
Copyright © 1987-2006 ILOG SA. All rights reserved. Legal terms. Privacy policy.

ILOG, the ILOG design, CPLEX, and all other logos and product and service names of ILOG are registered trademarks or trademarks of ILOG in France,
the U.S. and/or other countries.

JavaTM and all Java-based marks are either trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Microsoft, Windows, and Windows NT are either trademarks or registered trademarks of Microsoft Corporation in the U.S. and other countries.

All other brand, product and company names are trademarks or registered trademarks of their respective holders.

Printed in France

ILOG CPLEX C++ API 11.0

Reference Manual

2007

T A B L E O F C O N T E N T S
Welcome to Concert Technology . 13

Concepts. 16

Group optim.concert .39

ILOSTLBEGIN .46

ILO_NO_MEMORY_MANAGER .47

IloAbs .48

IloAdd .49

IloAlgorithm .50

IloAlgorithm::CannotExtractException .57

IloAlgorithm::CannotRemoveException .59

IloAlgorithm::Exception .61

IloAlgorithm::NotExtractedException .62

IloAlgorithm::Status .64

IloAnd .66

IloArcCos .70

IloArray. .71

IloBarrier. .75

IloBaseEnvMutex .78

IloBool .79

IloBoolArray .80

IloBoolVar. .83

IloBoolVarArray .86

IloCeil .89

IloCondition .90

IloConstraint .93

IloConstraintArray .96

IloCplex::Status .99

IloDeleterMode. .100

IloDiff .101

IloDisableNANDetection. .104

IloDiv .105
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 3

T A B L E O F C O N T E N T S
IloEmptyHandleException .106

IloEnableNANDetection .107

IloEndMT .108

IloEnv .109

IloEnvironmentMismatch .115

IloException .116

IloExponent .118

IloExpr .119

IloExprArray .126

IloExpr::LinearIterator. .128

IloExtractable .130

IloExtractableArray. .135

IloExtractableVisitor .138

IloFastMutex. .140

IloFloatVar .144

IloFloatVarArray .145

IloFloor .146

IloGetClone .147

IloHalfPi .148

IloIfThen .149

IloInitMT .152

IloInt .153

IloIntArray. .154

IloIntExpr .158

IloIntExprArg .161

IloIntExprArray .163

IloIntSet .166

IloIntSet::Iterator. .172

IloIntSetVar .174

IloIntSetVarArray .179

IloIntTupleSet .181
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 4

T A B L E O F C O N T E N T S
IloIntTupleSetIterator .184

IloIntVar .185

IloIntVarArray .191

IloIsNAN. .195

IloIterator .196

IloLexicographic .198

IloLog .199

IloMax. .200

IloMaximize .201

IloMin .202

IloMinimize .203

IloModel .204

IloModel::Iterator .208

IloMutexDeadlock. .210

IloMutexNotOwner .211

IloMutexProblem .212

IloNot .214

IloNum .216

IloNumArray .217

IloNumExpr .220

IloNumExprArg. .223

IloNumExprArray .225

IloNumExpr::NonLinearExpression .228

IloNumVar .229

IloNumVarArray .235

IloNumVar::Type .240

IloObjective .241

IloObjective::Sense .247

IloOr .248

IloPi .252

IloPiecewiseLinear .253
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 5

T A B L E O F C O N T E N T S
IloPower .254

IloQuarterPi .255

IloRandom .256

IloRange. .259

IloRangeArray .266

IloRound. .273

IloScalProd. .274

IloScalProd. .275

IloScalProd. .276

IloScalProd. .277

IloSemaphore. .278

IloSolution .281

IloSolutionArray .293

IloSolutionIterator .294

IloSolution::Iterator .296

IloSolutionManip. .298

IloSquare .299

IloSum .300

IloThreeHalfPi .301

IloTimer .302

IloTwoPi .304

operator && .305

operator * .306

operator new .307

operator!. .308

operator!=. .309

operator%. .310

operator%. .311

operator+ .312

operator-. .313

operator/. .314
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 6

T A B L E O F C O N T E N T S
operator< .315

operator<< .316

operator<< .317

operator<= .318

operator== .319

operator> .320

operator>= .321

operator>> .322

operator|| .323

Group optim.concert.cplex .324

IloConversion .325

IloNumColumn .329

IloNumColumnArray. .332

IloSOS1 .334

IloSOS1Array .337

IloSOS2 .340

IloSOS2Array .344

IloSemiContVar .347

IloSemiContVarArray .351

Group optim.concert.extensions .354

IloCsvLine .356

IloCsvReader .360

IloCsvReader::IloColumnHeaderNotFoundException .369

IloCsvReader::IloCsvReaderParameterException .370

IloCsvReader::IloDuplicatedTableException .371

IloCsvReader::IloFieldNotFoundException .372

IloCsvReader::IloFileNotFoundException .373

IloCsvReader::IloIncorrectCsvReaderUseException .374

IloCsvReader::IloLineNotFoundException .375

IloCsvReader::IloTableNotFoundException .376

IloCsvReader::LineIterator .377
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 7

T A B L E O F C O N T E N T S
IloCsvReader::TableIterator .379

IloCsvTableReader .381

IloCsvTableReader::LineIterator .385

IloDifference .387

IloDifference .388

IloIntersection. .389

IloIntervalList .390

IloIntervalListCursor .395

IloMax. .398

IloMin .399

IloNumToAnySetStepFunction. .400

IloNumToAnySetStepFunctionCursor .409

IloNumToNumSegmentFunction .412

IloNumToNumSegmentFunctionCursor .419

IloNumToNumStepFunction. .422

IloNumToNumStepFunctionCursor .428

IloUnion .431

IloUnion .432

operator * .433

operator+ .434

operator-. .435

operator<< .436

operator== .437

operator== .438

operator== .439

Group optim.concert.xml .440

IloXmlContext. .440

IloXmlInfo .446

IloXmlReader .457

IloXmlWriter .462

Group optim.cplex.cpp .466
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 8

T A B L E O F C O N T E N T S
ILOBARRIERCALLBACK0. .473

ILOBRANCHCALLBACK0 .474

ILOCONTINUOUSCALLBACK0 .475

ILOCPLEXGOAL0 .476

ILOCROSSOVERCALLBACK0 .478

ILOCUTCALLBACK0 .479

ILODISJUNCTIVECUTCALLBACK0 .480

ILODISJUNCTIVECUTINFOCALLBACK0 .481

ILOFLOWMIRCUTCALLBACK0 .482

ILOFLOWMIRCUTINFOCALLBACK0 .483

ILOFRACTIONALCUTCALLBACK0 .484

ILOFRACTIONALCUTINFOCALLBACK0 .485

ILOHEURISTICCALLBACK0 .486

ILOINCUMBENTCALLBACK0 .487

ILOLAZYCONSTRAINTCALLBACK0 .488

ILOMIPCALLBACK0 .489

ILOMIPINFOCALLBACK0 .490

ILONETWORKCALLBACK0 .491

ILONODECALLBACK0 .492

ILOPRESOLVECALLBACK0 .493

ILOPROBINGCALLBACK0 .494

ILOPROBINGINFOCALLBACK0 .495

ILOSIMPLEXCALLBACK0 .496

ILOSOLVECALLBACK0. .497

ILOTUNINGCALLBACK0. .498

ILOUSERCUTCALLBACK0 .499

IloBound .500

IloBound::Type .503

IloCplex .504

IloCplex::Aborter .557

IloCplex::Algorithm .559
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 9

T A B L E O F C O N T E N T S
IloCplex::BarrierCallbackI. .561

IloCplex::BasisStatus .563

IloCplex::BasisStatusArray. .564

IloCplex::BoolParam .565

IloCplex::BranchCallbackI .567

BranchCallbackI::BranchType .575

IloCplex::BranchDirection. .576

IloCplex::BranchDirectionArray .577

IloCplex::Callback .578

IloCplex::CallbackI .580

Callback::Type .584

IloCplex::ConflictStatus .586

IloCplex::ConflictStatusArray .587

IloCplex::ContinuousCallbackI .588

IloCplex::ControlCallbackI .591

ControlCallbackI::IntegerFeasibility .600

ControlCallbackI::IntegerFeasibilityArray .601

ControlCallbackI::PresolvedVariableException .602

IloCplex::CplexStatus. .604

IloCplex::CrossoverCallbackI .609

IloCplex::CutCallbackI .611

IloCplex::CutType. .614

IloCplex::DeleteMode. .615

IloCplex::DisjunctiveCutCallbackI .616

IloCplex::DisjunctiveCutInfoCallbackI .619

IloCplex::DualPricing .621

IloCplex::Exception .622

IloCplex::FlowMIRCutCallbackI .624

IloCplex::FlowMIRCutInfoCallbackI .627

IloCplex::FractionalCutCallbackI .629

IloCplex::FractionalCutInfoCallbackI .632
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 10

