so that \(L * U=P * X\).
\(I u(X)\) returns the output from the LINPACK routineZGEFA.
Remarks Most of the al gorithms for computing LU factorization arevariants of Gaussian elimination. The factorization is a key step in obtaining the inverse with inv and the determinant with det. It is also the basis for the linear equation solution or matrix division obtained with \ and/.

\section*{Arguments \(L \quad A\) factor of \(x\). Depending on the form of the function, \(L\) is either lower} triangular, or else the product of a lower triangular matrix with a permutation matrix \(P\).
\(U \quad\) An upper triangular matrix that is a factor of \(x\).
\(P \quad\) The permutation matrix satisfying the equation \(L * U=P * X\).

\section*{Examples}

Start with
\(A=\)
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 0
\end{tabular}

To see the LU factorization, call I u with two output arguments:
```

[L,U] = Iu(A)
L =
0.1429 1.0000 0
0.5714 0.5000 1.0000
1.0000 0 0
U =
7.0000 8.0000 0.0000
0 0.8571 3.0000
0 4.5000

```

Notice that \(L\) is a permutation of a lower triangular matrix that has 1 's on the permuted diagonal, and that \(U\) is upper triangular. To check that the factorization does its job, compute the product:

L * U
which returns the original A. Using threearguments on theleft-hand sideto get the permutation matrix as well
\([L, U, P]=I U(A)\)
returns the same value of \(U\), but \(L\) is reordered:
L =
\begin{tabular}{rrr}
1.0000 & 0 & 0 \\
0.1429 & 1.0000 & 0 \\
0.5714 & 0.5000 & 1.0000
\end{tabular}
\(U=\)
\begin{tabular}{rrr}
7.0000 & 8.0000 & 0 \\
0 & 0.8571 & 3.0000 \\
0 & 0 & 4.5000
\end{tabular}

P =
\(0 \quad 0 \quad 1\)
100
010

To verify that \(L * *\) is a permuted version of \(A\), compute \(L * U\) and subtract it from P*A:
\[
P * A-L * U
\]

The inverse of the example matrix, \(\mathrm{X}=\mathrm{inv}(\mathrm{A})\), is actually computed from the inverses of the triangular factors:
\[
X=i n v(U) * i n v(L)
\]

The determinant of the example matrix is
\[
d=\operatorname{det}(A)
\]
which gives
\[
d=
\]

27
It is computed from the determinants of the triangular factors:
```

d=\operatorname{det}(L)*det(U)

```

The solution to \(A x=b\) is obtained with matrix division:
\[
x=A \backslash b
\]

The solution is actually computed by solving two triangular systems:
\[
y=L \backslash b, x=U \backslash y
\]
\begin{tabular}{|c|c|}
\hline Algorithm & I u uses the subroutines ZGEDI and ZGEF A from LINPACK. For more information, see the LINPACK Users' Guide. \\
\hline \multirow[t]{7}{*}{See Also} & Matrix left division (backslash) \\
\hline & Matrix right division (slash) \\
\hline & cond Condition number with respect to inversion \\
\hline & det Matrix determinant \\
\hline & inv Matrix inverse \\
\hline & qr Orthogonal-triangular decomposition \\
\hline & \(r\) r ef \(\quad\) Reduced row echelon form \\
\hline References & [1] Dongarra, J .J.,. J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979. \\
\hline
\end{tabular}

\section*{Purpose Incomplete LU matrix factorizations}
```

Syntax
Iuinc(X,'O')
[L,U] = |uinc(X,'O')
[L,U,P] = Iuinc(X,'O')
Iuinc(X,droptol)
I uinc(X,options)
[L,U] = Iuinc(X,options)
[L,U] = Iuinc(X,droptol)
[L,U,P] = Iuinc(X,options)
[L,U,P] = |uinc(X,droptol)

```

Description I uinc produces a unit lower triangular matrix, an upper triangular matrix, and a permutation matrix.

I uinc( \(\mathrm{X}, \mathrm{I}^{\prime} \mathrm{O}^{\prime}\) ) computes the incomplete LU factorization of level 0 of a square sparse matrix. The triangular factors have the same sparsity pattern as the permutation of the original sparse matrix \(x\), and their product agrees with the permutated X over its sparsity pattern. I uinc( \(\mathrm{X}, \mathrm{I} \mathrm{O}^{\prime}\) ) returns the strict lower triangular part of the factor and the upper triangular factor embedded within the same matrix. The permutation information is lost, but nnz(Iuinc(X,' \(\left.0^{\prime}\right)\) ) = nnz(X), with the possibleexception of somezeros dueto cancellation.
\([L, U]=I\) uinc \(\left(X, O^{\prime}\right)\) returns the product of permutation matrices and a unit lower triangular matrix in \(L\) and an upper triangular matrix in \(U\). The exact sparsity patterns of \(L, U\), and \(X\) are not comparable but the number of nonzeros is maintained with the possibleexception of somezeros in \(L\) and \(U\) due to cancellation:
```

nnz(L)+nnz(U)=nnz(X) +n, whereX is n-by-n.

```

The product L*U agrees with X over its sparsity pattern. (L*U) . *spones ( X) - X has entries of the order of eps.
\([L, U, P]=1\) uinc( \(X,{ }^{\prime} O^{\prime}\) ) returns a unit lower triangular matrix in \(L\), an upper triangular matrix in \(U\) and a permutation matrix in \(P . L\) has the same sparsity pattern as the lower triangle of the permuted \(X\)
```

spones(L) = spones(tril(P*X))

```
with the possible exceptions of 1 's on the diagonal of \(L\) where \(P * X\) may be zero, and zeros in \(L\) due to cancellation where \(P * X\) may be nonzero. \(U\) has the same sparsity pattern as the upper triangle of \(p * x\)
```

spones(U) = spones(triu(P*X))

```
with the possible exceptions of zeros in \(\cup\) due to cancellation where \({ }^{P} * x\) may be nonzero. The product \(L * U\) agrees within rounding error with the permuted matrix P*X over its sparsity pattern. (L*U).*spones ( \(P * X\) ) - \(P\) * \(X\) has entries of the order of eps.

I uinc(X, droptol) computes the incomplete LU factorization of any sparse matrix using a drop tolerance. dropt ol must be a non-negative scalar. I uinc(X, droptol) produces an approximation to the complete LU factors returned by \(\mid u(X)\). F or increasingly smaller values of the drop tolerance, this approximation improves, until the drop tolerance is 0 , at which time the complete LU factorization is produced, as in \(I u(X)\).

As each column j of the triangular incomplete factors is being computed, the entries smaller in magnitude than the local drop tolerance (the product of the drop tolerance and the norm of the corresponding column of X )
\[
\operatorname{droptol} * \operatorname{norm}(X(:, j))
\]
are dropped from the appropriate factor.
The only exceptions to this dropping rule are the diagonal entries of the upper triangular factor, which are preserved to avoid a singular factor.

I uinc(X, options) specifies a structurewith uptofour fields that may beused in any combination: droptol, milu,udiag, thresh. Additional fields of options are ignored.
droptol is the drop tolerance of the incomplete factorization.
If mi I u is 1, l uinc produces the modified incomplete LU factorization that subtracts thedropped elements in any column from the diagonal element of the upper triangular factor. The default value is 0 .

If udiag is 1, any zeros on the diagonal of the upper triangular factor are replaced by the local drop tolerance. The default is 0 .
thresh is the pivot threshold between 0 (forces diagonal pivoting) and 1 , the default, which always chooses the maximum magnitude entry in the column to be the pivot.thresh is desribed in greater detail in I u.

I uinc(X,options) is the sameasluinc(X,droptol) if optionshasdroptol as its only field.
\([L, U]=\) I uinc(X, options) returns a permutation of a unit lower triangular matrix in \(L\) and an upper trianglar matrix in \(U\). The product \(L * U\) is an approximation to X. I uinc (X, options) returns the strict lower triangular part of the factor and the upper triangular factor embedded within the same matrix. The permutation information is lost.
\([L, U]=\) Iuinc(X,options) is the same asluinc(X,droptol) if options has droptol as its only field.
\([L, U, P]=\) I uinc(X, options) returns a unit lower triangular matrix in L, an upper triangular matrix in \(U\), and a permutation matrix in \(P\). The nonzero entries of \(U\) satisfy
```

abs(U(i,j)) >= droptol*norm((X:,j)),

```
with the possible exception of the diagonal entries which were retained despite not satisfying the criterion. The entries of \(L\) were tested against the local drop tolerance before being scaled by the pivot, so for nonzeros in \(L\)
```

abs(L(i,j)) >= droptol*norm(X(:,j))/U(j,j).

```

The product \(L * U\) is an approximation to the permuted \(P * X\).
\([L, U, P]=I\) uinc(X,options) is the sameas \([L, U, P]=\mid\) uinc( \(X\), droptol) if options hasdroptol as its only field.

\section*{Remarks}

These incomplete factorizations may be useful as preconditioners for solving large sparse systems of linear equations. The lower triangular factors all have 1 's along the main diagonal but a single 0 on the diagonal of the upper triangular factor makes it singular. The incomplete factorization with a drop tolerance prints a warning message if the upper triangular factor has zeros on the diagonal. Similarly, using the udi a g option to replace a zero diagonal only gets rid of the symptoms of the problem but does not solve it. The preconditioner may not be singular, but it probably is not useful and a warning message is printed.

\section*{luinc}

Limitations Iuinc( \(\left.\mathrm{X}, \mathrm{'}^{\prime} \mathrm{O}^{\prime}\right)\) works on square matrices only.

\section*{Examples}

Start with a sparse matrix and compute its LU factorization.
```

 load west0479;
 S = west0479;
 LU = I u(S);
    ```


Compute the incomplete LU factorization of level 0.
\[
\begin{aligned}
& {[L, U, P]=\operatorname{Iuinc}\left(S, \prime^{\prime} O\right) ;} \\
& D=(L * U) . * \operatorname{spones}(P * S)-P * S ;
\end{aligned}
\]
spones(U) andspones(triu(P*S)) areidentical.
spones(L) andspones(tril(P*S)) disagree at 73 places on the diagonal, where \(L\) is 1 and \(P * S\) is 0 , and also at position \((206,113)\), where \(L\) is 0 due to cancellation, and \(p * s\) is -1 . \(D\) has entries of the order of eps.




[ILO,IUO,IPO] = Iuinc(S, O);
[IL1, IU1, |P1] = Iuinc(S, 1e-10);

A drop tolerance of 0 produces the complete LU factorization. Increasing the drop tolerance increases the sparsity of the factors (decreases the number of
nonzeros) but al so increases the error in the factors, as seen in the plot of drop tolerance versus norm( L*U. P*S,1)/norm(S,1) in second figure below.



Algorithm I uinc( \(\left.X,{ }^{\prime} 0^{\prime}\right)\) is based on the "KJI" variant of the LU factorization with partial pivoting. Updates are made only to positions which are nonzero in \(X\).
I uinc(X, droptol) andluinc( X, options) arebased on the column-orientedIu for sparse matrices.
See Also \begin{tabular}{ll} 
Iu \\
cholinc \\
bicg
\end{tabular}
References
Saad, Y ousef, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996, Chapter 10 - Preconditioning Techniques.

Purpose Magic square

\section*{Syntax \(\quad M=\operatorname{magic}(n)\)}

Description \(\quad M=\operatorname{magic}(n)\) returns an \(n-b y-n\) matrix constructed from the integers 1 through \(n \wedge 2\) with equal row and column sums. The order \(n\) must be a scalar greater than or equal to 3.

Remarks
A magic square, scaled by its magic sum, is doubly stochastic.

\section*{Examples The magic square of order 3 is}
```

M = magic(3)
M =
8 1 6
3 5 7
4 9

```

This is called a magic square because the sum of the elements in each column is the same.
sum( \(M\) ) =
\(15 \quad 15 \quad 15\)
And the sum of the elements in each row, obtained by transposing twice, is the same.
```

 sum(M')' =
    ```

15
15
15
This is also a special magic square because the diagonal elements have the same sum.
```

sum(diag(M))=
15

```

The value of the characteristic sum for a magic square of order \(n\) is
```

sum(1: n^2)/n

```
which, when \(n=3\), is 15 .
\begin{tabular}{|c|c|}
\hline Algorithm & There are three different algorithms: one for odd \(n\), one for even \(n\) not divisible by four, and one for even \(n\) divisible by four. \\
\hline & To make this apparent, type:
\[
\begin{aligned}
\text { for } & n=3: 20 \\
& A=\operatorname{magic}(n) ; \\
& p l o t(A, '-1) \\
& r(n)=\operatorname{rank}(A) ;
\end{aligned}
\] \\
\hline & end \\
\hline Limitations & If you supply \(n\) less than 3 , magic returns either a nonmagic square, or else the degenerate magic squares 1 and []. \\
\hline See Also & ones \(\quad\) Create an array of all ones \\
\hline & rand Uniformly distributed random numbers and arrays \\
\hline Purpose & Convert a matrix into a string \\
\hline Syntax & \(s t r=\operatorname{mat} 2 \mathrm{str}(\mathrm{A})\) \\
\hline & str \(=\) mat \(2 \mathrm{str}(\mathrm{A}, \mathrm{n})\) \\
\hline Description & str \(=\) mat \(2 \operatorname{str}(A)\) converts matrixA into a string, suitable for input to the eval function, using full precision. \\
\hline & str \(=\) mat \(2 \operatorname{str}(A, n)\) converts matrixA using \(n\) digits of precision. \\
\hline Limitations & The mat 2 str function is intended to operate on scalar, vector, or rectangular array inputs only. An error will result if A is a multidimensional array. \\
\hline Examples & Consider the matrix: \\
\hline & \(\mathrm{A}=\) \\
\hline & 12 \\
\hline & 34 \\
\hline & The statement \\
\hline & \[
b=\operatorname{mat} 2 \operatorname{str}(A)
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & quit Terminate MATLAB \\
\hline Purpose & Root directory of MATLAB installation \\
\hline Syntax & \(r d=\) matlabroot \\
\hline Description & \(r d=\) matlabroot returns the name of the directory in which theMATLAB software is installed. \\
\hline Example & fullfile(matlabroot,'toolbox','matlab', 'general','' produces a full path to the 00 l box/matlab/general directory that is correct for the platform it is executed on. \\
\hline Purpose & Maximum elements of an array \\
\hline Syntax & \[
\begin{aligned}
& C=\max (A) \\
& C=\max (A, B) \\
& C=\max (A,[], \operatorname{dim}) \\
& {[C, 1]=\max (\ldots)}
\end{aligned}
\] \\
\hline Description & \(C=\max (A)\) returns the largest elements along different dimensions of an array. \\
\hline & If \(A\) is a vector, \(\max (\mathrm{A})\) returns the largest element in A . \\
\hline & If \(A\) is a matrix, \(\max (A)\) treats the columns of \(A\) as vectors, returning a row vector containing the maximum element from each column. \\
\hline & If \(A\) is a multidimensional array, \(\max (A)\) treats the values along the first non-singleton dimension as vectors, returning the maximum value of each vector. \\
\hline & \(C=\max (A, B)\) returns an array the same size as \(A\) and \(B\) with the largest elements taken from \(A\) or \(B\). \\
\hline & \(C=\max (A,[], d i m)\) returns the largest elements along the dimension of \(A\) specified by scalar dim. For example, \(\max (A,[], 1)\) produces the maximum values al ong the first dimension (the rows) of \(A\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \([C, I]=\max (\ldots)\) finds the indices of the maximum values of \(A\), and returns them in output vector I. If there are several identical maximum values, the index of the first one found is returned. \\
\hline Remarks & F or complex input A, max returns the complex number with the largest modulus, computed with \(\max (\operatorname{abs}(A))\). The max function ignores NaNs. \\
\hline \multirow[t]{5}{*}{See Also} & isnan Detect Not-A-Number ( NaN ) \\
\hline & mean Average or mean values of array \\
\hline & median Median values of array \\
\hline & mi n Minimum elements of an array \\
\hline & sort Sort elements in ascending order \\
\hline Purpose & Average or mean value of arrays \\
\hline \multirow[t]{2}{*}{Syntax} & \(M=\operatorname{mean}(A)\) \\
\hline & \(M=\operatorname{mean}(A, d i m)\) \\
\hline \multirow[t]{5}{*}{Description} & \(M=\operatorname{mean}(A)\) returns the mean values of the elements along different dimensions of an array. \\
\hline & If \(A\) is a vector, mean ( \(A\) ) returns the mean value of \(A\). \\
\hline & If A is a matrix, mean (A) treats the columns of A as vectors, returning a row vector of mean values. \\
\hline & If \(A\) is a multidimensional array, mean (A) treats the values along the first non-singleton dimension as vectors, returning an array of mean values. \\
\hline & \(M=\operatorname{me} a n(A, d i m)\) returns the mean values for elements along the dimension of A specified by scalar di m. \\
\hline \multirow[t]{7}{*}{Examples} & \[
\begin{aligned}
& A=\left[\begin{array}{llllllllllllll}
1 & 2 & 4 ; & 4 & 6 & 6 ; 5 & 6 & 8 & 8 & 6 & 8
\end{array}\right] ; \\
& \operatorname{mean}(A)
\end{aligned}
\] \\
\hline & ans \(=\) \\
\hline & \(3.5000 \quad 4.5000 \quad 6.5000 \quad 6.5000\) \\
\hline & mean ( \(A, 2)\) \\
\hline & ans \(=\) \\
\hline & 2.7500 \\
\hline & 4.7500 \\
\hline
\end{tabular}




After input is accepted, use \(k\) to control the color of a graph.
```

color = ['r','g','b']
plot(t,s,color(k))

```

\section*{See Also}

Theuicontrol command in the MATLAB Graphics Guide, and:

Purpose

\section*{Syntax}

Request user input
Generate \(X\) and \(Y\) matrices for three-dimensional plots
\([X, Y]=\) meshgrid \((x, y)\)
\([X, Y]=\operatorname{meshgrid}(x)\)
\([X, Y, Z]=\) meshgrid(x,y,z)
Description \([X, Y]=\) meshgrid \((x, y)\) transforms the domain specified by vectors \(x\) and \(y\) into arrays \(X\) and \(Y\), which can be used to evaluate functions of two variables and three-dimensional mesh/surface plots. The rows of the output array \(X\) are copies of the vector \(x\); columns of the output array \(Y\) are copies of the vector \(y\).
\([X, Y]=\operatorname{meshgrid}(X)\) is the same as \([X, Y]=\operatorname{meshgrid}(X, X)\).
\([X, Y, Z]=\) meshgrid( \(x, y, z)\) produces three-dimensional arrays used to evaluate functions of three variables and three-dimensional volumetric plots.

Themeshgrid function is similar tondgrid except that the order of the first two input and output arguments is switched. That is, the statement
```

[X,Y,Z] = meshgrid(x,y,z)

```
produces the same result as
\[
[Y, X, Z]=\operatorname{ndgrid}(y, x, z)
\]

Because of this, meshgrid is better suited to problems in two- or three-dimensional Cartesian space, whilendgrid is better suited to multidimensional problems that aren't spatially based.
meshgrid is limited to two- or three-dimensional Cartesian space.

\section*{Examples The function}
\[
[X, Y]=\text { meshgrid }(1: 3,10: 14)
\]
produces two output arrays, X and Y :
X =
\begin{tabular}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{tabular}
\(Y=\)\begin{tabular}{rrr}
1 & 2 & 3 \\
1 & 2 & 3 \\
& & \\
10 & 10 & 10 \\
11 & 11 & 11 \\
12 & 12 & 12 \\
13 & 13 & 13 \\
14 & 14 & 14
\end{tabular}
\begin{tabular}{ll} 
See Also mesh, slice, andsurf in the MATLAB Graphics Guide, griddata, ndgrid \\
Purpose & Display method names
\end{tabular}
\begin{tabular}{ll} 
Syntax \(\quad\) & methods class_name \\
& \(n=\) methods('class_name')
\end{tabular}
Description methods class_name displays the names of the methods for the class with the
nameclass_name.
n = methods('class_name') returns the method names in a cell array of
strings.
\begin{tabular}{lll} 
See Also & \begin{tabular}{l} 
help \\
what \\
which
\end{tabular} & \begin{tabular}{l} 
Online help for MATLAB functions and M-files \\
List M-, MAT- and MEX-files
\end{tabular} \\
Purpose & Return the MEX-filename extension
\end{tabular}
Syntax ext = mexext
Description ext = mexext returns the filename extension for the current platform.
Purpose The name of the currently running M-file
Syntax ..... mfilename
Description

M-file. When called from within an M-file, it returns the name of that M-file,
\begin{tabular}{|c|c|}
\hline & allowing an \(M\)-file to determine its name, even if the filename has been changed. \\
\hline & When called from the command line, mf il ename returns an empty matrix. \\
\hline Purpose & Minimum elements of an array \\
\hline Syntax & \(C=\min (A)\) \\
\hline & \(C=\min (A, B)\) \\
\hline & \(C=\min (A,[], d i m)\) \\
\hline & \([C, 1]=\min (\ldots)\) \\
\hline Description & \(C=m i n(A)\) returns the smallest elements along different dimensions of an array. \\
\hline & If \(A\) is a vector, min n () returns the smallest element in \(A\). \\
\hline & If \(A\) is a matrix, \(\mathrm{mi} \mathrm{n}(\mathrm{A})\) treats the columns of A as vectors, returning a row vector containing the minimum element from each column. \\
\hline & If A is a multidimensional array, min operates along the first nonsingleton dimension. \\
\hline & \(C=\operatorname{mi} n(A, B)\) returns an array the same size as \(A\) and \(B\) with the smallest elements taken from \(A\) or \(B\). \\
\hline & \(C=m i n(A,[]\), dim) returns the smallest elements along the dimension of \(A\) specified by scalar di m. For example, mi \(n(A,[], 1)\) produces the minimum values along the first dimension (the rows) of \(A\). \\
\hline & \([C, 1]=\min (\ldots)\) finds the indices of the minimum values of \(A\), and returns them in output vector I. If there are several identical minimum values, the index of the first one found is returned. \\
\hline Remarks & For complex input A, mi \(n\) returns the complex number with the smallest modulus, computed with min(abs(A)). The min function ignores NaNs . \\
\hline See Also & \(\max\) x Maximum elements of an array \\
\hline & mean Average or mean values of array \\
\hline & median Median values of array \\
\hline & sort Sort elements in ascending order \\
\hline
\end{tabular}

\section*{Purpose Modulus (signed remainder after division)}

\section*{Syntax \(\quad M=\bmod (X, Y)\)}

Definition \(\bmod (x, y)\) is \(x \bmod y\).
Description \(\quad M=\bmod (X, Y)\) returnstheremainder \(X-Y . * f \operatorname{loor}(X . / Y)\) for nonzeroy, and returns \(X\) otherwise. \(\bmod (X, Y)\) always differs from \(X\) by a multiple of \(Y\).

\section*{Remarks}

Examples

Limitations

See Also
rem

Remainder after division

Purpose Control paged output for the command window
Syntax \begin{tabular}{cc} 
more off \\
more on \\
\(m o r e(n)\)
\end{tabular}

Description

See Also
Purpose
Syntax \(\quad y=\operatorname{mu} 21 i n(m u)\)
more of \(f\) disables paging of the output in the MATLAB command window.
more on enables paging of the output in the MATLAB command window.
more(n) displays \(n\) lines per page.
When you've enabled more and are examining output: per page.
diary Save session in a disk file
Mu-law to linear conversion.
\(y=m u 2 l i n(m u)\)
\begin{tabular}{ll}
\hline Press the... & To... \\
\hline Return key & Advance to the next line of output. \\
\hline Space bar & Advance to the next page of output. \\
\hline \(\mathbf{q}\) (for quit) key & Terminate display of the text. \\
\hline
\end{tabular}

By default, more is disabled. When enabled, more defaults to displaying 23 lines

Description

See Also
Purpose
auread
lin2mu
Not-a-N umber
\(y=m u 2 l i n(m u) \quad\) converts mu-law encoded 8 -bit audio signals, stored as "flints" in the range \(0 \leq m u \leq 255\), to linear signal amplitude in the range-s < \(y<s\) wheres \(=32124 / 32768 \sim=.9803\). The input mu is often obtained using fread(...., uchar') to read byte-encoded audio files. "Flints" are MATLAB's integers - floating-point numbers whose values are integers.

Read NeXT/SUN (.au) sound file Linear to mu-law conversion
Syntax ..... NaNDescription NaN returns the IEEE arithmetic representation for Not-a-Number (NaN).These result from operations which have undefined numerical results.
Examples
Remarks
See Also
Purpose Check number of input arguments
Syntax msg = nargchk(low, high, number)
Description
Argumentslow, high The minimum and maximum number of input arguments thatshould be passed.
number The number of arguments actually passed, as determined by thenargin function.

\section*{Examples}

See Also
Purpose

\section*{Syntax}

Description

\section*{Examples}

Given the function \(f 00\) :
```

function f = foo(x,y,z)
error(nargchk(2,3,nargin))

```

Then typing f 0 (1) produces:
```

Not enough input arguments.

```
nargin, nargout Number of function arguments
Number of function arguments
```

n = nargin
n = nargin('fun')
n = nargout
n = nargout('fun')

```

In the body of a function \(M\)-file, nargin and nargout indicate how many input or output arguments, respectively, a user has supplied. Outside the body of a function M-file, nargin and nargout indicate the number of input or output arguments, respectively, for a given function. The number of arguments is negative if the function has a variable number of arguments.
nargin returns the number of input arguments specified for a function.
nargin('fun') returns the number of declared inputs for the M-file function \(f\) un or -1 if the function has a variable of input arguments.
nargout returns the number of output arguments specified for a function.
nargout('fun') returns the number of declared outputs for the M-file function fun.

This example shows portions of the code for a function called my pl ot , which accepts an optional number of input and output arguments:
```

function [x0,y0] = myplot(fname,lims,npts,angl, subdiv)
% MYPLOT PIot a function.
% MYPLOT(fname, lims,npts,angl, subdiv)
% The first two input arguments are
% required; the other three have default values.

```

\section*{nchoosek}
```

if nargin < 5, subdiv = 20; end
if nargin < 4, angl = 10; end
if nargin < 3, npts = 25; end
if nargout == 0
plot(x,y)
else
x0 = x;
y0 = y;
end

```
\begin{tabular}{lll} 
See Also & inputname & Input argument name \\
nargchk & Check number of input arguments \\
Purpose & All combinations of the n elements inv taken k at a time
\end{tabular}
Syntax

        C = nchoosek(v, k)

Description

Examples

Limitations

\section*{See Also}

Purpose

\section*{Syntax}
\(C=n \operatorname{choosek}(v, k)\), where \(v\) is a row vector of length \(n\), creates a matrix whose rows consist of all possible combinations of the \(n\) elements of \(v\) taken \(k\) at a time. Matrix \(C\) contains \(n!/((n-k)!k!)\) rows and \(k\) columns.

Thecommandnchoosek (2:2:10,4) returns theeven numbers from two toten, taken four at a time:
\begin{tabular}{rrrr}
2 & 4 & 6 & 8 \\
2 & 4 & 6 & 10 \\
2 & 4 & 8 & 10 \\
2 & 6 & 8 & 10 \\
4 & 6 & 8 & 10
\end{tabular}

This function is only practical for situations wheren is less than about 15.
perms All possible permutations
Generate arrays for multidimensional functions and interpolation
\(\left[x_{1}, x_{2}, x_{3}, \ldots\right]=n d g r i d\left(x 1, x 2, x_{3}, \ldots\right)\)
\(\left[X_{1}, X_{2}, \ldots\right]=n d g r i d(x)\)


Purpose Next power of two

\section*{Syntax \(\quad p=\) nextpow2(A)}

Description \(\quad p=\) nextpow2(A) returns the smallest power of two that is greater than or equal to the absolute value of \(A\). (That is, \(p\) that satisfies \(2 \wedge p \geq a b s(A)\) ).

This function is useful for optimizing FFT operations, which are most efficient when sequence length is an exact power of two.

If A is non-scalar, next pow2 returns the smallest power of two greater than or equal tol ength(A).

\section*{Examples}

For any integer \(n\) in the range from 513 to 1024 , nextpow2(n) is 10 .
For a 1-by-30 vector \(A, 1\) ength(A) is 30 and nextpow2(A) is 5.
\begin{tabular}{lll} 
See Also & \(f f t\) & \begin{tabular}{l} 
One-dimensional fast Fourier transform \\
\\
\(\log 2\)
\end{tabular} \\
& Bow2 & \begin{tabular}{l} 
Base 2 logarithm and dissect floating-point numbers \\
into exponent and mantissa
\end{tabular} \\
& Base 2 power and scale floating-point numbers
\end{tabular}

Purpose Nonnegative least squares
Syntax \begin{tabular}{ll}
\(x=n n \mid s(A, b)\) \\
\(x=n n \mid s(A, b, t o l)\) \\
{\([x, w]=n n \mid s(A, b)\)} \\
& {\([x, w]=n n \mid s(A, b, t o l)\)}
\end{tabular}

Description
\(x=n n \mid s(A, b)\) solves the system of equations \(A x=b\) in a least squares sense, subject to the constraint that the solution vector \(x\) has nonnegative elements: \(x_{j} \geq 0, j=1,2, \ldots n\). The solution \(x\) minimizes \(\|(A x=b)\|\) subject to \(x \geq 0\).
\(x=n n \mid s(A, b, t o l)\) solves the system of equations, and specifies a tolerance tol. By default, tol is: max(size(A)) *norm(A, 1) *eps.
\([x, w]=n n \mid s(A, b)\) also returns the dual vector \(w\), where \(w_{i} \leq 0\) when \(x_{i}=0\) and \(w_{i} \cong 0\) when \(x_{i}>0\).
\([x, w]=n n \mid s(A, b, t o l)\) solves the system of equations, returns the dual vector \(w\), and specifies a tolerance \(t\) ol.

Examples Compare the unconstrained least squares solution to thennls solution for a 4-by-2 problem:
\(A=\)
\(0.0372 \quad 0.2869\)
\(0.6861 \quad 0.7071\)
\(0.6233 \quad 0.6245\)
\(0.6344 \quad 0.6170\)
b =
0.8587
0.1781
0.0747
0.8405
\([A|b n n| s(A, b)]=\)
-2.5627 0
\(3.1108 \quad 0.6929\)
```

[norm(A*(a\b)-b) norm(A*nnls(a,b)-b)]=
0.6674 0.9118

```

The solution fromnnls does not fit as well, but has no negative components.
Algorithm
See Also
References
Thennls function uses the algorithm described in [1], Chapter 23. The algo-
rithm starts with a set of possible basis vectors, computes the associated dual
vector \(w\), and selects the basis vector corresponding to the maximum value in \(w\)
to swap out of the basis in exchange for another possible candidate, until \(w \leq 0\)

Purpose Number of nonzero matrix elements

\section*{Syntax \\ \(n=n n z(X)\)}

Description \(\quad n=n n z(X)\) returns the number of nonzero elements in matrix \(x\).
The density of a sparse matrix isnnz(X)/prod(size(X)).

\section*{Examples The matrix}
\[
w=\text { sparse(wilkinson(21)); }
\]
is a tridiagonal matrix with 20 nonzeros on each of three diagonals, so \(n n z(w)=60\).

See Also find
nonzeros
nz max
size
whos
isa

Find indices and values of nonzero elements Nonzero matrix elements
Amount of storage allocated for nonzero matrix elements
Array dimensions
List directory of variables in memory Detect an object of a given class

Purpose Nonzero matrix elements

\section*{Syntax \\ \(s=\) nonzeros(A)}

Description
\(s=\) nonzeros(A) returns a full column vector of the nonzero elements in A, ordered by columns.

This gives thes, but not thei and \(j\), from \([i, j, s]=f i n d(A)\). Generally,
Iength(s) \(=n n z(A) \leq n z \max (A) \leq \operatorname{prod}(s i z e(A))\)

See Also find
nnz
n z max
size
whos
i sa

Find indices and values of nonzero elements Number of nonzero matrix elements Amount of storage allocated for nonzero matrix elements
Array dimensions
List directory of variables in memory Detect an object of a given class

Purpose Vector and matrix norms
Syntax \(\quad\)\begin{tabular}{rl}
\(n\) & \(=\operatorname{norm}(A)\) \\
\(n\) & \(=\operatorname{norm}(A, p)\)
\end{tabular}

Description

Remarks

See Also
cond
normest

Condition number with respect to inversion 2-norm estimate

\section*{Purpose 2-norm estimate}
\begin{tabular}{ll} 
Syntax & \(n r m=\operatorname{normest}(S)\) \\
& \(n r m=\operatorname{normest}(S, t o l)\) \\
& {\([n r m\), count \(]=\) normest \((\ldots)\)}
\end{tabular}

Description This function is intended primarily for sparse matrices, although it works correctly and may be useful for large, full matrices as well.
\(n r m=n o r m e s t(S)\) returns an estimate of the 2-norm of the matrix \(s\).
\(n r m=n o r m e s t(S, t o l)\) uses relativeerrortol instead of the default tolerance 1. e-6. The value of \(t\) ol determines when the estimate is considered acceptable.
[nrm, count] = normest(...) returns an estimate of the 2-norm and also gives the number of power iterations used.

The matrix W = gallery('wilkinson', 101) is a tridiagonal matrix. Its order, 101, is small enough that norm( \(\mathrm{full} / \mathrm{W}\) ) ), which involves \(\mathrm{svd}(\mathrm{full}(\mathrm{W})\) ), is feasible. The computation takes 4.13 seconds (on one computer) and produces the exact norm, 50.7462. On the other hand, normest (sparse(W) ) requires only 1.56 seconds and produces the estimated norm, 50.7458.

Algorithm
The power iteration involves repeated multiplication by the matrix \(s\) and its transpose, \(\mathrm{s}^{\prime}\). The iteration is carried out until two successive estimates agree to within the specified relative tolerance.
\begin{tabular}{lll} 
See Also & cond & Condition number with respect to inversion \\
condest \\
norm \\
svd & 1-norm matrix condition number estimate \\
& Vector and matrix norms \\
& Singular value decomposition
\end{tabular}

Purpose Current date and time

\section*{Syntax}

Description
\(\mathrm{t}=\) now returns the current date and time as a serial date number. To return the time only, use rem(now, 1). To return the date only, use floor (now).
t1 = now, t2 \(=r e m(n o w, 1)\)
t1 =
7. \(2908 e+05\)
t \(2=\)
0.4013

\section*{See Also}
clock
date
datenum

Current time as a date vector Current date string
Serial date number

Purpose Null space of a matrix

\section*{Syntax}

Description
Remarks

\section*{See Also}
orth
qr
svd
\(B^{\prime} * B=1, A * B\) has negligible elements, and (if \(B\) is not equal to the empty matrix) the number of columns of \(B\) is the nullity of \(A\).

Range space of a matrix
Orthogonal-triangular decomposition
Singular value decomposition

Purpose Convert a numeric array into a cell array
Syntax \(\quad\)\begin{tabular}{rl}
\(c\) & \(=\) num2cell(A) \\
\(c\) & \(=\) num2cell(A, dims)
\end{tabular}

Description

Examples The statement
num2cell( \(A, 2\) )
places the rows of A into separate cells. Similarly
```

num2cell(A,[1 3])

```
places the column-depth pages of A into separate cells.
See Also
cat
Concatenate arrays
Purpose Number to string conversion
```

Syntax str = num2str(A)
str = num2str(A, precision)
str = num2str(A,format)

```

Description Thenum2str function converts numbers to their string representations. This function is useful for labeling and titling plots with numeric values.
str = num2str(a) converts array A intoa string representation str with roughly four digits of precision and an exponent if required.
str = num2str(a, precision) converts the array A into a string representationstr with maximum precision specified by precision. Argument precis sion specifies the number of digits the output string is to contain. The default is four.
str = num2str(A, format) converts arrayA using the supplied format. By default, this is ' \(\% 11.4 \mathrm{~g}\) ', which signifies four significant digits in exponential or fixed-point notation, whichever is shorter. (Seef print f for format string details).

\section*{Examples num2str(pi) is 3.142.}
num2str(eps) is 2. 22e-16.
num2str(magic(2)) produces the string matrix
13
42
\begin{tabular}{lll} 
See Also & fprintf & Write formatted data to file \\
int \(2 s t r\) & Integer to string conversion \\
& sprintf & Write formatted data to a string
\end{tabular}

Purpose Amount of storage allocated for nonzero matrix elements

\section*{Syntax \(\quad n=n z \max (S)\)}

Description \(\quad n=n z \max (S)\) returns the amount of storage allocated for nonzero elements.
If \(S\) is a sparse matrix... \(n z \max (S)\) is the number of storage locations allocated for the nonzero elements in \(S\).

If \(S\) is a full matrix... \(n z \max (S)=\operatorname{prod}(\operatorname{size}(S))\).
Often, \(n n z(S)\) and \(n z \max (S)\) are the same. But if \(S\) is created by an operation which produces fill-in matrix elements, such as sparse matrix multiplication or sparse LU factorization, more storage may be allocated than is actually required, and \(n z \max (s)\) reflects this. Alternatively, sparse(i, j, s, m, \(n\), \(n z \max\) ) or its simpler form, \(\mathrm{spal} \mid \mathrm{oc}(\mathrm{m}, \mathrm{n}, \mathrm{nz} \max )\), can set nz max in anticipation of later fill-in.
\begin{tabular}{lll} 
See Also & find & Findindices and values of nonzero elements \\
\(n n z\) & Number of nonzero matrix elements \\
nonzeros & Nonzero matrix elements \\
& whos & Array dimensions \\
& isa & List directory of variables in memory \\
& Detect an object of a given class
\end{tabular}

\section*{ode45, ode23, ode113, ode15s, ode23s}

\section*{Purpose Solve differential equations}
```

Syntax [T,Y] = solver('F',tspan,y0)
[T,Y] = solver('F',tspan,y0,options)
[T,Y] = solver('F',tspan,y0,options,p1,p2...)
[T,Y,TE,YE,IE] = solver('F',tspan,yO,options)
[T,X,Y] = solver('model',tspan,y0,options,ut,p1,p2,...)

```

\section*{Arguments F}

F Name of the ODE file, a MATLAB function of \(t\) and \(y\) returning a column vector. All solvers can solve systems of equations in the form \(y^{\prime}=F(t, y) .0 d e 15 \mathrm{~s}\) andode23s can both solve equations of the form \(\mathrm{My}^{\prime}=\mathrm{F}(\mathrm{t}, \mathrm{y})\). Only ode 15 s can solve equations in the form \(\mathrm{M}(\mathrm{t}) \mathrm{y}^{\prime}=\mathrm{F}(\mathrm{t}, \mathrm{y})\). For information about ODE file syntax, see the odefile reference page.
tspan A vector specifying the interval of integration[totfinal]. To obtain solutions at specific times (all increasing or all decreasing), usetspan \(=[t 0, t 1, \ldots, t f i n a l]\).
y \(0 \quad\) A vector of initial conditions.
options Optional integration argument created using theodeset function. Seeodeset for details.
p1, p2... Optional parameters to be passed to F.
T, Y Solution matrix Y, where each row corresponds to a time returned in column vector T .

Description \([T, Y]=\operatorname{solver('F',tspan,y0)~withtspan~}=[t 0\) tfinal] integrates the system of differential equations \(y^{\prime}=F(t, y)\) from timet 0 to \(t\) inal with initial conditions yo.' F ' is a string containing the name of an ODE file. Function \(F(t, y)\) must return a column vector. Each row in solution array y corresponds to a time returned in column vector \(t\). To obtain solutions at the specific times to,t1, ..., tfinal (all increasing or all decreasing), usetspan = [totl... tfinal].
\([T, Y]=\) solver('F',tspan, y 0 , options) solves as above with default integration parameters replaced by property values specified in options, an argument created with theodeset function (seeodes et for details). Commonly used

\section*{ode45, ode23, ode113, ode15s, ode23s}
properties include a scalar relative error tolerance Rel Tol (1e-3 by default) and a vector of absolute error tolerances Abstol (all component sle-6 by default).
\([T, Y]=\) solver('F',tspan,y0, options, p1, p2...) solves as above, passing the additional parameters p1, p2 . . . to the M-file F, whenever it is called. Use options = [] as a place holder if no options are set.
[T,Y,TE,YE,IE] = solver('F',tspan,yo,options) with the Events property in options set to 'on', solves as above while also locating zero crossings of an event function defined in the ODE file. TheODE filemust be coded sothat F(t,y, 'events') returns appropriate information. Seeodefile for details. Output TE is a column vector of times at which events occur, rows of YE are the corresponding solutions, and indices in vector I E specify which event occurred.