T A B L E O F C O N T E N T S
IloCplex::Goal. .634

IloCplex::GoalI .636

GoalI::BranchType .651

GoalI::IntegerFeasibility .652

GoalI::IntegerFeasibilityArray. .653

IloCplex::HeuristicCallbackI .654

IloCplex::IncumbentCallbackI. .661

IloCplex::IntParam .665

IloCplex::InvalidCutException .673

IloCplex::LazyConstraintCallbackI .674

IloCplex::MIPCallbackI .677

MIPCallbackI::NodeData .682

IloCplex::MIPEmphasisType .683

IloCplex::MIPInfoCallbackI .684

IloCplex::MIPsearch .689

IloCplex::MultipleConversionException .690

IloCplex::MultipleObjException .692

IloCplex::NetworkCallbackI .693

IloCplex::NodeCallbackI. .695

IloCplex::NodeEvaluator .700

IloCplex::NodeEvaluatorI .702

IloCplex::NodeSelect .706

IloCplex::NumParam .707

IloCplex::OptimizationCallbackI .710

IloCplex::Parallel_Mode .712

IloCplex::ParameterSet .713

ParameterSet::Iterator .717

IloCplex::PresolveCallbackI .719

IloCplex::PrimalPricing .721

IloCplex::ProbingCallbackI .722

IloCplex::ProbingInfoCallbackI .725
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 11

T A B L E O F C O N T E N T S
IloCplex::Quality .727

IloCplex::Relaxation .731

IloCplex::SearchLimit .733

IloCplex::SearchLimitI .735

IloCplex::SimplexCallbackI. .737

IloCplex::SolveCallbackI .739

IloCplex::StringParam .744

IloCplex::TuningCallbackI .745

IloCplex::TuningStatus .747

IloCplex::UnknownExtractableException .748

IloCplex::UserCutCallbackI .749

IloCplex::VariableSelect .752

Group optim.cplex.cpp.advanced .753

IloCplex::BranchCallbackI .754

IloCplex::ControlCallbackI .763

IloCplex::CutCallbackI .773

IloCplex::Goal. .777

IloCplex::GoalI .779

IloCplex::HeuristicCallbackI .794

IloCplex::IncumbentCallbackI. .801

IloCplex::LazyConstraintCallbackI .805

IloCplex::NodeCallbackI. .808

IloCplex::SolveCallbackI .814

IloCplex::UserCutCallbackI .819
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 12

Welcome to Concert Technology

This reference manual documents the C++ API of ILOG Concert Technology.

What Is Concert Technology?
Concert Technology offers a C++ library of classes and functions that enable you to
design models of problems for both math programming (including linear programming,
mixed integer programming, quadratic programming, and network programming) and
constraint programming solutions.

This library is not a new programming language: it lets you use data structures and
control structures provided by C++. Thus, the Concert Technology part of an application
can be completely integrated with the rest of that application (for example, the graphic
interface, connections to databases, etc.) because it can share the same objects.

Furthermore, you can use the same objects to model your problem whether you choose a
constraint programming or math programming approach. In fact, Concert Technology
enables you to combine these technologies simultaneously.

What You Need to Know
This manual assumes that you are familiar with the operating system where you are
using Concert Technology. Since Concert Technology is written for C++ developers, this
manual assumes that you can write C++ code and that you have a working knowledge of
your C++ development environment.

Notation
Throughout this manual, the following typographic conventions apply:

◆ Samples of code are written in this typeface.

◆ The names of constructors and member functions appear in this typeface in the
section where they are documented.

◆ Important ideas are emphasized like this.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 13

Naming Conventions
The names of types, classes, and functions defined in the Concert Technology library
begin with Ilo.

The names of classes are written as concatenated, capitalized words. For example:

IloNumVar

A lower case letter begins the first word in names of arguments, instances, and member
functions. Other words in such a name begin with a capital letter. For example,

IloNumVarArray::setBounds

There are no public data members in Concert Technology.

Accessors begin with the keyword get followed by the name of the data member.
Accessors for Boolean members begin with is followed by the name of the data
member. Like other member functions, the first word in such a name begins with a lower
case letter, and any other words in the name begin with a capital letter.

Modifiers begin with the keyword set followed by the name of the data member.

Related Documents
The Concert Technology 2.0 library comes with the following documentation. The
online documentation, in HTML format, may be accessed through standard HTML
browsers.

◆ The Reference Manual documents the predefined C++ classes, global functions, type
definitions, and macros in the libraries. It also provides formal explanations of certain
, such as arrays, handles, notification, and column-wise modeling.

◆ The README file, delivered in the standard distribution, contains the most current
information about platform prerequisites for Concert Technology.

◆ Source code for examples is located in the examples directory in the standard
distribution.

For More Information
ILOG offers technical support, users' mailing lists, and comprehensive websites for its
products, including Concert Technology, ILOG CPLEX, and ILOG Solver.

Technical Support

For technical support of Concert Technology, you should contact your local distributor,
or, if you are a direct ILOG customer, contact the technical support center listed for your
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 14

licensed ILOG product, whether CPLEX or Solver. We encourage you to use e-mail for
faster, better service.

Web Sites
There are two kinds of web pages available to users of Concert Technology: web pages
restricted to owners of a paid maintenance contract; web pages freely available to all.

Web Pages for a Paid Maintenance Contract

The technical support pages on our world wide web sites contain FAQ (Frequently
Asked/Answered Questions) and the latest patches for some of our products. Changes
are posted in the product mailing list. Access to these pages is restricted to owners of an
ongoing maintenance contract. The maintenance contract number and the name of the
person this contract is sent to in your company will be needed for access, as explained on
the login page.

All three of these sites contain the same information, but access is localized, so we
recommend that you connect to the site corresponding to your location, and select the
Services page from the home page.

◆ Americas: http://www.ilog.com

◆ Asia & Pacific Nations: http://www.ilog.com.sg

◆ Europe, Africa, and Middle East: http://www.ilog.fr

Web Pages for General Information

In addition to those web pages for technical support of a paid maintenance contract, you
will find other web pages containing additional information about Concert Technology,
including technical papers that have also appeared at industrial and academic
conferences, models developed by ILOG and its customers, news about progress in
optimization. This freely available information is located at these localized web sites:

◆ http://www.ilog.com/products/optimization/

◆ http://www.ilog.com.sg/products/optimization/

◆ http://www.ilog.fr/products/optimization/
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 15

http://www.ilog.com
http://www.ilog.com.sg
http://www.ilog.fr
http://www.ilog.com/products/optimization/
http://www.ilog.com.sg/products/optimization/
http://www.ilog.fr/products/optimization/

Concepts

Arrays
For most basic classes (such as IloNumVar or IloConstraint) in Concert
Technology, there is also a corresponding class of arrays where the elements of the
array are instances of that basic class. For example, elements of an instance of
IloConstraintArray are instances of the class IloConstraint.

Arrays in an Environment

Every array must belong to an environment (an instance of IloEnv). In other words,
when you create a Concert Technology array, you pass an instance of IloEnv as a
parameter to the constructor. All the elements of a given array must belong to the same
environment.

Extensible Arrays

Concert Technology arrays are extensible. That is, you can add elements to the array
dynamically. You add elements by means of the add member function of the array
class.

You can also remove elements from an array by means of its remove member function.

References to elements of an array change whenever an element is added to or removed
from the array. For example,

IloNumArray x;
IloNum *x1ptr = &(x[1]);
x.add(1.3);
*x1ptr no longer valid!

Arrays as Handles

Like other Concert Technology objects, arrays are implemented by means of two classes:
a handle class corresponding to an implementation class. An object of the handle class
contains a data member (the handle pointer) that points to an object (its implementation
object) of the corresponding implementation class. As a Concert Technology user, you
will be working primarily with handles.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 16

Copying Arrays

Many handles may point to the same implementation object. This principle holds true for
arrays as well as other handle classes in Concert Technology. When you want to create
more than one handle for the same implementation object, you should use either the
copy constructor or the assignment operator of the array class. For example,

IloNumArray array(env); // creates a handle pointing to
new impl

IloNumArray array1(array); // creates a handle pointing to
same impl
 IloNumArray array2; // creates an empty handle

array2 = array; // sets impl of handle array2 to impl
of array

To take another example, the following lines add all elements of a1 to a2, essentially
copying the array.

IloNumArray a1;
IloNumArray a2;
a2.clear();
a2.add(a1);

Programming Hint: Using Arrays Efficiently

If your application only reads an array (that is, if your function does not modify an
element of the array), then we recommend that you pass the array to your function as a
const parameter. This practice forces Concert Technology to access the const
conversion of the index operator (that is, operator[]), which is faster.

Assert and NDEBUG
Most member functions of classes in Concert Technology are inline functions that
contain an assert statement. This statement asserts that the invoking object and the
member function parameters are consistent; in some member functions, the assert
statement checks that the handle pointer is non-null. These statements can be suppressed
by the macro NDEBUG. This option usually reduces execution time. The price you pay
for this choice is that attempts to access through null pointers are not trapped and usually
result in memory faults.

Compilation with assert statements will not prevent core dumps by incorrect code.
Instead, compilation with assert statements moves the execution of the incorrect
code (the core dump, for example) to a place where you can see what is causing the
problem in a source code debugger. Correctly written code will never cause one of these
Concert Technology assert statements to fail.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 17

Branch & Cut
 CPLEX uses branch & cut search when solving mixed integer programming (MIP)
models. The branch & cut search procedure manages a search tree consisting of nodes.
Every node represents an LP or QP subproblem to be processed; that is, to be solved, to
be checked for integrality, and perhaps to be analyzed further. Nodes are called active if
they have not yet been processed. After a node has been processed, it is no longer active.
Cplex processes active nodes in the tree until either no more active nodes are available
or some limit has been reached.

 A branch is the creation of two new nodes from a parent node. Typically, a branch
occurs when the bounds on a single variable are modified, with the new bounds
remaining in effect for that new node and for any of its descendants. For example, if a
branch occurs on a binary variable, that is, one with a lower bound of 0 (zero) and an
upper bound of 1 (one), then the result will be two new nodes, one node with a modified
upper bound of 0 (the downward branch, in effect requiring this variable to take only the
value 0), and the other node with a modified lower bound of 1 (the upward branch,
placing the variable at 1). The two new nodes will thus have completely distinct solution
domains.

 A cut is a constraint added to the model. The purpose of adding any cut is to limit the
size of the solution domain for the continuous LP or QP problems represented at the
nodes, while not eliminating legal integer solutions. The outcome is thus to reduce the
number of branches required to solve the MIP.

 As an example of a cut, first consider the following constraint involving three binary
(0-1) variables:

20x + 25y + 30z <= 40

 That sample constraint can be strengthened by adding the following cut to the model:

1x + 1y + 1z <= 1

 No feasible integer solutions are ruled out by the cut, but some fractional solutions, for
example (0.0, 0.4, 1.0), can no longer be obtained in any LP or QP subproblems at the
nodes, possibly reducing the amount of searching needed.

 The branch & cut method, then, consists of performing branches and applying cuts at
the nodes of the tree. Here is a more detailed outline of the steps involved.

 First, the branch & cut tree is initialized to contain the root node as the only active
node. The root node of the tree represents the entire problem, ignoring all of the explicit
integrality requirements. Potential cuts are generated for the root node but, in the interest
of keeping the problem size reasonable, not all such cuts are applied to the model
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 18

immediately. If possible, an incumbent solution (that is, the best known solution that
satisfies all the integrality requirements) is established at this point for later use in the
algorithm. Such a solution may be established either by CPLEX or by a user who
specifies a starting solution by means of the Callable Library routine
CPXcopymipstart or the Concert Technology method
IloCplex::setVectors.

If you are solving a sequence of problems by modifying the problem already in memory
and re-solving, then you do not need to establish a starting solution explicitly every time,
because for each revised problem, the solution of the previous problem will be retained
as a possible starting solution.

 When processing a node, CPLEX starts by solving the continuous relaxation of its
subproblem. that is, the subproblem without integrality constraints. If the solution
violates any cuts, CPLEX may add some or all of them to the node problem and may
resolve it, if CPLEX has added cuts. This procedure is iterated until no more violated
cuts are detected (or deemed worth adding at this time) by the algorithm. If at any point
in the addition of cuts the node becomes infeasible, the node is pruned (that is, it is
removed from the tree).

 Otherwise, CPLEX checks whether the solution of the node-problem satisfies the
integrality constraints. If so, and if its objective value is better than that of the current
incumbent, the solution of the node-problem is used as the new incumbent. If not,
branching will occur, but first a heuristic method may be tried at this point to see if a
new incumbent can be inferred from the LP-QP solution at this node, and other methods
of analysis may be performed on this node. The branch, when it occurs, is performed on
a variable where the value of the present solution violates its integrality requirement.
This practice results in two new nodes being added to the tree for later processing.

 Each node, after its relaxation is solved, possesses an optimal objective function value
Z. At any given point in the algorithm, there is a node whose Z value is better (less, in
the case of a minimization problem, or greater for a maximization problem) than all the
others. This Best Node value can be compared to the objective function value of the
incumbent solution. The resulting MIP Gap, expressed as a percentage of the incumbent
solution, serves as a measure of progress toward finding and proving optimality. When
active nodes no longer exist, then these two values will have converged toward each
other, and the MIP Gap will thus be zero, signifying that optimality of the incumbent has
been proven.

 It is possible to tell CPLEX to terminate the branch & cut procedure sooner than a
completed proof of optimality. For example, a user can set a time limit or a limit on the
number of nodes to be processed. Indeed, with default settings, CPLEX will terminate
the search when the MIP Gap has been brought lower than 0.0001 (0.01%), because it is
often the case that much computation is invested in moving the Best Node value after
the eventual optimal incumbent has been located. This termination criterion for the MIP
Gap can be changed by the user, of course.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 19

Callbacks in Concert Technology
 A callback is an object with a main method implemented by a user. This user-written
main method is called by the IloCplex algorithm at specific points during
optimization.

 Callbacks may be called repeatedly at various points during optimization; for each
place a callback is called, ILOG CPLEX provides a separate callback class (derived
from the class IloCplex::CallbackI). Such a callback class provides the specific
API as a protected method to use for the particular implementation.

 There are several varieties of callbacks:

◆ Informational callbacks allow your application to gather information about the
progress of MIP optimization without interfering with performance of the search. In
addition, an informational callback also enables your application to terminate
optimization.

◆ Query callbacks, also known as diagnostic callbacks, enable your application to
retrieve information about the progress of optimization, whether continuous or
discrete. The information available depends on the algorithm (primal simplex, dual
simplex, barrier, mixed integer, or network) that you are using. For example, a query
callback can return the current objective value, the number of simplex iterations that
have been completed, and other details. Query callbacks can also be called from
presolve, probing, fractional cuts, and disjunctive cuts. Query callbacks may impede
performance because the internal data structures that support query callbacks must be
updated frequently. Furthermore, query or diagnostic callbacks make assumptions
about the path of the search, assumptions that are correct with respect to conventional
branch and cut but that may be false with respect to dynamic search. For this reason,
query or diagnostic callbacks are not compatible with dynamic search. In other
words, CPLEX normally turns off dynamic search in the presence of query or
diagnostic callbacks in an application.

◆ Control callbacks make it possible for you to define your own user-written routines
and for your application to call those routines to interrupt and resume optimization.
Control callbacks enable you to direct the search when you are solving a MIP in an
instance of IloCplex. For example, control callbacks enable you to select the next
node to process or to control the creation of subnodes (among other possibilities).
Control callbacks are an advanced feature of ILOG CPLEX, and as such, they require
a greater degree of familiarity with CPLEX algorithms. Because control callbacks
can alter the search path in this way, control callbacks are not compatible with
dynammic search. In other words, CPLEX normally turns off dynamic search in the
presence of control callbacks in an application.

If you want to take advantage of dynamic search in your application, you should restrict
your use of callbacks to the informational callbacks.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 20

If you see a need for query, diagnostic, or control callbacks in your application, you can
override the normal behavior of CPLEX by nondefault settings of the parameters
MIPSearch, ParallelMode, and Threads. For more details about these
parameters and their settings, see the ILOG CPLEX Parameter Reference Manual.

 You do not create instances of the class IloCplex::CallbackI; rather, you use
one of its child classes to implement your own callback. In order to implement your
user-written callbacks with an instance of IloCplex, you should follow these steps:

◆ 1. Determine which kind of callback you want to write, and choose the appropriate
class for it. The class hierarchy (displayed online when you click Tree on the menu)
may give you some ideas about which kind of callback suits your purpose.

◆ 2. Derive your own subclass, MyCallbackI, say, from the appropriate predefined
callback class.

◆ 3. In your subclass of the callback class, use the protected API defined in the base
class to implement the main routine of your user-written callback. (All constructors
of predefined callback classes are protected; they can be called only from user-
written derived subclasses.)

◆ 4. In your subclass, implement the method duplicateCallback.

◆ 5. Write a function myCallback, say, that creates an instance of your
implementation class in the Concert Technology environment and returns it as an
IloCplex::Callback handle.

◆ 6. Create an instance of your callback class and pass it to the member function
IloCplex::use.

 There are macros of the form ILOXXXCALLBACKn (for n from 0 to 7) available to
facilitate steps 2 through 5, where XXX stands for the particular callback under
construction and n stands for the number of arguments that the function written in step 5
is to receive in addition to the environment argument.

 You can use one instance of a callback with only one instance of IloCplex. When
you use a callback with a second instance of IloCplex, a copy will be automatically
created using the method duplicateCallback, and that copy will be used instead.

 Also, an instance of IloCplex takes account of only one instance of a particular
callback at any given time. That is, if you call IloCplex::use more than once with
the same class of callback, the last call overrides any previous one. For example, you can
use only one primal simplex callback at a time, or you can use only one network callback
at a time; and so forth.

 Existing extractables should never be modified within a callback. Temporary
extractables, such as arrays, expressions, and range constraints, can be created and
modified. Temporary extractables are often useful, for example, for computing cuts.

Example
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 21

Here is an example showing you how to terminate optimization after a given period of
time if the solution is good enough. It uses one of the predefined macros to facilitate
writing a control callback with a timer, a time limit, and a way to recognize a good
enough solution.