When called with no output arguments, the solvers call the default output function odepl ot to plot the solution as it is computed. An alternate method is to set the Out putfon property to'odeplot'. Set the Out put Fcn property to 'odephas 2' or 'odephas 3' for two- orthree-dimensional phase plane plotting. Seeodefile for details.

For the stiff solversode15s andode23s, theJ acobian matrix \(\partial \mathrm{F} / \partial \mathrm{y}\) is critical to reliability and efficiency so there are special options. Set J Constant to' on' if \(\partial \mathrm{F} / \partial \mathrm{y}\) is constant. Set Vect orized to on' if the ODE file is coded so that \(F(t,[y 1\) y \(2 \ldots])\) returns [ \(F(t, y 1) F(t, y 2) \ldots]\). Setlatternto'on' if \(\partial F / \partial y\) is a sparse matrix and the ODE file is coded so that
F([],[], 'jpattern') returns a sparsity pattern matrix of 1 's and 0 's showing the nonzeros of \(\partial \mathrm{F} / \partial \mathrm{y}\). Set J a cobian to \({ }^{\prime}\) on' if the ODE file is coded so that \(F\left(t, y,{ }^{\prime} j a c o b i a n '\right)\) returns \(\partial F / \partial y\).

Both ode15s andode23s can solve problems \(\mathrm{M} \mathrm{y}^{\prime}=\mathrm{F}(\mathrm{t}, \mathrm{y})\) with a constant mass matrix \(M\) that is nonsingular and (usually) sparse. Set Mass to' on' if the ODE file is coded so that \(\mathrm{F}([],[], '\) mass') returns M (seef em2ode). Only ode15s can solve problems \(M(\mathrm{t}) \mathrm{y}^{\prime}=\mathrm{F}(\mathrm{t}, \mathrm{y})\) with a time-dependent mass matrix \(M(t)\) that is nonsingular and (usually) sparse. Set Mass to 'on' if the ODE file is coded so that \(\mathrm{F}(\mathrm{t},[\mathrm{l}\), , mass') returns \(\mathrm{M}(\mathrm{t})\) (seef emlode). For odel5s set MassConstant to'on' if \(M\) is constant.
\([T, X, Y]=\) solver ('model', tspan, y0, options, ut, p1, p2, ...) solves a SIMULINK model by calling the corresponding solver in SIMULINK:
```

[T,X,Y] = sim(solver,' model',...)

```

Theoptions argument is created with theodeset function. Seesim.
\begin{tabular}{|ll|l|l}
\hline Solver & \begin{tabular}{l} 
Problem \\
Type
\end{tabular} & \begin{tabular}{l} 
Order of \\
Accuracy
\end{tabular} & When to Use \\
\hline 0de45 & Nonstiff & Medium & \begin{tabular}{l} 
Most of the time. This should be the first solver you \\
try.
\end{tabular} \\
\hline 0de23 & Nonstiff & Low & \begin{tabular}{l} 
If using crude error tolerances or solving moderately \\
stiff problems.
\end{tabular} \\
\hline 0de113 & Nonstiff & Low to high & \begin{tabular}{l} 
If using stringent error tolerances or solving a \\
computationally intensive ODE file.
\end{tabular} \\
\hline 0de15s & Stiff & \begin{tabular}{l} 
Low to \\
medium
\end{tabular} & \begin{tabular}{l} 
If ode45 is slow (stiff systems) or there is a mass \\
matrix.
\end{tabular} \\
\hline 0de23s & Stiff & Low & \begin{tabular}{l} 
If using crude error tolerances to solve stiff systems or \\
there is a constant mass matrix.
\end{tabular} \\
\hline
\end{tabular}

The algorithms used in the ODE solvers vary according to order of accuracy [5] and the type of systems (stiff or nonstiff) they are designed to solve. See Algorithms on page 2-459 for more details.

It is possible to specifytspan,yo andoptions in the ODE file (seeodefile). If tspan or y 0 is empty, then the solver calls the ODE file:
```

[tspan,y0,options]= F([],[],'init')

```
to obtain any values not supplied in the solver's argument list. Empty arguments at the end of the call list may be omitted. This permits you to call the solvers with other syntaxes such as:
```

[T,Y] = solver('F')
[T,Y] = solver('F',[],y0)
[T,Y] = solver('F',tspan,[],options)
[T,Y] = solver('F',[],[],options)

```

\section*{ode45, ode23, ode113, ode15s, ode23s}

Integration parameters (options) can be specified both in the ODE file and on the command line. If an option is specified in both places, the command line specification takes precedence. F or information about constructing an ODE file, see the odefil e reference page.

Options
Different sol vers accept different parameters in the options list. F or more information, seeodeset and Applying MATLAB.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters & ode45 & ode23 & ode113 & ode115s & ode23s \\
\hline Reltol, Abstol & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Outputfen, OutputSel, Refine,Stats & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Events & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline MaxStep, InitialStep & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \begin{tabular}{l}
J Constant, \\
Jacobian, \\
JPattern, \\
Vectorized
\end{tabular} & - & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline \begin{tabular}{l}
Mass \\
MassConstant
\end{tabular} & - & - & - & \[
\begin{aligned}
& \sqrt{ } \\
& \sqrt{2}
\end{aligned}
\] & \[
\sqrt{ }
\] \\
\hline MaxOrder, BDF & - & - & - & \(\checkmark\) & - \\
\hline
\end{tabular}

Examples
Example 1. An example of a nonstiff system is the system of equations describing the motion of a rigid body without external forces:
\[
\begin{array}{ll}
\mathrm{y}_{1}^{\prime}=\mathrm{y}_{2} \mathrm{y}_{3} & \mathrm{y}_{1}(0)=0 \\
\mathrm{y}_{2}^{\prime}=-\mathrm{y}_{1} \mathrm{y}_{3} & \mathrm{y}_{2}(0)=1 \\
\mathrm{y}_{3}^{\prime}=-0.51 \mathrm{y}_{1} \mathrm{y}_{2} & \mathrm{y}_{3}(0)=1
\end{array}
\]

To simulate this system, create a function M-file rigid containing the equations:
```

function dy = rigid(t,y)
dy=zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3)=-0.51*y(1)*y(2);

```

In this example we will change the error tolerances with the odeset command and solve on a time interval of [ 0 12] with initial condition vector [ \(\left.\begin{array}{llll}0 & 1 & 1\end{array}\right]\) at time 0 .
```

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[t,y] = ode45('rigid',[[0 12],[$$
\begin{array}{lll}{0}&{1}&{1],options);}\end{array}
$$]

```

Plotting the columns of the returned array \(Y\) versus \(T\) shows the solution:
```

plot(T,Y(:, 1),' -', T,Y(:, 2),' -.',T,Y(:, 3),'.')

```


Example 2. An example of a stiff system is provided by the van der Pol equations governing relaxation oscillation. The limit cycle has portions where the

\section*{ode45, ode23, ode113, ode15s, ode23s}
solution components change slowly and the problem is quite stiff, alternating with regions of very sharp change where it is not stiff.
\[
\begin{array}{ll}
\mathrm{y}_{1}^{\prime}=\mathrm{y}_{2} & \mathrm{y}_{1}(0)=0 \\
\mathrm{y}_{2}^{\prime}=1000\left(1-\mathrm{y}_{1}^{2}\right) \mathrm{y}_{2}-\mathrm{y}_{1} \mathrm{y}_{2}(0)=1
\end{array}
\]

To simulate this system, create a function M-filev dp 1000 containing the equations:
```

function dy = vdp1000(t,y)
dy=zeros(2,1); % a column vector
dy(1) = y(2);
dy(2)=1000*(1-y(1)^2)*y(2) - y(1);

```

F or this problem, we will use the default relative and absolute tolerances ( \(1 \mathrm{e}-3\) and 1e-6, respectively) and solve on a time interval of [0 3000] with initial condition vector [20] at time 0 .
```

[T,Y] = ode15s('vdp1000',[0 3000],[2 0]);

```

Plotting the first column of the returned matrix \(Y\) versus \(T\) shows the solution:
```

plot(T,Y(:,1),'-0'):

```


\footnotetext{
Algorithms

See Also odeset,odeget,odefile
References [1] Dormand, J. R. and P. J. Prince, "A family of embedded Runge-Kutta formulae,"J . Comp. Appl. Math., Vol. 6, 1980, pp 19-26.
[2] Bogacki, P. and L. F. Shampine, "A 3(2) pair of Runge-K utta formulas," Appl. Math. Letters, Vol. 2, 1989, pp 1-9.
[3] Shampine, L. F. and M. K. Gordon, Computer Sol ution of Ordinary Differential Equations: the Initial ValueProblem, W. H. Freeman, San Francisco, 1975.
[4] F orsythe, G. , M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations, Prentice-H all, New J ersey, 1977.
}

\section*{ode45, ode23, ode113, ode15s, ode23s}
[5] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations, Chapman \& Hall, New York, 1994.
[6] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall, New J ersey, 1989.
[7] Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," (to appear in SIAM J ournal on Scientific Computing, Vol. 18-1, 1997).

\section*{Purpose Define a differential equation problem for ODE solvers}

Description odefile is not a command or function. It is a help entry that describes how to create an \(M\)-file defining the system of equations to be solved. This definition is the first step in using any of MATLAB's ODE solvers. In MATLAB documentation, this M-file is referred to as odefile, although you can give your M-file any name you like.

You can use the odefile M-file to define a system of differential equations in one of these forms:
\[
\begin{aligned}
& y^{\prime}=F(t, y) \\
& M y^{\prime}=F(t, y) \\
& M(t) y^{\prime}=F(t, y)
\end{aligned}
\]
where:
- t is a scalar independent variable, typically representing time.
- \(y\) is a vector of dependent variables.
- \(F\) is a function of \(t\) and \(y\) returning a column vector the same length as \(y\).
- \(M\) and \(M(t)\) represent nonsingular constant or time dependent mass matrices.

The ODE file must accept the arguments \(t\) and \(y\), although it does not have to use them. By default, the ODE file must return a column vector the same length as \(y\).

Only the stiff solver ode15s can solve \(M(t) y^{\prime}=F(t, y)\). Bothode15s and ode23s can solve equations of the form \(\mathrm{My}^{\prime}=\mathrm{F}(\mathrm{t}, \mathrm{y})\).

Beyond defining a system of differential equations, you can specify an entire initial value problem (IVP) within the ODE M-file, eliminating the need to supply time and initial value vectors at the command line (see Examples on page 2-464).

\section*{To use the ODE file template:}
- Enter the command help odefile to display the help entry.
- Cut and paste the ODE file text into a separate file.
- Edit the file to eliminate any cases not applicable to your IVP.
- Insert the appropriate information where indicated. The definition of the ODE system is required information. (See item 2 as well as Examples on page 2-464). Here is an annotated version of the result:
```

function [out1,out 2,out 3] = odefile(t,y,flag, p1, p2)
% ODEFILE The template for ODE files.
%
if nargin < 3 | i sempty(f|ag) % Return dy/dt = F(t,y)
out1 = < Insert a function of t and/or y, p1, and p2 here >;
else
switch(flag)
case 'init' % Return default [tspan, yo, and options]
out1 = < Insert tspan here >;
out2 = < Insert y0 here >;
out 3 = < Insert options = odeset(...) or [] here >;
case 'jacobian' % Return matrix J(t,y) = dF/dy
outl = < | nsert Jacobian matrix here >;
case 'jpattern' % Return sparsity pattern matrix s
out1 = < Insert Jacobian matrix sparsity pattern here >
case 'mass' % Return mass matrix M(t) or M < (7)
out1 = < | nsert mass matrix here >;
case 'events' % Return event vector and info
out1 = < Insert event function vector here >;
out2 = < Insert |ogical isterminal vector here >;
out 3 = < Insert direction vector here >;
otherwise
(9)
error(['Unknown flag''' flag '''.']);
end
end

```

\section*{Notes}

1 The ODE file must accept \(t\) and \(y\) vectors from the ODE solvers and must return a column vector the same length as y . The optional input argument fla a determines thetype of output (mass matrix, J acobian, etc.) returned by the ODE file.
2 The solvers repeatedly call the ODE file to evaluate the system of differential equations at various times. This is required information-you must define the ODE system to be solved.
3 Thes witch statement determines the type of output required, so that the ODE file can pass the appropriate information to the solver. (See steps 4-9.)
4 In the default initial conditions (' init') case, the ODE file returns basic information (time span, initial conditions, options) to the solver. If you omit this case, you must supply all the basic information on the command line.
5 In the'jacobian' case, the ODE file returns a J acobian matrix to the solver. You need only provide this case when you wish to improve the performance of the stiff solversode15s andode23s.
6 In the' jpattern' case, the ODE filereturns theJ acobian sparsity pattern matrix to the solver. Y ou need provide this case only when you want to generate sparseJ acobian matrices numerically for a stiff solver.
7 In the ' mas s' case, the ODE file returns a mass matrix to the solver. Y ou need provide this case only when you want to solve a system in either of the forms \(M y^{\prime}=F(t, y)\) or \(M(t) y^{\prime}=F(t, y)\).
8 In the 'events' case, the ODE file returns to the solver the values that it needs to perform event location. When the Event s property is set to 1 , the ODE solvers examine any elements of the event vector for transitions to, from, or through zero. If the corresponding element of thelogical i st er mi nal vector is set to 1 , integration will halt when a zero-crossing is detected. The elements of thedirection vector are-1,1, or 0 , specifying that the corresponding event must be decreasing, increasing, or that any crossing is to be detected. See the Applying MATLAB and also theexamplesballode andor. bitode.
9 An unrecognized \(f \mathrm{I}\) ag generates an error.

The van der Pol equation, \(\mathrm{y}^{\prime \prime}{ }_{1}-\mu\left(1-\mathrm{y}_{1}{ }^{2}\right) \mathrm{y}^{\prime}{ }_{1}+\mathrm{y}_{1}=\) is equivalent to a system of coupled first-order differential equations:
\[
\begin{aligned}
& \mathrm{y}_{1}^{\prime}=\mathrm{y}_{2} \\
& \mathrm{y}_{2}^{\prime}=\mu\left(1-\mathrm{y}_{1}^{2}\right) \mathrm{y}_{2}-\mathrm{y}_{1}
\end{aligned}
\]

The M-file
```

function outl = vdpl(t,y)
out1 = [y(2); (1-y(1)^2)*y(2) - y(1)];

```
defines this system of equations (with \(\mu=1\) ).
Tosolve the van der Pol system on the timeinterval [ 0 20] with initial values (at time 0 ) of \(y(1)=2\) and \(y(2)=0\), use:
```

 [t,y] = ode45('vdp1',[0 20],[2; 0]);
    ```
plot(t,y(:, 1),'-', t,y(: 2),'-,')


To specify the entire initial value problem (IVP) within the M-file, rewritevdp 1 as follows:
```

function [out1, out 2, out 3] = vdp1(t,y,flag)
if nargin < 3 | isempty(f|ag)
out1 = [y(1),*(1-y(2),^2)-y(2); y(1)];
else
switch(flag)
case 'init' % Return tspan, yo and options
out1 = [0 20];
out2 = [2; 0];
out 3 = [];
otherwise
error(['Unknown request ''' flag '''.']);
end
end

```

You can now solve the IVP without entering any arguments from the command line:
```

[T,Y] = ode23('vdp1')

```

In this example the ode 23 function looks to the vap 1 M-file to supply the missing arguments. Note that, once you'vecalledodeset to defineopt ions, the calling syntax:
```

[T,Y] = ode23('vdp1',[],[],options)

```
al so works, and that any opt i ons supplied via the command line override corresponding options specified in the M-file (see odes et ).

Some example ODE files we have provided includeb 50 de , br us sode, vdpode, orbitode, andrigidode. Usetype filename from theMATLAB command line to see the coding for a specific ODE file.

See Also
The Applying MATLAB and thereferenceentries for theODE solvers and their associated functions:
ode23,ode45,ode113,ode15s,ode23s,odeget,odeset

\section*{odeget}

Purpose Extract properties fromoptions structure created with odeset
```

Syntax
0 = odeget(options,'name')
0 = odeget(options,'name', default)

```

\section*{Description}

\section*{Example}

Having constructed an ODE options structure,
```

options=odeset('RelTol',1e-4,'AbsTol',[1e-3 2e-3 3e-3]);

```
you can view these property settings with ode get :
```

odeget(options,'RelTol')
ans =

```
\(1.0000 \mathrm{e} \cdot 04\)
odeget(options,'AbsTol')
ans =
0.0010
0.0020
0.0030

\section*{See Also odeset}

Purpose
```

Syntax

```
```

options = odeset('name1',value1,'name2', value2,...)

```
options = odeset('name1',value1,'name2', value2,...)
options=odeset(oldopts,'name1',value1,...)
options=odeset(oldopts,'name1',value1,...)
options = odeset(oldopts, newopts)
options = odeset(oldopts, newopts)
odeset
```

odeset

```

Description
Create or alter options structure for input to ODE solvers

The odeset function lets you adjust the integration parameters of the ODE solvers. See below for information about the integration parameters.
options = odeset('name1', value1,'name2', value2...) creates an integrator options structure in which the named properties have the specified values. The ode set function sets any unspecified properties to the empty matrix[].

It is sufficient to type only the leading characters that uniquely identify the property name. Case is ignored for property names.
options = odeset(oldopts,' namel', value \(1, \ldots\) ) alters an existing options structure with the values supplied.
options = odeset(oldopts, newopts) alters an existing options structure ol dopts by combining it with a new options structure ne wopts. Any new options not equal to the empty matrix overwrite corresponding options in ol dopts. For example:
oldopts
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline F & 1 & [] & 4 & & \(s^{\prime}\) & 's' & [] & 111 & [] & \(1]\) \\
\hline
\end{tabular}
newopts
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline\(T\) & 3 & \(F\) & {[]} & ' & {[]} & {[]} & {[]} & {[]} \\
\hline
\end{tabular}
odeset (oldopts, newopts)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline\(T\) & 3 & \(F\) & 4 & \('^{\prime}\) & 's' & {[]} & {[]} & {[]} \\
\hline
\end{tabular}
```

odeset by itself, displays all property names and their possible values:
odeset
AbsTol: [positive scalar or vector {le-6}]
BDF: [on | {off}]
Events: [on | {off}]
InitialStep: [positive scalar]
Jacobian: [on | {off}]
JConstant: [on | {off}]
|Pattern: [on | {off}]
Mass: [on | {off}]
MassConstant: [on | off]
MaxOrder: [1 | 2 | 3 | 4 | {5}]
MaxStep: [positive scalar]
OutputFcn: [string]
OutputSel: [vector of integers]
Refine: [positive integer]
RelTol: [positive scalar {1e-3}]
Stats: [on | {off}]
Vectorized: [on | {off}]

```

Properties The available properties depend upon the ODE solver used. There are seven principal categories of properties:
- Error tolerance
- Solver output
- J acobian
- Event location
- Mass matrix
- Step size
- odel5s

Table 1-1: Error Tolerance Properties
\begin{tabular}{ll|l}
\hline Property & Value & Description \\
\hline Rel Tol & \begin{tabular}{l} 
Positive scalar \\
\(\{\underline{e}-3\}\)
\end{tabular} & \begin{tabular}{l} 
A relative error tolerance that applies to all \\
components of the solution vector.
\end{tabular} \\
\hline AbsTol & \begin{tabular}{l} 
Positive scalar \\
or vector \(\{\mathrm{e}-6\}\)
\end{tabular} & \begin{tabular}{l} 
The absolute error tolerance. If scalar, the \\
tolerance applies to all components of the \\
solution vector. Otherwise the tolerances \\
apply to corresponding components.
\end{tabular} \\
\hline
\end{tabular}

Table 1-2: Solver Output Properties
\begin{tabular}{|c|c|c|}
\hline Property & Value & Description \\
\hline Output Fen & String & The name of an installable output function (for example, odeplot, odephas 2 , odephas 3 , andodeprint). The ODE solvers call outputfcn(TSPAN, Yo, 'init') before beginning the integration, to initialize the output function. Subsequently, the solver callsstatus \(=\) outputfcn(T,Y) after computing each output point ( \(T, Y\) ). The status return value should be 1 if integration should be halted (e.g., a STOP button has been pressed) and 0 otherwise. When the integration is complete, the solver callsoutputfon([],[],'done'). \\
\hline OutputSel & Vector of indices & Specifies which components of the solution vector are to be passed to the output function. \\
\hline
\end{tabular}

Table 1-2: Solver Output Properties
\begin{tabular}{l|l|l}
\hline Property & Value & Description \\
\hline Ref ine & \begin{tabular}{l} 
Positive \\
Integer
\end{tabular} & \begin{tabular}{l} 
Produces smoother output, increasing the \\
number of output points by a factor of \(n\). In \\
most solvers, the default value is 1. \\
However, within ode 45, Ref ine is 4 by \\
default to compensate for the solver's Iarge \\
step sizes. To override this and see only the \\
timesteps chosen by ode 45, set Ref ine to 1.
\end{tabular} \\
\hline St at s & on | \{off \(\}\) & \begin{tabular}{l} 
Specifies whether statistics about the \\
computational cost of the integration \\
should be displayed.
\end{tabular} \\
\hline
\end{tabular}

Table 1-3: J acobian Matrix Properties (for ode15s and ode23s)
\begin{tabular}{|c|c|c|}
\hline Property & Value & Description \\
\hline J Constant & on | \(\{0 \mathrm{ff}\}\) & Specifies whether the J acobian matrix \(\partial \mathrm{F} / \partial \mathrm{y}\) is constant (seeb5ode). \\
\hline Jacobian & on | \(\{0 \mathrm{ff}\}\) & Informs the solver that the ODE file responds to the arguments ( \(\mathrm{t}, \mathrm{y}, \mathrm{l}\) jacobian') by returning \(\partial \mathrm{F} / \partial \mathrm{y}\) (see odefile). \\
\hline JPattern & on | \(\{0\) ff \(\}\) & Informs the solver that the ODE file responds to the arguments ([], [],'jpattern') by returning a sparse matrix containing 1 's showing the nonzeros of \(\partial F / \partial y\) (seebrussode). \\
\hline
\end{tabular}

Table 1-3: Jacobian Matrix Properties (for ode15s and ode23s)
\begin{tabular}{|c|c|c|}
\hline Property & Value & Description \\
\hline Vectorized & on | \{off \} & Informs the solver that the ODE filef ( \(\mathrm{t}, \mathrm{y}\) ) has been vectorized so that F(t, [y1 y2 ...]) returns [ \(F(t, y 1) F(t, y 2) \ldots]\). That is, your ODE file can pass to the solver a whole array of column vectors at once. Your ODE file will be called by a stiff solver in a vectorized manner only if generating J acobians numerically (the default behavior) and odeset has been used to set Vectorized to 'on'. \\
\hline
\end{tabular}

Table 1-4: Event Location Property
\begin{tabular}{l|ll}
\hline Property & Value & Description \\
\hline Event s & on \(\mid\{0 f f\}\) & \begin{tabular}{l} 
Instructs the solver to locate events. The \\
ODE file must respond to the arguments \\
\((t, y, ~ ' e v e n t ~ s ') ~ b y ~ r e t u r n i n g ~ t h e ~\)
\end{tabular} \\
appropriate values. See odef \(i\) I e.
\end{tabular}

Table 1-5: Mass Matrix Properties (for ode15s and ode23s)
\begin{tabular}{lll}
\hline Property & Value & Description \\
\hline Mass & on | \{off \(\}\) & \begin{tabular}{l} 
Informs the solver that the ODE file is \\
coded so that \(F(t,[], '\) mas s') returns \(M\) \\
or \(M(t)(\) see odefile \()\).
\end{tabular} \\
Mass Constant & on | \{off \(\}\) & \begin{tabular}{l} 
Informs the solver that the mass matrix \\
\(M(t)\) is constant.
\end{tabular} \\
\hline
\end{tabular}

Table 1-6: Step Size Properties
\begin{tabular}{l|l|l}
\hline Property & Value & Description \\
\hline MaxSt ep & \begin{tabular}{l} 
Positive \\
scalar
\end{tabular} & \begin{tabular}{l} 
An upper bound on the magnitude of the \\
step size that the solver uses.
\end{tabular} \\
\hline Initial St ep & \begin{tabular}{l} 
Positive \\
scalar
\end{tabular} & \begin{tabular}{l} 
Suggested initial step size. The solver tries \\
this first, but if too large an error results, \\
the solver uses a smaller step size.
\end{tabular} \\
\hline
\end{tabular}

In addition there are two options that apply only to the ode15s solver.
Table 1-7: ode15s Properties
\begin{tabular}{lll}
\hline Property & Value & Description \\
\hline MaxOrder & \(1|2| 3|4|\{5\}\) & The maximum order formula used. \\
\hline BDF & on \(\mid\{0 f f\}\) & \begin{tabular}{l} 
Specifies whether the Backward \\
Differentiation Formulas (BDF's) are to \\
be used instead of the default \\
Numerical Differentiation Formulas \\
(NDF's).
\end{tabular}
\end{tabular}

See Also
odefile,odeget,ode45,ode 23 ,ode113,ode15s,0de23s

Purpose Create an array of all ones
```

Syntax

```
```

Y = ones(n)

```
Y = ones(n)
Y = ones(m,n)
Y = ones(m,n)
Y = ones([m n])
Y = ones([m n])
Y = ones(d1,d2,d3...)
Y = ones(d1,d2,d3...)
Y = ones([dl d2 d3...])
Y = ones([dl d2 d3...])
Y = ones(size(A))
```

Y = ones(size(A))

```

\section*{Description}
\(Y=o n e s(n)\) returns an \(n\)-by-n matrix of 1 s . An error message appears if \(n\) is not a scalar.
\(Y=\) ones \((m, n)\) or \(Y=\) ones ([mn]) returns an m-by-n matrix of ones.
\(Y=o n e s(d 1, d 2, d 3 \ldots)\) or \(Y=\) ones([d1 d2 d3....]) returns an array of 1 s with dimensions d1-by-d 2 -by-d 3 -by-. . . .
\(Y=\) ones(size(A)) returns an array of 1 s that is the same size as A.

\section*{See Also}
eye
rand
randn
zeros

Identity matrix
Uniformly distributed random numbers and arrays Normally distributed random numbers and arrays Create an array of all zeros

\section*{orth}

\section*{Purpose Range space of a matrix}

\section*{Syntax \\ \(B=\operatorname{orth}(A)\)}

Description

See Also null
svd
rank

Null space of a matrix
Singular value decomposition
Rank of a matrix

\section*{Purpose Default part of switch statement}

Description ot herwise is part of thes wit ch statement syntax, which allows for conditional execution. The statements following ot her wi se are executed only if none of the preceding case expressions (c as e_expr) match the switch expression (sw_expr).

\section*{Examples The general form of the wit ch statement is:}
```

switch sw_expr
case case_expr
statement
statement
case {case_expr1,case_expr 2,case_expr 3}
statement
statement
otherwise
statement
statement
end

```

Seeswitch for more details.

\section*{See Also}

Switch among several cases based on expression
Purpose Consolidate workspace memory
Syntax pack
pack filename

Description

Remarks
pack, by itself, frees up needed space by compressing information into the minimum memory required.
pack filename accepts an optional filename for the temporary file used to hold the variables. Otherwise it uses the file named pack.t mp.

Thepack command doesn't affect the amount of memory allocated to the MATLAB process.Y ou must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended MATLAB sessions may cause memory to become fragmented. When memory is fragmented, there may be plenty of free space, but not enough contiguous memory to store a new large variable.

If you get the Out of me mory message from MATLAB, the pack command may find you some free memory without forcing you to delete variables.

Thepack command frees space by:
- Saving all variables on disk in a temporary file called pack. tmp .
- Clearing all variables and functions from memory.
- Reloading the variables back from pack. t mp.
- Deleting the temporary filepack.t mp.

If you usepack and there is still not enough free memory to proceed, you must clear some variables. If you run out of memory often, here are some system-specific tips:
- MS-Windows: Increase the swap space by opening the Control Panel, dou-ble-clicking on the 386 Enhanced icon, and pressing the Virtual Memory button.
- Macintosh: Change the application memory size by using Get Info on the program icon. You may al so want toturn on virtual memory via the Memory Control Panel.
- VAX/VMS: Ask your system manager to increase your working set and/or pagefile quota.
- UNIX: Ask your system manager to increase your swap space.

See Also clear Remove items from memory

Purpose Partial pathname
Description A partial pathname is a MATLABPATH relative pathname used to locate private and method files, which are usually hidden, or to restrict the search for files when more than one file with the given name exists.

A partial pathname contains the last component, or last several components, of the full pathname separated by/. For example, matfun/trace, private/children,inline/formula, and demos/clown. mat arevalid partial pathnames. Specifying the @ in method directory names is optional, so funfun/inline/formula is also a valid partial pathname.

Partial pathnames make it easy to find tool box or MATLAB relative files on your path in a portable way independent of the location where MATLAB is installed.
Purpose Pascal matrix
Syntax \(\quad\)\begin{tabular}{rl}
\(A\) & \(=\operatorname{pascal}(n)\) \\
\(A\) & \(=\operatorname{pascal}(n, 1)\) \\
\(A\) & \(=\operatorname{pascal}(n, 2)\)
\end{tabular}

\section*{Description}

\section*{Examples pascal(4) returns}
\begin{tabular}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{tabular}
\(A=\) pascal (3,2) produces
\(A=\)\begin{tabular}{ccc} 
\\
0 & 0 & -1 \\
0 & -1 & 2 \\
-1 & -1 & 1
\end{tabular}

\footnotetext{
See Also
chol
Cholesky factorization
}

Purpose Control MATLAB's directory search path
```

Syntax
path
p = path
path('newpath')
path(path,'newpath')
path('newpath', path)

```

Description

\section*{Remarks}

Examples
path prints out the current setting of MATLAB's search path. On all platforms except the Macintosh, the path resides in pathdef.m (intoolbox/local). The Macintosh stores its path in the Matlab Settings File (usually in the Preferences folder).
\(p=p a t h\) returns the current search path in string variablep.
path('newpath') changes the path to the string 'newpath'.
path(path,'newpath') appends a new directory to the current path.
path('newpath', path) prepends a new directory to the current path.
MATLAB has a search path. If you enter a name, such as \(f 0 x\), the MATLAB interpreter:

1 Looks for fox as a variable.
2 Checks for \(f 0 x\) as a built-in function.
3 Looks in the current directory for f 0 x . mex and f 0 x . m.
4 Searches the directories specified by path for fox. mex and fox.m.
Add a new directory to the search path on various operating systems:
UNIX: path(path,'/home/myfriend/goodstuff')
VMS: path(path,'DISKS1:[MYFRIEND.G00DSTUFF]')
MS-DOS: path(path,'TOOLSIGOODSTUFF')
Macintosh: path(path,'Tools:GoodStuff')
See Also addpath
cd
dir
rmpath
what

Add directories to MATLAB's search path
Change working directory
Directory listing
Remove directories from MATLAB's search path
Directory listing of M-files, MAT-files, and MEX-files

Purpose Halt execution temporarily
Syntax \begin{tabular}{ll} 
pause \\
pause \((n)\) \\
pause on \\
pause of \(f\)
\end{tabular}

Description

See Also Thedrawnow command in the MATLAB Graphics Guide.

\section*{Purpose Preconditioned Conjugate Gradients method}
```

Syntax }\quadx=pcg(A,b
pcg(A,b,tol)
pcg(A,b,tol, maxit)
pcg(A,b,tol, maxit,M)
pcg(A,b,tol, maxit,M1,M2)
pCg(A,b,t ol, maxit,M1,M2,x0)
x = pCg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = pCg(A,b,tol,maxit,M1,M2,x0)
[x,f|ag,relres] = pcg(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres,iter] = pcg(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = pcg(A,b,tol, maxit,M1,M2,x0)

```

\section*{Description}
\(x=p c g(A, b)\) attempts to solve the system of linear equations \(A^{*} x=b\) for \(x\). The coefficient matrix A must be symmetric and positive definite and the right hand side (column) vector b must havelength \(n\), whereA is n-by-n.pcg will start iterating from an initial estimate that by default is an all zero vector of length \(n\). Iterates are produced until the method either converges, fails, or has computed the maximum number of iterations. Convergence is achieved when an iteratex has relative residual norm(b-A*x)/norm(b) less than or equal to the tolerance of the method. The default tolerance is \(1 \mathrm{e}-6\). The default maximum number of iterations is the minimum of \(n\) and 20 . No preconditioning is used.
\(p c g(A, b, t o l)\) specifies the tolerance of the method, \(t o l\).
\(p c g(A, b, t o l\), maxit \()\) additionally specifies the maximum number of iterations, maxit.
\(p c g(A, b, t o l\), maxit, \(M)\) and \(p c g(A, b, t o l\), maxit, M1, M2) use left preconditioner \(M\) or \(M=M 1 * M 2\) and effectively sol ve the system inv(M) *A*X \(=i n v(M) * b\) for x. If M1 or M2 is given as the empty matrix ([ ] ), it is considered to be the identity matrix, equivalent to no preconditioning at all. Since systems of equations of the form \(\mathrm{M}^{*} \mathrm{y}=\mathrm{r}\) are solved using backslash within pcg , it is wise to factor
preconditioners into their Cholesky factors first. F or example, replace \(\mathrm{pcg}(\mathrm{A}, \mathrm{b}, \mathrm{tol}\), , maxit, M) with:
```

R = chol(M);
pcg(A,b,tol,maxit, R',R).

```

The preconditioner M must be symmetric and positive definite.
\(\mathrm{pcg}(\mathrm{A}, \mathrm{b}, \mathrm{tol}\), maxit, M1, M2, x0) specifies theinitial estimate x 0 . If x 0 is given as the empty matrix ([ ] ), the default all zero vector is used.
\(\mathrm{x}=\mathrm{pcg}(\mathrm{A}, \mathrm{b}, \mathrm{tol}, \mathrm{maxit}, \mathrm{M} 1, \mathrm{M} 2, \times 0)\) returns a solution x . If pcg converged, a message to that effect is displayed. Ifpcg failed to converge after the maximum number of iterations or halted for any reason, a warning message is printed displaying the relative residual nor \(m\left(b-A^{*} x\right) / \operatorname{nor} m(b)\) and the iteration number at which the method stopped or failed.
\([x, f \mid a g]=p c g(A, b, t o l, m a x i t, M 1, M 2, x 0) \quad\) returns a solution \(x\) and a flag which describes the convergence of \(p c g\) :
\begin{tabular}{|c|c|}
\hline Flag & Convergence \\
\hline 0 & \(p c g\) converged to the desired tolerancetol within maxit iterations without failing for any reason. \\
\hline 1 & pcg iterated maxit times but did not converge. \\
\hline 2 & One of the systems of equations of the form \(M^{*} y=r\) invol ving the preconditioner was ill-conditioned and did not return a useable result when solved by \\(backslash). \\
\hline 3 & The method stagnated. (Two consecutive iterates were the same.) \\
\hline 4 & One of the scalar quantities calculated during pcg became too small or too large to continue computing \\
\hline
\end{tabular}

Whenever fl ag is not 0 , the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.
\([x, f l a g, r e \mid r e s]=p c g(A, b, t o l, m a x i t, M 1, M 2, x 0)\) alsoreturnstherelative residual norm( \(\left.b-A^{*} x\right) /\) norm( \(\left.b\right)\). Ifflag is 0 , then relres \(\leq t o l\).
\([x, f l a g\), relres,iter] \(=p c g(A, b, t o l, \operatorname{maxit}, M 1, M 2, x 0)\) alsoreturns the iteration number at which \(x\) was computed. This always satisfies \(0 \leq i t e r \leq\) maxit.
[x,flag, relres,iter, resvec] = pcg(A,b,tol, maxit, M1, M2, x 0 ) also returns a vector of the residual norms at each iteration, starting from
 resvec(end) \(\leq\) tol*norm(b).

\section*{Examples}
```

 A = delsq(numgrid('C', 25))
 b = ones(length(A), l)
 [x,flag] = pcg(A,b)
    ```
flag is 1 sincepcg will not converge to the default tolerance of \(1 \mathrm{e}-6\) within the default 20 iterations.
```

R = cholinc(A, 1e-3)
[x2,flag2,relres 2,iter2,resvec2] = pcg(A,b,1e-8,10, R', R)

```
fl ag2 is 0 sincepcg will converge to the tolerance of \(1.2 \mathrm{e}-9\) (the value of rel res 2 ) at thesixth iteration (the value of iter 2 ) when preconditioned by the incompleteCholesky factorization with a drop tolerance of \(1 \mathrm{e}-3\). resvec \(2(1)=\) norm(b) andresvec 2(7) = norm(b-A*x2).You may follow the progress of pcg
by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0 ) with semilogy ( 0 : iter 2 , resvec \(\left.2 / \operatorname{norm}(b),{ }^{\prime}-0^{\prime}\right)\).


See Also
bicg
bicgstab
cgs
cholinc
gmres
gmr
1

BiConjugate Gradients method BiConjugate Gradients Stabilized method Conjugate Gradients Squared method Incomplete Cholesky factorizations Generalized Minimum Residual method (with restarts) Quasi-Minimal Residual method Matrix left division

References Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SI AM, Philadelphia, 1994.

Purpose Create preparsed pseudocode file (P-file)
Syntax \begin{tabular}{ll} 
& pcode fun \\
& pcode *.m \\
& pcode fun fun2 \(\ldots\) \\
& pcode.....inplace
\end{tabular}

Description
pcode fun parses the M-filefun.m into the P-filefun.p and puts it into the current directory. The original M-file can be anywhere on the search path.
pcode *.m creates P-files for all the M-files in the current directory.
pcode fun1 fun2 ... creates P-files for the listed functions.
pcode... - inplace creates P-files in the same directory as the M-files. An error occurs if the files can't be created.
Purpose All possible permutations
Syntax \(\quad P=\operatorname{perms}(v)\)

Description \(\quad P=\operatorname{perms}(v)\), wherev is a row vector of length \(n\), creates a matrix whose rows consist of all possible permutations of the elements of \(v\). Matrixp contains \(n\) ! rows and n columns.

Examples

Limitations
See Also
nchoosek
permute
randperm

All combinations of the n elements in v taken k at a time
Rearrange the dimensions of a multidimensional array Random permutation

Purpose Rearrange the dimensions of a multidimensional array

\section*{Syntax \(\quad B=\) permute(A, order)}

Description \(\quad B=\) permute (A, order) rearranges the dimensions of A so that they are in the order specified by the vector order.B has the same values of A but the order of the subscripts needed to access any particular element is rearranged as specified by order. All the elements of order must be unique.

Remarks permute andipermute are a generalization of transpose (. ' ) for multidimensional arrays.

\section*{Examples \\ Given any matrix A , the statement}
```

permute(A,[2 1])

```
is the same as A' .
F or example:
```

A = [1 2; 3 4]; permute(A,[2 1])
ans =
1 3
2 4

```

The following code permutes a three-dimensional array:
```

X = rand(12,13,14);
Y = permute(X,[2 3 1]);
size(Y)
ans =
13 14 12

```

\section*{See Also}
i permute

I nverse permute the dimensions of a multidimensional array

Purpose Ratio of a circle's circumference to its diameter, \(\pi\)

\section*{Syntax}

Description

Examples
pi returns the floating-point number nearest the value of \(\pi\). The expressions \(4 * \tan (1)\) and \(\operatorname{mag}(\log (-1))\) provide the same value.

The expression sin(pi) is not exactly zero because pi is not exactly \(\pi\) :
```

sin(pi)
ans =
1.2246e-16

```

\section*{See Also \\ \(a n s\)}
eps
i
Inf
j
NaN

The most recent answer
Floating-point relative accuracy
Imaginary unit
Infinity
Imaginary unit
Not-a-Number

\section*{Purpose Moore-Penrose pseudoinverse of a matrix}
Syntax \(\quad\)\begin{tabular}{rl}
\(B\) & \(=\operatorname{pinv}(A)\) \\
\(B\) & \(=\operatorname{pinv}(A, t o l)\)
\end{tabular}

\section*{Definition}

\section*{Description}

\section*{Examples}

The M oore-Penrose pseudoinverse is a matrix \(B\) of the same dimensions as \(A^{\prime}\) satisfying four conditions:
```

A*B*A = A
B*A*B = B
A*B is Hermitian
B*A is Hermitian

```

The computation is based onsvd(A) and any singular values less than tol are treated as zero.
\(B=\operatorname{pinv}(A)\) returns the Moore-Penrose pseudoinverse of \(A\).
\(B=\operatorname{pinv}(A, t o l)\) returns theMoore-Penrosepseudoinverseand overrides the default tolerance, \(\max (\operatorname{size}(A)) * \operatorname{norm}(A) * e p s\).

If \(A\) is square and not singular, then pinv(A) is an expensive way to compute i \(n v(A)\). If A is not square, or is square and singular, then inv(A) does not exist. In these cases, pinv(A) has some of, but not all, the properties of inv(A).

If A has more rows than columns and is not of full rank, then the overdetermined least squares problem
minimizenorm( \(A * x-b)\)
does not have a unique solution. Two of the infinitely many solutions are
```

x = pinv(A) *b

```
and
\[
y=A \backslash b
\]

These two are distinguished by the facts that nor \(m(x)\) is smaller than the norm of any other solution and that \(y\) has the fewest possible nonzero components.

For example, the matrix generated by
```

A = magic(8); A = A(:, 1:6)

```
is an 8-by-6 matrix that happens to haverank(A) \(=3\).
\(A=\)
\begin{tabular}{rrrrrr}
64 & 2 & 3 & 61 & 60 & 6 \\
9 & 55 & 54 & 12 & 13 & 51 \\
17 & 47 & 46 & 20 & 21 & 43 \\
40 & 26 & 27 & 37 & 36 & 30 \\
32 & 34 & 35 & 29 & 28 & 38 \\
41 & 23 & 22 & 44 & 45 & 19 \\
49 & 15 & 14 & 52 & 53 & 11 \\
8 & 58 & 59 & 5 & 4 & 62
\end{tabular}

The right-hand side is b \(=260 * 0\) nes \((8,1)\),
b =
260
260
260
260
260
260
260
260
The scale factor 260 is the 8 -by- 8 magic sum. With all eight columns, one solution to A *x = b would bea vector of all 1 's. With only six columns, theequations are still consistent, so a solution exists, but it is not all 1 's. Since the matrix is rank deficient, there are infinitely many solutions. Two of them are
```

x = pinv(A) *b

```
which is x \(=\)
1. 1538
1.4615
1. 3846
1. 3846
1.4615
1. 1538
and
\(y=A \mid b\)
which is
\(y=\)
3.0000
4.0000

0
0
1.0000

0
Both of these are exact solutions in the sense that norm( \(A * x-b)\) and \(\operatorname{norm}(A * y-b)\) areon theorder of roundofferror. The solution \(x\) is special because norm \(m\) ( \(=3.2817\)
is smaller than the norm of any other solution, including
```

norm(y) = 5.0990

```

On the other hand, the solution y is special because it has only three nonzero components.

\section*{See Also}
inv
qr
rank
svd

Matrix inverse
Orthogonal-triangular decomposition
Rank of a matrix
Singular value decomposition
Purpose Transform polar or cylindrical coordinates to Cartesian
```

Syntax
[X,Y] = pol 2cart(THETA, RHO)
[X,Y,Z] = pol 2cart(THETA, RHO,Z)

```

\section*{Description}

\section*{Algorithm}

The mapping from polar and cylindrical coordinates to Cartesian coordinates is:


Polar to Cartesian Mapping
theta \(=\operatorname{atan} 2(y, x)\)
rho \(=\operatorname{sqrt}\left(x, \wedge^{\wedge}+y, \wedge^{2}\right)\)


Cylindrical to Cartesian Mapping
theta \(=\operatorname{atan} 2(y, x)\) rho \(=\operatorname{sqrt}\left(x, \wedge^{\wedge}+y \cdot \wedge^{\wedge} 2\right)\)
\(Z=Z\)

\section*{See Also}
cart2pol
cart2sph
sph2cart

Transform Cartesian coordinates to polar or cylindrical Transform Cartesian coordinates to spherical Transform spherical coordinates to Cartesian

\section*{Purpose Polynomial with specified roots}
Syntax \(\quad\)\begin{tabular}{rl}
\(p\) & \(=\operatorname{poly}(A)\) \\
\(p\) & \(=\operatorname{poly}(r)\)
\end{tabular}

Description

Remarks

Examples
\(p=p o l y(A)\) where \(A\) is an \(n-b y-n\) matrix returns an \(n+1\) element row vector whose elements are the coefficients of the characteristic polynomial, \(\operatorname{det}(s I-A)\). The coefficients are ordered in descending powers: if a vector c has \(n+1\) components, the polynomial it represents is \(c_{1} s^{n}+\ldots+c_{n} s+c_{n+1}\).
\(p=p o l y(r)\) wherer is a vector returns a row vector whose elements are the coefficients of the polynomial whose roots are the elements of \(r\).

Note the relationship of this command to
```

r=roots(p)

```
which returns a column vector whose elements are the roots of the polynomial specified by the coefficients row vector \(p\). For vectors, r oots and poly are inverse functions of each other, up to ordering, scaling, and roundoff error.

MATLAB displays polynomials as row vectors containing the coefficients ordered by descending powers. The characteristic equation of the matrix
```

A =
1 2 3
4 5 6
7 8 0

```
is returned in a row vector by poly :
```

p=poly(A)
p =
1 - 6 - -72 -27

```

The roots of this polynomial (eigenvalues of matrixA) are returned in a column vector by roots :
```

r = roots(p)
r =
12. 1229
-5. 7345
-0.3884

```

\section*{Algorithm}

The algorithms employed for poly androots illustrate an interesting aspect of the modern approach to eigenvalue computation. poly(A) generates the characteristic polynomial of \(A\), and roots (poly(A)) finds the roots of that polynomial, which are the eigenvalues of \(A\). But both poly and roots use EISPACK eigenvalue subroutines, which are based on similarity transformations. The classical approach, which characterizes eigenvalues as roots of the characteristic polynomial, is actually reversed.

If A is an \(n\)-by-n matrix, poly(A) produces the coefficients c(1) through \(c(n+1)\), with \(c(1)=1\), in

The al gorithm is expressed in an M -file:
```

z = eig(A);
c = zeros(n+1,1); c(1) = 1;
for j = 1:n
c(2:j+1)=c(2:j+1)-z(j)*c(1:j);
end

```

This recursion is easily derived by expanding the product.
\[
\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)
\]

It is possible to prove that poly(A) produces the coefficients in the characteristic polynomial of a matrix within roundoff error of A. This is true even if the eigenvalues of \(A\) arebadly conditioned. Thetraditional algorithms for obtaining the characteristic polynomial, which do not use the eigenvalues, do not have such satisfactory numerical properties.

\section*{See Also \\  \\ polyval \\ residue \\ roots}

Convolution and polynomial multiplication Polynomial evaluation
Convert between partial fraction expansion and polynomial coefficients
Polynomial roots

Purpose Area of polygon
Syntax
\(A=\) polyarea(X, \(Y\) )
\(A=\) polyarea(X, Y, dim)

\section*{Description}

\section*{Examples}
\(A=\) polyarea( \(X, Y\) ) returns the area of the polygon specified by the vertices in the vectors \(X\) and \(Y\).

If \(X\) and \(Y\) are matrices of the samesize, then pol yarea returns the area of polygons defined by the columns \(X\) and \(Y\).

If \(X\) and \(Y\) are multidimensional arrays, pol yarea returns the area of the polygons in the first nonsingleton dimension of \(X\) and \(Y\).

A = polyarea( X, Y, dim) operates along the dimension specified by scalar dim.
```

 L = Iinspace(0, 2.*pi,6); xv = cos(L)';yv = sin(L)';
 xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
 A = polyarea(xv,yv);
 plot(xv,yv); title(['Area = ' num2str(A)]); axis image
    ```


\footnotetext{
See Also
}
convhull
inpolygon

Convex hull
Detect points inside a polygonal region

\section*{Purpose Polynomial derivative}
Syntax \(\quad\)\begin{tabular}{ll}
\(k=\operatorname{polyder}(p)\) \\
& \(k=\operatorname{polyder}(a, b)\) \\
& {\([q, d]=\operatorname{polyder}(b, a)\)}
\end{tabular}

Description

\section*{Examples}

Thepolyder function calculates the derivative of polynomials, polynomial products, and polynomial quotients. Theoperands \(a, b\), and \(p\) arevectors whose elements are the coefficients of a polynomial in descending powers.
\(k=p o l y d e r(p)\) returns the derivative of the polynomial \(p\).
\(k=p o l y d e r(a, b)\) returns the derivative of the product of the polynomials a and \(b\).
\([q, d]=\operatorname{pol} y d e r(b, a)\) returns the numerator \(q\) and denominator \(d\) of the derivative of the polynomial quotient \(b / a\).

The derivative of the product
is obtained with
```

 a = [llll
 b = [llll}120]
 k = polyder(a,b)
 k =
 12 36 42
 18
    ```

This result represents the polynomial

\section*{See Also \\ conv}
deconv

Polynomial eigenvalue problem

Syntax \(\quad[\mathrm{X}, \mathrm{e}]=\operatorname{polyeig}(A 0, A 1, \ldots \mathrm{Ap})\)
Description \([X, e]=\) polyeig(A0,A1,..Ap) solves the polynomial eigenvalue problem of degreep:
\[
\left(\mathrm{A}_{0}+\lambda \mathrm{A}_{1}+\ldots+\lambda^{P} \mathrm{~A}_{\mathrm{p}}\right) \mathrm{x}=0
\]
where polynomial degree \(p\) is a non-negative integer, and \(A 0, A 1, \ldots A p\) are input matrices of order \(n\). Output matrix \(x\), of size \(n-b y-n * p\), contains eigenvectors in its columns. Output vector e, of length \(n * p\), contains eigenvalues.

Based on the values of \(p\) and \(n\), pol y ei \(g\) handles several special cases:
- \(p=0\), or polyeig(A) is the standard eigenvalue problem: eig(A).
- \(p=1\), or pol y ei \(g(A, B)\) is the generalized eigenvalue problem: ei \(g(A,-B)\).
- \(n=1\), or polyeig(a0, a \(1, \ldots \mathrm{ap})\) for scalarsa \(0, a 1 \ldots\), ap is the standard polynomial problem: roots([ap ... al a0]).

\section*{Algorithm \\ If both AO and Ap are singular, the problem is potentially ill posed; solutions might not exist or they might not be unique. In this case, the computed solutions may be inaccurate. pol y ei \(g\) attempts to detect this situation and display an appropriate warning message. If either one, but not both, of AO and Ap is singular, the problem is well posed but some of the eigenvalues may be zero or infinite (Inf). \\ Thepol y eig function uses the QZ factorization to find intermediate results in the computation of generalized eigenvalues. It uses these intermediate results to determine if theeigenvalues are well-determined. Seethedescriptions of eig and \(q z\) for more on this, as well as the EISPACK Guide.}

See Also
eig
qz
Eigenvalues and eigenvectors QZ factorization for generalized eigenvalues

\section*{Purpose Polynomial curve fitting}
\begin{tabular}{ll} 
Syntax & \(p=\operatorname{polyfit}(x, y, n)\) \\
& {\([p, s]=\operatorname{polyfit}(x, y, n)\)}
\end{tabular}

Description

\section*{Examples}
\(p=p o l y f i t(x, y, n)\) finds the coefficients of a polynomial \(p(x)\) of degreen that fits the data, \(p(x(i))\) to \(y(i)\), in a least squares sense. The result \(p\) is a row vector of length \(n+1\) containing the polynomial coefficients in descending powers:
\[
p(x)=p_{1} x^{n}+p_{2} x^{n-1}+\ldots+p_{n} x+p_{n+1}
\]
\([p, s]=\) polyfit( \(x, y, n\) ) returns the polynomial coefficients \(p\) and a structures for use with pol yval to obtain error estimates or predictions. If the errors in the data y are independent normal with constant variance; pol y val will produce error bounds that contain at least \(50 \%\) of the predictions.

This example involves fitting the error function, erf(x), by a polynomial in \(x\). This is a risky project becausee \(r f(x)\) is a bounded function, while polynomials are unbounded, so the fit might not be very good.

First generate a vector of \(x\)-points, equally spaced in the interval [0, 2.5] ; then evaluaterf(x) at those points.
```

x = (0: 0.1: 2.5)';
y = erf(x);

```

The coefficients in the approximating polynomial of degree 6 are
```

p = polyfit(x,y,6)
p =
0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

```

There are seven coefficients and the polynomial is

To see how good the fit is, evaluate the polynomial at the data points with
```

f = polyval(p,x);

```

A table showing the data, fit, and error is
\begin{tabular}{llll} 
table \(=\left[\begin{array}{lll}x y f y-f\end{array}\right]\) & & \\
table \(=\) & & \\
0 & 0 & 0.0004 & -0.0004 \\
0.1000 & 0.1125 & 0.1119 & 0.0006 \\
0.2000 & 0.2227 & 0.2223 & 0.0004 \\
0.3000 & 0.3286 & 0.3287 & -0.0001 \\
0.4000 & 0.4284 & 0.4288 & -0.0004 \\
1. & & & \\
2.1000 & 0.9970 & 0.9969 & 0.0001 \\
2.2000 & 0.9981 & 0.9982 & -0.0001 \\
2.3000 & 0.9989 & 0.9991 & -0.0003 \\
2.4000 & 0.9993 & 0.9995 & -0.0002 \\
2.5000 & 0.9996 & 0.9994 & 0.0002
\end{tabular}

So, on this interval, the fit is good to between three and four digits. Beyond this interval the graph shows that the polynomial behavior takes over and the approximation quickly deteriorates.
```

x = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
axis([l0

```


\section*{Algorithm}

The \(M\)-file forms the Vandermonde matrix, \(V\), whose elements are powers of \(x\).

It then uses the backslash operator, \(\backslash\), to solve the least squares problem
\[
v_{p} \cong y
\]

The M-file can be modified to use other functions of \(x\) as the basis functions.
\begin{tabular}{lll} 
See Also & polyval & Polynomial evaluation \\
roots & Polynomial roots
\end{tabular}
\(y=\) polyval \((p, x)\)
[y,delta] = polyval \((p, x, S)\)

Description

\section*{Remarks}

Examples
\(y=p o l y v a l(p, x)\) returns the value of the polynomial \(p\) evaluated at \(x\). Polynomial \(p\) is a vector whose elements are the coefficients of a polynomial in descending powers.
\(x\) can be a matrix or a vector. In either case, pol yval evaluates \(p\) at each element of \(x\).
[y, delta] = polyval( \(p, x, s)\) uses the optional output structures generated bypolyfit to generate error estimates, y \(\pm\) del ta. If theerrors in the data input topolyfit are independent normal with constant variance, y \(\pm \mathrm{del}\) ta contains at least 50\% of the predictions.

Thepolyvalm \((p, x)\) function, with \(x\) a matrix, evaluates the polynomial in a matrix sense. Seepol yval m for more information.

The polynomial \(\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{x}+1\) is evaluated at \(x=5,7\), and 9 with
```

p = [l 2 1 1];
polyval(p,[5 7 9])

```
which results in

\section*{ans \(=\)}
\(86 \quad 162 \quad 262\)
For another example, seepolyfit.

\section*{See Also}
polyfit
polyvalm
Polynomial curve fitting
Matrix polynomial evaluation

\section*{Purpose Matrix polynomial evaluation}

\section*{Syntax \(\quad Y=\) polyvalm( \(p, X)\)}

Description \(\quad Y=\) pol yvalm( \(p, X)\) evaluates a polynomial in a matrix sense. This is the same as substituting matrix \(X\) in the polynomial \(p\).

Polynomial p is a vector whose elements are the coefficients of a polynomial in descending powers, and \(x\) must be a square matrix.

\section*{Examples}

The Pascal matrices are formed from Pascal's triangle of binomial coefficients. Here is the Pascal matrix of order 4.
```

X = pascal(4)
X =
1
1 2 3 4
1 3 6 10
1 4 10 20

```

Its characteristic polynomial can be generated with the pol y function.
```

p = poly(X)
p =
1 -29 72 -29 1

```

This represents the polynomial \(x^{4}-29 x^{3}+72 x^{2}-29 x+1\).
Pascal matrices have the curious property that the vector of coefficients of the characteristic polynomial is palindromic; it is the sameforward and backward.

Evaluating this polynomial at each element is not very interesting.
\begin{tabular}{lrrr} 
polyval \((p, X)\) \\
ans \(=\) \\
16 & 16 & 16 & 16 \\
16 & 15 & -140 & -563 \\
16 & -140 & -2549 & -12089 \\
16 & -563 & -12089 & -43779
\end{tabular}

But evaluating it in a matrix sense is interesting.
\begin{tabular}{cccc} 
polyvalm \((p, X)\) \\
ans \(=\) & & \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{tabular}

The result is the zero matrix. This is an instance of the Cayley-Hamilton theorem: a matrix satisfies its own characteristic equation.

\section*{See Also}
polyfit
polyval

Polynomial curve fitting Polynomial evaluation

Purpose

\section*{Syntax \\ \(X=\operatorname{pow} 2(Y)\) \\ \(X=\operatorname{pow} 2(F, E)\)}

Description

\section*{Remarks}

Examples

Base 2 power and scale floating-point numbers
\(X=\operatorname{pow} 2(Y)\) returns an array \(X\) whose elements are 2 raised to the power \(Y\).
\(X=\operatorname{pow} 2(F, E)\) computes \(x=f \cdot 2^{e}\) for corresponding elements of \(F\) and \(E\).The result is computed quickly by simply adding E to the floating-point exponent of F. Arguments F and E are real and integer arrays, respectively.

This function corresponds to the ANSI C function I dexp() and theIEEE floating-point standard function scal bn().

For IEEE arithmetic, the statement \(X=\) pow2(F, E) yields the values:
\begin{tabular}{lll} 
F \(/ 2\) & \(E\) & \(X\) \\
\(1 / 2\) & 1 & 1 \\
pi/4 & 2 & pi \\
\(-3 / 4\) & 2 & -3 \\
\(1 / 2\) & -51 & eps \\
\(1-\) eps/2 & 1024 & real max \\
\(1 / 2\) & -1021 & realmin
\end{tabular}

Purpose Generate list of prime numbers

\section*{Syntax \(\quad p=\operatorname{primes}(n)\)}

Description \(\quad p=p r i m e s(n)\) returns a row vector of the prime numbers less than or equal to \(n\). A prime number is one that has no factors other than 1 and itself.

\section*{Examples}
\(p=\) primes(37)
\(p=\)
\(\begin{array}{llllllllllll}2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 & 37\end{array}\)

\section*{Purpose Product of array elements}
Syntax \(\quad\)\begin{tabular}{rl}
\(B\) & \(=\operatorname{prod}(A)\) \\
\(B\) & \(=\operatorname{prod}(A, \operatorname{dim})\)
\end{tabular}

Description
\(B=\operatorname{prod}(A)\) returns the products along different dimensions of an array.
If \(A\) is a vector, prod(A) returns the product of the elements.
If A is a matrix, \(\operatorname{prod}(A)\) treats the columns of \(A\) as vectors, returning a row vector of the products of each column.

If A is a multidimensional array, \(\operatorname{prod}(A)\) treats the values al ong the first non-singleton dimension as vectors, returning an array of row vectors.
\(B=\operatorname{prod}(A, d i m)\) takes the products along the dimension of A specified by scalar dim.

\section*{Examples The magic square of order 3 is}
```

M = magic(3)
M =
8 1 6
3 5 7
4 2

```

The product of the elements in each column is
```

prod(M) =
96 45 84

```

The product of the elements in each row can be obtained by:
```

prod(M,2) =
4 8
105
72

```
\begin{tabular}{lll} 
See Also & \begin{tabular}{l} 
cumprod \\
diff \\
sum
\end{tabular} & Cumulative product \\
& Difference \\
& Sum of array elements
\end{tabular}

\section*{profile}

Purpose Measure and display M-file execution profiles
```

Syntax profile function
profile report
profile report n
profile report frac
profile on
profile off
profile done
profile reset
info = profile

```

Description The profiler utility helps you debug and optimize M-files by tracking the cumulative execution time of each line of code. The utility creates a vector of "bins," one bin for every line of code in the M-file being profiled. As MATLAB executes the \(M\)-file code, the profiler updates each bin with running counts of the time spent executing the corresponding line.
profile function starts the profiler forfunction.function must be the name of an M-filefunction or a MATLABPATH relative partial pathname.
profile report displays a profile summary report for the M-file currently being profiled.
profile report \(n\), wheren is an integer, displays a report showingthen lines that take the most time.
profile report frac, wherefrac is a number between 0.0 and 1.0, displays a report of each line that accounts for more than frac of the total time.
profile on andprofile off enableand disable profiling, respectively.
profile done turns off the profiler and clears its data.
profile reset erases thebin contents without disabling profiling or changing the \(M\)-file under inspection.
info = profile returnsa structure with the fields:
\begin{tabular}{l|l}
\hline file & Full path to the function being profiled. \\
\hline function & Name of function being profiled. \\
\hline interval & Sampling interval in seconds. \\
\hline count & Vector of sample counts \\
state & on if the profiler is running and of \(f\) otherwise. \\
\hline
\end{tabular}

Remarks You can also profile built-in functions. The profiler tracks the number of intervals in which the built-in function was called (an estimate of how much time was spent executing the built-in function).

The profiler's behavior is defined by root object properties and can be manipulated using the set and get commands. See the Applying MATLAB for more details.

Limitations The profiler utility can accommodate only one \(M\)-file at a time.
See Also Seealsopartialpath.

\section*{Purpose Quasi-Minimal Residual method}
```

Syntax
x = qmr (A,b)
qmr(A,b,tol)
qmr(A,b,tol, maxit)
qmr(A,b,tol,maxit,M1)
qmr(A,b,tol,maxit,M1,M2)
qmr(A,b,tol,maxit,M1,M2,x0)
x = qmr(A,b,tol,maxit,M1,M2,x0)
[x,f|ag] = qmr(A,b,tol,maxit,M1,M2,x0)
[x,f|ag,relres] = qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = qmr(A,b,tol, maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = qmr(A,b,tol,maxit,M1,M2,x0)

```

\section*{Description \(\quad x=q m r(A, b)\) attempts to solve the system of linear equations \(A^{*} x=b\) for \(x\).}

The coefficient matrix A must besquare and the right hand side (column) vector \(b\) must have length \(n\), where A is \(n-b y-n . q m r\) will start iterating from an initial estimate that by default is an all zero vector of length \(n\). Iterates are produced until the method either converges, fails, or has computed the maximum number of iterations. Convergence is achieved when an iteratex has relative residual \(\operatorname{nor} m\left(b-A^{*} x\right) /\) nor \(m(b)\) less than or equal to the tolerance of the method. The default tolerance is \(1 e-6\). The default maximum number of iterations is the minimum of \(n\) and 20 . No preconditioning is used.
\(\mathrm{qmr}(\mathrm{A}, \mathrm{b}, \mathrm{tol})\) specifies the tolerance of the method, tol .
qmr ( \(\mathrm{A}, \mathrm{b}, \mathrm{t}\) ol, maxit) additionally specifies the maximum number of iterations, maxit.
\(q \mathrm{mr}(\mathrm{A}, \mathrm{b}, \mathrm{tol}, \operatorname{maxit}, \mathrm{M} 1)\) andqmr(A,b,tol, maxit,M1,M2) useleft and right preconditioners M1 and M2 and effectively solve the system
\(\operatorname{inv}(M 1) * A * \operatorname{inv}(M 2) * y=i n v(M 1) * b\) for \(y\), wherex \(=\operatorname{inv}(M 2) * y\). If M1 or M2 is given as the empty matrix ([ ] ), it is considered to be the identity matrix, equivalent to no preconditioning at all. Since systems of equations of the form M1*y = r are solved using backslash within q mr , it is wise to factor precondi-
tioners into their LU factorizations first. For example, replace qmr(A, b, tol, maxit, M, []) or qmr(A, b, tol, maxit, [], M) with:
[M1, M2] = Iu(M);
qmr(A, b, tol, maxit, M1, M2).
q mr ( \(A, b, t 01\), maxit, M1, M2, x0) specifies the initial estimatex0. If \(\times 0\) is given as the empty matrix ([ ] ), the default all zero vector is used.
\(x=q \mathrm{mr}(\mathrm{A}, \mathrm{b}, \mathrm{tol}, \operatorname{maxit}, \mathrm{M} 1, \mathrm{M} 2, \mathrm{xO})\) returns a solution x . If q mr converged, a message to that effect is displayed. If \(q\) mr failed to converge after the maximum number of iterations or halted for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at which the method stopped or failed.
\([x, f \mid a g]=q m r(A, b, t o l, \operatorname{maxit}, M 1, M 2, x 0)\) returns a solution \(x\) and a flag which describes the convergence of qmr :
\begin{tabular}{l|l}
\hline Flag & Convergence \\
\hline 0 & \begin{tabular}{l} 
q mr converged to the desired tolerance t ol within ma xi t \\
iterations without failing for any reason.
\end{tabular} \\
\hline 1 & \(q \mathrm{mr}\) iterated maxi t times but did not converge.
\end{tabular}

Whenever fl ag is not 0 , the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag output is specified.
\([x, f l a g, r e l r e s]=q m r(A, b, t o l, m a x i t, M 1, M 2, x 0)\) alsoreturns therelativeresidual norm(b-A*x)/norm(b).Ifflag is 0 , then relres \(\leq t o l\).
\([x, f l a g\), relres,iter] = qmr(A,b,tol, maxit, M1, M2, x 0 ) alsoreturns the iteration number at which \(x\) was computed. This always satisfies \(0 \leq i t e r \leq m a x i t\).
[x,flag, relres,iter, resvec] = qmr(A, b,tol, maxit, M1, M2, x0) also returns a vector of the residual norms at each iteration, starting from
 resvec(end) \(\leq\) tol*norm(b).

\section*{Examples}
```

load west0479
A = west0479
b = sum(A,2)
[x,flag] = qmr(A,b)

```
fl ag is 1 sinceqmr will not converge to the default tolerance \(1 \mathrm{e}-6\) within the default 20 iterations.
```

[L1,U1] = |uinc(A, 1e-5)
[x1,flag1] = qmr(A,b,1e-6,20,L1,U1)

```
fl ag 1 is 2 since the upper triangular \(U 1\) has a zero on its diagonal soqmr fails in the first iteration when it tries to solve a system such as \(\cup 1 * y=r\) for \(y\) with backslash.
```

[L2,U2] = Iuinc(A,1e-6)
[x2,flag2,relres2,iter 2,resvec 2] = qmr(A,b,1e-15,10,L2,U2)

```
\(\mathrm{fl} \lg 2\) is 0 since qmr will converge to the tolerance of \(1.9 \mathrm{e}-16\) (the value of relres 2 ) at the eighth iteration (the value of iter 2 ) when preconditioned by the incomplete LU factorization with a drop tolerance of \(1 \mathrm{e}-6 . \operatorname{resvec} 2(1)=\) norm(b) andresvec2(9) = norm(b-A* 2 ). You may follow the progress of mr
by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0 ) with semilogy ( 0 : iter 2 , resvec \(2 /\) norm(b), ' - \(0^{\prime}\) ).

\begin{tabular}{lll} 
See Also & bicg & BiConjugate Gradients method \\
& bicgstab & BiConjugate Gradients Stabilized method \\
cgs & Conjugate Gradients Squared method \\
& gmres & Generalized Minimum Residual method (with restarts) \\
& luinc & Incomplete LU matrix factorizations \\
& pcg & Preconditioned Conjugate Gradients method \\
& 1 & Matrix left division
\end{tabular}

References Freund, Roland W. and Nöel M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, J ournal: Numer. Math. 60, 1991, pp. 315-339

Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadel phia, 1994.

\section*{Purpose Orthogonal-triangular decomposition}

\section*{Syntax}
```

[Q,R]=qr(X)
[Q,R,E] = qr(X)
[Q,R] = qr(X,O)
[Q,R,E] = qr(X,O)
A = qr(X)

```

Description Theqr function performs the orthogonal-triangular decomposition of a matrix. This factorization is useful for both square and rectangular matrices. It expresses the matrix as the product of a real orthonormal or complex unitary matrix and an upper triangular matrix.
\([Q, R]=\operatorname{qr}(X) \quad\) produces an upper triangular matrix \(R\) of the same dimension as \(X\) and a unitary matrix \(Q\) so that \(X=Q * R\).
\([Q, R, E]=q r(X)\) produces a permutation matrix \(E\), an upper triangular matrix \(R\) with decreasing diagonal elements, and a unitary matrix \(Q\) so that \(X * E=Q * R\). The column permutation \(E\) is chosen so that abs(diag(R)) is decreasing.
\([Q, R]=q r(X, 0)\) and \([Q, R, E]=q r(X, 0)\) produce "economy-size" decompositions in which \(E\) is a permutation vector, so that \(Q^{*} R=X(:, E)\). The column permutation E is chosen so that \(\mathrm{abs}(\mathrm{diag}(R))\) is decreasing.
\(A=q r(X)\) returns the output of the LINPACK subroutineZQRDC. triu(qr(X)) is R.

\section*{Examples Start with}
\(A=\)
123
\(4 \quad 5 \quad 6\)
\(7 \quad 8 \quad 9\)
1011

This is a rank-deficient matrix; the middle column is the average of the other two columns. The rank deficiency is revealed by the factorization:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\([Q, R]=\operatorname{qr}(A)\)} \\
\hline Q = & & & \\
\hline -0.0776 & -0.8331 & 0.5444 & 0.0605 \\
\hline -0.3105 & -0.4512 & -0.7709 & 0.3251 \\
\hline -0. 0433 & -0.0694 & -0.0913 & -0.8317 \\
\hline -0.7762 & 0.3124 & 0.3178 & 0.4461 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{R}=\)} \\
\hline -12.8841 & -14.5916 & -16.2992 & \\
\hline 0 & -1.0413 & -2.0826 & \\
\hline 0 & 0 & 0.0000 & \\
\hline 0 & 0 & 0 & \\
\hline
\end{tabular}

The triangular structure of R gives it zeros below the diagonal; the zero on the diagonal in \(R(3,3)\) implies that \(R\), and consequently \(A\), does not have full rank.

The QR factorization is used to solve linear systems with more equations than unknowns. For example
```

b =
1
3
5
7

```

The linear system \(A x=b\) represents four equations in only three unknowns. The best solution in a least squares sense is computed by
\[
x=A \backslash b
\]
which produces
```

Warning: Rank deficient,rank=2,tol=1.4594E-014
x =
0.5000
O
0.1667

```
\begin{tabular}{|c|c|}
\hline Algorithm & Theqr function uses the LINPACK routines ZORDC and ZORSL. ZQRDC computes the QR decomposition, while ZQRSL applies the decomposition. \\
\hline See Also & Matrix left division (backslash) \\
\hline & Matrix right division (slash) \\
\hline & Iu LU matrix factorization \\
\hline & null Null space of a matrix \\
\hline & orth Range space of a matrix \\
\hline & qrdelete \({ }^{\text {a }}\) ( Delete column from QR factorization \\
\hline & qrinsert Insert column in QR factorization \\
\hline References & Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979. \\
\hline Purpose & Delete column from QR factorization \\
\hline Syntax & \([Q, R]=\operatorname{ardelete}(Q, R, j)\) \\
\hline Description & \([Q, R]=\operatorname{qrdelete}(Q, R, j) \quad\) changes \(Q\) and \(R\) to be the factorization of the matrix A with its jth column, A(: , j), removed. \\
\hline & Inputs \(Q\) and \(R\) represent the original \(Q R\) factorization of matrix \(A\), as returned by the statement \([Q, R]=\operatorname{qr}(A)\). Argument \(j\) specifies the column to be removed from matrix \(A\). \\
\hline
\end{tabular}

\section*{qrdelete}
Algorithm Theqrdel et e function uses a series of Givens rotations to zero out the appropriate elements of the factorization.
See Also

\section*{qr}
qrinsert

Orthogonal-triangular decomposition I nsert column in QR factorization

\section*{qrinsert}
Purpose Insert column in QR factorization
```

Syntax [Q,R] = qrinsert(Q, R,j,x)

```

Description \([Q, R]=\) qrinsert \((Q, R, j, x)\) changes \(Q\) and \(R\) to be the factorization of the matrix obtained by inserting an extra column, \(x\), before \(A(:, j)\). If \(A\) has \(n\) columns and \(j=n+1\), then qrinsert inserts \(x\) after the last column of \(A\).

Inputs \(Q\) and \(R\) represent the original \(Q R\) factorization of matrix \(A\), as returned by the statement \([Q, R]=q r(A)\). Argument \(x\) is the column vector to be inserted into matrix A. Argument \(j\) specifies the column before which \(x\) is inserted.

\title{
Algorithm Theqrinsert function inserts the values of \(x\) into the jth column of \(R\). It then uses a series of Givens rotations to zero out the nonzero elements of \(R\) on and bel ow the diagonal in the jth column.
}

\section*{See Also}

Orthogonal-triangular decomposition
qrdelete
Delete column from QR factorization

\section*{quad, quad8}

\section*{Purpose Numerical evaluation of integrals}
```

Syntax q = quad('fun',a,b)
q=quad('fun',a,b,tol)
q = quad('fun',a,b,tol,trace)
q = quad('fun',a,b,tol,trace, P1, P2,···)
q = quad8(...)

```

Description Quadrature is a numerical method of finding the area under the graph of a function, that is, computing a definite integral.
\[
q=\int_{a}^{b} f(x) d x
\]
\(q=q u a d(' f u n ', a, b)\) returns the result of numerically integrating' \(f\) un' between the limits \(a\) and \(b\).' fun' must return a vector of output values when given a vector of input values.
\(q=q u a d(' f u n ', a, b, t o l)\) iterates until the relative error is less than tol. The default value for t 0 l is \(1 . \mathrm{e}-3\). Usea two element tolerance vector, \(\mathrm{t} 0 \mathrm{l}=\) [rel_tol abs_tol], to specify a combination of relative and absolute error.
\(q=q u a d(' f u n ', a, b, t o l, t r a c e)\) integratestoarelativeerror of \(t\) l, and for non-zerot race , plots a graph showing the progress of the integration.
\(q=q u a d(' f u n ', a, b, t o l, t r a c e, P 1, P 2, \ldots)\) allows coefficients P1, P2, ... to be passed directly to the specified function: \(G=f u n(X, P 1, P 2, \ldots)\). To use default values for tol or trace, pass in the empty matrix, for example: quad('fun', a, b, [], [], Pl).

\section*{Remarks}
quad 8 , a higher-order method, has the same calling sequence as quad.

\section*{Examples Integrate the sine function from 0 to \(\pi\) :}
```

a = quad('sin', 0, pi)
a =
2.0000

```

\section*{Algorithm}

\section*{Diagnostics}

\section*{Limitations}

References
quad and quad 8 implement two different quadrature algorithms. quad implements a low order method using an adaptive recursive Simpson's rule. quad 8 implements a higher order method using an adaptive recursive Newton-Cotes 8 panel rule. quad8 is better than quad at handling functions with soft singularities, for example:
\[
\int_{0}^{1} \sqrt{x} d x
\]
quad andquad 8 have recursion level limits of 10 to prevent infinite recursion for a singular integral. Reaching this limit in one of the integration intervals produces the warning message:
```

Recursion Ievel limit reached in quad. Singularity likely.
and setsq = inf.

```

Neither quad nor quad 8 is set up to handle integrable singularities, such as:
\[
\int_{0}^{1} \frac{1}{\sqrt{x}} d x
\]

If you need to evaluate an integral with such a singularity, recast the problem by transforming the problem into one in which you can explicitly evaluate the integrable singularities and let quad or quad 8 take care of the remainder.
[1] F orsythe, G.E., M.A. Mal colm and C.B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, 1977.

Purpose Terminate MATLAB

\section*{Syntax \\ quit}

Description

See Also
save
startup

Save workspace variables on disk MATLAB startup M-file
```

Purpose QZ factorization for generalized eigenvalues
Syntax [AA,BB,Q,Z,V] = qz (A,B)
Description Theqz function gives access to what are normally only intermediate results in the computation of generalized eigenvalues.
$[A A, B B, Q, Z, V]=q z(A, B)$ produces upper triangular matrices $A A$ and $B B$, and matrices Q and Z containing the products of the left and right transformations, such that

```
```

Q*A*Z = AA

```
Q*A*Z = AA
Q*B*Z = BB
```

Q*B*Z = BB

```

Theqz function also returns the generalized eigenvector matrix \(V\).
The generalized eigenvalues are the diagonal elements of \(A A\) and \(B B\) so that
\[
A * V * d i a g(B B)=B * V * d i a g(A A)
\]

\section*{Arguments}

\section*{See Also}

References

Algorithm Complex generalizations of the EISPACK routines QZHES, QZI T, QZVAL, and QZVEC implement the QZ algorithm.
\(A, B \quad\) Square matrices.
\(A A, B B \quad\) Upper triangular matrices.
Q, Z Transformation matrices.
V Matrix whose columns are eigenvectors.

\section*{ei g}

Eigenvalues and eigenvectors
[1] Moler, C. B. and G.W. Stewart, "An Algorithm for Generalized Matrix Eigenvalue Problems", SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.

\section*{Purpose Uniformly distributed random numbers and arrays}
```

Syntax }\quadY=\operatorname{rand}(n
Y = rand(m,n)
Y = rand([m n])
Y = rand(m,n, p,...)
Y = rand([m n p...])
Y = rand(size(A))
rand
s = rand('state')

```

Description Ther and function generates arrays of random numbers whose elements are uniformly distributed in the interval \((0,1)\).

Y = rand(n) returns an n-by-n matrix of random entries. An error message appears if \(n\) is not a scalar.
```

Y = rand(m,n) or Y = rand([m n]) returns an m-by-n matrix of random

``` entries.
\(Y=\operatorname{rand}(m, n, p, \ldots)\) or \(Y=\operatorname{rand}([m n p \ldots])\) generates random arrays.
Y = rand(size(A)) returns an array of random entries that is the same size asA.
rand, by itself, returns a scalar whose value changes each time it's referenced.
\(s=r a n d(' s t a t e ')\) returns a 35-element vector containing the current state of the uniform generator. To change the state of the generator:
```

rand('state',s) Resets the statetos.
Resets the state to .

```
rand('state', 0 )
rand('state', j)
rand('state', sum( 100 *(lock))

Resets the generator to its initial state.

For integer j , resets the generator to its j -th state.

Resets it to a different state each time.