ILOMIPINFOCALLBACK3(nodeLimitCallback,
 IloBool, aborted,
 IloNum, nodeLimit,
 IloNum, acceptableGap)
{
 if (!aborted && hasIncumbent()) {
 IloNum objval = getIncumbentObjValue();
 IloNum bound = getBestObjValue();
 IloNum gap = fabs(objval - bound) / (1.0 + fabs(bound)) * 100.0;
 if (getNnodes() > nodeLimit &&
 gap < acceptableGap) {
 getEnv().out() << endl
 << "Good enough solution at "
 << getNnodes() << " nodes, gap = "
 << gap << "%, quitting." << endl;
 aborted = IloTrue;
 abort();
 }
 }
}

Column-Wise Modeling
Concert Technology supports column-wise modeling, a technique widely used in the
math programming and operations research communities to build a model column by
column. In Concert Technology, creating a new column is comparable to creating a new
variable and adding it to a set of constraints. You use an instance of IloNumColumn
to do so. An instance of IloNumColumn allows you to specify to which constraints
or other extractable objects Concert Technology should add the new variable along with
its data. For example, in a linear programming problem (an LP), if the new variable will
appear in some linear constraints as ranges (instances of IloRange), you need to
specify the list of such constraints along with the non zero coefficients (a value of
IloNum) for each of them.

You then create a new column in your model when you create a new variable with an
instance of IloNumColumn as its parameter. When you create the new variable,
Concert Technology will add it along with appropriate parameters to all the extractable
objects you have specified in the instance of IloNumColumn.

Instead of building an instance of IloNumColumn, as an alternative, you can use a
column expression directly in the constructor of the variable. You can also use instances
of IloNumColumn within column expressions.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 22

The following undocumented classes provide the underlying mechanism for column-
wise modeling:

◆ IloAddValueToObj

◆ IloAddValueToRange

The following operators are useful in column-wise modeling:

◆ in the class IloRange,

IloAddValueToRange operator() (IloNum value);

◆ in the class IloObjective,

IloAddValueToObj operator () (IloNum value);

That is, the operator () in extractable classes, such as IloRange or
IloObjective, creates descriptors of how Concert Technology should add the new,
yet-to-be-created variable to the invoking extractable object.

You can use the operator + to link together the objects returned by operator ()
to form a column. You can then use an instance of IloNumColumn to build up column
expressions within a programming loop and thus save them for later use or to pass them
to functions.

Here is how to use an instance of IloNumColumn with operators from IloRange
and IloObjective to create a column with a coefficient of 2 in the objective, with
10 in range1, and with 3 in range2. The example then uses that column when it
creates the new variable newvar1, and it uses column expressions when it creates
newvar2 and newvar3.

 IloNumColumn col = obj(2) + range1(10) + range2(3);
 IloNumVar newvar1(col);
 IloNumVar newvar2(col + range3(17));
 IloNumVar newvar3(range1(1) + range3(3));

In other words, given an instance obj of IloObjective and the instances range1,
range2, and range3 of IloRange, those lines create the new variables newvar1,
newvar2, and newvar3 and add them as linear terms to obj, range1, and range3
in the following way:

 obj: + 2*newvar1 + 2*newvar2
 range1: +10*newvar1 + 10*newvar2 + 1*newvar3
 range2: + 3*newvar1 + 3*newvar2
 range3: + 17*newvar2 +3*newvar3
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 23

 For more information, refer to the documentation of
IloNumColumn,IloObjective, and IloRange.

Creation of Extractable Objects
 For most Concert applications, you can simply create the extractable objects that you
need to build your model, then let their destructors manage the subsequent deletions.
However, when memory use is critical to your application, you may need to take control
of the deletion of extractable objects. In such cases, you will need a deeper
understanding of how ILOG Concert Technology creates and maintains extractable
objects. The following guidelines, along with the concept Deletion of Extractable
Objects, should help.

1. An expression (that is, an instance of the class IloExpr) is passed by value to an
extractable object (an instance of the class IloExtractable). Therefore, you can
delete the original expression after passing it by value without affecting the extractable
object that received it.

 Similarly, instances of IloNumColumn and IloIntSet are passed by value to any
predefined Concert Technology objects. More generally, if you have multiple handles
passed to Concert objects pointing to an instance of IloExpr, IloNumColumn, or
IloIntSet, and you call a method that modifies one of those handles, Concert
Technology performs a lazy copy. In other words, it first copies the implementation
object for the handle you are modifying and then makes the modification. The other
handles pointing to the original implementation object remain unchanged, and your
modification has no impact on them.

 Lazy copying does not apply to other Concert Technology objects. In general, it is
recommended that you avoid using multiple handles to the same object if you do not feel
comfortable with lazy copying.

2. A variable (that is, an instance of IloNumVar, IloIntVar, or IloBoolVar)
is passed by reference to an extractable object. Therefore, when your Concert
application is in linear deleter mode, deleting a variable will remove it from any
extractables that received it.

 3. An extractable object is passed by reference to a logical constraint (such as
IloIfThen) or to a nonlinear expression (such as IloMax). Therefore, you should
not delete the original expression after passing it to such functions unless you have
finished with the associated model.

 Here are some examples to consider in light of these guidelines. The first example
illustrates guidelines 2 and 3.

 IloEnv env;
 IloNumVar x(env, 0, IloInfinity, "X");
 IloNumVar y(env, 0, IloInfinity, "Y");
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 24

 IloNumVar z(env, 0, IloInfinity, "Z");
 IloExpr e = x + y;
 IloConstraint c1 = (e <= z);
 IloConstraint c2 = (e >= z);
 IloConstraint c3 = IloIfThen(env, c1, c2);
 e.end(); // OK; c1 and c2 use copies of e;
 c1.end(); // BAD IDEA; c3 still references c1
 IloModel m(env);
 m.add (c3); // c3 is not correctly represented in m.

 In that example, since c1 is passed by reference, the call to c1.end raises errors. In
contrast, the call to e.end causes no harm because e is passed by value.

 The following example illustrates guidelines 1 and 2.

 IloEnv env;
 IloModel model(env);
 IloNumVar y(env, 0, 10, "y");
#ifdef WILLDELETE

IloNumVar y2 = y; // second handle pointing to implementation of
y
#else
 IloExpr y2 = y; // first handle pointing to expression 1*y
#endif
 IloConstraint cst = y2 <= 6;
 model.add(cst);
 y2.end();

 When y2 is an instance of the class IloNumVar, the call to y2.and will remove y2
from the constraint cst, according to guideline 2.

When y2 is an expression, it will be passed by value to the constraint cst, according to
guideline 1. Hence, the call to y2.end will leave cst untouched.

 While a thorough understanding of these conventions provides you with complete
control over management of the extractable objects in your application, in general, you
should simply avoid creating extra handles to extractable objects that can result in
unexpected behavior.

 In light of that observation, the previous example can be simplified to the following
lines:

 IloEnv env;
 IloModel model(env);
 IloNumVar y(env, 0, 10, "y");
 IloConstraint cst = y <= 6;
 model.add(cst);
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 25

Deletion of Extractable Objects
As a modeling layer, Concert allows the creation and destruction of extractables
through the methods IloExtractable::end and
IloExtractableArray::endElements. The purpose of these methods is to
reclaim memory associated with the deleted objects while maintaining the safest
possible Concert environment. In this context, a safe Concert environment is defined
by the property that no object points to a deleted object; a pointer to a deleted object is
referred to as a dangling pointer in C++.

There exist two paradigms to make sure of the safety of the delete operation. The first,
linear mode, comes from math programming; in a Concert application, linear mode is
possible only on extractable and other objects used in linear programming. The second,
safe generic mode, is stricter and is valid on all Concert extractable objects.

You can access both paradigms by calling IloEnv::setDeleter(IloDeleterMode
mode), where mode may be IloLinearDeleterMode or
IloSafeDeleterMode.

Linear Mode

To use linear mode, you must either

◆ call IloEnv::setDeleter(IloLinearDeleterMode), or

◆ refrain from calling IloEnv::setDeleter, as linear is the default mode.

In linear mode, the following behavior is implemented:

◆ If a range constraint is deleted, it is removed from the models that contain it.

◆ If a variable is deleted, its coefficient is set to 0 (zero) in the ranges, expressions, and
objectives where it appears. The variable is removed from the special ordered sets of
type 1 and 2 (that is, SOS1 and SOS2), as well as from instances of
IloConversion where it appears.

Example

This example tests the linear mode deletion of a variable x.

 void TestLinearDeleter() {
 IloEnv env;
 env.out() << "TestLinearDeleter" << endl;
 try {
 IloModel model(env);
 IloNumVar x(env, 0, 10, "x");
 IloNumVar y(env, 0, 10, "y");
 IloConstraint con = (x + y <= 0);
 IloConstraint con2 = y >= 6;
 IloNumVarArray ar(env, 2, x, y);
 IloSOS1 sos(env, ar, "sos");
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 26

 model.add(con);
 model.add(con2);
 model.add(sos);
 env.out() << "Before Delete" << endl;
 env.out() << model << endl;
 x.end();
 con2.end();
 env.out() << "After Delete" << endl;
 env.out() << model << endl;
 } catch (IloException& e) {
 cout << "Error : " << e << endl;
 }
 env.end();
 }

The example produces the following output:

 TestLinearDeleter
 Before Delete
 IloModel model0 = {
 IloRange rng3(1 * x + 1 * y) <= 0

 IloRange rng46 <=(1 * y)

 IloSOS1I (sos)
 _varArray [x(F)[0..10], y(F)[0..10]]
 _valArray []

 }

 After Delete
 IloModel model0 = {
 IloRange rng3(1 * y) <= 0

 IloSOS1I (sos)
 _varArray [y(F)[0..10]]
 _valArray []
 }

Safe Generic Mode

To use safe generic mode, you must:

◆ call IloEnv::setDeleter(IloSafeDeleterMode), and

◆ add #include <ilconcert/ilodeleter.h> to your application.