\section*{Remarks}

\section*{Examples}

\section*{See Also \\ randn \\ randperm \\ sprand \\ sprandn}
\(R=\)

MATLAB 5 uses a new multiseed random number generator that can generate all the floating-point numbers in the closed interval \(\left[2^{-53}, 1-2^{-53}\right]\). Theoretically, it can generate over \(2^{1492}\) values before repeating itself. MATLAB 4 used random number generators with a single seed. rand('seed', 0 ) and rand('seed', j) use the MATLAB 4 generator. rand('seed') returns the current seed of the MATLAB 4 uniform generator. rand('state', j) and rand('state', s) use the MATLAB 5 generator.
\(R=r\) and \((3,4)\) may produce
\begin{tabular}{llll}
0.2190 & 0.6793 & 0.5194 & 0.0535 \\
0.0470 & 0.9347 & 0.8310 & 0.5297 \\
0.6789 & 0.3835 & 0.0346 & 0.6711
\end{tabular}

This code makes a random choice between two equally probable alternatives.
```

if rand < . 5
heads'
else
'tails'
end

```

Normally distributed random numbers and arrays Random permutation
Sparse uniformly distributed random matrix Sparse normally distributed random matrix

Purpose \(\quad\) Normally distributed random numbers and arrays
```

Syntax
Y = randn(n)
Y = randn(m,n)
Y = randn([m n])
Y = randn(m,n, p,...)
Y = randn([m n p...])
Y = randn(size(A))
randn
s = randn('state')

```

\section*{Description}

Ther and \(n\) function generates arrays of random numbers whose elements are normally distributed with mean 0 and variance 1 .
\(Y=r a n d n(n)\) returns an \(n-b y-n\) matrix of random entries. An error message appears if \(n\) is not a scalar.
\(Y=\operatorname{randn}(m, n)\) or \(Y=r a n d n([m n])\) returns an m-by-n matrix of random entries.
\(Y=\operatorname{randn}(m, n, p, \ldots)\) or \(Y=r a n d n([m n p . .]\).\() generates random\) arrays.
\(Y=r a n d n(\operatorname{size}(A))\) returns an array of randomentries that is the samesize asA.
\(r\) and \(n\), by itself, returns a scalar whose value changes each time it's referenced.
\(s=r a n d n(' s t a t e ')\) returns a 2-element vector containing the current state of the normal generator. To change the state of the generator:
```

randn('state',s) Resets the state tos.
randn('state',0) Resets the generator to its initial
state.

```
\begin{tabular}{ll} 
randn('state', j) & \begin{tabular}{l} 
For integer \(j\), resets the generator to \\
its j th state.
\end{tabular}
\end{tabular}
randn('state', sum(100*clock)) Resets it to a different state each time.
\begin{tabular}{|c|c|}
\hline Remarks & MATLAB 5 uses a new multiseed random number generator that can generate all the floating-point numbers in the closed interval \(\left.2^{-53}, 1-2^{-53}\right]\). Theoretically, it can generate over \(2^{1492}\) values before repeating itself. MATLAB 4 used random number generators with a single seed. \(\mathrm{randn}\left(\right.\) ' seed' \(^{\prime}, 0\) ) and randn('seed', j) use the MATLAB 4 generator. randn('seed') returns the current seed of the MATLAB 4 normal generator. randn('state', j) and randn('state', s) use the MATLAB 5 generator. \\
\hline \multirow[t]{6}{*}{Examples} & \(R=\operatorname{randn}(3,4)\) may produce \\
\hline & \(\mathrm{R}=\) \\
\hline & \(\begin{array}{llll}1.1650 & 0.3516 & 0.0591 & 0.8717\end{array}\) \\
\hline & \(\begin{array}{llll}0.6268 & -0.6965 & 1.7971 & -1.4462\end{array}\) \\
\hline & \(\begin{array}{llll}0.0751 & 1.6961 & 0.2641 & -0.7012\end{array}\) \\
\hline & For a histogram of ther andn distribution, seehist. \\
\hline \multirow[t]{4}{*}{See Also} & rand Uniformly distributed random numbers and arrays \\
\hline & randperm Random permutation \\
\hline & sprand Sparse uniformly distributed random matrix \\
\hline & sprandn Sparse normally distributed random matrix \\
\hline
\end{tabular}
Purpose Random permutation
Syntax \(p=r a n d p e r m(n)\)
Description \(p=r a n d p e r m(n)\) returns a random permutation of the integers \(1: n\).Remarks
Examplesrandperm(6) might be the vector
\(\left[\begin{array}{llllll}3 & 2 & 6 & 4 & 1 & 5\end{array}\right]\)
or it might be some other permutation of \(1: 6\).
See Also permute Rearrange the dimensions of a multidimensional array
Purpose Rank of a matrix
Syntax \(\quad\)\begin{tabular}{rl}
\(k\) & \(=\operatorname{rank}(A)\) \\
\(k\) & \(=\operatorname{rank}(A, t o l)\)
\end{tabular}

Description
Ther ank function provides an estimate of the number of linearly independent rows or columns of a matrix.
\(k=r a n k(A)\) returns the number of singular values of \(A\) that are larger than the default tolerance, \(\max (\operatorname{size}(\mathrm{A}))\) *norm(A) *eps.
\(k=r a n k(A, t o l)\) returns the number of singular values of \(A\) that are larger thantol.

\section*{Algorithm There are a number of ways to compute the rank of a matrix. MATLAB uses the method based on the singular value decomposition, or SVD, described in Chapter 11 of the LINPACK Users' Guide. The SVD algorithm is the most time consuming, but also the most reliable.}

Therank algorithm is
```

s = svd(A);
tol= max(size(A))*s(1)*eps;
r = sum(s > tol);

```

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979.

\section*{Purpose Rational fraction approximation}
```

Syntax [N, D] = rat(X)
[N,D] = rat(X,tol)
rat(...)
S = rats(X,strlen)
S = rats(X)

```

Description Even though all floating-point numbers are rational numbers, it is sometimes desirableto approximate them by simplerational numbers, which arefractions whose numerator and denominator are small integers. The rat function attempts to do this. Rational approximations are generated by truncating continued fraction expansions. Ther at sunction calls \(r\) at, and returns strings.
[ N, D] = rat(X) returns arrays \(N\) and \(D\) so that \(N\). / D approximates \(X\) to within the default tolerance, 1. e-6*norm(X(:),1).
\([\mathrm{N}, \mathrm{D}]=\mathrm{rat}(\mathrm{X}, \mathrm{tol})\) returns N. / D approximating X to withintol.
rat ( X), with no output arguments, simply displays the continued fraction.
\(S=r a t s(X, s t r l e n)\) returns a string containing simple rational approximations to the elements of \(X\). Asterisks are used for elements that cannot be printed in the allotted space, but are not negligible compared to the other elements in X.strlen is the length of each string element returned by ther at s function. The default is strlen \(=13\), which allows 6 elements in 78 spaces.
\(S=r a t s(X)\) returns the same results as those printed by MATLAB with format rat.

\section*{Examples \\ Ordinarily, the statement}
\[
s=1-1 / 2+1 / 3-1 / 4+1 / 5-1 / 6+1 / 7
\]
produces

\footnotetext{
\(s=\)
0.7595
}

\section*{However, with}
format rat
or with
```

 rats(s)
    ```
the printed result is
\(s=\)
\(319 / 420\)
This is a simple rational number. Its denominator is 420, the least common multiple of the denominators of the terms involved in the original expression. Even though the quantitys is stored internally as a binary floating-point number, the desired rational form can be reconstructed.

To see how the rational approximation is generated, the statement r at ( s ) produces
```

1+1/(-4+1/(-6+1/(-3+1/(-5))))

```

And the statement
```

[n,d] = rat(s)

```
produces
```

n = 319, d = 420

```

The mathematical quantity \(\pi\) is certainly not a rational number, but the MATLAB quantity pi that approximates it is a rational number. With IEEE floating-point arithmetic, pi is the ratio of a large integer and \(2^{52}\) :

\section*{\(14148475504056880 / 4503599627370496\)}

However, this is not a simple rational number. The value printed for pi with format rat, or with rats(pi), is

355/113
This approximation was known in Euclid's time. Its decimal representation is
3. 14159292035398
and so it agrees with pi to seven significant figures. The statement
```

 rat(pi)
    ```
produces
```

3 + 1/(7 + 1/(16))

```

This shows how the \(355 / 113\) was obtained. The less accurate, but morefamiliar approximation \(22 / 7\) is obtained from the first two terms of this continued fraction.

Algorithm Therat ( x ) function approximates each element of x by a continued fraction of the form:
\[
\frac{n}{d}=d_{1}+\frac{1}{d_{2}+\frac{1}{\left(d_{3}+\ldots+\frac{1}{d_{k}}\right)}}
\]

The \(d\) 's are obtained by repeatedly picking off the integer part and then taking the reciprocal of the fractional part. The accuracy of the approximation increases exponentially with the number of terms and is worst when \(x=\operatorname{sqrt}(2)\). For \(x=\operatorname{sqrt}(2)\), the error with \(k\) terms is about \(2,68 *(1,173)^{\wedge} k\), so each additional term increases the accuracy by less than one decimal digit. It takes 21 terms to get full floating-point accuracy.

Purpose \(\quad\) atrix reciprocal condition number estimate


Purpose Real part of complex number

\section*{Syntax \\ \(X=r e a l(Z)\)}

Description
\(X=\) real (Z) returns the real part of the elements of the complex array \(Z\).
Examples real \((2+3 * i)\) is 2.

\section*{See Also \\ abs}
angle
conj
i, j
i mag

Absolute value and complex magnitude Phase angle Complex conjugate I maginary unit ( \(\sqrt{-1}\) )
I maginary part of a complex number
Purpose Largest positive floating-point number
Syntax \(n=\) real max
Description \(\mathrm{n}=\) real max returns the largest floating-point number representable on aparticular computer. Anything larger overflows.
Examples On machines with IEEE floating-point format, real max is one bit less than \(2^{1024}\) or about \(1.7977 e+308\).
Algorithm Thereal max function is equivalent to pow2(2-eps, maxexp), wheremaxexp is the largest possible floating-point exponent.
Executetypereal max to see maxexp for various computers.
See Also ..... eps

Floating-point relative accuracy
Smallest positive floating-point number

\section*{realmin}

Purpose Smallest positive floating-point number

\section*{Syntax \\ \(n=\) realmin}

Description

Examples

Algorithm
Thereal min function is equivalent topow2(1, mi nexp) whereminexp is the smallest possible floating-point exponent.

Executetypereal min to see mi nexp for various computers.

\section*{See Also}
eps
real max

F loating-point relative accuracy
Largest positive floating-point number
Purpose Remainder after division
\begin{tabular}{|c|c|}
\hline Syntax & \(R=r e m(X, Y)\) \\
\hline Description & \(R=\operatorname{rem}(X, Y)\) returns \(X-f i X(X, \mid Y)\). *Y, wheref \(i X(X, \mid Y)\) is the integer part of the quotient, \(X . / Y\). \\
\hline Remarks & So long as operands \(X\) and \(Y\) are of the same sign, the statement \(r e m(X, Y)\) returns the same result as does \(\bmod (X, Y)\). However, for positive \(X\) and \(Y\),
\[
\operatorname{rem}(-x, y)=\bmod (-x, y)-y
\] \\
\hline & Therem function returns a result that is between 0 and \(\operatorname{sign}(X) * a b s(Y)\). If \(Y\) is zero, rem returns NaN . \\
\hline Limitations & Arguments \(X\) and \(Y\) should be integers. Due to the inexact representation of floating-point numbers on a computer, real (or complex) inputs may lead to unexpected results. \\
\hline See Also & mod Modulus (signed remainder after division) \\
\hline
\end{tabular}

Purpose Replicate and tile an array
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{Syntax} & \(B=r e p m a t(A, m, n)\) \\
\hline & \(B=r e p m a t(A,[m n])\) \\
\hline & \(B=r e p m a t(A,[m n p . .]\). \\
\hline & repmat ( \(A, m, n\) ) \\
\hline
\end{tabular}

\section*{Description}

\section*{Examples}
\(B=r e p m a t(A, m, n)\) creates a large matrix \(B\) consisting of an m-by-n tiling of copies of \(A\). The statement repmat ( \(A, n\) ) creates an \(n\)-by-n tiling.
\(B=r e p m a t(A,[m n])\) accomplishes the same result asrepmat ( \(A, m, n)\).
\(B=r e p m a t(A,[m n \operatorname{p...]})\) produces a multidimensional (m-by-n-by-p-by-...) array composed of copies of A. A may be multidimensional.
repmat ( \(A, m, n\) ) when \(A\) is a scalar, produces an m-by-n matrix filled with A's value. This is much faster than a*ones ( \(m, n\) ).

In this example, repmat replicates 12 copies of the second-order identity matrix, resulting in a "checkerboard" pattern.
```

B = repmat(eye(2), 3,4)

```
B =
\begin{tabular}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{tabular}

The statement \(N=\) repmat ( \(\left.\mathrm{NaN},\left[\begin{array}{ll}2 & 3\end{array}\right]\right)\) creates a 2 -by- 3 matrix of \(\mathrm{Na} N \mathrm{~s}\).

Purpose Reshape array
Syntax \(\quad\)\begin{tabular}{rl}
\(B\) & \(=\operatorname{reshape}(A, m, n)\) \\
\(B\) & \(=\operatorname{reshape}(A, m, n, p, \ldots)\) \\
\(B\) & \(=\operatorname{reshape}(A,[m n \operatorname{p} .])\). \\
\(B\) & \(=\operatorname{reshape}(A, \operatorname{siz})\)
\end{tabular}

Description \(\quad B=\) reshape \((A, m, n)\) returns the \(m-b y-n\) matrix \(B\) whose elements are taken column-wise from A. An error results if A does not have m*n elements.
\(B=r e s h a p e(A, m, n, p, \ldots)\) or \(B=r e s h a p e(A,[m n p \ldots])\) returns an N-D array with the same elements as \(x\) but reshaped to have the size
m-by-n-by-p-by-... .m*n*p*... must be the same asprod(size(x)).
\(B=r e s h a p e(A, s i z)\) returns an N-D array with the same elements as A, but reshaped to siz, a vector representing the dimensions of the reshaped array. The quantity prod(siz) must be the same asprod(size(A)).

\section*{Examples}

See Also
(colon)
shiftdim
squeeze

Colon :
Shift dimensions
Remove singleton dimensions

Purpose Convert between partial fraction expansion and polynomial coefficients

\section*{Syntax}

\section*{Description}

\section*{Definition}

If there are no multiple roots, then:
\[
\frac{b(s)}{a(s)}=\frac{r_{1}}{s-p_{1}}+\frac{r_{2}}{s-p_{2}}+\ldots+\frac{r_{n}}{s-p_{n}}+k(s)
\]

The number of poles \(n\) is
```

n=| | ngth(a)-1 = | ength(r) = I ength(p)

```

The direct term coefficient vector is empty iflength(b) < I ength(a); otherwise
```

I ength(k) = I ength(b)-I ength(a) +1

```

If \(p(j)=\ldots=p(j+m-1)\) is a pole of multiplicity \(m\), then the expansion includes terms of the form
\[
\frac{r_{j}}{s-p_{j}}+\frac{r_{j+1}}{\left(s-p_{j}\right)^{2}}+\ldots+\frac{r_{j}+m-1}{\left(s-p_{j}\right)^{m}}
\]
\begin{tabular}{ll} 
Arguments & \begin{tabular}{l} 
b, a Vectors that specify the coefficients of the polynomials in descending \\
powers of \(s\)
\end{tabular} \\
Column vector of residues
\end{tabular}
Purpose Return to the invoking function

\section*{Syntax return}

Description

Examples
r et urn causes a normal return to the invoking function or to the keyboard. It also terminates keyboard mode.

If the determinant function were an \(M\)-file, it might use ar et urn statement in handling the special case of an empty matrix as follows:
```

function d = det(A)
%DET det(A) is the determinant of A.
if i sempty(A)
d = 1;
return
else
end

```

\section*{See Also}
break
disp
end
error
for
if
keyboard
switch
while

Break out of flow control structures Display text or array
Terminate for, while, switch, and if statements or indicate last index
Display error messages
Repeat statements a specific number of times Conditionally execute statements I nvoke the keyboard in an M-file Switch among several cases based on expression Repeat statements an indefinite number of times

Purpose Remove structure fields
Syntax \(\quad\)\begin{tabular}{rl}
\(s\) & \(=r m f i e l d(s, ' f i e l d ')\) \\
\(s\) & \(=r m f i e l d(s, F \mid E L D S)\)
\end{tabular}

Description \(s=r m f i e l d(s, ' f i e l d ')\) removes the specified field from the structurearray s.
\(s=r m f i e l d(s, F I E L D S)\) removes more than one field at a time when FIELDS is a character array of field names or cell array of strings.
\begin{tabular}{lll} 
See Also & fields & Field names of a structure \\
getfield \\
setfield \\
strvcat & Get field of structure array \\
& Set field of structure array \\
& Vertical concatenation of strings
\end{tabular}

Purpose Remove directories from MATLAB's search path

\section*{Syntax \\ rmpath directory}

Description rmpath directory removes the specified directory from MATLAB's current search path.

Remarks The function syntax form is also acceptable:
rmpath('directory')

\section*{Examples}
rmpath /usr/local/mat|ab/mytools
See Also addpath
path

Add directories to MATLAB's search path
Control MATLAB's directory search path
Purpose Polynomial roots

\section*{Syntax r = roots(c)}

Description \(r=\operatorname{roots}(c)\) returns a column vector whose elements are the roots of the polynomial c.

Row vector c contains the coefficients of a polynomial, ordered in descending powers. If c has \(\mathrm{n}+1\) components, the polynomial it represents is \(c_{1} s^{n}+\ldots+c_{n} s+c_{n+1}\).

Remarks

\section*{Examples}

The polynomial \(s^{3}-6 s^{2}-72 s-27\) is represented in MATLAB as
\[
p=\left[\begin{array}{llll}
1 & -6 & -72 & -27
\end{array}\right]
\]

The roots of this polynomial are returned in a column vector by
```

r = roots(p)
r =
12.1229
-5.7345
-0.3884

```

Algorithm The algorithm simply involves computing the eigenvalues of the companion matrix:
```

A = diag(ones(n-2,1),-1);
A(1,:)= -c(2:n-1)./c(1);
eig(A)

```

It is possible to prove that the results produced are the exact eigenvalues of a matrix within roundoff error of the companion matrixa , but this does not mean that they are the exact roots of a polynomial with coefficients within roundoff error of those in \(c\).
\begin{tabular}{lll} 
See Also & fzero & Zero of a function of one variable \\
poly \\
residue
\end{tabular}\(\quad\)\begin{tabular}{l} 
Polynomial with specified roots \\
\\
\end{tabular}


Purpose Round to nearest integer

\section*{Syntax \\ \(Y\) = round( \(X\) )}

Description
\(Y=\) round \((X)\) rounds the elements of \(X\) to the nearest integers. F or complex \(X\), the imaginary and real parts are rounded independently.

\section*{Examples}
```

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000
Columns 5 through 6
7.0000 2.4000 + 3.6000i
round(a)
ans=
Columns 1 through 4
-2.0000 0 3.0000 6.0000
Columns 5 through 6
7.0000 2.0000+4.0000i

```

See Also
ceil
fix
floor

Round toward infinity
Round towards zero
Round towards minus infinity

Purpose Reduced row echelon form
```

Syntax
R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)
rrefmovie(A)

```

Description \(\quad R=r r e f(A)\) produces the reduced row echelon form of \(A\) using Gauss J ordan elimination with partial pivoting. A default tolerance of (max(size(A))*eps *norm(A, inf)) tests for negligible column elements.
\([R, j b]=r r e f(A)\) also returns a vector jb so that:
- \(r=1\) ength(jb) is this algorithm's idea of the rank of \(A\),
- \(x(j b)\) are the bound variables in a linear system \(A x=b\),
- \(A(:, j b)\) is a basis for the range of \(A\),
- \(R(1: r, j b)\) is the \(r\)-by-r identity matrix.
\([R, j b]=r r e f(A, t o l)\) uses the given tolerance in the rank tests.
Roundoff errors may cause this algorithm to compute a different value for the rank than rank,orth andnull.
rref movie(A) shows a movie of the algorithm working.
Examples Userref on a rank-deficient magic square:
\begin{tabular}{|c|c|c|c|}
\hline \(A=m\) & c( & R & rref(A) \\
\hline \(A=\) & & & \\
\hline 16 & 2 & 3 & 13 \\
\hline 5 & 11 & 10 & 8 \\
\hline 9 & 7 & 6 & 12 \\
\hline 4 & 14 & 15 & 1 \\
\hline R & & & \\
\hline 1 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 3 \\
\hline 0 & 0 & 1 & -3 \\
\hline 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{rref, rrefmovie}

\section*{See Also \\ i nv \\ Iu \\ rank}

Matrix inverse
LU matrix factorization
Rank of a matrix

\section*{Purpose Convert real Schur form to complex Schur form}

\section*{Syntax \(\quad[U, T]=r \operatorname{sf2csf}(U, T)\)}

Description The complex Schur form of a matrix is upper triangular with the eigenvalues of the matrix on the diagonal. The real Schur form has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.
\([U, T]=\operatorname{rff} 2 \operatorname{csf}(U, T)\) converts the real Schur form to the complex form.
Arguments \(U\) and \(T\) represent the unitary and Schur forms of a matrixA , respectively, that satisfy the relationships: \(A=U * T * U^{\prime}\) and \(U^{\prime} * U=e y e(s i z e(A))\). See schur for details.

Examples Given matrix A,
\begin{tabular}{rrrr}
1 & 1 & 1 & 3 \\
1 & 2 & 1 & 1 \\
1 & 1 & 3 & 1 \\
-2 & 1 & 1 & 4
\end{tabular}
with the eigenvalues
```

1.9202 - 1.4742i
$1.9202+1.4742 i$
4.8121

1. 3474
```

Generating the Schur form of A and converting to the complex Schur form
```

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

```
yields a triangular matrix \(T\) whose diagonal consists of the eigenvalues of \(A\).
\(u=\)
\begin{tabular}{rccr}
\(-0.4576+0.3044 i\) & \(0.5802-0.4934 i\) & -0.0197 & -0.3428 \\
\(0.1616+0.3556 i\) & \(0.4235+0.0051 i\) & 0.1666 & 0.8001 \\
\(0.3963+0.2333 i\) & \(0.1718+0.2458 i\) & 0.7191 & -0.4260 \\
\(-0.4759-0.3278 i\) & \(-0.2709-0.2778 i\) & 0.6743 & 0.2466
\end{tabular}
\begin{tabular}{lllll}
\(T=\) & & & \\
\(\underline{1.9202+1.4742 i}\) & \(0.7691-1.0772 i\) & \(-1.5895-0.9940 i\) & \(-1.3798+0.1864 i\) \\
0 & \(\underline{1.9202-1.4742 i}\) & \(1.9296+1.6909 i\) & \(0.2511+1.0844 i\) \\
0 & 0 & \(\underline{4.8121}\) & 1.1314 \\
0 & 0 & 0 & \(\underline{1.3474}\)
\end{tabular}
See Also schur Schur decomposition

\section*{Purpose Save workspace variables on disk}

\section*{Syntax}
```

save
save filename
save filename variables
save filename options
save filename variables options

```

\section*{Description}

\section*{Options}
save, by itself, stores all workspace variables in a binary format in the file named matlab. mat. The data can be retrieved with I oad.
save filename stores all workspace variables infilename. mat instead of the defaultmatlab. mat.Iffilename is thespecial stringstdio, thesave command sends the data as standard output.
save filename variables saves only the workspacevariables you list after thefilename.

The forms of the save command that useoptions are:
```

save filename options
save filename variables options,

```

Each specifies a particular ASCII data format, as opposed to the binary MAT-file format, in which to save data. Valid option combinations are:
\begin{tabular}{ll}
\hline With these options... & Data is stored in: \\
\hline -ascii & 8-digit ASCII format \\
-ascii -double & 16-digit ASCII format \\
\hline -ascii -tabs & 8-digit ASCII format, tab-separated \\
-ascii -double -tabs & 16-digit ASCII format, tab-separated \\
\hline
\end{tabular}

Variables saved in ASCII format merge into a single variable that takes the name of the ASCII file. Therefore, loading the filefil ename shown above
\begin{tabular}{|c|c|}
\hline & results in a single workspace variable named fil ename. Use the colon operator to access individual variables. \\
\hline Limitations & Saving complex data with the- as cii keyword causes theimaginary part of the data to be lost, as MATLAB cannot load nonnumeric data (' i ' ). \\
\hline \multirow[t]{3}{*}{Remarks} & Thes ave andload commands retrieve and store MATLAB variables on disk. They can also import and export numeric matrices as ASCII data files. \\
\hline & MAT-files are double-precision binary MATLAB format files created by the save command and readable by thel oad command. They can be created on one machine and later read by MATLAB on another machine with a different floating-point format, retaining as much accuracy and range as the disparate formats allow. They can also be manipulated by other programs, external to MATLAB. \\
\hline & Alternative syntax: Thefunction form of thesyntax, save('filename'), is also permitted. \\
\hline \multirow[t]{8}{*}{Algorithm} & The binary formats used by \(s\) ave depend on the size and type of each array. Arrays with any noninteger entries and arrays with 10,000 or fewer elements are saved in floating-point formats requiring eight bytes per real element. Arrays with all integer entries and more than 10,000 elements are saved in the formats shown, requiring fewer bytes per element. \\
\hline & Element Range Bytes per Element \\
\hline & 0 to 2551 \\
\hline & 0 to 65535 \\
\hline & -32767 to 32767 2 \\
\hline & \(-2^{31}+1\) to \(2^{31}-1 \quad 4\) \\
\hline & other 8 \\
\hline & The structure of MAT-files is discussed in detail in the Application Program Interface Guide The Application Program Interface Libraries contain C and F ortran routines to read and write MAT-files from external programs. It is important to use recommended access methods, rather than rely upon the specific file format, which is likely to change in the future. \\
\hline
\end{tabular}
\begin{tabular}{lll} 
See Also & fprintf \\
fwrite \\
load & Write formatted data to file \\
& Write binary data to a file \\
& Retrieve variables from disk
\end{tabular}
Purpose Schur decomposition
\begin{tabular}{ll} 
Syntax & {\([U, T]=\operatorname{schur}(A)\)} \\
& \(T=\operatorname{schur}(A)\)
\end{tabular}

Description Theschur command computes the Schur form of a matrix.
\([\mathrm{U}, \mathrm{T}]=\mathrm{schur}(\mathrm{A})\) produces a Schur matrix T , and a unitary matrix \(U\) so that \(A=U * T * U^{\prime}\) and \(U^{\prime} * U=e y e(s i z e(A))\).

T = schur(A) returns just the Schur matrix \(T\).

\section*{Remarks}

Examples

Algorithm

The complex Schur form of a matrix is upper triangular with the eigenvalues of the matrix on the diagonal. Thereal Schur form has thereal eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.

If the matrixA is real, schur returns thereal Schur form. IfA is complex, schur returns the complex Schur form. The function rsf 2 cs \(f\) converts the real form to the complex form.

H is a 3-by-3 eigenvalue test matrix:
\begin{tabular}{rrr} 
\\
\(H\) & & \\
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{tabular}

Its Schur form is
\begin{tabular}{rrr}
\(\operatorname{schur}(\mathrm{H})=\) & \\
1.0000 & 7.1119 & 815.8706 \\
0 & 2.0000 & -55.0236 \\
0 & 0 & 3.0000
\end{tabular}

Theeigenvalues, which in this caseare 1,2 , and 3 , are on the diagonal. The fact that the off-diagonal elements areso largeindicates that this matrix has poorly conditioned eigenvalues; small changes in the matrix elements produce relatively large changes in its eigenvalues.

For real matrices, schur uses theEISPACK routines ORTRAN,ORTHES, and HQR2. ORTHES converts a real general matrix to Hessenberg form using orthogonal
similarity transformations. ORTRAN accumulates the transformations used by ORTHES. HQR2 finds the eigenvalues of a real upper Hessenberg matrix by the QR method.

The EISPACK subroutineHQR2 has been modified to allow access to the Schur form, ordinarily just an intermediate result, and to make the computation of eigenvectors optional.

When s chur is used with a complex argument, the solution is computed using the QZ algorithm by the EISPACK routines QZHES, QZI T, QZVAL, and QZVEC. They have been modified for complex problems and to handle the special case \(B=I\).

For detailed descriptions of these algorithms, see the EISPACK Guide
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{See Also} & eig & Eigenvalues and eigenvectors \\
\hline & hess & Hessenberg form of a matrix \\
\hline & qz & QZ factorization for generalized eigenvalues \\
\hline & rsf 2 csf & Convert real Schur form to complex Schur form \\
\hline \multirow[t]{3}{*}{References} & \multicolumn{2}{|l|}{[1] Garbow, B. S., J. M. Boyle, J . J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture Notes in Computer Science, Vol. 51, Springer-Verlag, 1977.} \\
\hline & \multicolumn{2}{|l|}{[2] Moler, C.B. and G. W. Stewart, "An Algorithm for Generalized Matrix Eigenvalue Problems," SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.} \\
\hline & \multicolumn{2}{|l|}{[3] Smith, B. T., J . M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag, 1976.} \\
\hline
\end{tabular}

\section*{script}
\begin{tabular}{|c|c|}
\hline Purpose & Script M-files \\
\hline \multirow[t]{4}{*}{Description} & A script file is an external file that contains a sequence of MATLAB statements. By typing the filename, subsequent MATLAB input is obtained from thefile. Script files have a filename extension of . \(m\) and are often called \(M\)-files. \\
\hline & Scripts are the simplest kind of M-file. They are useful for automating blocks of MATLAB commands, such as computations you have to perform repeatedly from the command line. Scripts can operate on existing data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments, any variables that they create remain in the workspace so you can use them in further computations. In addition, scripts can produce graphical output using commands likepl ot . \\
\hline & Scripts can contain any series of MATLAB statements. They require no declarations or begin/end delimiters. \\
\hline & Like any M-file, scripts can contain comments. Any text following a percent sign (\%) on a given line is comment text. Comments can appear on lines by themselves, or you can append them to the end of any executable line. \\
\hline \multirow[t]{3}{*}{See Also} & echo Echo M-files during execution \\
\hline & function \(\quad\) Function \({ }^{\text {-files }}\) \\
\hline & type List file \\
\hline
\end{tabular}

Purpose

\section*{Syntax}

Description

Secant and hyperbolic secant
```

Y = sec(X)
Y}=\operatorname{sech}(X

```

Thesec and sech commands operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
\(Y=\sec (X)\) returns an array the same size as \(X\) containing the secant of the elements of \(X\).
\(Y=\operatorname{sech}(X)\) returns an array the same size as \(X\) containing the hyperbolic secant of the elements of \(X\).

Graph the secant over the domains \(-\pi / 2<x<\pi / 2\) and \(\pi / 2<x<3 \pi / 2\), and the hyperbolic secant over the domain \(-2 \pi \leq x \leq 2 \pi\).
```

x1 = - pi/2+0.01:0.01: pi/2-0.01;
x2 = pi/2 +0.01:0.01:(3*pi/2)-0.01;
plot(x1, sec(x1), x2, sec(x2))
x = - 2*pi:0.01:2*pi; plot(x, sech(x))

```



\section*{sec, sech}

Theexpressionsec(pi/2) does not evaluate as infinite but as the reciprocal of the floating-point accuracyeps, becausepi is a floating-point approximation to the exact value of \(\pi\).

\section*{Algorithm}
\[
\sec (z)=\frac{1}{\cos (z)} \quad \operatorname{sech}(z)=\frac{1}{\cosh (z)}
\]

See Also asec,asech Inverse secant and inverse hyperbolic secant

\section*{Purpose Return the set difference of two vectors}
```

Syntax c = setdiff(a,b)
c = setdiff(a,b,'rows')
[c,i] = setdiff(...)

```

Description \(\quad c=\operatorname{set} d i f(a, b)\) returns the values in a that are not in \(b\). The resulting vector is sorted is ascending order. In set theoretic terms, \(c=a-b\).
\(c=\left(a, b, r^{\prime} r o w s '\right)\) when \(a\) and \(b\) are matrices with the same number of columns returns the rows from \(a\) that are not in \(b\).
\([c, i]=\operatorname{set} d i f f(\ldots)\) alsoreturns an index vectorindex such that \(c=a(i)\) or \(c=a(i,:)\).

A non-vector input array A is regarded as a column vector \(\mathrm{A}(\mathrm{l}\) ) .

\section*{Examples}
```

A = magic(5);
B = magic(4);
[C,i] = setdiff(A,B);

```

```

i' = 1 lllllllllllll

```

See Also
intersect
is member
setxor
union
unique

Set intersection of two vectors
True for a set member
Set exclusive-or of two vectors
Set union of two vectors
Unique elements of a vector
Purpose Set field of structure array
Syntax \(\quad\)\begin{tabular}{rl}
\(s\) & \(=\operatorname{setfield}(s, ' f i e l d ', ~ v)\) \\
\(s\) & \(=\operatorname{setfi} e l d(s,\{i, j\}, ' f i e l d ',\{k\}, v)\)
\end{tabular}

\section*{Description}
\(s=s e t f i e l d(s, ' f i e l d ', v)\), wheres is a 1-by-1 structure, sets the contents of the specified field to the valuev. This is equivalent to the syntax s.field = v.
\(s=s e t f i e l d(s,\{i, j\}, ' f i e l d ',\{k\}, v)\) sets the contents of the specified field to the valuev. This is equivalent to the syntax \(s(i, j)\). \(f i\) el \(d(k)=v\). All subscripts must be passed as cell arrays-that is, they must be enclosed in curly braces (similar to \(\{\mathrm{i}, \mathrm{j}\}\) and \(\{\mathrm{k}\}\) above). Pass field references as strings.

Given the structure:
```

mystr(1,1), name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1), name = 'gertrude';
mystr(2,1).ID = 1

```

Then the commandmystr = setfield(mystr,\{2,1\},'name','ted') yields
mystr \(=\)
\(2 \times 1\) struct array with fields:
    n a me
    ID

See Also
fields
Field names of a structure
getfield

\section*{Purpose Set exclusive-or of two vectors}
Syntax \(\quad\)\begin{tabular}{l}
\(c=\operatorname{set} \times o r(a, b)\) \\
\(c=\operatorname{set} \times \operatorname{cor}(a, b\), rows \()\) \\
\\
{\([c, i a, i b]=\operatorname{set} \times o r(\ldots)\)}
\end{tabular}

Description

Examples
\(c=s e t x o r(a, b)\) returns the values that are not in the intersection of a and \(b\). The resulting vector is sorted.
\(c=s e t x o r(a, b, ' r o w s ')\) when \(a\) areb arematrices with the samenumber of columns returns the rows that are not in the intersection of \(a\) and \(b\).
\([c, i a, i b]=\) setxor(...) alsoreturns index vectors \(i a\) and \(i b\) such that \(c\) is a sorted combination of the elements \(c=a(i a)\) and \(c=b(i b)\) or, for row combinations, \(c=a(i a,:)\) and \(c=b(i b,:)\).

A non-vector input array A is regarded as a column vector A(: ).
```

a = [-1 0 1 Inf -Inf NaN];
b = [-2 pi 0 Inf];
c = setxor(a,b)
c =

```
\begin{tabular}{llllll}
\(-1 n f\) & -2.0000 & -1.0000 & 1.0000 & 3.1416 & \(N a N\)
\end{tabular}
\begin{tabular}{lll} 
See Also & intersect & Set intersection of two vectors \\
is member & True for a set member \\
set diff & Set difference of two vectors \\
union & Set union of two vectors \\
& unique & Unique elements of a vector
\end{tabular}

\section*{Purpose Shift dimensions}
\begin{tabular}{ll} 
Syntax & \(B=\operatorname{shiftdim}(X, n)\) \\
{\([B, n s h i f t s]=\operatorname{shiftdim}(X)\)}
\end{tabular}

Description
\(B=\operatorname{shiftdim}(X, n)\) shifts the dimensions of \(X\) by \(n\). When \(n\) is positive, shiftdim shifts the dimensions to the left and wraps then leading dimensions to the end. When \(n\) is negative, shift dim shifts the dimensions to the right and pads with singletons.
\([B\), nshifts] = shiftdim(X) returns the array \(B\) with the same number of elements as \(X\) but with any leading singleton dimensions removed. A singleton dimension is any dimension for whichsize(A, dim) =1.nshifts is thenumber of dimensions that are removed.

If \(X\) is a scalar, shift dim has no effect.

\section*{Examples}

Theshiftdim command is handy for creating functions that, likesum or diff, work along the first nonsingleton dimension.
```

a = rand(1, 1, 3, 1, 2);
[b,n] = shiftdim(a); % b is 3-by-1-by-2 and n is 2.
c = shiftdim(b,-n); % c == a.
d = shiftdim(a,3); % d is 1-by-2-by-1-by-1-by-3.

```

See Also
reshape
Reshape array
squeeze
Remove singleton dimensions

Purpose Signum function

\section*{Syntax \\ \(Y=\operatorname{sign}(X)\)}

Description \(\quad Y=\operatorname{sign}(X)\) returns an array \(Y\) the samesize as \(X\), where each element of \(Y\) is:
- 1 if the corresponding element of \(X\) is greater than zero
- 0 if the corresponding element of \(X\) equals zero
- - 1 if the corresponding element of \(x\) is less than zero

For nonzero complex \(X\), \(\operatorname{sign}(X)=X . \mid a b s(X)\).

\section*{See Also \\ abs}
conj
i mag
real

Absolute value and complex magnitude Complex conjugate Imaginary part of a complex number Real part of complex number

Purpose

\section*{Syntax}

\section*{Description}

Sine and hyperbolic sine
```

Y = sin(X)
Y = sinh(X)

```

Thesin and sinh commands operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
\(Y=\sin (X)\) returns the circular sine of the elements of \(X\).
\(Y=\sinh (X)\) returns the hyperbolic sine of the elements of \(X\).

\section*{Examples}

Graph the sine function over the domain \(-\pi \leq x \leq \pi\), and the hyperbolic sine
function over the domain \(-5 \leq x \leq 5\).
```

x = -pi:0.01:pi; plot(x, sin(x))
x = - 5:0.01:5; plot(x, sinh(x))

```



The expression sin(pi) is not exactly zero, but rather a value the size of the floating-point accuracy eps, because pi is only a floating-point approximation to the exact value of \(\pi\).

\section*{Algorithm}
\[
\begin{aligned}
& \sin (x+i y)=\sin (x) \cos (y)+i \cos (x) \sin (y) \\
& \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i} \\
& \sinh (z)=\frac{e^{z}-e^{-z}}{2}
\end{aligned}
\]

\section*{See Also asin,asinh Inverse sine and inverse hyperbolic sine}

Purpose Array dimensions

\section*{Syntax}
```

d = size(X)
[m,n] = size(X)
m = size(X,dim)
[d1,d2,d3,...,dn] = size(X)

```

\section*{Description}

\section*{Examples}

The size of the second dimension of \(r\) and \((2,3,4)\) is 3 .
```

m = size(rand(2, 3,4), 2)
m =
3

```

Here the size is output as a single vector.
```

d = size(rand(2,3,4))
d =
2 3 4

```

Here the size of each dimension is assigned to a separate variable.
```

 [m,n,p] = size(rand(2,3,4))
 m =
 2
 n =
 3
 p =
 4
 IfX = ones(3,4,5), then
[d1,d2,d3] = size(X)
d1 = d2 = d3 =

```
but when the number of output variables is less than ndi ms \((X)\) :
    \([d 1, d 2]=\operatorname{size}(X)\)
    d1 = \(\quad\) d2 =
        320

The "extra" dimensions are collapsed into a single product.
If \(n>n d i m s(X)\), the "extra" variables all represent singleton dimensions:
\([d 1, d 2, d 3, d 4, d 5, d 6]=\operatorname{size}(X)\)
\begin{tabular}{ccc}
\(d 1=\) & \(d 2=\) & \(d 3=\) \\
3 & \(=\) & \\
\(d 4=\) & \(d 5=\) & \(d 6=\) \\
1 & & \\
1
\end{tabular}

\section*{See Also}
exist
Iength
whos

Check if a variable or file exists
Length of vector
List directory of variables in memory

Purpose Sort elements in ascending order
Syntax \(\quad\)\begin{tabular}{l}
\(B=\operatorname{sort}(A)\) \\
\\
\\
\\
\(B, \mid \operatorname{lndEX}]=\operatorname{sort}(A, \operatorname{dim})\)
\end{tabular}

Description

See Also max
mean
medi an
min
sortrows arranges those elements in ascending order. NaN elements, sort places these at the end. columns. preserve the original relative ordering. scalar dim. sort(A,[12]) is equivalent tosort(sort(A,2),1).
See Also \begin{tabular}{lll}
\(\max\) & Maximum elements of an array \\
mean & Average or mean value of arrays \\
median & Median value of arrays \\
min & Minimum elements of an array \\
& sortrows & Sort rows in ascending order
\end{tabular}
\(B=\operatorname{sort}(A)\) sorts the elements along different dimensions of an array, and

Real, complex, and string elements are permitted. For identical values in \(A\), the location in the input array determines location in the sorted list. When A is complex, the elements are sorted by magnitude, and where magnitudes are equal, further sorted by phase angle on the interval \([-\pi, \pi]\). If \(A\) includes any

If A is a vector, sort (A) arranges those elements in ascending order.
If A is a matrix, sort (A) treats the columns of A as vectors, returning sorted

If A is a multidimensional array, sort (A) treats the values al ong the first non-singleton dimension as vectors, returning an array of sorted vectors.
\([B, I N D E X]=\operatorname{sort}(A)\) also returns an array of indices. I NDEX is an array of size(A), each column of which is a permutation vector of the corresponding column of A. If A has repeated elements of equal value, indices arereturned that
\(B=\operatorname{sort}(A, d i m)\) sorts the elements along the dimension of \(A\) specified by

If dim is a vector, sort works iteratively on the specified dimensions. Thus,

\section*{Purpose \\ Sort rows in ascending order}
Syntax \(\quad\)\begin{tabular}{rl}
\(B\) & \(=\operatorname{sortrows}(A)\) \\
\(B\) & \(=\operatorname{sortrows}(A, \operatorname{col} u \mathrm{mn})\) \\
{\([B, \operatorname{index}]=\operatorname{sortrows}(A)\)}
\end{tabular}

Description \(\quad B=\operatorname{sortrows}(A)\) sorts the rows of \(A\) as a group in ascending order. Argument A must be either a matrix or a column vector.

For strings, this is thefamiliar dictionary sort. When A is complex, the elements are sorted by magnitude, and, where magnitudes are equal, further sorted by phase angle on the interval \([-\pi, \pi]\).
\(B=\) sortrows(A, col umn) sorts the matrix based on the columns specified in the vector col umn. For example, sortrows (A, [2 3]) sorts the rows of A by the second column, and where these are equal, further sorts by the third column.
[B,index] = sortrows(A) alsoreturns an index vectorindex.
If \(A\) is a column vector, then \(B=A(i n d e x)\).
If \(A\) is an m-by-n matrix, then \(B=A(i n d e x,:)\).

\section*{Examples}

Given the 5-by-5 string matrix,
```

A = ['one ';'two ';'three';'four ';'five '];

```

The commands \(B=\operatorname{sortrows}(A)\) and \(C=\operatorname{sortrows}(A, 1)\) yield
\begin{tabular}{ll} 
B = & C \(=\) \\
five & four \\
four & five \\
one & one \\
three & two \\
two & three
\end{tabular}

\section*{See Also}
sort
Sort elements in ascending order
Purpose Convert vector into sound

Purpose Scale data and play as sound
Syntax \(\quad\)\begin{tabular}{ll} 
& \(\operatorname{soundsc}(y, F s)\) \\
& \(\operatorname{soundsc}(y)\) \\
& \(\operatorname{soundsc}(y, F s, b i t s)\) \\
& \(\operatorname{soundsc}(y, \ldots\), slim)
\end{tabular}
\begin{tabular}{ll} 
Description & sounds \(c(y, F s)\) sends the signal in vector \(y\) (with sample frequency Fs ) to the \\
speaker on PC, Macintosh, and most UNIX platforms. The signal y is scaled to \\
the range \(-1.0 \leq y \leq 1.0\) before it is played, resulting in a sound that is played \\
as loud as possible without clipping.
\end{tabular}
soundsc(y) plays the sound at the default sample rate or 8192 Hz .
soundsc(y, Fs,bits) plays the sound usingbits bits/sample if possible. Most platforms supportbits \(=8\) orbits \(=16\).
soundsc(y,..., slim) whereslim = [slow shigh] maps the values in y between slow and shigh to the full sound range. The default value is slim = [min(y) max(y)].

\section*{Remarks}

See Also

MATLAB supports all Windows-compatible sound devices.
auread
auwrite
sound
wavread
wavwrite

Read NeXT/SUN (. au) sound file
Write NeXT/SUN (. au ) sound file Convert vector into sound
Read Microsoft WAVE (. wa v ) sound file
Write Microsoft WAVE (. wav) sound file

Purpose Allocate space for sparse matrix

\section*{Syntax \(\quad S=\operatorname{spalloc}(m, n, n z m a x)\)}

Description

Examples nonzeros grows.
```

spalloc(m,n,nzmax) is shorthand for
sparse([],[],[],m, n, nzmax)

```
\(S=s p a l l o c(m, n, n z m a x) \quad\) creates an all zero sparse matrix \(s\) of size m-by-n with room to hold \(n z \max\) nonzeros. The matrix can then be generated column by column without requiring repeated storage allocation as the number of

To generate efficiently a sparse matrix that has an average of at most three nonzero elements per column
```

S = spalloc(n,n,3*n);
for j = 1:n
S(:,j) = [zeros(n-3,1)' round(rand(3,1))']';
end

```
Purpose Create sparse matrix
Syntax \(\quad\)\begin{tabular}{rl}
\(S\) & \(=\operatorname{sparse}(A)\) \\
\(S\) & \(=\operatorname{sparse}(i, j, s, m, n, n z m a x)\) \\
\(S\) & \(=\operatorname{sparse}(i, j, s, m, n)\) \\
\(S\) & \(=\operatorname{sparse}(i, j, s)\) \\
\(S\) & \(=\operatorname{sparse}(m, n)\)
\end{tabular}

Description Thesparse function generates matrices in MATLAB's sparse storage organization.

S = sparse(A) converts a full matrix to sparseform by squeezing out any zero elements. If \(S\) is already sparse, sparse(S) returns 5 .
\(S=s p a r s e(i, j, s, m, n, n z m a x)\) uses vectors \(i, j\), and \(s\) to generate an m-by-n sparse matrix with space allocated for \(n z\) max nonzeros. Any elements of \(s\) that are zero are ignored, along with the corresponding values of \(i\) and \(j\). Vectors \(i\), \(j\), ands are all the same length.

To simplify this six-argument call, you can pass scalars for the arguments and one of the arguments \(i\) or \(j\)-in which case they are expanded so that \(i, j\), and \(s\) all have the same length.
\(S=\operatorname{sparse}(i, j, s, m, n)\) usesnzmax \(=1\) ength(s).
\(S=\operatorname{sparse}(i, j, s)\) uses \(m=\max (i)\) and \(n=\max (j)\). The maxima are computed before any zeros ins are removed, so one of the rows of [i j s] might be[m n 0].
\(S=s p a r s e(m, n)\) abbreviates sparse([],[],[],m,n,0). This generates the ultimate sparse matrix, an m-by-n all zero matrix.

\section*{Remarks}

All of MATLAB's built-in arithmetic, logical, and indexing operations can be applied to sparse matrices, or to mixtures of sparse and full matrices. Operations on sparse matrices return sparse matrices and operations on full matrices return full matrices.

In most cases, operations on mixtures of sparse and full matrices return full matrices. The exceptions include situations where the result of a mixed operation is structurally sparse, for example, \(A . * S\) is at least as sparse as 5 .

Examples

See Also
\(S=s p a r s e(1: n, 1: n, 1)\) generates a sparse representation of the \(n\)-by-n identity matrix. The sames results from \(s=\operatorname{sparse}(\operatorname{eye}(n, n))\), but this would al so temporarily generate a full \(n\)-by-n matrix with most of its elements equal to zero.
\(B=\) sparse( 10000,10000 , pi) is probably not very useful, but is legal and works; it sets up a 10000 -by- 10000 matrix with only one nonzeroelement. Don't try full (B) ; it requires 800 megabytes of storage.

This dissects and then reassembles a sparse matrix:
```

[i,j,s] = find(S);
[m,n] = size(S);
S = sparse(i,j,s,m,n);

```

So does this, if the last row and column have nonzero entries:
```

[i,j,s] = find(S);
S = sparse(i,j,s);

```

Thesparfun directory, and:
diag Diagonal matrices and diagonals of a matrix
find Find indices and values of nonzero elements
full Convert sparse matrix to full matrix
\(n n z \quad\) Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nz max \(\quad\) Amount of storage allocated for nonzero matrix elements
spones Replace nonzero sparse matrix elements with ones
sprandn
sprandsym
spy
Sparse normally distributed random matrix
Sparse symmetric random matrix
Visualize sparsity pattern

\section*{Purpose Import matrix from sparse matrix external format}

\section*{Syntax \\ S = spconvert(D)}

Description

Examples
Suppose the ASCII fileuphill. dat contains
\begin{tabular}{lll}
1 & 1 & 1.0000000000000000 \\
1 & 2 & 0.500000000000000 \\
2 & 2 & 0.333333333333333 \\
1 & 3 & 0.333333333333333 \\
2 & 3 & 0.250000000000000 \\
3 & 3 & 0.200000000000000 \\
1 & 4 & 0.250000000000000 \\
2 & 4 & 0.200000000000000 \\
3 & 4 & 0.166666666666667 \\
4 & 4 & 0.142857142857143 \\
4 & 4 & 0.000000000000000
\end{tabular}

Then the statements
```

load uphill.dat
H = spconvert(uphil|)

```

\section*{spconvert}
recreatesparse(triu(hilb(4))), possibly with roundoff errors. In this case, the last line of the input file is not necessary because the earlier lines already specify that the matrix is at least 4-by-4.

\section*{Purpose Extract and create sparse band and diagonal matrices}
Syntax \(\quad\)\begin{tabular}{l}
{\([B, d]=\operatorname{spdiags}(A)\)} \\
\(B\)
\end{tabular}\(=\operatorname{spdiags}(A, d)\).

Description Thespdiags function generalizes thefunction di ag. Four different operations, distinguished by the number of input arguments, are possible:
\([B, d]=s p d i a g s(A)\) extracts all nonzero diagonals from them-by-n matrixA. \(B\) is a mi \(n(m, n)\)-by-p matrix whose columns are the p nonzero diagonals of A.d is a vector of length \(p\) whose integer components specify the diagonals in A.
\(B=\operatorname{spdiags}(A, d)\) extracts the diagonals specified byd.
\(A=s p d i a g s(B, d, A)\) replaces the diagonals specified byd with the columns of B. The output is sparse.
\(A=s p d i a g s(B, d, m, n) \quad\) creates an m-by-n sparsematrix by taking the columns of \(B\) and placing them along the diagonals specified by \(d\).

Remarks If a column of \(B\) is longer than the diagonal it's replacing, spdiags takes elements from B 's tail.

Arguments Thespdiags function deals with three matrices, in various combinations, as both input and output:

A An m-by-n matrix, usually (but not necessarily) sparse, with its nonzero or specified elements located on \(p\) diagonals.
B A min \((m, n)\)-by-p matrix, usually (but not necessarily) full, whose columns are the diagonals of \(A\).
d A vector of length \(p\) whose integer components specify the diagonals in A.

Roughly, \(A, B\), and \(d\) are related by
```

for k = 1:p
B(:,k)=diag(A,d(k))
end

```

Some elements of \(B\), corresponding to positions outside of \(A\), are not defined by these loops. They are not referenced when B is input and are set to zero when \(B\) is output.

\section*{Examples}

This example generates a sparse tridiagonal representation of the classic second difference operator on \(n\) points.
```

e = ones(n,1);
A = spdiags([e - 2*e e], -1:1, n, n)

```

Turn it into Wilkinson's test matrix (seegal| ery) :
```

A = spdiags(abs(-(n-1)/2:(n-1)/2)',0,A)

```

Finally, recover the three diagonals:
```

B = spdiags(A)

```

The second example is not square.
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{A}=[11\) & 0 & 13 & 0 \\
\hline 0 & 22 & 0 & 24 \\
\hline 0 & 0 & 33 & 0 \\
\hline 41 & 0 & 0 & 44 \\
\hline 0 & 52 & 0 & 0 \\
\hline 0 & 0 & 63 & 0 \\
\hline 0 & 0 & 0 & \(74]\) \\
\hline
\end{tabular}

Herem \(=7, n=4\), and \(p=3\).
The statement \([B, d]=\operatorname{spdiags}(A)\) produces \(d=\left[\begin{array}{lll}-3 & 0 & 2\end{array}\right]\) and
\(B=\left[\begin{array}{rrr}41 & 11 & 0 \\ 52 & 22 & 0 \\ 63 & 33 & 13 \\ & 74 & 44 \\ & 24]\end{array}\right.\)

\section*{spdiags}

Conversely, with the above \(B\) and \(d\), the expression \(\operatorname{spdiags}(B, d, 7,4)\) reproduces the original A.

\author{
See Also \\ diag \\ Diagonal matrices and diagonals of a matrix
}

Purpose Sparse identity matrix

\section*{Syntax \\ S = speye(m, n) \\ S = speye(n)}

Description

Examples

See Also
spalloc
spones
spdiags
sprand
sprandn

Allocate space for sparse matrix
Replace nonzero sparse matrix elements with ones
Extract and create sparse band and diagonal matrices
Sparse uniformly distributed random matrix
Sparse normally distributed random matrix

Purpose
Apply function to nonzero sparse matrix elements

\section*{Syntax}

Description

\section*{Remarks}

Examples
```

f = spfun('function',S)

```

The s pf un function selectively applies a function to only the nonzero elements of a sparse matrix, preserving the sparsity pattern of the original matrix (except for underflow).
\(f=s p f u n(\) 'function', \(S\) ) evaluatesfunction(S) on thenonzeroelements of S.f unction must be thename of a function, usually defined in an M-file, which can accept a matrix argument, 5 , and evaluate the function at each element of \(s\).

Functions that operate element-by-element, like those in the el \(f\) un directory, are the most appropriate functions to use with spfun.

Given the 4-by-4 sparse diagonal matrix

5
\((1,1) \quad 1\)
\((2,2) \quad 2\)
\((3,3) \quad 3\)
\((4,4) \quad 4\)
f = spfun('exp', s) has the same sparsity pattern as s:
\(f=\)
\((1,1) \quad 2.7183\)
\((2,2) \quad 7.3891\)
\((3,3) \quad 20.0855\)
\((4,4) \quad 54.5982\)
whereas \(\exp (S)\) has 1 s wheres has 0 s .
```

full(exp(S))

```
ans =
    \(2.7183 \quad 1.0000 \quad 1.0000 \quad 1.0000\)
    \(1.0000 \quad 7.3891 \quad 1.0000 \quad 1.0000\)
    \(1.0000 \quad 1.0000 \quad 20.0855 \quad 1.0000\)
    \(1.0000 \quad 1.0000 \quad 1.0000 \quad 54.5982\)

\section*{sph2cart}

\section*{Purpose Transform spherical coordinates to Cartesian}

\section*{Syntax \\ \([x, y, z]=s p h 2 c a r t(T H E T A, P H I, R)\)}

Description
\([x, y, z]=s p h 2 c a r t(T H E T A, P H I, R)\) transforms the corresponding elements of spherical coordinate arrays to Cartesian, or xyz, coordinates. THETA, PHI , and R must all be the same size. THETA and PHI are angular displacements in radians from the positive \(x\)-axis and from the \(x\) - \(y\) plane, respectively.

\section*{Algorithm}

The mapping from spherical coordinates to three-dimensional Cartesian coordinates is:

\[
\begin{gathered}
x=r \cdot * \cos (p h i) \quad * \cos (t h e t a) \\
y=r \cdot * \cos (p h i) \quad * \sin (t h e t a) \\
z=r, * \sin (\text { phi) }
\end{gathered}
\]
\begin{tabular}{lll} 
See Also & cart 2 pol \\
cart 2 sph & Transform Cartesian coordinates to polar or cylindrical \\
pol 2 cart & Transform Cartesian coordinates to spherical \\
& Transform polar or cylindrical coordinates to Cartesian
\end{tabular}
Purpose Cubic spline interpolation

represent the census years from 1900 to 1990 and the corresponding United States population in millions of people. The expression
```

spline(t, p, 2000)

```
uses the cubic spline to extrapolate and predict the population in the year 2000. The result is
```

ans=

```
    270.6060

The statements
\[
\begin{aligned}
& x=1900: 1: 2000 ; \\
& y=\text { spline(t, p, x); } \\
& \text { plot(t, p, 'o', x,y) }
\end{aligned}
\]
interpolate the data with a cubicspline, evaluate that splinefor each year from 1900 to 2000, and plot the result.


\section*{Algorithm}

See Also

References
spline is a MATLAB M-file. It uses theM-filesppval, mkpp, andunmkp. These routines form a small suite of functions for working with piecewise polynomials. spl ine uses these functions in a fairly simple fashion to perform cubic spline interpolation. For access to the more advanced features, see the M-files and the Spline Tool box.
interpl
ppual

One-dimensional data interpol ation (table lookup) Evaluate piecewise polynomial
[1] de Boor, C., A Practical Guideto Splines, Springer-Verlag, 1978.

Purpose Replace nonzero sparse matrix elements with ones

\section*{Syntax \\ \(R=s p o n e s(S)\)}

Description \(\quad R=\operatorname{spones}(S)\) generates a matrix \(R\) with the samesparsity structureas \(S\), but with 1 's in the nonzero positions.
Examples \(\quad\)\begin{tabular}{l}
\(c=\operatorname{sum}(\operatorname{spones}(s))\) is the number of nonzeros in each column. \\
\(r=\operatorname{sum}\left(\operatorname{spones}\left(s^{\prime}\right)\right)^{\prime}\) is the number of nonzeros in each row. \\
\(\quad s u m(c)\) and \(\operatorname{sum}(r)\) are equal, and are equal tonnz \((s)\).
\end{tabular}

See Also
nnz
spalloc
spfun

Number of nonzero matrix elements
Allocate space for sparse matrix
Apply function to nonzero sparse matrix elements

\section*{Purpose Set parameters for sparse matrix routines}
```

Syntax
spparms('key',value)
spparms
values = spparms
[keys,values] = spparms
spparms(values)
value = spparms('key')
spparms('default')
spparms('tight')

```

\section*{Description}
spparms('key', value) sets one or more of thetunableparameters used in the sparse linear equation operators, \(\\) and / , and the minimum degree orderings, col mmd and symmd. In ordinary use, you should never need to deal with this function.

The meanings of the key parameters are
\begin{tabular}{|c|c|}
\hline spumon & \begin{tabular}{l}
Sparse Monitor flag. \\
0 produces no diagnostic output, the default. \\
1 produces information about choice of algorithm based on matrix structure, and about storage allocation. \\
2 also produces very detailed information about the minimum degree al gorithms.
\end{tabular} \\
\hline \begin{tabular}{l}
'thr_rel \\
'thr_abs'
\end{tabular} & Minimum degree threshold isthr_rel*mindegreetthr_abs \\
\hline exact_d' & Nonzero to use exact degrees in minimum degree. Zero to use approximate degrees. \\
\hline 'supernd' & If positive, minimum degree amalgamates the supernodes everysupernd stages. \\
\hline 'rreduce' & If positive, minimum degree does row reduction every r reduce stages. \\
\hline wh_frac' & Rows with density > wh_frac areignoredincolmmd. \\
\hline
\end{tabular}
\begin{tabular}{cc} 
'autommd' & Nonzero to use minimum degree orderings with \(\backslash\) and \(/\). \\
'aug_rel', & Residual scaling parameter for augmented equations is \\
'aug_abs' & aug_rel *max(max(abs(A))) +aug_abs.
\end{tabular}

For example, aug_rel = 0,aug_abs = 1 puts an unscaled identity matrix in the \((1,1)\) block of the augmented matrix.
spparms, by itself, prints a description of the current settings.
values = spparms returns a vector whose components give the current settings.
[keys, values] = spparms returns that vector, and also returns a character matrix whose rows are the keywords for the parameters.
spparms(values), with no output argument, sets all the parameters to the values specified by the argument vector.
value = spparms('key') returns the current setting of one parameter.
spparms('default') sets all the parameters to their default settings.
spparms('tight') sets the minimum degree ordering parameters to their tight settings, which can lead to orderings with less fill-in, but which make the ordering functions themselves use more execution time.

The key parameters for default and tight settings are
\begin{tabular}{|c|c|c|c|}
\hline & Keyw ord & Default & Tight \\
\hline values(1) & ' spumoni' & 0.0 & \\
\hline values ( 2 ) & 'thr_rel' & 1.1 & 1.0 \\
\hline values (3) & 'thr_abs' & 1.0 & 0.0 \\
\hline values(4) & 'exact_d' & 0.0 & 1.0 \\
\hline values (5) & ' supernd' & 3.0 & 1.0 \\
\hline values (6) & 'rreduce' & 3.0 & 1.0 \\
\hline values(7) & 'wh_frac' & 0.5 & 0.5 \\
\hline values (8) & ' a ut ommd' & 1.0 & \\
\hline values (9) & ' aug_rel' & 0.001 & \\
\hline values(10) & ' \({ }^{\prime} u g_{\sim} a b s^{\prime}\) & 0.0 & \\
\hline
\end{tabular}

See Also I
col mmd
sy mmmd

Matrix left division (backslash)
Sparse column minimum degree permutation
Sparse symmetric minimum degree ordering

\section*{References}
[1] Gilbert, J ohn R., Cleve M oler and Robert Schreiber, "Sparse M atrices in MATLAB: Design and Implementation," SIAM J ournal on Matrix Analysis and Applications 13, 1992, pp. 333-356.

Purpose \(\quad\) Sparse uniformly distributed random matrix
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{sprand}(S)\) \\
\(R\) & \(=\operatorname{sprand}(m, n\), density \()\) \\
\(R\) & \(=\operatorname{sprand}(m, n\), density, \(c)\)
\end{tabular}

Description \(\quad R=s p r a n d(S)\) has the same sparsity structure as \(S\), but uniformly distributed random entries.
\(R=s p r a n d(m, n\), density) is a random, \(m\)-by-n, sparse matrix with approximately density \(* m * n\) uniformly distributed nonzero entries ( 0 <density \(\leq 1\) ).
\(R=s p r a n d(m, n\), density, rc\()\) also has reciprocal condition number approximately equal to \(r \operatorname{c} . \mathrm{R}\) is constructed from a sum of matrices of rank one.

If \(r c\) is a vector of length I \(r\), where \(I r \leq m i n(m, n)\), then \(R\) has \(r c\) as its first \(\mid r\) singular values, all others are zero. In this case, \(R\) is generated by random plane rotations applied to a diagonal matrix with the given singular values. It has a great deal of topological and algebraic structure.

\section*{See Also}
sprandn
sprandsym

Sparse normally distributed random matrix Sparse symmetric random matrix

\section*{Purpose \\ Sparse normally distributed random matrix}

\section*{Syntax \\ Description}
\(R=\operatorname{sprandn}(S)\)
\(R=s p r a n d n(m, n\), density)
\(R=\operatorname{sprandn}(m, n\), density, c\()\)

\section*{See Also}
sprand
sprandsym

Sparse uniformly distributed random matrix Sparse symmetric random matrix

Purpose

\section*{Syntax}

Description

Sparse symmetric random matrix
```

R = sprandsym(S)
R = sprandsym(n, density)
R = sprandsym(n, density,rc)
R = sprandsym(n, density,rc, kind)

```
\(R=s p r a n d s y m(S)\) returns a symmetric random matrix whose lower triangle and diagonal have the same structure as 5 . Its elements are normally distributed, with mean 0 and variance 1.
\(R=\) sprandsym(n, density) returns a symmetric random, n-by-n, sparse matrix with approximately density*n \(n\) nonzeros; each entry is the sum of one or more normally distributed random samples, and ( \(0 \leq\) density \(\leq 1\) ).
\(R=s p r a n d s y m(n\), density, \(r c)\) returns a matrix with a reciprocal condition number equal torc. The distribution of entries is nonuniform; it is roughly symmetric about 0 ; all are in \([-1,1]\).

If \(r c\) is a vector of length \(n\), then \(R\) has eigenvalues \(r c\). Thus, if \(r c\) is a positive (nonnegative) vector then \(R\) is a positive definite matrix. In either case, \(R\) is generated by random J acobi rotations applied to a diagonal matrix with the given eigenvalues or condition number. It has a great deal of topological and algebraic structure.
\(R=\) sprandsym( \(n\), density, r , kind) returns a positive definite matrix.
Argument kind can be:
- 1 to generate \(R\) by random J acobi rotation of a positive definite diagonal matrix. R has the desired condition number exactly.
- 2 to generate an \(R\) that is a shifted sum of outer products. \(R\) has the desired condition number only approximately, but has less structure.
- 3 to generate an \(R\) that has the same structure as the matrix \(S\) and approximate condition number \(1 / \mathrm{rc}\). density is ignored.

\section*{See Also sprand}
sprandn

Sparse uniformly distributed random matrix Sparse normally distributed random matrix

\section*{sprintf}

Purpose Write formatted data to a string
```

Syntax s = sprintf(format,A,...)
[s,errrmsg] = sprintf(format,A,...)

```

\section*{Description}
\(s=s p r i n t f(f o r m a t, A, .\). ) formats the data in matrix \(A\) (and in any additional matrix arguments) under control of the specified \(f\) or mat string, and returns it in the MATLAB string variables.sprint f is the same as f print f except that it returns the data in a MATLAB string variable rather than writing it to a file.

Thef or mat string specifies notation, alignment, significant digits, field width, and other aspects of output format. It can contain ordinary al phanumeric characters; along with escape characters, conversion specifiers, and other characters, organized as shown below:


For more information see "Tables" and "References."
[s,errmsg] = sprintf(format, A,...) returns an error message string errmsg if an error occurred or an empty matrix if an error did not occur.

\section*{Remarks}

Tables

Thesprintf function behaves likeits ANSI C languagesprintf() namesake with certain exceptions and extensions. These include:

1 The following nonstandard subtype specifiers are supported for conversion specifiers \%o, \%u, \%x , and \%x.
t The underlying C data type is a float rather than an unsigned integer.
b The underlying \(C\) data type is a double rather than an unsigned integer.

For example, to print a double-precision value in hexadecimal, use a format like \(\%\) x \({ }^{\text {. }}\).
\(\mathbf{2}\) sprintf is vectorized for the case when input matrixa is nonscalar. The format string is cycled through the elements of \(A\) (columnwise) until all the elements are used up. It is then cycled in a similar manner, without reinitializing, through any additional matrix arguments.

The following tables describe the nonal phanumeric characters found in format specification strings.

\section*{Escape Characters}
\begin{tabular}{ll} 
Character & Description \\
\hline In & New line \\
\hline It & Horizontal tab \\
I b & Backspace \\
\hline Ir & Carriage return \\
If & Form feed \\
\hline I I & Backslash \\
\hline प" or " & Single quotation mark \\
\hline\(\% \%\) & Percent character \\
\hline
\end{tabular}

Conversion characters specify the notation of the output.

\section*{Conversion Specifiers}
\begin{tabular}{|c|c|}
\hline Specifier & Description \\
\hline \%c & Single character \\
\hline \%d & Decimal notation (signed) \\
\hline \%e & Exponential notation (using a lowercase e as in \(3.1415 \mathrm{e}+00\) ) \\
\hline \%E & Exponential notation (using an uppercase E as in 3.1415E+00) \\
\hline \%f & Fixed-point notation \\
\hline \%g & The more compact of \%e or \%f , as defined in [2]. Insignificant zeros do not print. \\
\hline \%G & Same as \%, but using an uppercase E \\
\hline \%0 & Octal notation (unsigned) \\
\hline \%s & String of characters \\
\hline \%u & Decimal notation (unsigned) \\
\hline \%x & Hexadecimal notation (using lowercase letters a-f ) \\
\hline \% X & Hexadecimal notation (using uppercase letters A - F ) \\
\hline
\end{tabular}

Other characters can be inserted into the conversion specifier between the \% and the conversion character.
\begin{tabular}{llll}
\hline Other Characters & & Example \\
\hline Character & Description & \(\%-5.2 \mathrm{~d}\) \\
\hline A minus sign (-) & \begin{tabular}{l} 
Left-justifies the converted argument in \\
its field.
\end{tabular} & \(\%+5.2 \mathrm{~d}\) \\
\hline A plus sign (+) & Always prints a sign character (+or -). & \(\% 05.2 \mathrm{~d}\) \\
\hline Zero (0) & Pad with zeros rather than spaces. & \(\% 6 \mathrm{f}\) \\
\hline \begin{tabular}{l} 
Digits (field \\
width)
\end{tabular} & \begin{tabular}{l} 
A digit string specifying the minimum \\
number of digits to be printed.
\end{tabular} & \(\% 6.2 \mathrm{f}\) \\
\hline Digits (precision) & \begin{tabular}{l} 
A digit string including a period (.) \\
specifying the number of digits to be \\
printed to the right of the decimal point.
\end{tabular} &
\end{tabular}

\section*{Examples}

\section*{Command}
```

sprintf('%0.5g',(1+sqrt(5))/2)

```
sprintf(' \% \% 5g', 1/eps)
sprintf('\%15.5f', 1/eps) 4503599627370496.00000
sprintf('\%d', round(pi))
sprintf(' \% ' ', 'hello')
sprintf('The array is \%dx\%d.', 2,3)
sprintf('\n')

\section*{Result}
1. 618
4. \(5036 e+15\)
4503599627370496.00000

3
hello
The array is \(2 \times 3\)
Line termination character on all platforms

See Also
References
int 2 str , num2str,sscanf
[1] Kernighan, B.W. and D.M. Ritchie, TheC Programming Language, Second Edition, Prentice-H all, Inc., 1988.
[2] ANSI specification X3.159-1989: "Programming Language C," ANSI, 1430 Broadway, New Y ork, NY 10018.

\section*{Purpose Visualize sparsity pattern}
Syntax \(\quad\)\begin{tabular}{l} 
spy \((S)\) \\
\(s p y(S\), markersize \()\) \\
\\
\(s p y(S, ' L i n e S p e c ')\) \\
\(s p y(S, ' L i n e S p e c ', ~ m a r k e r s i z e) ~\)
\end{tabular}

\section*{Description}

\section*{See Also}
spy(s) plots the sparsity pattern of any matrixs.
spy(S, marksize), wheremarkersize is an integer, plots the sparsity pattern using markers of the specified point size.
spy(S,'LineSpec'), whereLineSpec is a string, uses the specified plot marker type and color.
spy(S,' LineSpec', markersize) usesthespecifiedtype, color, and sizefor the plot markers.
s is usually a sparse matrix, but full matrices are acceptable, in which case the locations of the nonzero elements are plotted.
spy replaces for mat +, which takes much more space to display essentially the same information.

Thegpl ot and Linespec reference entries in the MATLAB Graphics Guide, and:
find Find indices and values of nonzero elements
sy mmmd
symrcm

Sparse symmetric minimum degree ordering Sparse reverse Cuthill-McK ee ordering
Purpose Square root
Syntax ..... \(B=\operatorname{sqrt}(A)\)
Description \(B=\operatorname{sqrt}(A)\) returns the square root of each element of the array \(x\). For theelements of \(X\) that are negative or complex, sqrt(X) produces complex results.
Remarks Seesqrtm for the matrix square root.
Examples
sart((-2:2)')

    ans =

        \(0+1.4142 i\)

        \(0+1.00000\)

        0

    1. 0000

    1. 4142
See Also ..... sqrtm
Matrix square root

Purpose Matrix square root
\begin{tabular}{ll} 
Syntax & \(Y=\operatorname{sqrtm}(X)\) \\
& {\([Y, \operatorname{esterr}]=\operatorname{sgrtm}(X)\)}
\end{tabular}

Description

Remarks

\section*{Examples}
\(Y=\operatorname{sqrtm}(X)\) is the matrix square root of \(X\). Complex results are produced if \(X\) has negative eigenvalues. A warning message is printed if the computed \(Y * Y\) is not close to \(X\).
[ \(Y\), esterr] = sqrtm( X) does not print any warning message, but returns an estimate of the relative residual, \(\operatorname{nor} m(Y * Y-X) / \operatorname{nor} m(X)\).

IfX is real, symmetric and positivedefinite, or complex, Hermitian and positive definite, then so is the computed matrix square root.

Some matrices, like \(X=\left[\begin{array}{lll}0 & 1 ; & 0\end{array}\right]\), do not have any square roots, real or complex, and s artm cannot be expected to produce one.

A matrix representation of the fourth difference operator is
X =
\begin{tabular}{rrrrr}
5 & -4 & 1 & 0 & 0 \\
-4 & 6 & -4 & 1 & 0 \\
1 & -4 & 6 & -4 & 1 \\
0 & 1 & -4 & 6 & -4 \\
0 & 0 & 1 & -4 & 5
\end{tabular}

This matrix is symmetric and positive definite. Its unique positive definite square root, \(Y=\operatorname{sqrtm}(X)\), is a representation of the second difference operator.
\begin{tabular}{rrrrr} 
\\
\(Y\) & & & \\
2 & -1 & -0 & 0 & -0 \\
-1 & 2 & -1 & -0 & -0 \\
-0 & -1 & 2 & -1 & 0 \\
0 & -0 & -1 & 2 & -1 \\
-0 & -0 & 0 & -1 & 2
\end{tabular}

The matrix
\[
x=
\]
\(7 \quad 10\)
\(15 \quad 22\)
has four square roots. Two of them are
```

Y1 =

```
    \(1.5667 \quad 1.7408\)
    \(2.6112 \quad 4.1779\)
and
Y2 =
12
34
The other two are \(-Y 1\) and \(-Y 2\). All four can be obtained from the eigenvalues and vectors of \(x\).
```

[V,D] = eig(X);
D =
0.1386 0
08.8614

```

The four square roots of the diagonal matrix \(D\) result from the four choices of sign in
\(5=\)
\(\pm 0.3723 \quad 0\)
All four \(Y s\) are of the form
\(Y=V * S / V\)
Thes qrim function chooses the two plus signs and produces \(Y 1\), even though \(Y 2\) is more natural because its entries are integers.
Finally, the matrix
\(X=\)
01
00
does not have any square roots. There is no matrix \(Y\), real or complex, for which \(Y * Y=X\). The statement
\(Y=\operatorname{sqrtm}(X)\)
produces several warning messages concerning accuracy and the answer
```

 Y =
    ```
    1. \(0 \mathrm{e}+03\) *
    \(0.0000+0.0000 i \quad 4.9354-7.6863 i\)
    \(0.0000+0.0000 i \quad 0.0000+0.0000 i\)

\section*{Algorithm}

\section*{See Also}
expm
funm
10 gm

The function \(s q r t m(X)\) is an abbreviation for \(f u n m\left(X, \operatorname{sqrt}^{\prime}\right)\). The al gorithm used by \(f\) un \(m\) is based on a Schur decomposition. It can fail in certain situations where \(x\) has repeated eigenvalues. See funm for details.

Matrix exponential
Evaluate functions of a matrix
Matrix logarithm
Purpose Remove singleton dimensions

\section*{Syntax \(\quad B=\) squeeze(A)}

Description \(\quad B=\) squeeze( \(A\) ) returns an array \(B\) with the same elements as \(A\), but with all singleton dimensions removed. A singleton dimension is any dimension for which
size(A, dim) = 1 .
Examples
Consider the 2-by-1-by-3 array \(Y=r\) and \((2,1,3)\). This array has a singleton column dimension - that is, there's only one column per page.
\(Y=\)
\begin{tabular}{rr}
\(Y(:,:, 1)=\) & \(Y(:,:, 2)=\) \\
0.5194 & 0.0346 \\
0.8310 & 0.0535
\end{tabular}
\(Y(:,:, 3)=\)
0.5297
0.6711

The command \(Z=\) squeeze( \(Y\) ) yields a 2-by-3 matrix:
Z =
\(0.5194 \quad 0.0346 \quad 0.5297\)
\(0.8310 \quad 0.0535 \quad 0.6711\)

\section*{See Also}
reshape Reshapearray
shiftdim Shift dimensions

\section*{Purpose Read string under format control}
Syntax \(\quad\)\begin{tabular}{l}
\(A=\operatorname{sscanf}(s, f o r m a t)\) \\
\\
\(A=\operatorname{sscanf}(s, f o r m a t, \operatorname{size})\) \\
\\
{\([A, \operatorname{count}\), errmsg, nextindex \(]=\operatorname{sscanf}(\ldots)\)}
\end{tabular}

Description \(\quad A=\operatorname{sscanf}(s, f o r m a t)\) reads data from the MATLAB string variables, converts it according to the specified \(f\) or mat string, and returns it in matrix A. for mat is a string specifying the format of the data to be read. See "Remarks" for details.sscanf is the same as fscanf except that it reads the data from a MATLAB string variable rather than reading it from a file.
\(A=\operatorname{sscanf}(s, f o r m a t, s i z e)\) reads the amount of data specified bysize and converts it according to the specified for mat string. size is an argument that determines how much data is read. Valid options are:
\(n \quad\) Read \(n\) elements into a column vector.
inf Read to the end of the file, resulting in a column vector containing the same number of elements as are in the file.
[ \(m, n\) Read enough elements to fill an m-by-n matrix, filling the matrix in column order. \(n\) can bel \(n f\), but not \(m\).

If the matrixa results from using character conversions only andsize is not of the form [ \(M, N\) ], a row vector is returned.
sscanf differs from its C Ianguage namesakesscanf() andfscanf() in an important respect - it is vectorized in order to return a matrix argument. The for mat string is cycled through the file until an end-of-file is reached or the amount of data specified by size is read in.
[A, count, errmsg, nextindex] = sscanf(...) reads data from MATLAB string variables, converts it according to the specified \(f\) or mat string, and returns it in matrixA. count is an optional output argument that returns the number of elements successfully read. er rmsg is an optional output argument that returns an error message string if an error occurred or an empty matrix if an error did not occur. nextindex is an optional output argument specifying one more than the number of characters scanned in \(s\).

\section*{Remarks}

When MATLAB reads a specified file, it attempts to match the data in the file to the format string. If a match occurs, the data is written into the matrix in column order. If a partial match occurs, only the matching data is written to the matrix, and the read operation stops.
The f or mat string consists of ordinary characters and/or conversion specifications. Conversion specifications indicate the type of data to be matched and involve the character \%, optional width fields, and conversion characters, organized as shown below:


Add one or more of these characters between the \% and the conversion character:

An asterisk (*) Skip over the matched value, if the value is matched but not stored in the output matrix.
A digit string Maximum field width.
A letter The size of the receiving object; for example, \(h\) for short as in \%hd for a short integer, or I for long as in \% l d for a long integer or \% g for a double floating-point number.

Valid conversion characters are:
\% \(\quad\) Sequence of characters; number specified by field width
\%d Decimal numbers
\%e, \%f , \%g Floating-point numbers
\%i Signed integer
\% Signed octal integer
\%s A series of non-whitespace characters
\%u Signed decimal integer
```