In this mode, the environment builds a dependency graph between all extractable
objects. This graph contains all extractable objects created
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 27

◆ after a call to IloEnv::setDeleter(IloSafeDeleterMode) and

◆ before a call to IloEnv::unsetDeleter.

Objects not managed by this dependency graph are referred to here as "nondeletable".
An attempt to delete a nondeletable object will throw an exception.

It is recommended that you create this graph just after the creation of the environment
and that you refrain from using IloEnv::unsetDeleter because building an
incomplete dependency graph is very error prone and should only be attempted by
advanced users. A clear example of this incomplete graph is the separation of a model
between a nondeletable base model and deletable extensions of this base model.

Calling IloExtractable::end on extractable xi will succeed only if no other
extractable object uses extractable xi. If this is not the case, a call to
IloExtractable::end will throw an exception
IloDeleter::RequiresAnotherDeletionException indicating which
extractable object uses the extractable object that you want to delete.

Example

This example shows an attempt to delete one extractable object that is used by another.

 void TestSafeDeleter() {
 IloEnv env;
 env.out() << "TestSafeDeleter" << endl;
 env.setDeleter(IloSafeDeleterMode);
 try {
 IloModel model(env);
 IloNumVar x(env, 0, 10);
 IloNumVar y(env, 0, 10);
 IloConstraint con = (x + y <= 0);
 try {
 x.end();
 } catch (IloDeleter::RequiresAnotherDeletionException &e) {
 cout << "Caught " << e << endl;
 e.getUsers()[0].end();
 e.end();
 }
 x.end();
 } catch (IloException& e) {
 cout << "Error : " << e << endl;
 }
 env.unsetDeleter();
 env.end();
 }

The example produces the following output:
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 28

 TestSafeDeleter
Caught You cannot end x1(F)[0..10] before IloRange rng3(1 * x1 + 1 * x2

) <= 0

To address this situation, you should use the method
IloExtractableArray::endElements. With this method, all extractable
objects in the array are deleted one after another. Thus, if an extractable object is used
by another extractable object and this other extractable object is deleted before the first
one, the system will not complain and will not throw an exception.

Example

This example illustrates the use of the endElements method

 void TestSafeDeleterWithArray() {
 IloEnv env;
 env.out() << "TestSafeDeleterWithArray" << endl;
 env.setDeleter(IloSafeDeleterMode);
 try {
 IloModel model(env);
 IloNumVar x(env, 0, 10);
 IloNumVar y(env, 0, 10);
 IloConstraint con = (x + y <= 0);
 IloExtractableArray ar(env, 2, con, x);
 ar.endElements();
 } catch (IloException& e) {
 cout << "Error : " << e << endl;
 }
 env.unsetDeleter();
 env.end();
 }

That example will not throw an exception.

Exceptions, Errors
An exception is thrown; it is not allocated in a Concert Technology environment; it is
not allocated on the C++ heap. It is not necessary for you as a programmer to delete an

Note:In this last example, the constraint con must appear before the
variable x as it will be deleted before the variable x.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 29

exception explicitly. Instead, the system calls the constructor of the exception to create
it, and the system calls the destructor of the exception to delete it.

When exceptions are enabled on a platform that supports C++ exceptions, an instance of
a class of Concert Technology is able to throw an exception in case of error. On
platforms that do not support C++ exceptions, it is possible for Concert Technology to
exit in case of error.

Programming Hint: Throwing and Catching Exceptions

Exceptions are thrown by value. They are not allocated on the C++ heap, nor in a
Concert Technology environment. The correct way to catch an exception is to catch a
reference to the error (indicated by the ampersand &), like this:

catch(IloException& oops);

Extraction
Concert Technology offers classes for you to design a model of your problem. You can
then invoke an algorithm to extract information from your model to solve the problem.
In this context, an algorithm is an instance of a class such as IloCplex, documented
in the ILOG CPLEX Reference Manual, or IloSolver, documented in the ILOG
Solver Reference Manual.

For details about what each algorithm extracts from a model, see the reference manual
documenting that algorithm. For example, the ILOG CPLEX Reference Manual lists
precisely which classes of Concert Technology are extracted by an instance of
IloCplex. In general terms, an instance of IloCplex extracts a model as rows and
columns, where the columns indicate decision variables of the model. Also in general
terms, an instance of IloSolver extracts an instance of a class whose name begins
Ilo to a corresponding instance of a class whose name begins Ilc. For example, an
instance of IloAllDiff is extracted by IloSolver as an instance of
IlcAllDiff.

Goals
 Goals can be used to control the branch and cut search in IloCplex . Goals are
implemented in the class IloCplex::GoalI . The class IloCplex::Goal is
the handle class. That is, it contains a pointer to an instance of IloCplex::GoalI
along with accessors of objects in the implmenetation class.

 To implement your own goal, you need to subclass IloCplex::GoalI and
implement its virtual member functions execute and duplicateGoal. The method
execute controls the branch & cut search. The method duplicateGoal creates a
copy of the invoking goal object to be used for parallel branch & cut search.
Implementing your goal can be greatly simplified if you use one of the macros
ILOCPLEXGOALn.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 30

 Every branch & cut node maintains a goal stack, possibly containing
IloCplex::GoalI objects. After IloCplex solves the relaxation of a node, it
pops the top goal from the goal stack and calls its method execute. There are several
types of goals:

◆ If OrGoal is executed, IloCplex will create child nodes. Each of the child
nodes will be initialized with a copy of the goal stack of the current node. Then, for
each child node, the specified goal in the OrGoal is pushed onto the corresponding
goal stack of the child node. Finally, the current node is deleted. (See
IloCplex#GoalI::OrGoal for a more detailed discussion.)

◆ If a cut goal is executed, the constraint will be added to the current node relaxation.
Constraint goals are provided to represent both local and global cuts. Local cut goals
are conventionally used to express branching.

◆ If AndGoal is executed, its subgoals are simply pushed onto the stack. (See
IloCplex::GoalI::AndGoal for a more detailed discussion.)

◆ If IloCplex::GoalI::FailGoal is executed, IloCplex will prune the
current node; that is, it will discontinue the search at the current node. IloCplex
will continue with another node if there is one still available in the tree.

◆ If IloCplex::GoalI::SolutionGoal is executed, IloCplex will
attempt to inject a user-provided solution as a new incumbent. Before ILOG CPLEX
accepts the injected solution, it first tests whether the injected solution is feasible
with respect to the model and goals.

◆ When ILOG CPLEX executes any other goal, the returned goal is simply pushed
onto the stack.

IloCplex continues popping goals from the goal stack until OrGoal or FailGoal
is executed, or until the stack becomes empty; in the case of an empty stack, it will
continue with a built-in search strategy.

The predefined goals OrGoal and AndGoal allow you to combine goals. AndGoal
allows you to execute different goals at one node, while OrGoal allows you to execute
different goals on different, newly created nodes. A conventional use of these two goals
in a return statement of a user-written goal looks like this:

return AndGoal (OrGoal (branch1, branch2), this);

 This AndGoal first pushes this (the goal currently being executed) onto the goal
stack, and then it pushes the OrGoal. Thus the OrGoal is on top of the stack and will
be executed next. When the OrGoal executes, it creates two new nodes and copies the
remaining goal stack to both of them. Thus both new nodes will have this goal on top
of the goal stack at this point. Then the OrGoal proceeds to push branch1 onto the
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 31

goal stack of the first child node and branch2 onto the goal stack of the second goal
child node. Conventionally, branch1 and branch2 contain cut goals, so by
executing branch1 and branch2 at the respective child nodes, the child nodes will
be restricted to represent smaller subproblems than their parent. After branch1 and
branch2 have been executed, this is on top of the node stack of both child nodes;
that is, both child nodes will continue branching according to the same rule. In
summary, this example creates the branches branch1 and branch2 and continues in
both branches to control the same search strategy this.

 To perform a search using a goal, you need to solve the extracted model by calling the
method IloCplex::solve(goal) with the goal to use as an argument instead of
the standard IloCplex::solve. The method solve(goal) simply pushes the
goal onto the goal stack of the root node before calling the standard solve.

See Also

IloCplex::Goal and IloCplex::GoalI

Handle Class
Most Concert Technology entities are implemented by means of two classes: a handle
class and an implementation class, where an object of the handle class contains a data
member (the handle pointer) that points to an object (its implementation object) of the
corresponding implementation class. As a Concert Technology user, you will be
working primarily with handles.

As handles, these objects should be passed in either of these ways:

◆ as const by value (when no change is involved);

◆ by reference (when the function to which the handle is passed changes the
implementation of that handle).

They should be created as automatic objects, where "automatic" has the usual C++
meaning.

Member functions of a handle class correspond to member functions of the same name
in the implementation class.