%x Signed hexadecimal integer
[.. .] Sequence of characters (scanlist)

```

If \%s is used, an element read may use several MATLAB matrix elements, each holding one character. Use \%c to read space characters; the format \%s skips all white space.

Mixing character and numeric conversion specifications cause the resulting matrix to be numeric and any characters read to appear as their ASCII values, one character per MATLAB matrix element.

For more information about format strings, refer to thescanf() andfscanf() routines in a C language reference manual.

\section*{Examples The statements}
```

s = '2.7183 3.1416';
A=sscanf(s,'%f')

```
create a two-element vector containing poor approximations to e and pi .
eval
sprintf

Interpret strings containing MATLAB expressions
Write formatted data to a string

Purpose MATLAB startup M-file

\section*{Syntax startup}

Description At startup time, MATLAB automatically executes the master M-file matlabrc.mand, if it exists, startup.m. On multiuser or networked systems, mat labrc.m is reserved for use by the system manager. The file mat I abr c. m invokes the filestart up. m if it exists on MATLAB's search path.
You can create a startup file in your own MATLAB directory. The file can include physical constants, handle graphics defaults, engineering conversion factors, or anything else you want predefined in your workspace.

Algorithm
Only mat labrc.m is actually invoked by MATLAB at startup. However, matlabrc.m contains the statements
```

if exist('startup')==2
startup
end

```
that invokest art up. m. You can extend this process to create additional startup M -files, if required.

\section*{See Also}

Operating system command Check if a variable or file exists MATLAB startup M-file
Control MATLAB's directory search path Terminate MATLAB

\section*{Purpose Standard deviation}

\section*{Syntax}
```

s = std(X)
s = std(X,flag)
s = std(X,flag,dim)

```

Definition

\section*{Description}

There are two common textbook definitions for the standard deviation s of a data vector \(X\) :
\[
\text { (1) } s=\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{\frac{1}{2}} \quad \text { and } \quad \text { (2) } s=\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{\frac{1}{2}}
\]
where
\[
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\]
and \(n\) is the number of elements in the sample. The two forms of the equation differ only in \(\mathrm{n}-1\) versus n in the divisor.
\(s=s t d(X)\), where \(X\) is a vector, returns the standard deviation using (1) above. If \(X\) is a random sample of data from a normal distribution, \(s^{2}\) is the best unbiased estimate of its variance.

If \(x\) is a matrix, \(s t d(X)\) returns a row vector containing the standard deviation of the el ements of each column of \(X\). If \(X\) is a multidimensional array, \(\operatorname{std}(X)\) is the standard deviation of th elements along the first nonsingleton dimension of \(x\).
\(s=s t d(X, f \mid a g)\) forflag = 0 , isthesameasstd(X). Forflag = 1, std(X, 1 ) returns the standard deviation using (2) above, producing the second moment of the sample about its mean.
\(s=s t d(X, f l a g, d i m)\) computes the standard deviations along the dimension of \(X\) specified by scalar dim.
```

Examples
For matrix X
X =
1 5 9
7 15 22
s = std(X,0,1)
s =
4.2426 7.0711 9.1924
s = std(X,0,2)
s =
4.000
7.5056

```
See Also corrcoef, cov, mean, median

Purpose String to number conversion

\section*{Syntax \(\quad x=\) str2num('str')}

Description \(\quad x=\operatorname{str} 2 n u m\left({ }^{\prime} s t r '\right)\) converts the string \(s t r\), which is an ASCII character representation of a numeric value, to MATLAB's numeric representation. The string can contain:
- Digits
- A decimal point
- A leading +or - sign
- A letter e preceding a power of 10 scale factor
- A letter i indicating a complex or imaginary number.

Thestr 2 num function can also convert string matrices.

\section*{Examples}
str2num('3.14159e0') is approximately \(\pi\).
To convert a string matrix:
```

str2num(['1 2';'3 4'])

```
ans \(=\)
\(1 \quad 2\)
34
See Also
[ ] (special characters) Build arrays
; (special characters) End array rows; suppress printing; separate statements.
hex2num Hexadecimal to double number conversion
num2str \(\quad\) Number to string conversion
sparse Create sparse matrix
sscanf Read string under format control

\section*{Purpose String concatenation}
```

Syntax t = strcat(s1, s2, s 3,...)

```

Description \(\quad t=\operatorname{strcat}(s 1, s 2, s 3, \ldots)\) horizontally concatenates corresponding rows of the character arrays s \(1, s 2\), s 3 , etc. The trailing padding is ignored. All the inputs must have the same number of rows (or any can be a single string). When the inputs are all character arrays, the output is also a character array.

When any of the inputs is a cell array of strings, strcat returns a cell array of strings formed by concatenating corresponding elements of \(s 1, s 2\), etc. The inputs must all have the same size (or any can be a scalar). Any of the inputs can also be a character array.

Given two 1-by-2 cell arrays a and b,
```

a =
b =
abcde' 'fghi' 'jkl' 'mn'

```
the command \(t=s t r c a t(a, b)\) yields:
t =
'abcdejkl' 'fghimn'
Given the 1-by-1 cell array \(c=\left\{{ }^{\prime} Q^{\prime}\right\}\), the commandt \(=\operatorname{strcat}(a, b, c)\) yields:
\(t=\)
'abcdejkIQ' 'fghimnQ'

\section*{See Also}
cat
cellstr
strvcat

Concatenate arrays
Create cell array of strings
Vertical concatenation of strings

Purpose Compare strings
\begin{tabular}{|c|c|}
\hline Syntax &  \\
\hline Description & k = strcmp('str1','str2') comparesthestringsstrl andstr 2 and returns logical true (1) if the two are identical, and logical false (0) otherwise. \\
\hline & \(T F=\operatorname{strcmp}(S, T)\) where either \(S\) or \(T\) is a cell array of strings, returns an array \(T F\) the samesize as \(S\) and \(T\) containing 1 for thoseelements of \(S\) and \(T\) that match, and 0 otherwise. \(S\) and \(T\) must be the same size (or one can be a scalar cell). Either one can also be a character array with the right number of rows. \\
\hline Remarks & Note that the value returned by str cmp is not the same as the \(C\) language convention. In addition, the str cmp function is case sensitive; any leading and trailing blanks in either of thestrings are explicitly included in the comparison. \\
\hline
\end{tabular}
```

Examples
strcmp('Yes','No')=
A =
'MATLAB' 'SIMULINK'
'Toolboxes' 'The MathWorks'
B =
'Handle Graphics' 'Real Time Workshop'
'Toolboxes' 'The MathWorks'
C =
'Signal Processing' 'I mage Processing'
'MATLAB' 'SIMULINK'
strcmp(A,B)
ans=
0
1 1
strcmp(A,C)
ans =
0
0

```
\begin{tabular}{ll} 
findstrm & Find one string within another \\
strncmp & Compare the first \(n\) characters of two strings \\
strmatch & Find possible matches for a string
\end{tabular}

\section*{strings}

Purpose MATLAB string handling
```

Syntax
S = 'Any Characters'
S = string(X)
X = numeric(S)

```

Description \(\quad S=\) 'Any Characters' is a vector whose components are the numeric codes for the characters (thefirst 127 codes are ASCII). The actual characters displayed depend on the character set encoding for a given font. The length of \(S\) is the number of characters. A quote within the string is indicated by two quotes.
\(S=\operatorname{string}(X)\) can be used to convert an array that contains positive integers representing numeric codes into a MATLAB character array.
\(X=\) double(S) converts the string to its equivalent numeric codes.
isstr(S) tells if \(S\) is a string variable.

\section*{Example}
\(s=[' \mid t\) is 1 o'clock', 7]
See Also
char
Create character array (string)
Purpose J ustify a character array
Syntax ..... strjust(S)
Description strjust(S) returns a right-justified version of the character arrays.
See Also ..... deblank
Strip trailing blanks from the end of a string

Purpose Find possible matches for a string
```

Syntax
i = strmatch('str',STRS)
i = strmatch('str',STRS,'exact')

```

\section*{Description}

\section*{Examples}

The statement
```

 i = strmatch('max',strvcat('max','mini max',' maxi mum'))
 returnsi = [1; 3] since rows 1 and 3 begin with 'max'. The statement
i = strmatch('max', strvcat('max','minimax',' maximum'),'exact')
returnsi = 1, since only row 1 matches 'max' exactly.

```
\begin{tabular}{lll} 
See Also & findstr & Find one string within another \\
strcmp & Compare strings \\
strncmp & Compare the first n characters of two strings \\
& strvcat & Vertical concatenation of strings
\end{tabular}

Purpose Compare the first n characters of two strings
\begin{tabular}{|c|c|}
\hline Syntax & \[
\begin{aligned}
& k=\operatorname{strncmp}\left(' s t r 1^{\prime}, \operatorname{sentr}^{\prime}, n\right) \\
& T F=\operatorname{strncmp}(S, T, n)
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
 ters of the stringsstri and str 2 are the same, and returns logical false (0) otherwise. Arguments str 1 and str 2 may also be cell arrays of strings. \\
\(T F=\operatorname{strncmp}(S, T, N) \quad\) whereeither \(S\) or \(T\) is a cell array of strings, returns an array TF the samesizeas \(S\) and \(T\) containing 1 for thoseelements of \(S\) and \(T\) that match (up ton characters), and 0 otherwise. \(S\) and \(T\) must be the same size (or one can be a scalar cell). Either one can also be a character array with the right number of rows.
\end{tabular} \\
\hline Remarks & The command strncmp is case sensitive. Any leading and trailing blanks in either of the strings are explicitly included in the comparison. \\
\hline See Also & \begin{tabular}{ll} 
findstr & Find one string within another \\
strcmp & Comparestrings \\
strmatch & Find possible matches for a string
\end{tabular} \\
\hline
\end{tabular}

\section*{Purpose String search and replace}

\section*{Syntax \(\quad\) str \(=\) strrep(str1, str2, str 3\()\)}

Description

\section*{Examples}
```

s1 = 'This is a good example.';
str = strrep(s1,'good','great')
str =
This is a great example.
A =
'MATLAB' 'SIMULINK'
'Toolboxes' 'The MathWorks'
B =
'Handle Graphics' 'Real Time Workshop'
'Toolboxes' 'The MathWorks'
C =
'Signal Processing' 'Image Processing'
'MATLAB' 'SIMULINK'
strrep(A,B,C)
ans =
MATLAB' 'SIMULINK'
'mATLAB' 'SIMULINK'

```
See Also findstr Find one string within another

Purpose First token in string
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Syntax} & token \(=\) strtok('str', delimiter) \\
\hline & token \(=\) strtok('str') \\
\hline & [token, rem] = strtok(...) \\
\hline
\end{tabular}

Description token = strtok('str',delimiter) returns the first token in the text string \(s t r\), that is, the first set of characters before a delimiter is encountered. The vector deli miter contains valid delimiter characters.
token = strtok('str') uses the default delimiters, the white space characters. These include tabs (ASCII 9), carriage returns (ASCII 13), and spaces (ASCII 32).
[token, rem] = strtok(...) returnstheremainder rem of theoriginal string. The remainder consists of all characters from the first delimiter on.

\section*{Examples}
```

s = 'This is a good example.';
[token,rem] = strtok(s)
token =
This
rem =
is a good example.

```
\begin{tabular}{lll} 
See Also & findstr & Find one string within another \\
strmatch & Find possible matches for a string
\end{tabular}

\section*{Purpose Create structure array}
```

Syntax s = struct('field1',values1,'field2',values2,...)

```

Description \(s=\) struct('field1', values 1, ' fiel \(^{2} 2^{\prime}\), values \(2, \ldots\) ) creates a structure array with the specified fields and values. The value arrays val ues 1, val ues 2 , etc. must be cell arrays of the same size or scalar cells. Corresponding elements of the value arrays are placed into corresponding structure array elements. The size of the resulting structure is the same size as the value arrays.

\section*{Examples The command}
```

s=struct('type',{'big','|itt|e'},'color',{'red'},'x',{3 4})

```
produces a structure array s :
```

S =
1x2 struct array with fields:
type
color
x

```

The value arrays have been distributed among the fields of \(s\) :
```

s(1)
ans =
type: 'big'
color: 'red'
3
s(2)
ans =
type: 'little'
color: 'red'
x: 4

```

See Also
fieldnames
getfield
rmfield
setfield

Field names of a structure
Get field of structure array
Remove structure fields
Set field of structure array

\section*{Purpose Structure to cell array conversion}

\section*{Syntax \(\quad c=s t r u c t 2 c e l l(s)\)}

Description \(\quad c=s t r u c t 2 c e l l(s)\) converts them-by-n structures (with p fields) into a p-by-m-by-n cell array c.

If structures is multidimensional, cell arrayc has size[p size(s)].
Examples
The commands
```

clear s, s.category = 'tree';
s.height = 37.4; s.name = 'birch';

```
create the structure
s =
category: 'tree'
height: 37.4000
name: 'birch'
Converting the structure to a cell array,
\(c=s t r u c t 2 c e l l(s)\)
c \(=\)
'tree'
[37.4000]
'birch'

\section*{See Also \\ cell 2struct,fields}
Purpose Vertical concatenation of strings
Syntax \(\quad S=\operatorname{strvcat}(t 1, t 2, t 3, \ldots)\)

Description

Remarks

Examples
\(S=\) strvcat (t1, t2, t 3,...) forms the character array \(S\) containing the text strings (or string matrices) t 1, t 2, t 3, ... as rows. Spaces are appended to each string as necessary to form a valid matrix. Empty arguments are ignored.

If each text parameter, ti, is itself a character array, strvcat appends them vertically to create arbitrarily large string matrices.

The commandstrvcat('Hello','Yes') is the same as['Hello';'Yes '], except that strvcat performs the padding automatically.
```

t1 = 'first';t2 = 'string';t3 = 'matrix';t4 = 'second';
S1 = strvcat(t1,t2,t3) S2 = strvcat(t4,t2,t 3)
S1 = S2 =
first second
string string
matrix matrix
S3 = strvcat(S1,S2)
S3 =
first
string
matrix
second
string
matrix

```

\section*{See Also}
cat
int2str
mat2str
num2str
string

Concatenate arrays I nteger to string conversion Convert a matrix into a string Number to string conversion Convert numeric values to string

\section*{Purpose Single index from subscripts}
Syntax \(\quad\)\begin{tabular}{rl}
\(I N D\) & \(=\operatorname{sub} 2 i n d(s i z, \mid, j)\) \\
\(I N D\) & \(=\operatorname{sub} 2 i n d(s i z,|1,|2, \ldots| n)\),
\end{tabular}

Description

\section*{Examples}

Thesub2ind command determines the equivalent single index corresponding to a set of subscript values.

IND = sub2ind(siz,l, J) returns the linear index equivalent to the row and column subscripts in the arrays। andJ for an matrix of sizesiz.

IND = sub2ind(siz,|1,|2,..., In) returns the linear index equivalent to the \(n\) subscripts in the arrays \(11,12, \ldots, 1 n\) for an array of sizesiz.

The mapping from subscripts to linear index equivalents for a 2-by-2-by-2 array is:


\section*{See Also}
ind2sub
find

Subscripts from linear index
Find indices and values of nonzero elements

\section*{subsasgn}

Purpose Overloaded method for \(A(i)=B, A\{i\}=B\), and \(A\), fi eld=B

\section*{Syntax \(\quad A=\operatorname{subsasgn}(A, S, B)\)}

Description \(\quad A=\operatorname{subsasgn}(A, S, B)\) is called for the syntax \(A(i)=B, A\{i\}=B\), or \(A, i=B\) when \(A\) is an object. \(S\) is a structure array with the fields:
- type:A string containing' () ', ' \{\}', or ' . ' , where' ( ) ' specifies integer subscripts; ' \{\}' specifies cell array subscripts, and ' . ' specifies subscripted structure fields.
- subs: A cell array or string containing the actual subscripts.

\section*{Examples}

Thesyntaxa(1:2,:)=B callsA=subsasgn(A,S,B) wheres is a 1-by-1 structure with S.type='()' ands.subs = \{1:2,':'\}.A colon used as a subscript is passed as the string ': '.
The syntax \(A\{1: 2\}=B\) calls \(A=s u b s a s g n(A, S, B)\) wheres.type='\{\}'.
The syntaxA.field=B callssubsasgn(A, S, B) where S.type='.' and S.subs='field'.

These simple calls are combined in a straightforward way for more complicated subscripting expressions. In such cases I ength(S) is the number of subscripting levels. For instance, \(\mathrm{A}(1,2)\). name ( \(3: 5\) ) \(=\mathrm{B}\) calls \(A=s u b s a \sin (A, S, B)\) wheres is 3-by-1 structure array with the following values:
\begin{tabular}{|c|c|c|}
\hline S(1).type='()' & S(2).type=' & S(3).type=' ()' \\
\hline S(1).subs \(=\{1,2\}\) & S(2).subs =' name' & S(3).subs \(=\{3: 5\}\) \\
\hline
\end{tabular}

\section*{See Also subsref Overloaded method for \(A(i), A\{i\}\) and A.field See Using MATLAB for more information about overloaded methods and subsasgn.}
Purpose Overloaded method for \(X(A)\)

\section*{Syntax}

Description
i = subsindex(A) is called for the syntax' \(X(A)^{\prime}\) when \(A\) is an object. subsindex must return the value of the object as a zero-based integer index (i must contain integer values in the range 0 to prod(size(X))-1). subsindex is called by the defaultsubsref andsubsasgn functions, and you can call it if you overload these functions.

See Also subsasgn subsref

Overloaded method for \(A(i)=B, A\{i\}=B\), and \(A\). fiel \(d=B\) Overloaded method for \(\mathrm{A}(\mathrm{i}), \mathrm{A}\{\mathrm{i}\}\) and \(\mathrm{A} . \mathrm{fi}\) eld

\section*{subsref}

Purpose Overloaded method for A(I), A\{I\} and A.field

\section*{Syntax \\ \(B\) = subsref(A, \(S\) )}

Description
\(B=\operatorname{subsref}(A, S)\) is called for the syntax \(A(i), A\{i\}\), or \(A\). \(i\) when \(A\) is an object. \(S\) is a structure array with the fields:
- type:A string containing' () ', ' \{ \}', or ' . ' , where' ( ) ' specifies integer subscripts; ' \{\}' specifies cell array subscripts, and ' . ' specifies subscripted structure fields.
- subs: A cell array or string containing the actual subscripts.

\section*{Examples}

\section*{See Also subsasgn Overloaded method for \(A(i)=B, A\{i\}=B\), and \(A . f i e l d=B\) See Using MATLAB for more information about overloaded methods and subsref.}

Purpose Angle between two subspaces

\section*{Syntax theta = subspace(A, B)}

Description

Remarks

Examples
thet a = subspace(A, B) finds the angle between two subspaces specified by the columns of \(A\) and \(B\). If \(A\) and \(B\) are column vectors of unit length, this is the same as acos ( \(A^{\prime} * B\) ).

If the angle between the two subspaces is small, the two spaces are nearly linearly dependent. In a physical experiment described by some observations A, and a second realization of the experiment described by B, subspace ( \(A, B\) ) gives a measure of the amount of new information afforded by the second experiment not associated with statistical errors of fluctuations.

Consider two subspaces of a Hadamard matrix, whose columns are orthogonal.
```

H = hadamard(8);
A = H(:, 2:4);
B = H(:,5:8);

```

Note that matrices \(A\) and \(B\) are different sizes- \(A\) has three columns and \(B\) four. It is not necessary that two subspaces bethe same sizein order to find the angle between them. Geometrically, this is the angle between two hyperplanes embedded in a higher dimensional space.
```

theta = subspace(A,B)
theta =
1.5708

```

That \(A\) and \(B\) are orthogonal is shown by the fact that \(t\) het a is equal to \(\pi / 2\).
```

theta - pi/2
ans =
0

```

Purpose Sum of array elements

\section*{Syntax \\ \(B=\operatorname{sum}(A)\) \\ \(B=\operatorname{sum}(A, d i m)\)}

\section*{Description}

\section*{Remarks}

Examples
The magic square of order 3 is
```

M = magic(3)
M =
8 1 6
3
4 2

```

This is called a magic square because the sums of the elements in each column are the same.
```

sum(M) =
15 15 15

```
as are the sums of the elements in each row, obtained by transposing:
```

sum(M') =

```
    151515

See Also
cumsum
diff
prod
trace

Cumulative sum
Differences and approximate derivatives
Product of array elements
Sum of diagonal elements

\section*{Purpose Superior class relationship}

\section*{Syntax superiorto('class1','class2',....)}

Description Thesuperiorto function establishes a hierarchy that determines the order in which MATLAB calls object methods.
superiorto('class1', 'class2',....) invoked within a class constructor method (say myclas s.m) indicates that my cl as s's method should be invoked if a function is called with an object of class my class and one or more objects of class class 1, class 2 , and so on.

\section*{Remarks}

See Also
inferiorto
Inferior class relationship

Purpose Singular value decomposition
\begin{tabular}{ll} 
Syntax & \(s=\operatorname{svd}(X)\) \\
& {\([U, S, V]=\operatorname{svd}(X)\)} \\
& {\([U, S, V]=\operatorname{svd}(X, O)\)}
\end{tabular}

Description

Examples \(U\) and \(V\) so that \(X=U * S^{*} V^{\prime}\).

F or the matrix

Thes vd command computes the matrix singular value decomposition.
\(s=\operatorname{svd}(X)\) returns a vector of singular values.
\([U, S, V]=\operatorname{svd}(X)\) produces a diagonal matrix \(s\) of the same dimension as \(X\), with nonnegative diagonal elements in decreasing order, and unitary matrices
\([U, S, V]=\operatorname{svd}(X, O)\) produces the "economy size" decomposition. IfX is m-by-n with \(m>n\), then \(s v d\) computes only the first \(n\) columns of \(u\) and \(s\) is \(n-b y-n\).
\(x=\)
12
34
56
78
the statement
\[
[U, S, V]=\operatorname{svd}(X)
\]
produces
\(U=\)
\begin{tabular}{rrrr}
0.1525 & 0.8226 & -0.3945 & -0.3800 \\
0.3499 & 0.4214 & 0.2428 & 0.8007 \\
0.5474 & 0.0201 & 0.6979 & -0.4614 \\
0.7448 & -0.3812 & -0.5462 & 0.0407
\end{tabular}
```

S =
14.2691 0
0 0.6268
0 0
0
V =
0.6414 -0.7672
0.7672 0.6414

```

The economy size decomposition generated by
```

[U,S,V]=\operatorname{svd}(X,O)

```
produces
\(U=\)
    \(0.1525 \quad 0.8226\)
    \(0.3499 \quad 0.4214\)
    \(0.5474 \quad 0.0201\)
    \(0.7448 \quad-0.3812\)
\(S=\)
    14.26910
        \(0 \quad 0.6268\)
\(V=\)
    \(0.6414 \quad-0.7672\)
    \(0.7672 \quad 0.6414\)

Algorithm Thesvd command uses the LINPACK routine ZSVDC.
Diagnostics If thelimit of 75 QR step iterations is exhausted while seeking a singular value, this message appears:
```

Solution will not converge.

```

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users' Guide, SIAM, Philadelphia, 1979.

Purpose A few singular values
Syntax \(\quad[U, S, V]=\operatorname{svds}(A, k)\)
Description \(\quad[U, S, V]=\operatorname{svds}(A, k) \quad\) computes the \(k\) largest singular values and singular vectors of the matrixA. \(k=5\) is the default. If A is m-by-n, then \(U\) is \(m\)-by-k with orthonormal columns, \(S\) is \(k-b y-k\) diagonal, \(V\) is \(n-b y-k\) with orthonromal columns, and \(U^{*} S^{*} V^{\prime}\) is the closest rank \(k\) approximation to \(A\).
\([U, S, V]=\operatorname{svds}(A, k, 0) \quad\) computes the \(k\) smallest singular values and singular vectors.
\(s=\operatorname{svds}(A, k, \ldots)\) returns just a vector of singular values.

\section*{See Also svd}
eigs

Singular value decomposition
Find a few eigenvalues and eigenvectors

\section*{Purpose Switch among several cases based on expression}
```

Syntax
switch switch_expr
case case_expr
statement,..., statement
case {case_exprl,case_expr2,case_expr 3,...}
statement,..., statement
otherwise
statement,..., statement
end

```

\section*{Discussion}

Thes wit ch statement syntax is a means of conditionally executing code. In particular, s wit ch executes one set of statements selected from an arbitrary number of alternatives. Each alternative is called a case, and consists of:
- Thecase statement
- One or more case expressions
- One or more statements

In its most basic syntax, s wit ch executes only the statements associated with the first case whereswitch_expr == case_expr. When the case expression is a cell array (as in the second case above), the cas e_expr matches if any of the elements of the cell array match the switch expression. If none of the case expressions matches the switch expression, then control passes to the ot her wi se case (if it exists). Only one case is executed, and program execution resumes with the statement after the end.

Theswitch_expr can be a scalar or a string. A scalar switch_expr matches a case_expr ifswitch_expr==case_expr. A stringswitch_expr matches a case_expr ifstrcmp(switch_expr,case_expr) returns1 (true).

\section*{Examples Assume met hod exists as a string variable:}
```

switch lower(method)
case {'|inear','bilinear'}, disp('Method is linear')
case 'cubic', disp('Method is cubic')
case 'nearest', disp('Method is nearest')
otherwise, disp('Unknown method.')
end

```

See Also
case, end, if,otherwise,while

\section*{Purpose}

Sparse symmetric minimum degree ordering

Syntax
Description

Remarks

Algorithm
\(p=s y m m m d(S)\)
\(p=s y m m m(S)\) returns a symmetric minimum degree ordering of \(S\). For a symmetric positive definite matrix \(S\), this is a permutation \(p\) such that \(s(p, p)\) tends to have a sparser Cholesky factor than \(S\). Sometimes s y mmmd works well for symmetric indefinite matrices too.

The minimum degree ordering is automatically used by \(\backslash\) and/ for thesolution of symmetric, positive definite, sparse linear systems.
Some options and parameters associated with heuristics in the algorithm can be changed with sppar ms.

The symmetric minimum degree algorithm is based on the column minimum degree algorithm. In fact, symmm (A) just creates a nonzero structure K such that \(\mathrm{K}^{\prime}\) *K has the same nonzero structure as A and then calls the column minimum degree code for \(k\).

\section*{Examples}

Here is a comparison of reverse Cuthill-McKee and minimum degree on the Bucky ball example mentioned in the symr cm reference page.
```

B = bucky+4*speye(60);
r = symrcm(B);
p = symmmd(B);
R = B(r,r);
S = B(p,p);
subplot(2,2,1), spy(R), title('B(r,r)')
subplot(2,2,2), spy(S), title('B(s,s)')
subplot(2,2,3), spy(chol(R)), title('chol(B(r,r))')
subplot(2,2,4), spy(chol(S)), title('chol(B(s,s))')

```


Even though this is a very small problem, the behavior of both orderings is typical. RCM produces a matrix with a narrow bandwidth which fills in almost completely during the Cholesky factorization. Minimum degree produces a structure with large blocks of contiguous zeros which do not fill in during the factorization. Consequently, the minimum degree ordering requires less time and storage for the factorization.
\begin{tabular}{|c|c|}
\hline See Also & col mmd Sparse column minimum degree permutation \\
\hline & colperm Sparse column permutation based on nonzero count \\
\hline & symrcm Sparse reverse Cuthill-McK ee ordering \\
\hline References & [1] Gilbert, J ohn R., Cleve M oler, and Robert Schreiber, "Sparse Matrices in MATLAB: Design and Implementation," SIAM J ournal on Matrix Analysis and Applications 13, 1992, pp. 333-356. \\
\hline Purpose & Sparse reverse Cuthill-Mck ee ordering \\
\hline Syntax & \(r=s y m r c m(S)\) \\
\hline Description & \(r=s y \mathrm{mr} \mathrm{cm}(S)\) returns the symmetric reverse Cuthill-McK ee ordering of \(s\). This is a permutation \(r\) such that \(S(r, r)\) tends to have its nonzero elements closer to the diagonal. This is a good preordering for LU or Cholesky factorization of matrices that come from long, skinny problems. The ordering works for both symmetric and nonsymmetrics. \\
\hline & F or a real, symmetric sparse matrix, \(S\), the eigenvalues of \(S(r, r)\) are the same as those of S , but ei \(\mathrm{g}(\mathrm{S}(\mathrm{r}, \mathrm{r})\) ) probably takes less time to compute than eig(S). \\
\hline Algorithm & The algorithm first finds a pseudoperipheral vertex of the graph of the matrix. It then generates a level structure by breadth-first search and orders the vertices by decreasing distance from the pseudoperipheral vertex. The implementation is based closely on the SPARSPAK implementation described by George and Liu. \\
\hline Examples & The statement \\
\hline & B = bucky \\
\hline & uses an M-file in the de mos tool box to generate the adjacency graph of a truncated icosahedron. This is better known as a soccer ball, a Buckminster Fuller geodesic dome (hence the name bucky ), or, more recently, as a 60-atom carbon molecule. There are 60 vertices. The vertices have been ordered by numbering half of them from one hemisphere, pentagon by pentagon; then reflecting into the other hemisphere and gluing the two halves together. With this \\
\hline
\end{tabular}
numbering, the matrix does not have a particularly narrow bandwidth, as the first spy plot shows
```

subplot(1,2,1), spy(B), title('B')

```

The reverse Cuthill-McK ee ordering is obtained with
```

p = symrcm(B);
R=B(p,p);

```

Thespy plot shows a much narrower bandwidth:
```

subplot(1,2,2), spy(R), title('B(p,p)')

```



This example is continued in the reference pages for symmm .
The bandwidth can also be computed with
```

[i,j] = find(B);
bw = max(i-j) + l

```

The bandwidths of \(B\) and \(R\) are 35 and 12, respectively.
\begin{tabular}{lll} 
See Also & col mmd \\
col perm \\
symmmd
\end{tabular}\(\quad\)\begin{tabular}{l} 
Sparse column minimum degree permutation \\
\\
\end{tabular}

References [1] George, Alan and J oseph Liu, Computer Solution of Large Sparse Positive DefiniteSystems, Prentice-Hall, 1981.
[2] Gilbert, J ohn R., Cleve M oler, and Robert Schreiber, "Sparse Matrices in MATLAB: Design and Implementation," to appear in SIAM J ournal on Matrix Analysis, 1992. A slightly expanded version is also available as a technical report from the Xerox Palo Alto Research Center.

\section*{symrcm}

Purpose Tangent and hyperbolic tangent

\section*{Syntax \\ ```
Y = tan(X) \\ Y = tanh(X)
```}

Description

\section*{Examples}

The \(t a n\) and \(t a n h\) functions operate element-wise on arrays. The functions' domains and ranges include complex values. All angles are in radians.
\(Y=\tan (X)\) returns the circular tangent of each element of \(X\).
\(Y=\tanh (X)\) returns the hyperbolic tangent of each element of \(X\).
Graph the tangent function over the domain \(-\pi / 2<x<\pi / 2\), and the hyperbolic tangent function over the domain \(-5 \leq x \leq 5\).
```

x = (-pi/2) +0.01:0.01:(pi/2)-0.01; plot(x,tan(x))
x = -5:0.01:5; plot(x, tanh(x))

```


The expression \(\tan (\mathrm{pi} / 2)\) does not evaluate as infinite but as the reciprocal of the floating point accuracy eps since pi is only a floating-point approximation to the exact value of \(\pi\).

\section*{Algorithm}
\[
\begin{aligned}
& \tan (z)=\frac{\sin (z)}{\cos (z)} \\
& \tanh (z)=\frac{\sinh (z)}{\cosh (z)}
\end{aligned}
\]

\section*{See Also \\ atan, atan2}

\section*{tempdir}

Purpose Return the name of the system's temporary directory

\section*{Syntax tmp_dir = tempdir}

Description tmp_dir = tempdir returns the name of the system's temporary directory, if one exists. This function does not create a new directory.

See Also tempname Unique name for temporary file
Purpose Unique name for temporary file

\section*{Syntax \\ t empna me}

Description tempname returns a unique string beginning with the characterstp. This string is useful as a name for a temporary file.

See Also
tempdir
Return the name of the system's temporary directory
Purpose Stopwatch timer
\begin{tabular}{ll}
Syntax & tic \\
& toc any statements \\
\(t=t o c\)
\end{tabular}

Description
tic starts a stopwatch timer.
toc prints the elapsed time since tic was used.
\(t=t o c\) returns the elapsed time in \(t\).

\section*{Examples}

This example measures how the time required to solve a linear system varies with the order of a matrix.
```

for n = 1:100
A = rand(n,n);
b = rand(n, 1);
tic
x = Alb;
t(n) = toc;
end
plot(t)

```

See Also

\author{
clock \\ cputime et i me
}
Current time as a date vector Elapsed CPU time Elapsed time

Purpose Toeplitz matrix
Syntax \begin{tabular}{rl}
& \(T=\) toeplitz(c,r) \\
T & \(=\) toeplitz(r)
\end{tabular}

Description

Examples
A Toeplitz matrix with diagonal disagreement is
```

c = [llllll}102 3 4 5]
r=[ll.5 2.5 3.5 4.5 5.5}]
toeplitz(c,r)
Column wins diagonal conflict:
ans =
1.000 2.500 3.500 4.500 5.500
2.000 1.000 2.500 3.500 4.500
3.000 2.000 1.000 2.500 3.500
4.000 3.000 2.000 1.000 2.500
5.000 4.000 3.000 2.000 1.000

```
See Also hankel Hankel matrix
\begin{tabular}{|c|c|}
\hline Purpose & Sum of diagonal elements \\
\hline Syntax & \(b=t r a c e(A)\) \\
\hline Description & \(b=\operatorname{trace}(A)\) is the sum of the diagonal elements of the matrix \(A\). \\
\hline Algorithm & \\
\hline & \(t=s u m(d i a g(A)) ;\) \\
\hline \multirow[t]{2}{*}{See Also} & det Matrix determinant \\
\hline & eig Eigenvalues and eigenvectors \\
\hline
\end{tabular}

\section*{Purpose Trapezoidal numerical integration}
Syntax \(\quad\)\begin{tabular}{rl}
\(Z\) & \(=\operatorname{trapz}(Y)\) \\
\(Z\) & \(=\operatorname{trapz}(X, Y)\) \\
\(Z\) & \(=\operatorname{trapz}(\ldots, \operatorname{dim})\)
\end{tabular}

Description

Examples
\(Z=\operatorname{trapz}(Y)\) computes an approximation of the integral of \(Y\) via the trapezoidal method (with unit spacing). To compute the integral for spacing other than one, multiply \(z\) by the spacing increment.

If \(Y\) is a vector, \(\operatorname{trapz}(Y)\) is the integral of \(Y\).
If \(Y\) is a matrix,trapz(\(Y\)) is a row vector with the integral over each column.
If \(Y\) is a multidimensional array, \(\operatorname{trapz}(Y)\) works across the first nonsingleton dimension.
\(Z=\operatorname{trapz}(X, Y)\) computes the integral of \(Y\) with respect to \(X\) using trapezoidal integration.

If \(X\) is a column vector and \(Y\) an array whose first nonsingleton dimension is I ength(\(X\)), trapz (\(X, Y\)) operates across this dimension.
\(Z=\operatorname{trapz}(\ldots\), dim) integrates across the dimension of \(Y\) specified by scalar dim. The length of \(X\), if given, must be the same as size (\(Y\), di \(m\)).

The exact value of \(\int_{0}^{\pi} \sin (x) d x\) is 2 .
To approximate this numerically on a uniformly spaced grid, use
```

X = 0:pi/100:pi;
y = sin(x);

```

Then both
```

Z = trapz(X,Y)

```
and
\[
Z=p i / 100 \text { *t rapz(Y) }
\]
```

produce
z =
1.9998
A nonuniformly spaced example is generated by

```
```

X = sort(rand(1,101) *pi);

```
X = sort(rand(1,101) *pi);
Y = sin(X);
Y = sin(X);
Z = trapz(X,Y);
```

Z = trapz(X,Y);

```

The result is not as accurate as the uniformly spaced grid. One random sample produced
```

Z =
1.9984

```

\section*{See Also}
cumsum
cumtrapz
Cumulative sum
Cumulative trapezoidal numerical integration

Purpose Lower triangular part of a matrix
Syntax
\(L=\operatorname{tril}(X)\)
\(L=\operatorname{tril}(X, k)\)

Description \(L=\operatorname{tril}(X)\) returns the lower triangular part of \(X\).
\(\mathrm{L}=\mathrm{tril}(\mathrm{X}, \mathrm{k})\) returns the elements on and below thekth diagonal of \(\mathrm{X} . \mathrm{k}=0\) is the main diagonal, \(k>0\) is abovethe main diagonal, and \(k<0\) is below the main diagonal.

\section*{Examples}
tril(ones \((4,4),-1)\) is
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{tabular}

See Also diag
triu

Diagonal matrices and diagonals of a matrix
U pper triangular part of a matrix

Purpose Upper triangular part of a matrix

\section*{Syntax \\ Description}
\(U=\operatorname{triu}(x)\)
\(u=\operatorname{tri} u(X, k)\)
\(U=\operatorname{tri} u(X)\) returns the upper triangular part of \(X\).
\(U=\operatorname{tri} u(X, k)\) returns the element on and above the kth diagonal of \(X . k=0\) is the main diagonal, \(k>0\) is above the main diagonal, and \(k<0\) is below the main diagonal.

\section*{Examples}
triu(ones \((4,4),-1)\) is
\begin{tabular}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{tabular}

See Also
diag
tril
Diagonal matrices and diagonals of a matrix Lower triangular part of a matrix
Purpose Search for enclosing Delaunay triangle

\section*{Syntax \\ T = tsearch(x,y,TRI, xi,yi)}

Description \(\quad T=t \operatorname{search}(x, y, T R I, x i, y i)\) returns an index into the rows of TRI for each point in xi,yi. Thetsearch command returns NaN for all points outside the convex hull. Requires a triangulation TRI of the points \(x, y\) obtained from del aunay.

\section*{See Also}
delaunay
dsearch

Delaunay triangulation
Search for nearest point
Purpose List file
Syntax typefilename

Description type filename displays the contents of the specified file in the MATLAB command window given a full pathname or a MATLABPATH relative partial pathname. Use pathnames and drive designators in the usual way for your computer's operating system.

If you do not specify a filename extension, thet y pe command adds the .m extension by default. The type command checks the directories specified in MATLAB's search path, which makes it convenient for listing the contents of M -files on the screen.
```

Examples type foo.bar lists thefilef 00.bar.
type foo lists the filefoo.m.

```

\section*{See Also \\ \(!\)}
\(c d\)
dbtype
delete
dir
path
what
who

Operating system command Change working directory List \(M\)-file with line numbers Delete files and graphics objects
Directory listing Control MATLAB's directory search path
Directory listing of M-files, MAT-files, and MEX-files List directory of variables in memory

Seealsopartialpath.
Purpose Convert to unsigned 8-bit integer

\section*{Syntax \(\quad i=\) uint \(8(x)\)}

Description \(\quad i=u i n t 8(x)\) converts the vector \(x\) into an unsigned 8-bit integer. \(x\) can be any numeric object (such as a double). The elements of an uint 8 range from 0 to 255 . The result for any elements of \(x\) outside this range is not defined (and may vary from platform to platform). If x is already an unsigned 8 -bit integer, uint 8 has no effect.

Theuint 8 class is primarily meant to store integer values. Most operations that manipulate arrays without changing their elements are defined (examples arereshape, size, subscripted assignment and subscripted reference). No math operations are defined for uint 8 since such operations are ambiguous on the boundary of the set (for example they could wrap or truncate there). You can define your own methods for uint 8 (as you can for any object) by placing the appropriately named method in an @ui nt 8 directory within a directory on your path. The Image Processing Tool box does just that to define additional methods for the uint 8 (such as the logical operators \(\langle\rangle, \&,\), etc.).

Typehelp oopfun for the names of the methods you can overload.
See Also
double
Convert to double precision

Purpose Set union of two vectors
\begin{tabular}{ll}
Syntax & \(c=\) union \((a, b)\) \\
& \(c=\) union \((a, b\), rows' \()\) \\
& {\([c, i a, i b]=\) union \((\ldots)\)}
\end{tabular}

Description

Examples
```

a = [-1 0 2 4 6];
b = [-1 0 1 3];
[c,ia,ib] = union(a,b);
c =
-1
ia =
3 4 5
i b =
1 2 3 4

See Also	intersect   setdiff   setxor   unique	Set intersection of two vectors
	Return the set difference of two vectors	
	Set exclusive-or of two vectors	

```
Purpose Unique elements of a vector

See Also
intersect
is member
setdiff
setxor
union

Set intersection of two vectors True for a set member Return the set difference of two vectors Set exclusive-or of two vectors Set union of two vectors

Purpose Correct phase angles
Syntax
Description
```

Q = unwrap(P)
Q = unwrap(P,tol)
Q = unwrap(P,[],dim)
Q = unwrap(P,tol, dim)

```

\section*{Examples}

\section*{Limitations}

\section*{See Also}
\(Q=\) unwrap(P) corrects the radian phase angles in array \(p\) by adding multiples of \(\pm 2 \pi\) when absolute jumps between consecutive array elements are greater than \(\pi\) radians. If \(p\) is a matrix, unwr a \(p\) operates columnwise. If \(p\) is a multidimensional array, unwr ap operates on the first nonsingleton dimension.
```

Q = unwrap(P, tol) uses a jump tolerance tol instead of the default value, \pi.

```
\(Q=u n w r a p(P,[]\), di m) unwraps alongdi m using the default tolerance.
\(Q=\) unwrap(\(P\), tol, dim) uses a jump tolerance of \(t\) ol.
Arrayp features smoothly increasing phase angles except for discontinuities at elements (3,1) and (1,2).
\(P=\)
\begin{tabular}{rrrr}
0 & \(\underline{7.0686}\) & 1.5708 & 2.3562 \\
0.1963 & 0.9817 & 1.7671 & 2.5525 \\
\(\underline{6.6759}\) & 1.1781 & 1.9635 & 2.7489 \\
\hline 0.5890 & 1.3744 & 2.1598 & 2.9452
\end{tabular}

The function \(Q=u n w r a p(P)\) eliminates these discontinuities.
\[
Q=
\]
\begin{tabular}{rrrr}
0 & 0.7854 & 1.5708 & 2.3562 \\
0.1963 & 0.9817 & 1.7671 & 2.5525 \\
0.3927 & 1.1781 & 1.9635 & 2.7489 \\
0.5890 & 1.3744 & 2.1598 & 2.9452
\end{tabular}

The unwr ap function detects branch cut crossings, but it can be fooled by sparse, rapidly changing phase values.
angle
abs

Absolute value and complex magnitude Phase angle
Purpose Convert string to upper case
Syntax \(\quad t=\) upper('stri)

Description \(\quad t=u p p e r(' s t r ')\) converts any lower-case characters in the stringstr to the corresponding upper-case characters and leaves all other characters unchanged.
```

Examples
upper('attention!') isattention!.

```

Remarks
Character sets supported:
- Mac: Standard Roman
- PC: Windows Latin-1
- Other: ISO Latin-1 (ISO 8859-1)

See Also lower Convert string to lower case

\section*{varargin, varargout}

\section*{Purpose \\ Pass or return variable numbers of arguments}

\section*{Syntax function varargout = foo(n) \\ \(y=\) function bar(varargin)}

\section*{Description}

\section*{Examples The function}
```

function myplot(x, varargin)
plot(x,varargin{:})

```
collects all the inputs starting with the second input into the variable varargin.mypl ot uses the comma-separated list syntax varargin\{: \} to pass the optional parameters to pl ot. The call
```

myplot(sin(0:. 1: 1),'color',[.5.7.3],'|inestyle',':')

```
results in varargin being a 1-by-4 cell array containing the values 'color',
[.5.7.3],' Iinestyle', and':'.

The function
```

function [s, varargout] = mysize(x)
nout = max(nargout,1)-1;
s = size(x);
for i =1: nout, varargout(i) = {s(i)}; end

```
returns the size vector and, optionally, individual sizes. So
```

    [s,rows,cols] = mysize(rand(4,5));
    returnss = [4 5], rows = 4, cols = 5.

```

\section*{varargin, varargout}

\section*{See Also \\ nargin \\ nargout \\ nargchk}

Number of function arguments
Number of function arguments
Check number of input arguments
\begin{tabular}{|c|c|}
\hline Purpose & MATLAB version number \\
\hline \multirow[t]{2}{*}{Syntax} & \(v=\) version \\
\hline & \([\mathrm{v}, \mathrm{d}]=\) version \\
\hline \multirow[t]{2}{*}{Description} & \(v=\) version returns a string v containing the MATLAB version number. \\
\hline & \([v, d]=\) version also returns a string d containing the date of the version. \\
\hline \multirow[t]{3}{*}{See Also} & help Online help for MATLAB functions and M-files \\
\hline & whatsnew Display README files for MATLAB and toolboxes \\
\hline & version MATLAB version number \\
\hline
\end{tabular}
Purpose Voronoi diagram
```

Syntax voronoi(x,y)
voronoi(x,y,TRI)
h = voronoi(...,'LineSpec')
[vx,vy] = voronoi(...)

```

Definition Consider a set of coplanar points \(P\). For each point \(P_{x}\) in the set \(P\), you can draw a boundary enclosing all the intermediate points lying closer to \(P_{x}\) than to other points in the set \(P\). Such a boundary is called a Voronoi polygon, and the set of all Voronoi polygons for a given point set is called a Voronoi diagram.

Description voronoi (\(x, y\)) plots the Voronoi diagram for the points \(x, y\).
voronoi (\(x, y\), TRI) uses the triangulation TRI instead of computing it via delaunay.
h = voronoi(...,'LineSpec') plots the diagram with color and line style specified and returns handles to the line objects created in \(h\).
[vx, vy] = voronoi(...) returns the vertices of the Voronoi edges in vx and vy so that plot (vx, vy, ' -' \(, x, y, '\) ') creates the Voronoi diagram.

Examples

This code plots the Voronoi diagram for 10 randomly generated points.
```

rand('state',0);

```
rand('state',0);
x = rand(1,10); y = rand(1,10);
x = rand(1,10); y = rand(1,10);
[vx, vy] = voronoi(x,y);
[vx, vy] = voronoi(x,y);
plot(x,y,'r+',vx,vy,'b-'); axis equal
```

plot(x,y,'r+',vx,vy,'b-'); axis equal

```

TheLinespec entry inUsing MATLAB Graphics, and convhull Convex hull delaunay Delaunay triangulation dsearch Search for nearest point

\section*{Purpose Display warning message}
```

Syntax warning('message')
warning on
warning off
warning backtrace
warning debug
warning once
warning always
[s,f] = warning

```

\section*{Description}

\section*{Remarks}

See Also
warning('message') displays thetext'message' as does thedisp function, except that with warning, message display can be suppressed.
warning of \(f\) suppresses all subsequent warning messages.
warning on re-enables them.
warning backtrace is the same as warning on except that the file and line number that produced the warning are displayed.
warning debug is the sameasdbstop if warning and triggers the debugger when a warning is encountered.
warning once displays Handle Graphics backwards compatibility warnings only once per session.
warning al ways displays HandleGraphics backwards compatibility warnings as they are encountered (subject to current warning state).
[s,f] = warning returns the current warning states and the current warning frequency \(f\) as strings.

Usedbstop on warning to trigger the debugger when a warning is encountered.
dbstop
disp error

Set breakpoints in an M-file function
Display text or array
Display error messages
Purpose Read Microsoft WAVE (wa v) sound file
Syntax \(\quad\)\begin{tabular}{l}
\(y=\) wavread('filename') \\
{\([y\), Fs, bits \(]=\) wavread('filename') } \\
{\([\ldots]=\) wavread('filename', N) } \\
{\([\ldots]=\) wavead('filename', \([\) N1 N2]) } \\
{\([\ldots]=\) wavead('filename', 'size') }
\end{tabular}

Description wavread supports multichannel data, with up to 16 bits per sample.
y = wavread('filename') loads a WAVE file specified by the string fil ename, returning the sampled data in \(y\). The. wav extension is appended if no extension is given. Amplitude values are in the range \([-1,+1]\).
[y,Fs,bits] = wavread('filename') returns the samplerate (Fs) in Hertz and the number of bits per sample (bits) used to encode the data in the file.
[...] = wavread('filename', N) returns only thefirst N samples from each channel in the file.
[...] = wavread('filename',[N1 N2]) returns only samplesN1 through \(N 2\) from each channel in the file.
siz = wavread('filename','size') returns the size of the audio data contained in the file in place of the actual audio data, returning the vector siz = [samples channels].

\section*{See Also}
auread
wavwrite

Read \(\mathrm{NeXT} / \mathrm{SUN}\) (. au) sound file Write Microsoft WAVE (. wav) sound file
Purpose Write Microsoft WAVE (.wav) sound file
\begin{tabular}{ll}
Syntax & wavwrite(y, 'filename') \\
wavwite(y, Fs, 'filename') \\
wavwrite(y, Fs, N, 'filename')
\end{tabular}

Description

See Also
auwrite
wavread

WriteNeXT/SUN (, au) sound file
Read Microsoft WAVE (. wav) sound file
Purpose Point Web browser at file or Web site

\section*{Syntax web ur 1}

Description web url opens a Web browser and loads the file or Web site specified in the URL (Uniform Resource Locator). The URL can be in any form your browser supports. Generally, the URL specifies a local file or a Web site on the Internet.

\section*{Examples}
web file:/disk/dirl/dir2/foo.ht ml pointsthebrowser tothefilef 00 . ht ml . If the file is on the MATLAB path, web(['file:' which('foo.html')]) also works.
web http://www. mathworks.com loads The MathWorks Web page into your browser. Use web mailto:email_address to sende-mail to another site.

The Web browser used is specified in the docopt M-file.
\begin{tabular}{lll}
See Also & \(d o c\) & Load hypertext documentation \\
& \(d o c o p t\) & Configure local doc access defaults (in online help)
\end{tabular}

Purpose Day of the week

\section*{Syntax \(\quad[\mathrm{N}, \mathrm{S}]=\) weekday (D)}

Description \([N, S]=\) weekday (D) returns the day of the week in numeric (N) and string (S) form for each element of a serial date number array or date string. The days of the week are assigned these numbers and abbreviations:
\begin{tabular}{llll}
\(\mathbf{N}\) & S & \(\mathbf{N}\) & S \\
1 & Sun & 5 & Thu \\
2 & Mon & 6 & Fri \\
3 & Tue & 7 & Sat \\
4 & Wed & &
\end{tabular}

\section*{Examples \\ Either}
\[
[n, s]=\text { weekday (728647) }
\]
or
\([\mathrm{n}, \mathrm{s}]=\) weekday('19-Dec-1994')
returns \(n=2\) ands \(=\) Mon.
\begin{tabular}{lll}
See Also & \begin{tabular}{l}
datenum \\
datevec \\
eomday
\end{tabular} & \begin{tabular}{l}
Serial date number \\
\end{tabular}
\end{tabular} \begin{tabular}{l}
Date components \\
End of month
\end{tabular}
dat enum
eomday

End of month
Purpose \(\quad\) Directory listing of M-files, MAT-files, and MEX-files
\begin{tabular}{ll}
Syntax & \begin{tabular}{l}
what \\
what dirname
\end{tabular} \\
Description & \begin{tabular}{l}
what by itself, lists the M-files, MAT-files, and MEX-files in the current direc- \\
tory.
\end{tabular} \\
what dirname lists thefiles in directory di r na me on MATLAB's search path. It \\
is not necessary to enter the full pathname of the directory. The last compo- \\
nent, or last couple of components, is sufficient. Use what cl ass or what \\
di name /privat e to list the files in a method directory or a private directory \\
(for the class named class).
\end{tabular}
Purpose Display README files for MATLAB and tool boxes
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Syntax} & whatsnew \\
\hline & whatsnew matlab \\
\hline & whatsnewtoolboxpath \\
\hline \multirow[t]{3}{*}{Description} & whatsnew, by itself, displays thereadme filefor the MATLAB product or a specified tool box. If present, the README file summarizes new functionality that is not described in the documentation. \\
\hline & whatsnew matlab displays thereadme filefor MATLAB. \\
\hline & whatsnew tool boxpath displays therEADME filefor the tool box specified by the stringtoolboxpath. \\
\hline \multirow[t]{2}{*}{Examples} & whatsnew matlab \% MATLAB README file \\
\hline & whatsnew signal \% Signal Processing Toolbox ReadMe file \\
\hline \multirow[t]{5}{*}{See Also} & help Online help for MATLAB functions and M-files \\
\hline & lookfor Keyword search through all help entries \\
\hline & path Control MATLAB's directory search path \\
\hline & version MATLAB version number \\
\hline & which Locate functions and files \\
\hline
\end{tabular}

\section*{Purpose Locate functions and files}
```

Syntax whichfun
which fun -all
which file.ext
which fun1 in fun2
which fun(a,b,c,...)
s = which(...)

```

\section*{Description}
which fun displays the full pathname of the specified function. The function can be an M-file, MEX-file, workspace variable, built-in function, or SIMULINK model. The latter three display a message indicating that they are variable, built in to MATLAB, or are part of SIMULINK. Usewhich private/ fun or whichclass/fun or whichclass/private/fun to further qualify the function name for private functions, methods, and private methods (for the class named class).
which fun-all displays the paths to all functions with the namef un. The first one in the list is theone normally returned by which. The others areeither shadowed or can be executed in special circumstances. The- all flag can be used with all forms of which.
which file.ext displays the full pathname of the specified file.
which fun1 in fun2 displaysthe pathnametofunctionfun1 in the context of the M-filef un2. While debugging fun2, which fun1 does the same thing. You can use this to determine if a local or private version of a function is being called instead of a function on the path.
which fun(\(a, b, c, \ldots)\) displays the path to the specified function with the given input arguments. For example, which feval(g), when \(g=i n l i n e(' \sin (x)\) '), indicates that nl ine/feval.mis invoked.
\(s=\) which(...) returns theresults of which in thestrings instead of printing it to the screen.s will bethestringbuilt-in orvariable for built-in functions or variables in the workspace. Y ou must use the functional form of which when there is an output argument.

Examples

\section*{See Also}

For example,
which inv
reveals that inv is a built-in function, and
```

which pinv

```
indicates that pinv is in the mat \(f\) un directory of the MATLAB Toolbox.
The statement
which jacobian
probably says
jacobian not found
because there is no filej acobian.m on MATLAB's search path. Contrast this with lookfor jacobian, which takes longer to run, but finds several matches to the keyword jacobian in its search through all the help entries. (If jacobi an. m does exist in the current directory, or in some privatedirectory that has been added to MATLAB's search path, which jacobi an finds it.)

Purpose Repeat statements an indefinite number of times

\section*{Syntax}
```

while expression
statements
end

```

Description

Examples
while repeats statements an indefinitenumber of times. Thestatements are executed while the real part of expression has all nonzero elements.
expression is usually of the form
expression rop expression
whererop is \(=,<>,<=>=\), or \(\sim\)
The scope of a while statement is always terminated with a matchingend.
The variableeps is a tolerance used to determine such things as near singu- larity and rank. Its initial value is the machine epsilon, the distance from 1.0 to the next largest floating-point number on your machine. Its calculation demonstrates whil e loops:
```

eps = 1;
while (1+eps) > 1
eps = eps/2;
end
eps=eps*2

```

\section*{See Also}
\begin{tabular}{ll}
all & Test to determine if all elements are nonzero \\
any & Test for any nonzeros \\
break & Break out of flow control structures \\
end & Terminate for, while, switch, and if statements or indi- \\
for & cate last index \\
if & Repeat statements a specific number of times \\
return & Conditionally execute statements \\
switch & Return to the invoking function \\
Switch among several cases based on expression
\end{tabular}
Purpose List directory of variables in memory
```

Syntax who
whos
who global
whos global
who -file filename
whos -file filename
who ... varl var2
whos ... varl var2
s = whol...)
s = whos(...)

```

Description who by itself, lists the variables currently in memory.
whos by itself, lists the current variables, their sizes, and whether they have nonzero imaginary parts.
who global and whos global list the variables in the global workspace.
who -file filename and whos -file filename list the variables in the specified MAT-file.
who ... varl var 2 andwhos ... varl var 2 restrict the display to the variables specified. The wildcard character * can be used to display variables that match a pattern. For instance, who A* finds all variables in the current workspace that start with A. Use the functional form, such as whos (' - fil e', fil ename, v1, v 2), when the filename or variable names are stored in strings.
\(s=w h o(\ldots)\) returns a cell array containing the names of the variables in the workspace or file. Use the functional form of who when there is an output argument.

\section*{who, whos}
\[
\begin{array}{cl}
s=\text { whos (...) } & \text { returns a structure with the fields: } \\
\text { name } & \text { variable name } \\
\text { byt es } & \text { number of bytes allocated for the array } \\
\text { class } & \text { class of variable }
\end{array}
\]

See Also
dir,exist,help, what

Purpose Wilkinson's eigenvalue test matrix

\section*{Syntax \(\quad\) W = wilkinson(n)}

Description \(\quad W=\) wilkinson(n) returns one of J. H. Wilkinson's eigenvalue test matrices. It is a symmetric, tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues.

\section*{Examples \\ wilkinson(7) is}
\begin{tabular}{lllllll}
3 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 3
\end{tabular}

The most frequently used case is wi l kinson(21). Its two largest eigenvalues are both about 10.746; they agree to 14 , but not to 15 , decimal places.

\section*{See Also \\ ei g \\ gallery \\ pascal}

Eigenvalues and eigenvectors
Test matrices
Pascal matrix

Purpose

\section*{Syntax}

Description

Read a Lotus123 WK 1 spreadsheet file into a matrix
```

M = wklread(filename)
M = wklread(fi|ename,r,c)
M = wklread(filename,r,c,range)

```

M = wk1read(filename) reads a Lotus123 WK1 spreadsheet file into the matrix \(M\).
\(M=w k 1 r e a d(f i l e n a m e, r, c)\) starts reading at the row-column cell offset specified by \((r, c) . r\) and \(c\) are zero based so that \(r=0, c=0\) specifies the first value in the file.
\(M=w k 1 r e a d(f i l e n a m e, r, c, r a n g e)\) reads therange of values specified by the parameter range, whererange can be:
- A four-element vector specifying the cell range in the format
[upper_left_row upper_left_col lower_right_row lower_right_col]

- A cell range specified as a string; for example, ' A1. . . C5' .
- A named range specified as a string; for example, ' Sal es' .

Purpose Write a matrix to a Lotus123 WK1 spreadsheet file
Syntax \(\quad\)\begin{tabular}{l}
wk1write(filename, \(M\)) \\
wk1write(filename, \(M, r, C)\)
\end{tabular}

Description

See Also
wk1read
Read a Lotus123 WK 1 spreadsheet file into a matrix
Purpose Exclusive or

\section*{Syntax \\ \(C=x o r(A, B)\)}

Description
\(C=x \operatorname{lor}(A, B)\) performs an exclusive OR operation on the corresponding elements of arrays \(A\) and \(B\). The resulting element \(C(i, j, \ldots)\) is logical true(1) if \(\mathrm{A}(\mathrm{i}, \mathrm{j}, \ldots\)) or \(\mathrm{B}(\mathrm{i}, \mathrm{j}, \ldots\)), but not both, is nonzero.
\begin{tabular}{lll}
A & B & C \\
zero & zero & 0 \\
zero & nonzero & 1 \\
nonzero & zero & 1 \\
nonzero & nonzero & 0
\end{tabular}

Examples
Given \(A=\left[\begin{array}{llll}0 & 0 & \text { pi eps }\end{array}\right]\) and \(B=\left[\begin{array}{llll}0 & -2.4 & 0 & 1\end{array}\right]\), then
```

C = xor(A,B)
C =
0}101

```

To see where either A or B has a nonzero element and the other matrix does not,
```

spy(xor(A,B))

```
\begin{tabular}{lll}
See Also & \(\&\) & Logical AND operator \\
| & Logical OR operator \\
all & Test to determine if all elements are nonzero \\
any & Test for any nonzeros \\
& find & Find indices and values of nonzero elements
\end{tabular}
Purpose Create an array of all zeros
```

Syntax B = zeros(n)
B = zeros(m,n)
B = zeros([m n])
B = zeros(d1,d2,d3...)
B = zeros([d1 d2 d3...])
B = zeros(size(A))

```

Description

Remarks

Examples \(\quad\) With \(n=1000\), the for loop
\[
\text { for } i=1: n, x(i)=i ; \text { end }
\]
takes about 1.2 seconds to execute on a Sun SPARC-1. If the loop is preceded by the statement \(x=\operatorname{zeros}(1, n)\); the computations require less than 0.2 seconds.

\section*{See Also}
eye
ones
rand
randn

Identity matrix
Create an array of all ones Uniformly distributed random numbers and arrays Normally distributed random numbers and arrays

\section*{zeros}

\section*{List of Commands}

\section*{A}

This appendix lists M ATLAB commands and functions alphabetically. For a list of commands grouped by functional category, see the Command Summary.
Function Names
Arithmetic Operators +-*/\
2-2
Relational Operators
\(<><=>=1 \sim \sim \ldots\).... 2-9
Logical Operators \& | ~ 2-11
Special Characters [] () \(\}=\)
... ; \%! 2-13
Colon 2-16
abs 2-18
acos, acosh 2-19
acot, acoth 2-20
acsc, acsch 2-21
addpath 2-23
airy 2-24
all 2-26
angle 2-28
ans 2-29
any 2-30
applescript 2-32
asec, asech 2-33
asin, asinh 2-34
assignin 2-35
atan, atanh 2-36
atan2 2-38
auread 2-39
auwrite 2-40
balance 2-41
base2dec 2-44
besselh 2-45
besseli, besselk 2-47
besselj, bessely 2-49
beta, betainc, betaln 2-52
bicg 2-54
bicgstab 2-61
bin2dec 2-65
bitand 2-66
bitcmp 2-67
bitget 2-68
bitmax 2-69
bitor 2-70
bitset 2-71
bitshift 2-72 csc, csch 2-134
bitxor 2-73 cumprod 2-135
blanks 2-74 cumsum 2-136
break 2-75 cumtrapz 2-137
builtin 2-76 date 2-138
calendar 2-79 datenum 2-139
cart2pol 2-80 datestr 2-140
cart2sph 2-82 datevec 2-142
case 2-143
2-83 dbclear
cat 2-145
cd 2-146
2-85 dbdown
cdf2rdf 2-147
2-86 dblquad
ceil 2-149
2-88 dbmex
cell 2-150
2-89 dbquit
cell2struct 2-151
2-90 dbstack
celldisp 2-152
2-91 dbstatus
cellpl ot 2-153
2-92 dbstep
cellstr 2-154
2-93 dbstop
cgs 2-157
2-94 dbtype
char 2-158
2-98 dbup.
chol 2-159
cholinc 2-161
2-102 ddeexec
class 2-162
2-107 ddeinit
clear 2-163
2-108 ddepoke
clock 2-165
2-110 ddereq
colmmd 2-167
2-111 ddeterm
colperm 2-168
2-114 ddeunadv
compan 2-169
2-115 deal
computer 2-172
2-116 deblank
cond 2-173
2-118 dec2base
condeig 2-174
2-119 dec2bin
condest 2-175
2-120 dec2hex
conj 2-176
2-121 deconv
conv 2-177
2-122 del2
conv2 2-180
2-123 delaunay
convhull 2-183
convn 2-184
2-126 det
corrcoef 2-185
2-127 diag
cos, cosh 2-186
2-128 diary
cot, coth 2-187
129 diff
cov 2-189
cplxpair 2-131 disp 2-190
cputime 2-132 dlmread 2-191
cross 2-133 dlmwrite 2-192
\begin{tabular}{|c|c|c|c|c|}
\hline dmperm & 2-193 & fliplr 2-252 & imread & 2-350 \\
\hline doc & 2-194 & flipud 2-253 & imwrite & 2-353 \\
\hline double & 2-195 & floor \(2-254\) & ind2sub & 2-357 \\
\hline dsearch & 2-196 & flops 2-255 & Inf & 2-358 \\
\hline echo & 2-197 & fmin 2-256 & inferiorto & 2-359 \\
\hline edit & 2-198 & fmins 2-258 & inline & 2-360 \\
\hline eig & 2-199 & fopen.......................... 2-262 & inmem & 2-362 \\
\hline eigs & 2-202 & for 2-265 & inpolygon & 2-363 \\
\hline ellipj & 2-205 & format 2-267 & input & 2-364 \\
\hline ellipke & 2-207 & fprintf 2-268 & inputname.. & 2-365 \\
\hline else & 2-209 & fread............................ 2-273 & int2str & 2-366 \\
\hline elseif & 2-210 & frewind 2-276 & interpl & 2-367 \\
\hline end & 2-212 & fscanf 2-277 & interp2 & 2-370 \\
\hline eomday & 2-213 & fseek 2 2-280 & interp3 & 2-374 \\
\hline eps & 2-214 & ftell 2-281 & interpft & 2-376 \\
\hline erf, erfc, erfcx, erfinv & 2-215 & full 2-282 & interpn & 2-377 \\
\hline error & 2-217 & fullfile 2-283 & intersect. & 2-379 \\
\hline errortrap & 2-218 & function 2-284 & inv & 2-380 \\
\hline etime & 2-219 & funm........................... 2-286 & invhilb & 2-383 \\
\hline eval & 2-220 & fwrite 2-288 & ipermute & 2-384 \\
\hline evalin & 2-222 & fzero 2-291 & is* & 2-385 \\
\hline exist & 2-223 & gallery 2-294 & isa & 2-389 \\
\hline exp & 2-225 & gamma, gammainc, gammaln & ismember & 2-390 \\
\hline expint. & 2-226 & 2-314 & & 2-391 \\
\hline expm & 2-227 & gcd 2-316 & keyboard & 2-392 \\
\hline eye .. & 2-229 & getfield........................ 2-318 & kron & 2-393 \\
\hline factor & 2-230 & global 2-319 & lasterr & 2-394 \\
\hline fclose & 2-231 & gmres 2-321 & lcm & 2-396 \\
\hline feof & 2-232 & gradient 2-325 & legendre. & 2-397 \\
\hline ferror & 2-233 & griddata 2-328 & length... & 2-399 \\
\hline feval & 2-234 & hadamard 2-331 & lin2mu & 2-400 \\
\hline fft & 2-235 & hankel 2-332 & linspace & 2-401 \\
\hline fft2 & 2-238 & help 2-333 & load...... & 2-402 \\
\hline fftn & 2-239 & hess 2-335 & log & 2-404 \\
\hline fftshift & 2-240 & hex2dec 2-337 & \(\log 2\) & 2-405 \\
\hline fgetl & 2-241 & hex2num 2-338 & log10 & 2-406 \\
\hline fgets & 2-242 & hilb 2-339 & logical & 2-407 \\
\hline fieldnames & 2-243 & i 2-340 & logm .. & 2-408 \\
\hline filter & 2-244 & if 2-341 & logspace. & 2-410 \\
\hline filter2 & 2-246 & ifft 2 2-343 & lookfor . & 2-411 \\
\hline find & 2-247 & ifft2 2-344 & lower & 2-412 \\
\hline findstr & 2-249 & ifftn 2-345 & Iscov & 2-413 \\
\hline fix & 2-250 & imag 2 2-346 & lu. & 2-414 \\
\hline flipdim & 2-251 & imfinfo 2-347 & luinc & 2-417 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline magic & 2-424 & path & 2-490 & rot90 & 2-559 \\
\hline mat2str & 2-425 & pause...................... & 2-492 & round & 2-560 \\
\hline matlabrc. & 2-426 & pcg & 2-493 & rref, rrefmovie & 2-561 \\
\hline matlabroot & 2-427 & pcode & 2-497 & rsf2csf & 2-563 \\
\hline max & 2-427 & perms & 2-498 & save & 2-565 \\
\hline mean & 2-428 & permute & 2-499 & schur & 2-568 \\
\hline median & 2-429 & pi & 2-500 & script & 2-570 \\
\hline menu & 2-430 & pinv & 2-501 & sec, sech & 2-571 \\
\hline meshgrid & 2-431 & pol2cart & 2-504 & setdiff & 2-573 \\
\hline methods & 2-432 & poly & 2-505 & setfield & 2-574 \\
\hline mexext & 2-432 & polyarea & 2-508 & setxor & 2-575 \\
\hline mfilename & 2-432 & polyder & 2-509 & shiftdim & 2-576 \\
\hline min & 2-433 & polyeig & 2-509 & sign & 2-577 \\
\hline mod & 2-434 & polyfit & 2-511 & sin, sinh & 2-578 \\
\hline more & 2-435 & polyval & 2-513 & size & 2-580 \\
\hline mu2lin & 2-435 & polyvalm & 2-515 & sort & 2-582 \\
\hline NaN & 2-435 & pow2 & 2-517 & sortrows & 2-583 \\
\hline nargchk & 2-436 & primes & 2-518 & sound & 2-584 \\
\hline nargin, nargout & 2-437 & prod & 2-519 & soundsc & 2-585 \\
\hline nchoosek & 2-438 & profile & 2-520 & spalloc & 2-586 \\
\hline ndgrid & 2-438 & qmr & 2-522 & sparse & 2-587 \\
\hline ndims & 2-439 & qr & 2-526 & spconvert & 2-589 \\
\hline nextpow2 & 2-440 & qrdelete. & 2-528 & spdiags & 2-591 \\
\hline nnls & 2-441 & qrinsert. & 2-530 & speye & 2-594 \\
\hline nnz & 2-443 & quad, quad8 & 2-531 & spfun & 2-595 \\
\hline nonzeros & 2-444 & quit & 2-533 & sph2cart & 2-596 \\
\hline norm & 2-445 & qz & 2-534 & spline ... & 2-597 \\
\hline normest & 2-447 & rand & 2-536 & spones & 2-599 \\
\hline now & 2-448 & randn. & 2-538 & spparms & 2-600 \\
\hline null & 2-449 & randper & 2-540 & sprand. & 2-603 \\
\hline num2cell & 2-450 & rank & 2-541 & sprandn & 2-604 \\
\hline num2str & 2-451 & rat, rats. & 2-542 & sprandsym & 2-605 \\
\hline nzmax & 2-452 & rcond & 2-545 & sprintf & 2-606 \\
\hline ode45, ode23, od & 15s, & real & 2-546 & spy & 2-610 \\
\hline ode23s & 2-453 & realmax. & 2-547 & sqrt & 2-611 \\
\hline odefile & 2-461 & realmin & 2-548 & sqrtm & 2-612 \\
\hline odeget & 2-466 & rem & 2-549 & squeeze & 2-615 \\
\hline odeset & 2-467 & repmat & 2-550 & sscanf & 2-616 \\
\hline ones & 2-473 & reshape & 2-551 & startup & 2-619 \\
\hline orth & 2-474 & residue & 2-552 & std & 2-620 \\
\hline otherwise & 2-475 & return & 2-554 & str2num & 2-622 \\
\hline pack. & 2-486 & rmfield & 2-555 & strcat & 2-623 \\
\hline partial path & 2-488 & rmpath & 2-556 & strcmp. & 2-624 \\
\hline pascal & 2-489 & roots & 2-557 & strings. & 2-626 \\
\hline
\end{tabular}
subsindex 2-637
subsref 2-638
subspace 2-639
sum. 2-640
superiorto 2-641
svd 2-642
svds 2-644
switch. 2-645
symmmd 2-646
symrcm 2-648
tan, tanh 2-652
tempdir 2-654
tempname. 2-655
tic, toc 2-656
toeplitz 2-657
trace 2-658
trapz 2-659
tril 2-661
triu 2-662
tsearch 2-663
type. 2-664
uint8 2-665
union 2-666
unique 2-667
unwrap 2-668
upper 2-669
varargin, varargout 2-670
version 2-672
voronoi 2-673
warning 2-675
wavread 2-676
wavwrite 2-677
web 2-678
week day 2-679
strjust 2-627 2-680
strmatch 2-628 whatsnew 2-681
2-629 which strncmp 2-682
strrep 2-630 while. 2-684
strtok 2-631 who, whos 2-685
struct 2-632 wilkinson. 2-687
struct2cell 2-633 wk1read 2-688
strvcat 2-634 wk1write 2-689
sub2ind 2-635 xor. 2-690
subsasgn
subsasgn 2-636 zeros 2-691

Function N ames
Symbols
!2-13-2-2\% 2-13
\& 2-11'2-2, 2-13() 2-13* 2-2
+2-2, 2-13 2-13
... 2-13/2-2: 2-16
\(<2-9\)
\(=2-13\)\(=2-9\)
\(>2-9\)
1 2-2
ヘ2-2\{2-13
| 2-11
~2-11\(\sim=2-9\)2-92-9

\section*{Numerics}
\(\pi\) (pi) 2-500, 2-543, 2-578
1-norm 2-445, 2-545
2-norm (estimate of) 2-447

\section*{A}
abs 2-18
absolute value 2-18
accuracy
of linear equation solution 2-118
of matrix inversion 2-118
rel ative floating-point 2-214
\(a \cos\) 2-19
\(a \cosh\) 2-19
\(a \cot\) 2-20
acoth 2-20
acsc 2-21
acsch 2-21
Adams-Bashforth-Moulton ODE solver 2-459
addition (arithmetic operator) 2-2
addpath 2-23
addressing selected array elements 2-16
adjacency graph 2-193
ai ry 2-24
aligning scattered data
multi-dimensional 2-439
two-dimensional 2-328
al। 2-26
allocation of storage (automatic) 2-691
and (M-file function equivalent for \&) 2-11
AND, logical
bit-wise 2-66
angle 2-28
ans 2-29
anti-diagonal 2-332
any 2-30
applescript 2-32
arccosecant 2-21
arccosine 2-19
arccotangent 2-20
arcsecant 2-33
arcsine 2-34
arctangent 2-36
(four-quadrant) 2-38
arguments, M-file
checking number of input 2-436
number of input 2-437
number of output 2-437
passing variable numbers of 2-670
arithmetic operations, matrix and array distinguished 2-2
arithmetic operators 2-2
array
addressing selected elements of 2-16
displaying 2-190
finding indices of 2-247
left division (arithmetic operator) 2-3
maximum elements of 2-427
maximum size of 2-116
mean elements of 2-428
median elements of 2-429
minimum elements of 2-433
multiplication (arithmetic operator) 2-2
of all ones 2-473
power (arithmetic operator) 2-3
product of elements 2-519
of random numbers 2-536, 2-538
removing first \(n\) singleton dimensions of 2-576
removing singleton dimensions of 2-615
reshaping 2-551
right division (arithmetic operator) 2-3
shifting dimensions of 2-576
size of 2-580
sorting elements of 2-582
structure 2-243, 2-318, 2-555, 2-574
sum of elements 2-640
swapping dimensions of 2-384, 2-499
transpose (arithmetic operator) 2-3
of all zeros 2-691
arrowhead matrix 2-114
ASCII data
converting sparse matrix after loading from
2-589
printable characters (list of) 2-98
reading from disk 2-402
saving to disk 2-565
ASCII delimited file
reading 2-191
writing matrix to 2-192
asech 2-33
asin 2-34
asinh 2-34
at an 2-36
at an 2 2-38
atanh 2-36
auread 2-39
auwrite 2-40
average of array elements 2-428
axis crossing See zero of a function
azimuth (spherical coordinates) 2-596

\section*{B}
badly conditioned 2-545
balance 2-41
bank format 2-267
base to decimal conversion 2-44
base two operations
conversion from decimal to binary 2-174
logarithm 2-405
next power of two 2-440
base2dec 2-44
Bessel functions 2-45, 2-49
first kind 2-47
modified 2-47
second kind 2-48
third kind 2-50
Bessel's equation
(defined) 2-45, 2-49
modified (defined) 2-47
besselh 2-45
besseli 2-47
besselj 2-49
besselk 2-47
bessely 2-49
beta 2-52
beta function
(defined) 2-52
incomplete (defined) 2-52
natural logarithm of 2-52
betainc 2-52
betaln 2-52
bicgstab 2-61
Big Endian formats 2-263
bin2dec 2-65
binary data
reading from disk 2-402
saving to disk 2-565
writing to file 2-288
binary to decimal conversion 2-65
bit and 2-66
bitcmp 2-67
bitor 2-70
bitset 2-71
bitshift 2-72
bit-wise operations
AND 2-66
OR 2-70
set bit 2-71
shift 2-72
test 2-68
XOR 2-73
bitxor 2-73
blanks
removing trailing 2-172
braces, curly (special characters) 2-13
brackets (special characters) 2-13
break 2-75
breakpoints
listing 2-152
setting 2-154
Buckminster Fuller 2-648
builtin 2-76
built-in functions 2-682

\section*{c}
cal endar 2-79
cart2pol 2-80
cart2sph 2-82
Cartesian coordinates 2-80, 2-82, 2-504, 2-596
case
in swit ch statement (defined) 2-645
lower to upper 2-669
upper to lower 2-412
case 2-83
cat 2-84
catching errors 2-220
Cayley-Hamilton theorem 2-516
cd 2-85
cdf 2rdf 2-86
ceil 2-88
cell array
conversion to from numeric array 2-450
creating 2-89
structure of, displaying 2-92
cell 2 struct 2-90
cellpl ot 2-92
cgs 2-94
changing working directory 2-85
char 2-98
characters (in format specification string)
conversion 2-270, 2-608
escape 2-269, 2-607
checkerboard pattern (example) 2-550
chol 2-100
Cholesky factorization 2-100
(as al gorithm for sol ving linear equations) 2-6
lower triangular factor 2-489
minimum degree ordering and (sparse) 2-646
preordering for 2-114
cholinc 2-102
class 2-107
class, object See object classes
clear 2-108
clearing
variables from workspace 2-108
clock 2-110
collapse dimensions, functions that 2-27
col mmd 2-111
colperm 2-114
combinations of \(n\) elements 2-438
combs 2-438
comma (special characters) 2-15
command window
controlling number of lines per page in 2-435
common elements See set operations, intersection
compan 2-115
companion matrix 2-115
complementary error function
(defined) 2-215
scaled (defined) 2-215
complete elliptic integral
(defined) 2-207
modulus of 2-205, 2-207
complex
exponential (defined) 2-225
logarithm 2-404, 2-406
modulus (magnitude) 2-18
numbers 2-340
numbers, sorting 2-582, 2-583
phase angle 2-28
unitary matrix 2-526
See also imaginary
complex conjugate 2-121
sorting pairs of 2-131
complex Schur form 2-568
computer 2-116
computers supported by MATLAB
numeric file formats of 2-263
numeric precision of 2-274, 2-288
concatenating arrays 2-84
cond 2-118
condeig 2-119
condest 2-120
condition number of matrix 2-41, 2-118, 2-545
estimated 2-120
conditional execution See flow control
conj 2-121
conjugate, complex 2-121
sorting pairs of 2-131
contents file (cont ent s.m) 2-333
continuation (. . . , special characters) 2-14
continued fraction expansion 2-542
conv 2-122
conv2 2-123
conversion
base to decimal 2-44
binary to decimal 2-65
Cartesian to cylindrical 2-80
Cartesian to polar 2-80
complex diagonal to real block diagonal 2-86
cylindrical to Cartesian 2-504
decimal number to base 2-169, 2-173
decimal to binary 2-174
decimal to hexadecimal 2-175
full to sparse 2-587
hexadecimal to decimal 2-337
hexadecimal to double precision 2-338
integer to string 2-366
lowercase to uppercase 2-669
matrix to string 2-425
numeric array to cell array 2-450
numeric array to logical array 2-407
numeric array to string 2-451
partial fraction expansion to poleresidue 2-552
polar to Cartesian 2-504
poleresidue to partial fraction expansion 2-552
real to complex Schur form 2-563
spherical to Cartesian 2-596
string matrix to cell array 2-93
string to matrix (formatted) 2-616
string to numeric array 2-622
uppercase to lowercase 2-412
vector to character string 2-98
conversion characters (in format specification string) 2-270, 2-608