Infeasibility Tools
 When you problem is infeasible, ILOG CPLEX offers tools to help you diagnose the
cause or causes of infeasibility in your model and possibly repair it:
IloCplex::refineConflict and IloCplex::feasOpt.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 32

Conflict Refiner
 Given an infeasible model, the conflict refiner can identify conflicting constraints and
bounds within the model to help you identify the causes of the infeasibility. In this
context, a conflict is a subset of the constraints and bounds of the model which are
mutually contradictory. The conflict refiner first examines the full infeasible model to
identify portions of the conflict that it can remove. By this process of refinement, the
conflict refiner arrives at a minimal conflict. A minimal conflict is usually smaller than
the full infeasible model and thus makes infeasibility analysis easier. To invoke the
conflict refiner, call the method IloCplex::refineConflict.

 If a model happens to include multiple independent causes of infeasibility, then it may
be necessary for the user to repair one such cause and then repeat the diagnosis with
further conflict analysis.

 A conflict does not provide information about the magnitude of change in data values
needed to achieve feasibility. The techniques that ILOG CPLEX uses to refine a conflict
include or remove constraints or bounds in trial conflicts; the techniques do not vary the
data in constraints nor in bounds. To gain insight about changes in bounds on variables
and constraints, consider the FeasOpt feature.

 Also consider FeasOpt for an approach to automatic repair of infeasibility.

 Refining a conflict in an infeasible model as defined here is similar to finding an
irreducibly inconsistent set (IIS), an established technique in the published literature,
long available within ILOG CPLEX. Both tools (conflict refiner and IIS finder) attempt
to identify an infeasible subproblem in an infeasible model. However, the conflict
refiner is more general than the IIS finder. The IIS finder is applicable only in continuous
(that is, LP) models, whereas the conflict refiner can work on any type of problem, even
mixed integer programs (MIP) and those containing quadratic elements (QP or QCP).

 Also the conflict refiner differs from the IIS finder in that a user may organize
constraints into one or more groups for a conflict. When a user specifies a group, the
conflict refiner will make sure that either the group as a whole will be present in a
conflict (that is, all its members will participate in the conflict, and removal of one will
result in a feasible subproblem) or that the group will not participate in the conflict at
all.

 See the method IloCplex::refineConflictExt for more about groups.

 A user may also assign a numeric preference to constraints or to groups of constraints.
In the case of an infeasible model having more than one possible conflict, preferences
guide the conflict refiner toward identifying constraints in a conflict as the user prefers.

 In these respects, the conflict refiner represents an extension and generalization of the
IIS finder.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 33

FeasOpt
 Alternatively, after a model have been proven infeasible, IloCplex::feasOpt
performs an additional optimization that computes a minimal relaxation of the
constraints over variables, of the bounds on variables, and of the righthand sides of
constraints to make the model feasible. The parameter FeasOptMode lets you guide
feasOpt in its computation of this relaxation.

IloCplex::feasOpt works in two phases. In its first phase, it attempts to minimize
its relaxation of the infeasible model. That is, it attempts to find a feasible solution that
requires minimal change. In its second phase, it finds an optimal solution among those
that require only as much relaxation as it found necessary in the first phase.

Your choice of values for the parameter FeasOptMode indicates two aspects to ILOG
CPLEX:

◆ whether to stop in phase one or continue to phase two:

◆ Min means stop in phase one with a minimal relaxation.

◆ Opt means continue to phase two for an optimum among those minimal
relaxations.

◆ how to measure the minimality of the relaxation:

◆ Sum means ILOG CPLEX should minimize the sum of all relaxations

◆ Inf means that ILOG CPLEX should minimize the number of constraints and
bounds relaxed.

 The possible values of FeasOptMode are documented in the method
IloCplex::feasOpt.

 The status of the bounds and constraints of a relaxation returned by a call of
IloCplex::feasOpt are documented in the enumeration IloCplex::Status.

Logical Constraints
For ILOG CPLEX, a logical constraint combines linear constraints by means of logical
operators, such as logical and, logical or, negation (that is, not), conditional statements
(that is, if ... then ...) to express complex relations between linear constraints. ILOG
CPLEX can also handle certain logical expressions appearing within a linear constraint.
One such logical expression is the minimum of a set of variables. Another such logical
expression is the absolute value of a variable.

In C++ applications, the class IloCplex can extract modeling objects to solve a wide
variety of MIPs and LPs. Under some conditions, a problem expressed in terms of
logical constraints may be equivalent to a continuous LP, rather than a MIP. In such a
case, there is no need for branching during the search for a solution. Whether a problem
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 34

(or parts of a problem) represented by logical terms can be modeled and solved by LP
depends on the shape of those logical terms. In this context, shape means convex or
concave in the formal, mathematical sense.

 For more about convexity, see that topic in the ILOG CPLEX User's Manual.

 In fact, the class IloCplex can extract logical constraints as well as some logical
expressions. The logical constraints that IloCplex can extract are these:

◆ IloAnd which can also be represented by the overloaded operator &&;

◆ IloOr which can also be represented by the overloaded operator ||;

◆ IloDiff which can also be represented by the overloaded operator !=;

◆ IloNot, negation, which can also be represented by the overloaded operator !;

◆ IloIfThen

◆ == (that is, the equivalence relation)

◆ != (that is, the exclusive-or relation)

 For examples of logical constraints in ILOG CPLEX, see the ILOG CPLEX User's
Manual.

Normalization: Reducing Linear Terms
Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by
arithmetic operations; for example, x + 3y is a linear expression of two terms consisting
of two variables. In some expressions, a given variable may appear in more than one
term, for example, x + 3y +2x. Concert Technology has more than one way of dealing
with linear expressions in this respect, and you control which way Concert Technology
treats expressions from your application.

In one mode, Concert Technology analyzes linear expressions that your application
passes it and attempts to reduce them so that a given variable appears in only one term in
the linear expression. This is the default mode. You set this mode with the member
function IloEnv::setNormalizer(IloTrue).

In the other mode, Concert Technology assumes that no variable appears in more than
one term in any of the linear expressions that your application passes to Concert
Technology. We call this mode assume normalized linear expressions. You set this mode
with the member function IloEnv::setNormalizer(IloFalse).

In classes such as IloExpr or IloRange, there are member functions that check the
setting of the member function IloEnv::setNormalizer in the environment and
behave accordingly. The documentation of those member functions indicates how they
behave with respect to normalization.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 35

When you set IloEnv::setNormalizer(IloFalse), those member functions
assume that no variable appears in more than one term in a linear expression. This mode
may save time during computation, but it entails the risk that a linear expression may
contain one or more variables, each of which appears in one or more terms. Such a case
may cause certain assertions in member functions of a class to fail if you do not compile
with the flag -DNDEBUG.

By default, those member functions attempt to reduce expressions. This mode may
require more time during preliminary computation, but it avoids of the possibility of a
failed assertion in case of duplicates.

 For more information, refer to the documentation of IloEnv,IloExpr, and
IloRange.

Notification
You may modify the elements of a model in Concert Technology. For example, you may
add or remove constraints, change the objective, add or remove columns, add or remove
rows, and so forth.

In order to maintain consistency between a model and the algorithms that may use it,
Concert Technology notifies algorithms about changes in the objects that the algorithms
have extracted. In this manual, member functions that are part of this notification
system are indicated like this:

Piecewise Linearity
 Some problems are most naturally represented by constraints over functions that are
not purely linear but consist of linear segments. Such functions are sometimes known as
piecewise linear.

How to Define a Piecewise Linear Function

 To define a piecewise linear function in ILOG CPLEX, you need these components:

◆ the variable of the piecewise linear function;

◆ the breakpoints of the piecewise linear function;

◆ the slope of each segment (that is, the rate of increase or decrease of the function
between two breakpoints);

◆ the geometric coordinates of at least one point of the function.

Note:This member function notifies Concert Technology algorithms about
this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 36

 In other words, for a piecewise linear function of n breakpoints, you need to know n+1
slopes. Typically, the breakpoints of a piecewise linear function are specified as an array
of numeric values. The slopes of its segments are indicated as an array of numeric values
as well. The geometric coordinates of at least one point of the function must also be
specified. Then in ILOG CPLEX, those details are brought together by the global
function IloPiecewiseLinear.

 Another way to specify a piecewise linear function is to give the slope of the first
segment, two arrays for the coordinates of the breakpoints, and the slope of the last
segment.

For examples of these ways of defining a piecewise linear function, see this topic in the
ILOG CPLEX User's Manual.

Discontinuous Piecewise Linear Functions

 Intuitively, in a continuous piecewise linear function, the endpoint of one segment has
the same coordinates as the initial point of the next segment. There are piecewise linear
functions, however, where two consecutive breakpoints may have the same x coordinate
but differ in the value of f(x). Such a difference is known as a step in the piecewise linear
function, and such a function is known as discontinuous.

 Syntactically, a step is represented in this way:

◆ The value of the first point of a step in the array of slopes is the height of the step.

◆ The value of the second point of the step in the array of slopes is the slope of the
function after the step.

 By convention, a breakpoint belongs to the segment that starts at that breakpoint.

 In ILOG CPLEX, a discontinuous piecewise linear function is also represented as an
instance of the class created by the global function IloPiecewiseLinear.

 For examples of discontinuous piecewise linear functions, see this topic in the ILOG
CPLEX User's Manual.

Using IloPiecewiseLinear

 Whether it represents a continuous or a discontinuous piecewise linear function, an
instance of the class created by the global function IloPiecewiseLinear behaves
like a floating-point expression. That is, you may use it in a term of a linear expression
or in a constraint added to a model (an instance of IloModel).

Unboundedness
 The treatment of models that are unbounded involves a few subtleties. Specifically, a
declaration of unboundedness means that ILOG CPLEX has determined that the model
has an unbounded ray. Given any feasible solution x with objective z, a multiple of the
unbounded ray can be added to x to give a feasible solution with objective z-1 (or z+1 for
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 37

maximization models). Thus, if a feasible solution exists, then the optimal objective is
unbounded. Note that ILOG CPLEX has not necessarily concluded that a feasible
solution exists. Users can call the methods IloCplex::isPrimalFeasible and
IloCplex::isDualFeasible to determine whether ILOG CPLEX has also
concluded that the model has a feasible solution.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 38

Group optim.concert
 The ILOG Concert API.

Classes Summary
IloAlgorithm The base class of algorithms in

Concert Technology.
IloAlgorithm::CannotExtractE
xception

 The class of exceptions thrown if an
object cannot be extracted from a
model.

IloAlgorithm::CannotRemoveEx
ception

 The class of exceptions thrown if an
object cannot be removed from a
model.

IloAlgorithm::Exception The base class of exceptions thrown
by classes derived from IloAlgorithm.

IloAlgorithm::NotExtractedEx
ception

 The class of exceptions thrown if an
extractable object has no value in the
current solution of an algorithm.

IloAnd Defines a logical conjunctive-AND
among other constraints.

IloArray A template to create classes of
arrays for elements of a given class.

IloBarrier A system class to synchronize
threads at a specified number.

IloBaseEnvMutex A class to initialize multithreading in
an application.

IloBoolArray IloBoolArray is the array class of
the basic Boolean class for a model.

IloBoolVar An instance of this class represents
a constrained Boolean variable in a
Concert Technology model.

IloBoolVarArray IloBoolVarArray is the array class of
the Boolean variable class.

IloCondition Provides synchronization primitives
adapted to Concert Technology for
use in a parallel application.

IloConstraint An instance of this class is a
constraint in a model.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 39

IloConstraintArray IloConstraintArray is the array
class of constraints for a model.

IloDiff Constraint that enforces inequality.
IloEmptyHandleException The class of exceptions thrown if an

empty handle is passed.
IloEnv The class of environments for

models or algorithms in Concert
Technology.

IloEnvironmentMismatch This exception is thrown if you try to
build an object using objects from
another environment.

IloException Base class of Concert Technology
exceptions.

IloExpr An instance of this class represents
an expression in a model.

IloExprArray IloExprArray is the array class of
the expressions class.

IloExpr::LinearIterator An iterator over the linear part of an
expression.

IloExtractable Base class of all extractable objects.
IloExtractableArray An array of extractable objects.
IloExtractableVisitor The class IloExtractableVisitor

inspects all nodes of an expression.

IloFastMutex Synchronization primitives adapted
to the needs of Concert Technology.

IloIfThen This class represents a condition
constraint.

IloIntArray IloIntArray is the array class of the
basic integer class.

IloIntExpr The class of integer expressions in
Concert Technology.

IloIntExprArg A class used internally in Concert
Technology.

IloIntExprArray The array class of IloIntExpr.
IloIntSet An instance of this class offers a

convenient way to represent a set of
integer values.

IloIntSet::Iterator This class is an iterator that traverses
the elements of a finite set of numeric
values.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 40

IloIntSetVar The class IloIntSetVar represents a

set of integer values.

IloIntSetVarArray The array class of the set variable
class for integer values.

IloIntTupleSet Ordered set of values represented by
an array.

IloIntTupleSetIterator Class of iterators to traverse
enumerated values of a tuple-set.

IloIntVar An instance of this class represents
a constrained integer variable in a
Concert Technology model.

IloIntVarArray The array class of IloIntVar.
IloIterator A template to create iterators for a

class of extractable objects.
IloModel Class for models.
IloModel::Iterator Nested class of iterators to traverse

the extractable objects in a model.
IloMutexDeadlock The class of exceptions thrown due

to mutex deadlock.
IloMutexNotOwner The class of exceptions thrown.
IloMutexProblem Exception.
IloNot Negation of its argument.
IloNumArray IloNumArray is the array class of the

basic floating-point class.

IloNumExpr The class of numeric expressions in
a Concert model.

IloNumExprArg A class used internally in Concert
Technology.

IloNumExprArray The class IloNumExprArray.
IloNumExpr::NonLinearExpress
ion

 The class of exceptions thrown if a
numeric constant of a nonlinear
expression is set or queried.

IloNumVar An instance of this class represents
a numeric variable in a model.

IloNumVarArray The array class of IloNumVar.
IloObjective An instance of this class is an

objective in a model.
IloOr Represents a disjunctive constraint.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 41

IloRandom This handle class produces streams
of pseudo-random numbers.

IloRange An instance of this class is a range in
a model.

IloRangeArray IloRangeArray is the array class of
ranges for a model.

IloSemaphore Provides synchronization primitives.
IloSolution Instances of this class store

solutions to problems.
IloSolutionIterator This template class creates a typed

iterator over solutions.
IloSolution::Iterator It allows you to traverse the variables

in a solution.
IloSolutionManip An instance of this class accesses a

specific part of a solution.
IloTimer Represents a timer.

Macros Summary
IloFloatVar An instance of this class represents

a constrained floating-point variable
in Concert Technology.

IloFloatVarArray The array class of IloFloatVar.
IloHalfPi Half pi.
IloPi Pi.
IloQuarterPi Quarter pi.
ILOSTLBEGIN

IloThreeHalfPi Three half-pi.
IloTwoPi Two pi.

Enumerations Summary
IloAlgorithm::Status An enumeration for the class

IloAlgorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 42

IloDeleterMode An enumeration to set the mode of
an IloDeleter.

IloNumVar::Type nested enumeration.
IloObjective::Sense Specifies objective as minimization

or maximization.

Type Definitions Summary
IloBool Type for Boolean values.
IloCplex::Status An enumeration for the class

IloAlgorithm.

IloInt Type for signed integers.
IloNum Type for numeric values as floating-

point numbers.
IloSolutionArray This type definition represents arrays

of instances of IloSolution.

Global Functions Summary
IloAbs IloAbs returns the absolute value of

its argument.

IloAdd Template to add elements to a
model.

IloArcCos Trigonometric functions.
IloCeil Computes the least integer value not

less than its argument.
IloDisableNANDetection Disables NaN (Not a number)

detection.
IloDiv This function is available for integer

division.
IloEnableNANDetection Enables NaN (Not a number)

detection.
IloEndMT This function ends multithreading.
IloExponent Returns the exponent of its

argument.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 43

IloFloor This function computes the largest
integer value not greater.

IloGetClone Creates a clone.
IloInitMT This function initializes

multithreading.
IloIsNAN Tests whether a double value is a

NaN.
IloLexicographic

IloLog Returns the natural logarithm of its
argument.

IloMax Returns a numeric value
representing the max of numeric
values.

IloMaximize This function defines a maximization
objective in a model.

IloMin Returns a numeric value
representing the min of numeric
values.

IloMinimize This function defines a minimization
objective in a model.

IloPiecewiseLinear Represents a continuous or
discontinuous piecewise linear
function.

IloPower Returns the power of its arguments.
IloRound This function computes the nearest

integer value.
IloScalProd Represents the scalar product.
IloScalProd Represents the scalar product.
IloScalProd Represents the scalar product.
IloScalProd Represents the scalar product.
IloSquare Returns the square of its argument.
IloSum For constraint programming: returns

a numeric value representing the sum
of numeric values.

operator && Overloaded C++ operator for
conjunctive constraints.

operator * Returns an expression equal to the
product of its arguments.

operator new Overloaded C++ new operator.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 44

Description Concert Technology offers a C++ library of classes and functions that enable you to
design models of problems for both math programming (including linear programming,
mixed integer programming, quadratic programming, and network programming) and
constraint programming solutions.

operator! Overloaded C++ operator for
negation.

operator!= overloaded C++ operator.
operator% Returns an expression equal to the

modulo of its arguments.
operator% Returns an expression equal to the

modulo of its arguments.
operator+ Returns an expression equal to the

sum of its arguments.
operator- Returns an expression equal to the

difference of its arguments.
operator/ Returns an expression equal to the

quotient of its arguments.
operator<> overloaded C++ operator.
operator overloaded C++ operator.
operator

operator overloaded C++ operator.
operator==

operator> overloaded C++ operator.
operator>= overloaded C++ operator.
operator>> Overloaded C++ operator redirects

input.
operator|| Overloaded C++ operator for a

disjunctive constraint.

Global Variables Summary
ILO_NO_MEMORY_MANAGER OS environment variable controls

Concert Technology memory
manager.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 45

ILOSTLBEGIN
ILOSTLBEGIN

Category Macro

Synopsis ILOSTLBEGIN()

Description This macro enables you run your application either with the STL (Standard Template
Library) of Microsoft Visual C++ or with other platforms. It is defined as:

 using namespace std

when the STL is used (ports of type stat_sta, stat_mta or stat_mda);
otherwise, its value is simply null.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 46

ILO_NO_MEMORY_MANAGER
ILO_NO_MEMORY_MANAGER

Category Global Variable

Definition File ilconcert/ilosys.h

Summary OS environment variable controls Concert Technology memory manager.