\section*{convhul। 2-125}
convolution 2-122
inverse See deconvolution
two-dimensional 2-123, 2-246
coordinates
Cartesian 2-80, 2-82, 2-504, 2-596
cylindrical 2-80, 2-82, 2-504
polar 2-80, 2-82, 2-504
spherical 2-596
See also conversion
corrcoef 2-127
\(\cos\) 2-128
cosecant 2-134
hyperbolic 2-134
inverse 2-21
inverse hyperbol ic 2-21
cosh 2-128
cosine 2-128
hyperbolic 2-128
inverse 2-19
inverse hyperbol ic 2-19
\(\cot\) 2-129
cotangent 2-129
hyperbolic 2-129
inverse 2-20
inverse hyperbol ic 2-20
coth 2-129
cov 2-130
covariance
least squares solution and 2-413
cplxpair 2-131
cputime 2-132
creating online help for your own M-files 2-333
creating your own MATLAB functions 2-284
cross 2-133
cross product 2-133
csc 2-134
csch 2-134
ctranspose (\(M\)-file function equivalent for ') 2-4
cubic interpolation 2-367, 2-370
cubic spline interpolation 2-367
cumprod 2-135
cumsum 2-136
cumtrapz 2-137
cumulative
product 2-135
sum 2-136
curly braces (special characters) 2-13
curve fitting (polynomial) 2-511
customizing your workspace 2-426, 2-619

Cuthill-McK ee ordering, reverse 2-647, 2-648
cylindrical coordinates 2-80, 2-82, 2-504

\section*{D}
data, aligning scattered
multi-dimensional 2-439
two-dimensional 2-328
data, ASCII
converting sparse matrix after loading from
2-589
reading from disk 2-402
saving to disk 2-565
data, binary
dependence upon array size and type 2-566
reading from disk 2-402
saving to disk 2-565
writing to file 2-288
data, formatted
reading from file 2-277
writing to file 2-268
date 2-138
date and time functions 2-213
date string
format of 2-140
date vector 2-142
dat enum 2-139
datestr 2-140
datevec 2-142
dbclear 2-143
dbcont 2-145
dbdown 2-146
dbmex 2-149
dbquit 2-150
dbstack 2-151
dbstatus 2-152
dbstep 2-153
dbstop 2-154
dbtype 2-157
dbup 2-158
deblank 2-172
debugging
M-files 2-143-2-158, 2-392
quitting debug mode 2-150
dec 2base 2-169, 2-173
dec2bin 2-174
dec 2 hex 2-175
decimal number to base conversion 2-169, 2-173
decimal point (.)
(special characters) 2-14
to distinguish matrix and array operations 2-2
decomposition
Dulmage-Mendel sohn 2-193
"economy-size" 2-526, 2-642
orthogonal-triangular (QR) 2-413, 2-526
Schur 2-568
singular value 2-541, 2-642
deconv 2-176
deconvolution 2-176
default tolerance 2-214
definite integral 2-531
del operator 2-177
del 2 2-177
delaunay 2-180
del et e 2-183
deleting
files 2-183
workspace variables 2-108
delimiter
in ASCII files 2-191, 2-192
density
of sparse matrix 2-443
dependence, linear 2-639
derivative
approximate 2-187
polynomial 2-509
det 2-184
Detect 2-385
detecting
al phabetic characters 2-386
empty arrays 2-385
equal arrays 2-385
finite numbers 2-385
global variables 2-386
infinite elements 2-386
logical arrays 2-386
members of a set 2-390
Na Ns 2-386
objects of a given class 2-389
positive, negative, and zero array elements
2-577
prime numbers 2-387
real numbers 2-387
determinant of a matrix 2-184
diag 2-185
diagonal 2-185
anti- 2-332
k -th (illustration) 2-661
main 2-185
sparse 2-591
diary 2-186
diff 2-187
differences
between adjacent array elements 2-187
between sets 2-573
differential equation solvers 2-453
adjusting parameters of 2-467
extracting properties of 2-466
digits
controlling number of displayed 2-267
dimension statement (lack of in MATLAB) 2-691
dimensions
functions that collapse 2-27
size of 2-580
Diophantine equations 2-316
di r 2-189
direct term of a partial fraction expansion 2-552
directory
changing working 2-85
listing contents of 2-189, 2-680
root 2-427
temporary system 2-654
See also search path
discontinuities, eliminating (in arrays of phase angles) 2-668
di sp 2-190
distribution
Gaussian 2-215
division
array, left (arithmetic operator) 2-3
array, right (arithmetic operator) 2-3
by zero 2-358
matrix, left (arithmetic operator) 2-3
matrix, right (arithmetic operator) 2-2
modulo 2-434
of polynomials 2-176
remainder after 2-549
divisor
greatest common 2-316
dl mread 2-191
dl mwite 2-192
dmperm 2-193
doc 2-194
documentation, hypertext-based
loading 2-194
dot product 2-133
double 2-195
dsearch 2-196
dual vector 2-441
Dulmage-Mendel sohn decomposition 2-193

\section*{E}
echo 2-197
edge finding, Sobel technique 2-123
ei g 2-199
eigensystem
transforming 2-86
eigenvalue
accuracy of 2-41, 2-199
complex 2-86
matrix logarithm and 2-408
modern approach to computation of 2-506
of companion matrix 2-115
poorly conditioned 2-41
problem 2-199, 2-510
problem, generalized 2-200, 2-510
problem, polynomial 2-510
repeated 2-200, 2-286
Wilkinson test matrix and 2-687
eigenvector
left 2-199
matrix, generalized 2-534
right 2-199
eigs 2-202
elevation (spherical coordinates) 2-596
ellipj 2-205
ellipke 2-207
elliptic functions, J acobian
(defined) 2-205
elliptic integral
complete (defined) 2-207
modulus of 2-205, 2-207
el se 2-209
el seif 2-210
end 2-212
end of line, indicating 2-15
end-of-file indicator 2-232
eomday 2-213
eps 2-214
equal sign (special characters) 2-14
equations, linear
accuracy of solution 2-118
erf 2-215
erfc 2-215
erfcx 2-215
error
catching 2-220, 2-394
in file l/O 2-233
roundoff See roundoff error
error 2-217
error function
(defined) 2-215
complementary 2-215
scal ed complementary 2-215
error message
displaying 2-217
Index into matrix is negative or zero
2-407
Out of memory 2-486
retrieving last generated 2-394
escape characters (in format specification string) 2-269, 2-607
et i me 2-219
eval 2-220
evaluating strings 2-220
exclamation point (special characters) 2-15
executing statements repeatedly 2-265, 2-684
execution
conditional See flow control
improving speed of by setting aside storage 2-691
pausing M-file 2-492
resuming from breakpoint 2-145
exist 2-223
exp 2-225
expint 2-226
expm 2-227
exponential 2-225
complex (defined) 2-225
integral 2-226
matrix 2-227
exponentiation
array (arithmetic operator) 2-3
matrix (arithmetic operator) 2-3
expression, MATLAB 2-341
extension, filename
m 2-284, 2-664
mat 2-402, 2-565, 2-566
eye 2-229

\section*{F}
factor 2-230
factorization
LU 2-414
QZ2-510, 2-534
Seealso decomposition
factorization, Cholesky 2-100
(as al gorithm for sol ving linear equations) 2-6
minimum degree ordering and (sparse) 2-646
preordering for 2-114
factors, prime 2-230
folose 2-231
f e of 2-232
ferror 2-233
feval 2-234
fft 2-235
FFT See Fourier transform

\section*{fft \(2 \mathbf{2 - 2 3 8}\)}
fftshift 2-240
fget| 2-241
fots 2-242
fid Seefile identifier
field names of a structure, obtaining 2-243
fields, noncontiguous
inserting data into 2-288
file
closing 2-231
deleting 2-183
finding position within 2-281
listing contents of 2-664
listing names of 2-189
MATLAB format 2-402
opening 2-262
reading ASCII delimited 2-191
reading formatted data from 2-277
returning next line of (with carriage returns)
2-241
returning next line of (without carriage re-
turns) 2-242
rewinding to beginning of 2-276
setting position within 2-280
status of 2-223
testing for end of 2-232
text versus binary, opening 2-263
writing binary data to 2-288
writing formatted data to 2-268
writing matrix as ASCII delimited 2-192
file identifier (fid) 2-232
file position indicator
finding 2-281
setting 2-280
setting to start of file 2-276
filename extension
. m 2-284, 2-664
. mat 2-402, 2-565, 2-566
filter 2-244
two-dimensional 2-123, 2-246
filter 2-244
filter 2-246
find 2-247
finding
file position indicator 2-281
indices of arrays 2-247
sign of array elements 2-577
zero of a function 2-291
Seealso detecting
findstr 2-249
finite numbers
detecting 2-385
FIR filter See filter
\(\mathrm{fi} \times \mathbf{2 - 2 5 0}\)
fixed-point
output format 2-267
flint Se floating-point, integer
flipdim 2-251
fliplr 2-252
flipud 2-253
floating-point
integer 2-67, 2-71
integer, maximum 2-69
numbers, interval between 2-214
operations, count of 2-255
output format 2-267
floating-point arithmetic, IEEE
largest postive number 2-547
relative accuracy of 2-214
smallest postive number 2-548
floor 2-254
flops 2-255
flow control
break 2-75
case 2-83
else 2-209
elseif 2-210
end 2-212
error 2-217
for 2-265
if 2-341
keyboard 2-392
otherwise 2-475
return 2-554
switch 2-645
while 2-684
f min 2-256
f mins 2-258
F-norm 2-445
fopen 2-262
for 2-265
format
for saving ASCII data 2-565
output display 2-267
for mat 2-267
format specification string 2-268, 2-606
matching file data to 2-277, 2-617
formatted data
reading from file 2-277
writing to file 2-268
Fourier transform
algorithm, optimal performance of 2-236, 2-343, 2-344, 2-440
convolution theorem and 2-122
discrete, one-dimensional 2-235
discrete, two-dimensional 2-238
fast 2-235
as method of interpolation 2-376
inverse, one-dimensional 2-343
inverse, two-dimensional 2-344
shifting the DC component of 2-240

\section*{fprintf 2-268}
fraction, continued 2-542
fragmented memory 2-486
fread 2-273
frequency vector \(2-410\)
frewind 2-276
fscanf 2-277
f seek 2-280
ftel| 2-281
ful| 2-282
function
locating 2-411, 2-682
minimizing (several variables) 2-258
minimizing (single variable) 2-256
function 2-284

\section*{functions}
that accept function name strings 2-234
that work down the first non-singleton dimension 2-576
f unm 2-286
fwrite 2-288
fzero 2-291

\section*{G}
gallery 2-294
g a mma 2-314
gamma function
(defined) 2-314
incomplete 2-314
logarithm of 2-314
gammainc 2-314
gammal n 2-314
Gaussian distribution function 2-215
Gaussian elimination
(as algorithm for solving linear equations) 2-7, 2-380

Gauss J ordan elimination with partial pivoting 2-561
LU factorization and 2-414
gcd 2-316
generalized eigenvalue problem 2-200, 2-510
generating a sequence of matrix names (M1
through M12) 2-220
geodesic dome 2-648
getfield 2-318
Givens rotations 2-529, 2-530
global 2-319
global variable
clearing 2-108
defining 2-319
gmres 2-321
gradient 2-325
gradient, numerical 2-325
graph
adjacency 2-193
graphics objects
deleting 2-183
greatest common divisor 2-316
grid
aligning data to a 2-328
grid arrays
for volumetric plots 2-431
multi-dimensional 2-439
griddata 2-328

\section*{H}

H1 line 2-334, 2-411
hada mard 2-331
Hadamard matrix 2-331
subspaces of 2-639
Hager's method 2-120
hankel 2-332

Hankel functions, relationship to Bessel of 2-50
Hankel matrix 2-332
help
keyword search 2-411
online 2-333
help 2-333
Hermite transformations, elementary 2-316
hess 2-335
Hessenberg form of a matrix 2-335
hex2dec 2-337
hex2 num 2-338
hexadecimal format 2-267
hilb 2-339
Hilbert matrix 2-339
inverse 2-383
horzcat (M-filefunction equivalent for [,]) 2-15
Householder reflections (as algorithm for solving linear equations) 2-7
hyperbolic
cosecant 2-134
cosecant, inverse 2-21
cosine 2-128
cosine, inverse 2-19
cotangent 2-129
cotangent, inverse 2-20
secant 2-33, 2-571
secant, inverse 2-33
sine 2-34, 2-578
sine, inverse 2-34
tangent 2-36, 2-652
tangent, inverse 2-36
hyperplanes, angle between 2-639
hypertext-based documentation
loading 2-194

I
i 2-340
identity matrix 2-229
sparse 2-594
IEEE floating-point arithmetic largest positive number 2-547
relative accuracy of 2-214
smallest positive number 2-548
if 2-341
ifft 2-343
ifft 2 2-344
IIR filter See filter
i mag 2-346
imaginary
part of complex number 2-346
parts of inverse FFT 2-343, 2-344
unit (sqrt (-1)) 2-340, 2-391
See also complex
i mf info 2-347
i mread 2-350
i mwrite 2-353
incomplete
beta function (defined) 2-52
gamma function (defined) 2-314
ind2sub 2-357
Index into matrix is negative or zero (error message) 2-407
indexing
logical 2-407
indicator
end-of-file 2-232
file position 2-276, 2-280, 2-281
indices, array
finding 2-247
of sorted elements 2-582
I nf 2-358
infinity 2-358, 2-386
norm 2-445
inheritance, of objects 2-107
inpolygon 2-363
input
checking number of M -fil e arguments 2-436
name of array passed as 2-365
number of M -file arguments 2-437
prompting users for 2-364, 2-430
i nput 2-364
installation, root directory of 2-427
int 2stry 2-366
integer
floating-point 2-67, 2-71
floating-point, maximum 2-69
integrable singularities 2-532
integration
quadrature 2-531
interpl 2-367
interp2 2-370
interp3 2-374
interpft 2-376
interpn 2-377
interpolation
one-dimensional 2-367
two-dimensional 2-370
three-dimensional 2-374
multidimensional 2-377
cubic method 2-328, 2-367, 2-370, 2-374, 2-377
cubic spline method 2-367, 2-597
FFT method 2-376
linear method 2-367, 2-370
nearest neighbor method 2-328, 2-367, 2-370, 2-374, 2-377
trilinear method 2-328, 2-374, 2-377
interpreter, MATLAB
search algorithm of 2-285
intersect 2-379
i nv 2-380
inverse
cosecant 2-21
cosine 2-19
cotangent 2-20
Fourier transform 2-343, 2-344
four-quadrant tangent 2-38
Hilbert matrix 2-383
hyperbolic cosecant 2-21
hyperbolic cosine 2-19
hyperbolic cotangent 2-20
hyperbolic secant 2-33
hyperbolic sine 2-34
hyperbolic tangent 2-36
of a matrix 2-380
secant 2-33
sine 2-34
tangent 2-36
inversion, matrix
accuracy of 2-118
invhilb 2-383
invol utary matrix 2-489
i permute 2-384
i s * 2-385
i sa 2-389
iscell 2-385
iscellstr 2-385
i schar 2-385
i sempty 2-385
isequal 2-385
isfield 2-385
isfinite 2-385
isglobal 2-386
ishandle 2-386
i shold 2-386
is íeee 2-386
is inf 2-386
```

i sletter 2-386
islogical 2-386
i s member 2-390
i snan 2-386
i snumeric 2-386
i sobject 2-386
i sppc 2-387
i sprime 2-387
i sreal 2-387
i sspace 2-387
i ssparse 2-387
i sstruct 2-387
i sstudent 2-387
i sunix 2-387
i svms 2-387

```

\section*{J}

2-391
J acobi rotations 2-605
J acobian elliptic functions
(defined) 2-205
joining arrays See concatenating arrays

\section*{K}

K >> prompt 2-392
keyboard 2-392
keyboard mode 2-392
terminating 2-554
kron 2-393
Kronecker tensor product 2-393

\section*{L}
labeling
matrix col umns 2-190
plots (with numeric values) 2-451
Laplacian 2-177
Iargest array elements 2-427
| asterr 2-394
I cm 2-396
I divide (M-file function equivalent for . \) 2-4
least common multiple 2-396
least squares
polynomial curve fitting 2-511
problem 2-413
problem, nonnegative 2-441
problem, overdetermined 2-501
I egendre 2-397
Legendre functions
(defined) 2-397
Schmidt semi-normalized 2-397
I ength 2-399
line numbers
M-file, listing 2-157
linear dependence (of data) 2-639
linear equation systems
accuracy of solution 2-118
solving overdetermined 2-527-2-528
linear equation systems, methods for solving
Chol esky factorization 2-6
Gaussian elimination 2-7
Householder reflections 2-7
least squares 2-441
matrix inversion (inaccuracy of) 2-380
linear interpolation 2-367, 2-370
linearly spaced vectors, creating 2-401
lines per page, controlling in command window 2-435
I inspace 2-401

\section*{listing}
breakpoints 2-152
directory contents 2-189
file contents 2-664
line numbers 2-157
M-files, MAT-files, and MEX-files 2-680
workspace variables 2-685
Little Endian formats 2-263
load 2-402
loading
WK 1 spreadsheet files 2-688
local variables 2-284, 2-319
locating MATLAB functions 2-411, 2-682
\(\log\) 2-404
\(\log\) of MATLAB session, creating 2-186
log10 [logolo] 2-406
log2 2-405
logarithm
base ten 2-406
base two 2-405
complex 2-404, 2-406
matrix (natural) 2-408
natural 2-404
of beta function (natural) 2-52
of gamma function (natural) 2-314
logarithmically spaced vectors, creating 2-410
logical 2-407
logical array
converting numeric array to 2-407
detecting 2-386
logical indexing 2-407
logical operations
AND, bit-wise 2-66
OR, bit-wise 2-70
XOR 2-690
XOR, bit-wise 2-73
logical operators 2-11
logical tests
all 2-26
any 2-30

See also detecting
10 gm 2-408
logspace 2-410
lookfor 2-411
Lotus123 WK 1 spreadsheet file reading data from a 2-688
writing a matrix to 2-689
I ower 2-412
lower triangular matrix 2-661
lowercase to uppercase 2-669
| scov 2-413
| u 2-414
LU factorization 2-414
storage requirements of (sparse) 2-452
I uinc 2-417

\section*{M}
machine epsilon 2-684
magic 2-424
magic squares 2-424
mat2str 2-425
MAT-file 2-402, 2-403, 2-566
converting sparse matrix after loading from
2-589
listing 2-680
MATLAB format files 2-402
MATLAB interpreter
search al gorithm of 2-285
MATLAB search path
adding directories to 2-23
removing directories from 2-556
MATLAB startup file 2-426, 2-619
MATLAB version number 2-672
matlab. mat 2-402, 2-565
matlabrc 2-426
matlabroot 2-427
matrix
addressing selected rows and columns of 2-16 arrowhead 2-114
companion 2-115
complex unitary 2-526
condition number of 2-41, 2-118, 2-545
converting to formatted data file 2-268
converting to vector 2-16
decomposition 2-526
defective (defined) 2-200
determinant of 2-184
diagonal of 2-185
Dulmage-Mendelsohn decomposition of 2-193
estimated condition number of 2-120
evaluating functions of 2-286
exponential 2-227
flipping left-right 2-252
flipping up-down 2-253
Hadamard 2-331, 2-639
Hankel 2-332
Hermitian Toeplitz 2-657
Hessenberg form of 2-335
Hilbert 2-339
identity 2-229
inverse 2-380
inverse Hilbert 2-383
inversion, accuracy of 2-118
involutary 2-489
left division (arithmetic operator) 2-3
lower triangular 2-661
magic squares 2-424, 2-640
maximum size of 2-116
modal 2-199
multiplication (defined) 2-2
orthonormal 2-526
Pascal 2-489, 2-515
permutation 2-414, 2-526
poorly conditioned 2-339
power (arithmetic operator) 2-3
pseudoi nverse 2-501
reduced row echel on form of 2-561
replicating 2-550
right division (arithmetic operator) 2-2
Rosser 2-309
rotating \(90^{\circ}\) 2-559
Schur form of 2-563, 2-568
singularity, test for 2-184
sorting rows of 2-583
sparse See sparse matrix
specialized 2-294
square root of 2-612
storing as binary data 2-288
subspaces of 2-639
test 2-294
Toeplitz 2-657
trace of 2-185, 2-658
transpose (arithmetic operator) 2-3
transposing 2-14
unimodular 2-316
unitary 2-642
upper triangular 2-662
Vandermonde 2-513
Wilkinson 2-592, 2-687
writing formatted data to 2-277
See also array
matrix functions
evaluating 2-286
matrix names, (M1 through M12) generating a sequence of 2-220
matrix power See matrix, exponential
max 2-427
maximum array size 2-116
mean 2-428
median 2-429
median value of array el ements 2-429
memory, consolidating information to minimize use of 2-486
menu 2-430
menu (of user input choices) 2-430
meshgrid 2-431
message
error See error message
warning See warning message
methods
inheritance of 2-107
MEX-file
clearing from memory 2-108
listing 2-680
M-file
debugging 2-143-2-158, 2-392
displaying during execution 2-197
function 2-284
function file, echoing 2-197
listing 2-680
naming conventions 2-284
pausing execution of 2-492
programming 2-284
script 2-284
script file, echoing 2-197
mi n 2-433
minimizing, function
of one variable 2-256
of several variables 2-258
minimum degree ordering 2-646
mi nus (M-file function equivalent for -) 2-4
ml divide (M-file function equivalent for \(\\)) 2-4
mod 2-434
modal matrix 2-199
modulo arithmetic 2-434
modulus, complex 2-18
M oore-Penrose pseudoinverse 2-501
more 2-435
mpower (M-file function equivalent for \({ }^{\wedge}\)) 2-4
mrdivide (M-file function equivalent for /) 2-4
mt i mes (M-file function equivalent for *) 2-4
multidimensional arrays
concatenating 2-84
interpolation of 2-377
longest dimension of 2-399
number of dimensions of 2-439
rearranging dimensions of 2-384, 2-499
removing singleton dimensions of 2-615
reshaping 2-551
size of 2-580
sorting elements of 2-582
See also array
multiple
least common 2-396
multiplication
array (arithmetic operator) 2-2
matrix (defined) 2-2
of polynomials 2-122
multistep ODE solver 2-459

\section*{N}
naming conventions
M-file 2-284
NaN 2-435
NaN (Not-a-Number) 2-386, 2-436
returned by rem 2-549
nargchk 2-436
nargin 2-437
nargout 2-437
ndgrid 2-438
ndi ms 2-439
nearest neighbor interpolation 2-328, 2-367, 2-370
Nelder-M ead simplex search 2-260
next pow2 2-440
nnls 2-441
nnz 2-443
noncontiguous fields
inserting data into 2-288
nonzero entries
number of in sparse matrix 2-587
nonzero entries (in sparse matrix)
allocated storage for 2-452
number of 2-443
replacing with ones 2-599
vector of 2-444
nonzeros 2-444
norm
1-norm 2-445, 2-545
2-norm (estimate of) 2-447
F-norm 2-445
infinity 2-445
matrix 2-445
pseudoinverse and 2-501-2-503
vector 2-445
norm 2-445
normest 2-447
not (M-file function equivalent for ~) 2-11
now 2-448
nul| 2-449
null space 2-449
num2cel| 2-450
num2str 2-451
number
of array dimensions 2-439
of digits displayed 2-267
numbers
complex 2-28, 2-340
finite 2-385
imaginary 2-346
largest positive 2-547
minus infinity 2-386
NaN 2-386, 2-436
plus infinity 2-358, 2-386
prime2-387, 2-518
random 2-536, 2-538
real 2-387, 2-546
smallest positive 2-548
numeric file formats See computers supported by MATLAB
numeric precision (of hardware) 2-274, 2-288
numerical differentiation formula ODE solvers 2-459
nz max 2-452

\section*{0}
object
determining class of 2-389
inheritance 2-107
object classes, list of predefined 2-107, 2-389
ODE See differential equation solvers
ode 45 and other solvers 2-453
odefile 2-461
odeget 2-466
odeset 2-467
ones 2-473
one-step ODE solver 2-459
online
documentation 2-194
help 2-333
keyword search 2-411
operating system command, issuing 2-15
operators
arithmetic 2-2
logical 2-11
precedence of 2-12
relational 2-9, 2-407
special characters 2-13
Optimization Tool box 2-256, 2-259
logical OR
bit-wise 2-70
or (M-file function equivalent for |) 2-11
ordering
minimum degree 2-646
reverse Cuthill-McK ee 2-647, 2-648

\section*{orth 2-474}
orthogonal-triangular decomposition 2-413, 2-526
orthonormal matrix 2-526
otherwise 2-475
Out of memory (error message) 2-486
output
controlling format of 2-267
controlling paging of 2-334, 2-435
number of M -file arguments 2-437
overdetermined equation systems, solving 2-527-2-528
overflow 2-358

\section*{P}
pack 2-486
Padé approximation (of matrix exponential) 2-227
paging
controlling output in command window 2-334, 2-435
parentheses (special characters) 2-14
Parlett's method (of evaluating matrix functions) 2-286
partial fraction expansion 2-552
partial path 2-488
pascal 2-489
Pascal matrix 2-489, 2-515
path 2-490
pathname
of functions or files 2-682
partial 2-488
See also search path
pause 2-492
pausing M-file execution 2-492
pcg 2-493
pcode 2-497
percent sign (special characters) 2-15
period (.), to distinguish matrix and array operations 2-2
period (special characters) 2-14
perms 2-498
permutation
of array dimensions 2-499
matrix 2-414, 2-526
random 2-540
permutations of \(n\) elements 2-498
permute 2-499
phase, complex 2-28
correcting angles 2-668
pi 2-500
pi \((\pi) 2-500,2-543,2-578\)
pinv 2-501
platform See computers
plot, volumetric
generating grid arrays for 2-431
plotting See visualizing
pl us (M-file function equivalent for +) 2-4
pol2cart 2-504
polar coordinates 2-80, 2-82, 2-504
poles of transfer function 2-552
poly 2-505
polyarea 2-508
polyder 2-509
polyeig 2-509
polyfit 2-511
polygon
area of 2-508
detecting points inside 2-363
polynomial
characteristic 2-505-2-506, 2-557
coefficients (transfer function) 2-552
curve fitting with 2-511
derivative of 2-509
division 2-176
eigenvalue problem 2-510
evaluation 2-513
evaluation (matrix sense) 2-515
multiplication 2-122
polyval 2-513
polyvalm 2-515
poorly conditioned
eigenvalues 2-41
matrix 2-339
pow2 2-517
power
matrix See matrix exponential
of two, next 2-440
power (M-file function equivalent for . \({ }^{\wedge}\)) 2-4
precedence of operators 2-12
prime factors 2-230
dependence of Fourier transform on 2-238
prime numbers 2-387, 2-518
primes 2-518
printing, suppressing 2-15
prod 2-519
product
cumulative 2-135
Kronecker tensor 2-393
of array elements 2-519
of vectors (cross) 2-133
scalar (dot) 2-133
profile 2-520
K >> prompt 2-392
prompting users for input 2-364, 2-430
pseudoinverse 2-501

\section*{Q}
q mr 2-522
qr 2-526
QR decomposition 2-413, 2-526
del eting a column from 2-528
inserting a column into 2-530
qrdelete 2-528
qrinsert 2-530
quad 2-531
quad8 2-531
quadrature 2-531
quit 2-533
quitting MATLAB 2-533
quotation mark, inserting in a string 2-272
z 2-534
QZ factorization 2-510, 2-534

\section*{R}
\(r\) and 2-536, 2-641
r andn 2-359, 2-538
random
numbers 2-536, 2-538
permutation 2-540
sparse matrix 2-603, 2-604
symmetric sparse matrix 2-605
randperm 2-540
range space \(2-474\)
rank 2-541
rank of a matrix 2-541
\(r\) at 2-542
rational fraction approximation 2-542
rats 2-542

\section*{rcond 2-545}
rdivide (M-filefunction equivalent for . /) 2-4
reading
ASCII delimited file2-191
formatted data from file 2-277
WK 1 spreadsheet files 2-688
README file 2-681
real 2-546
real numbers 2-387, 2-546
real Schur form 2-568
real max 2-547
real mi n 2-548
rearranging arrays
converting to vector 2-16
removing first \(n\) singleton dimensions 2-576
removing singleton dimensions 2-615
reshaping 2-551
shifting dimensions 2-576
swapping dimensions 2-384, 2-499
rearranging matrices
converting to vector 2-16
flipping left-right 2-252
flipping up-down 2-253
rotating \(90^{\circ}\) 2-559
transposing 2-14
reduced row echelon form 2-561
regularly spaced vectors, creating 2-16, 2-401
relational operators 2-9, 2-407
relative accuracy
floating-point 2-214
rem 2-549
remainder after division 2-549
repeatedly executing statements 2-265, 2-684
replicating a matrix 2-550
repmat 2-550
reshape 2-551
residue 2-552
residues of transfer function 2-552
resume execution (from breakpoint) 2-145
return 2-554
reverse Cuthill-McK ee ordering 2-647, 2-648
rmf i eld 2-555
rmpath 2-556
RMS See root-mean-square
root directory 2-427
root-mean-square
of vector 2-445
roots 2-557
roots of a polynomial 2-505-2-506, 2-557
Rosenbrock banana function 2-259
Rosenbrock ODE solver 2-459
Rosser matrix 2-309
rot 90 2-559
rotations
Givens 2-529, 2-530
J acobi 2-605
round
to nearest integer 2-560
towards infinity 2-88
towards minus infinity 2-254
towards zero 2-250
round 2-560
roundoff error
characteristic polynomial and 2-506
convolution theorem and 2-122
effect on eigenvalues 2-41
evaluating matrix functions 2-286
in inverse Hilbert matrix 2-383
partial fraction expansion and 2-553
polynomial roots and 2-557
sparse matrix conversion and 2-590
rref 2-561
rrefmovie 2-561
rsf2csf 2-563

Runge-Kutta ODE solvers 2-459

\section*{S}
s ave 2-565
saving
ASCII data 2-565
WK 1 spreadsheet files 2-689
workspace variables 2-565
scalar product (of vectors) 2-133
scaled complementary error function (defined) 2-215
scattered data, aligning
multi-dimensional 2-439
two-dimensional 2-328
Schmidt semi-normalized Legendre functions 2-397
schur 2-568
Schur decomposition 2-568
matrix functions and 2-286
Schur form of matrix 2-563, 2-568
script 2-570
scrolling, screen See paging
search path
adding directories to 2-23
MATLAB's 2-490, 2-664
removing directories from 2-556
search, string 2-249
sec 2-571
secant 2-571
secant, inverse 2-33
secant, inverse hyperbolic 2-33
sech 2-571
semicolon (special characters) 2-15
sequence of matrix names (M1 through M12)
generating 2-220
session
saving log of 2-186
set operations
difference 2-573
exclusive or 2-575
intersection 2-379
membership 2-390
union 2-666
unique 2-667
setdiff 2-573
setfield 2-574
setxor 2-575
shiftdim 2-576
sign 2-577
Signal Processing Tool box 2-343, 2-344
signum function 2-577
Simpson's rule, adaptive recursive 2-532
sin 2-578
sine 2-578
sine, inverse 2-34
sine, inverse hyperbolic 2-34
single quote (special characters) 2-14
singular value
decomposition 2-541, 2-642
largest 2-445
rank and 2-541
singularities
integrable 2-532
soft 2-532
sinh 2-578
size 2-580
size of array dimensions 2-580
size vector 2-551, 2-580
skipping bytes (during file I/O) 2-288
smallest array elements 2-433
soccer ball (example) 2-648
soft singularities 2-532
sort 2-582
sorting
array el ements 2-582
complex conjugate pairs 2-131
matrix rows 2-583
sortrows 2-583
sound
converting vector into 2-584, 2-585
sound 2-584, 2-585
spalloc 2-586
sparse 2-587
sparse matrix
allocating space for 2-586
applying function only to nonzero elements of 2-595
density of 2-443
diagonal 2-591
finding indices of nonzero elements of 2-247
identity 2-594
minimum degree ordering of 2-111
number of nonzero elements in 2-443, 2-587
permuting columns of 2-114
random 2-603, 2-604
random symmetric 2-605
replacing nonzero elements of with ones 2-599
results of mixed operations on 2-587
vector of nonzero elements 2-444
visualizing sparsity pattern of 2-610
sparse storage
criterion for using 2-282
spconvert 2-589
spdiags 2-591
speye 2-594
spfun 2-595
sph2cart 2-596
spherical coordinates 2-596
spline 2-597
spline interpolation (cubic) 2-367

Spline Toolbox 2-369
spones 2-599
spparms 2-600
sprand 2-603
sprandn 2-604
sprandsym 2-605
spreadsheet
loading WK 1 files 2-688
reading ASCII delimited file into a matrix 2-191
writing matrix as ASCII delimited file 2-192
writing WK1 files 2-689
sprintf 2-606
spy 2-610
squt 2-611
sqrtm 2-612
square root
of a matrix 2-612
of array elements 2-611
squeeze 2-615
sscanf 2-616
standard deviation 2-620
startup 2-619
startup file 2-426, 2-619
status
of file or variable 2-223
std 2-620
stopwatch timer 2-656
storage
allocated for nonzero entries (sparse) 2-452
sparse 2-587
str2cel| 2-93
str 2 num 2-622
strcat 2-623
strcmp 2-624
string
comparing one to another 2-624
comparing the first n characters of two 2-629
converting from vector to 2-98
converting matrix into 2-425, 2-451
converting to lowercase 2-412
converting to matrix (formatted) 2-616
converting to numeric array 2-622
converting to uppercase 2-669
dictionary sort of 2-583
evaluating as expression 2-220
finding first token in 2-631
inserting a quotation mark in 2-272
searching and replacing 2-630
searching for 2-249
string matrix to cell array conversion 2-93
strings 2-626
strjust 2-627
strmatch 2-628
strncmp 2-629
striep 2-630
strtok 2-631
struct2cel। 2-633
structure array
field names of 2-243
getting contents of field of 2-318
remove field from 2-555
setting contents of a field of 2-574
strvcat 2-634
sub2i nd 2-635
subfunction 2-284
subsindex 2-637
subspace 2-639
subsref 2-638
subsref (\(M\)-file function equivalent for A(i, j, k. . .)) 2-15
subtraction (arithmetic operator) 2-2
sum
cumulative 2-136
of array elements 2-640
s um 2-640
s vd 2-642
svds 2-644
swit ch 2-645
s y mmmd 2-646
s y mr cm 2-648
syntaxes
of M-file functions, defining 2-284

\section*{T}
table lookup See interpol ation
tab-separated ASCII format 2-565
\(\tan\) 2-652
tangent 2-652
hyperbolic 2-652
tangent (four-quadrant), inverse 2-38
tangent, inverse 2-36
tangent, inverse hyperbol ic 2-36
\(\tanh\) 2-652
Taylor series (matrix exponential approximation)
2-227
tempdir 2-654
tempname 2-655
temporary
file 2-655
system directory 2-654
tensor, K ronecker product 2-393
test matrices 2-294
test, logical See logical tests and detecting
t i c 2-656
tiling (copies of a matrix) 2-550
time
CPU 2-132
elapsed (stopwatch timer) 2-656
required to execute commands 2-219
time and date functions 2-213
ti mes (M-file function equivalent for . *) 2-4
toc 2-656
toeplitz 2-657
Toeplitz matrix 2-657
token Seealso string 2-631
tolerance, default 2-214
Tool box
Optimization 2-256, 2-259
Signal Processing 2-343, 2-344
Spline 2-369
tool box
undocumented functionality in 2-681
trace 2-658
trace of a matrix 2-185, 2-658
trailing blanks
removing 2-172
transform, Fourier
discrete, one-dimensional 2-235
discrete, two-dimensional 2-238
inverse, one-dimensional 2-343
inverse, two-dimensional 2-344
shifting the DC component of 2-240
transformation
elementary Hermite 2-316
left and right (QZ) 2-534
Seealso conversion
transpose
array (arithmetic operator) 2-3
matrix (arithmetic operator) 2-3
\(t r a n s p o s e\) (\(M\)-file function equivalent for . ') 2-4
trapz 2-659
tricubic interpolation 2-328
tril 2-661
trilinear interpolation 2-328, 2-374, 2-377
triu 2-662
truth tables (for logical operations) 2-11
tsearch 2-663
type 2-664

\section*{U}
ui nt 8 2-665
umi nus (M-file function equivalent for unary -) 2-4
undefined numerical results 2-436
undocumented functionality 2-681
unimodular matrix 2-316
union 2-666
unique 2-667
unitary matrix (complex) 2-526
unwr ap 2-668
upl us (M-file function equivalent for unary +) 2-4
upper 2-669
upper triangular matrix 2-662
uppercase to lowercase 2-412

\section*{v}
vander 2-670
Vandermonde matrix 2-513
varargin 2-670
varargout 2-670
variable numbers of M -file arguments 2-670
variables
clearing 2-108
global 2-319
(workspace) listing 2-685
local 2-284, 2-319
name of passed 2-365
retrieving from disk 2-402
saving to disk 2-565
sizes of 2-685
status of 2-223

\section*{See also workspace}
vector
dual 2-441
frequency 2-410
length of 2-399
product (cross) 2-133
vectors, creating
logarithmically spaced 2-410
regularly spaced 2-16, 2-401
ver 2-672
version 2-672
vertcat (M-filefunction equivalent for [;]) 2-15
visualizing
cell array structure 2-92
sparse matrices 2-610
voronoi 2-673

\section*{W}
warning 2-675
warning message (enabling, suppressing, and displaying) 2-675
wavread 2-676
wavwrite 2-677
weekday 2-679
well conditioned 2-545
what 2-680
what snew 2-681
which 2-682
while 2-684
white space characters, ASCII 2-387, 2-631
who 2-685
whos 2-685
wildcard (*)
using with cl ear command 2-108
using with di r command 2-189
wilkinson 2-687

Wilkinson matrix 2-592, 2-687
wk 1read 2-688
wk 1 write 2-689
workspace
changing context while debugging 2-146, 2-158
clearing variables from 2-108
consolidating memory 2-486
predefining variables 2-426, 2-619
saving 2-565
Seealso variables
writing
binary data to file 2-288
formatted data to file 2-268
matrix as ASCII delimited file 2-192
string to matrix (formatted) 2-616
WK 1 spreadsheet files 2-689

\section*{X}
logical XOR 2-690
bit-wise 2-73
xor 2-690
xyz coordinates See Cartesian coordinates

\section*{Z}
zero of a function, finding 2-291
zero-padding
while converting hexadecimal numbers 2-338
while reading binary files 2-273
zeros 2-691```

[^0]: Algorithm The specific algorithm used for solving the simultaneous linear equations denoted by $X=A \backslash B$ and $X=B / A$ depends upon the structure of the coefficient matrix A.

 - If A is a triangular matrix, or a permutation of a triangular matrix, then x can be computed quickly by a permuted backsubstitution algorithm. The check for triangularity is done for full matrices by testing for zero elements and for sparse matrices by accessing the sparse data structure. Most nontriangular matrices are detected almost immediately, so this check requires a negligible amount of time.
 - If A is symmetric, or Hermitian, and has positive diagonal elements, then a Cholesky factorization is attempted (seechol). If A is sparse, a symmetric minimum degree preordering is applied (see symmd and spparms). If A is found to be positive definite, the Cholesky factorization attempt is successful and requires less than half the time of a general factorization. Nonpositive

[^1]: See Also
 cos,cosh
 Cosine and hyperbolic cosine

[^2]: See Also isieee,isunix,isvms

[^3]: See Also quad, quad8 Numerical evaluation of integrals