This operating-system environment variable enables you to control the memory
manager of Concert Technology.

Concert Technology uses its own memory manager to provide faster memory allocation
for certain Concert Technology objects. The use of this memory manager can hide
memory problems normally detected by memory usage applications (such as Rational
Purify, for example). If you are working in a software development environment capable
of detecting bad memory access, you can use this operating-system environment
variable to turn off the Concert Technology memory manager in order to detect such
anomalies during software development.

For example, if you are working in such a development environment on a personal
computer running Microsoft XP, use this statement:

 set ILO_NO_MEMORY_MANAGER=1

If you are working on a UNIX platform, using a C-shell, here is one way of setting this
environment variable:

 setenv ILO_NO_MEMORY_MANAGER
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 47

IloAbs
IloAbs

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloAbs(const IloNumExprArg arg)
public IloNum IloAbs(IloNum val)
public IloNum IloPower(IloNum val1,

IloNum val2)
public IloIntExprArg IloAbs(const IloIntExprArg arg)

Summary IloAbs returns the absolute value of its argument.

Description Concert Technology offers predefined functions that return an expression from an
algebraic function on expressions. These predefined functions also return a numeric
value from an algebraic function on numeric values as well.

IloAbs returns the absolute value of its argument.

What Is Extracted

IloAbs is extracted by an instance of IloCplex and linearized automatically.

IloAbs is extracted by an instance of IloCP or IloSolver as an instance of
IlcAbs.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 48

IloAdd
IloAdd

Category Global Function

Definition File ilconcert/ilomodel.h

Synopsis public X IloAdd(IloModel & mdl,
 X x)

Summary Template to add elements to a model.

Description This C++ template helps when you want to add elements to a model. In those synopses,
X represents a class, x is an instance of the class X. The class X must be
IloExtractable, IloExtractableArray, or one of their subclasses.

If model is an instance of IloModel, derived from IloExtractable, then x will
be added to the top level of that model.

As an alternative to this way of adding extractable objects to a model, you may also use
IloModel::add.

This template preserves the original type of its argument x when it returns x. This
feature of the template may be useful, for example, in cases like this:

 IloRange rng = IloAdd(model, 3 * x + y == 17);

For a comparison of these two ways of adding extractable objects to a model, see
Adding Extractable Objects in the documentation of IloExtractable.

See Also IloAnd, IloExtractable, IloExtractableArray, IloModel, IloOr
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 49

IloAlgorithm
IloAlgorithm

Category Class

InheritancePath

Definition File ilconcert/iloalg.h

Summary The base class of algorithms in Concert Technology.

Constructor Summary
public IloAlgorithm(IloAlgorithmI * impl=0)

Method Summary
public void clear() const

public void end()

public ostream & error() const

public void extract(const IloModel) const

public IloEnv getEnv() const

public IloInt getIntValue(const IloIntVar) const

public void getIntValues(const
IloIntVarArray,IloIntArray) const

public IloModel getModel() const

public IloNum getObjValue() const

public IloAlgorithm::Status getStatus() const

public IloNum getTime() const

public IloNum getValue(const IloNumExprArg) const

public IloNum getValue(const IloObjective) const

public IloNum getValue(const IloIntVar) const

public IloNum getValue(const IloNumVar) const

public void getValues(const IloIntVarArray,IloNumArray)
const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 50

IloAlgorithm
Description IloAlgorithm is the base class of algorithms in Concert Technology. An instance of
this class represents an algorithm in Concert Technology.

In general terms, you define a model, and Concert Technology extracts objects from it
for your target algorithm and then solves for solutions.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Status

public void getValues(const IloNumVarArray,IloNumArray)
const

public IloBool isExtracted(const IloExtractable) const

public ostream & out() const

public void printTime() const

public void resetTime() const

public void setError(ostream &)

public void setOut(ostream &)

public void setWarning(ostream &)

public IloBool solve() const

public ostream & warning() const

Inner Enumeration
IloAlgorithm::Status An enumeration for the class IloAlgorithm.

Inner Class
IloAlgorithm::IloAlgorithm::
CannotRemoveException

 The class of exceptions thrown if an object
cannot be removed from a model.

IloAlgorithm::IloAlgorithm::
CannotExtractException

 The class of exceptions thrown if an object
cannot be extracted from a model.

IloAlgorithm::IloAlgorithm::
Exception

 The base class of exceptions thrown by
classes derived from IloAlgorithm.

IloAlgorithm::IloAlgorithm::
NotExtractedException

 The class of exceptions thrown if an
extractable object has no value in the current
solution of an algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 51

IloAlgorithm
The member function getStatus returns a status showing information about the
currently extracted model and the solution (if there is one). For explanations of the
status, see the nested enumeration IloAlgorithm::Status.

Exceptions

The class IloAlgorithm::Exception, derived from the class IloException,
is the base class of exceptions thrown by classes derived from IloAlgorithm. For an
explanation of exceptions thrown by instances of IloAlgorithm, see
IloAlgorithm::Exception.

Streams and Output

The class IloAlgorithm supports these communication streams:

◆ ostream& error() const; for error messages.

◆ ostream& out() const; for general output.

◆ ostream& warning() const; for warning messages about nonfatal conditions.

Child classes:

◆ the class IloCplex in the ILOG CPLEX Reference Manual

◆ the class IloCP in the ILOG CP Optimizer Reference Manual.

◆ the class IloSolver in the ILOG Solver Reference Manual .

See Also IloEnv, IloModel, IloAlgorithm::Status,
IloAlgorithm::Exception

Constructors public IloAlgorithm(IloAlgorithmI * impl=0)

This constructor creates an algorithm in Concert Technology from its implementation
object. This is the default constructor.

Methods public void clear() const

This member function clears the current model from the algorithm.

public void end()

This member function deletes the invoking algorithm. That is, it frees memory
associated with the invoking algorithm.

public ostream & error() const

This member function returns a reference to the stream currently used for error
messages from the invoking algorithm. IloAlgorithm::error is initialized with
the value of IloEnv::error.

public void extract(const IloModel) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 52

IloAlgorithm
This member function extracts the extractable objects from a model into the invoking
algorithm if a member function exists to extract the objects from the model for the
invoking algorithm. Not all extractable objects can be extracted by all algorithms; see
the documentation of the algorithm class you are using for a list of extractable classes it
supports.

When you use this member function to extract extractable objects from a model, it
extracts all the elements of that model for which Concert Technology creates the
representation of the extractable object suitable for the invoking algorithm.

The attempt to extract may fail. In case such a failure occurs, Concert Technology
throws the exception CannotExtractException on platforms that support C++
exceptions when exceptions are enabled.

For example, a failure will occur if you attempt to extract more than one objective for an
invoking algorithm that accepts only one objective, and Concert Technology will throw
the exception MultipleObjException.

public IloEnv getEnv() const

This member function returns the environment of the invoking algorithm.

public IloInt getIntValue(const IloIntVar) const

This member function returns the integer value of an integer variable in the current
solution of the invoking algorithm. For example, to access the variable, use the member
function getIntValue(var) where var is an instance of the class IloIntVar.

If there is no value to return for var, this member function raises an error. This member
function throws the exception NotExtractedException if there is no value to
return (for example, if var was not extracted by the invoking algorithm).

public void getIntValues(const IloIntVarArray,
IloIntArray) const

This member function accepts an array of variables vars and puts the corresponding
values into the array vals; the corresponding values come from the current solution of
the invoking algorithm. The array vals must be a clean, empty array when you pass it
to this member function.

If there are no values to return for vars, this member function raises an error. On
platforms that support C++ exceptions, when exceptions are enabled, this member
function throws the exception NotExtractedException in such a case.

public IloModel getModel() const

This member function returns the model of the invoking algorithm.

public IloNum getObjValue() const

This member function returns the numeric value of the objective function associated
with the invoking algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 53

IloAlgorithm
public IloAlgorithm::Status getStatus() const

This member function returns a status showing information about the current model and
the solution. For explanations of the status, see the nested enumeration
IloAlgorithm::Status.

public IloNum getTime() const

This member function returns the amount of time elapsed in seconds since the most
recent reset of the invoking algorithm. (The member function printTime directs the
output of getTime to the output channel of the invoking algorithm.)

See Also IloTimer

public IloNum getValue(const IloNumExprArg) const

This member function returns the value of an expression in the current solution of the
invoking algorithm. For example, to access the expression, use the member function
getValue(expr) where expr is an instance of the class IloNumExprArg.

If there is no value to return for expr, this member function raises an error. This
member function throws the exception NotExtractedException if there is no
value to return (for example, if expr was not extracted by the invoking algorithm).

public IloNum getValue(const IloObjective) const

This member function returns the value of an objective in the current solution of the
invoking algorithm. For example, to access the objective, use the member function
getValue(obj) where obj is an instance of the class IloObjective.

If there is no value to return for obj, this member function raises an error. This member
function throws the exception NotExtractedException if there is no value to
return (for example, if obj was not extracted by the invoking algorithm).

public IloNum getValue(const IloIntVar) const

This member function returns the numeric value of an integer variable in the current
solution of the invoking algorithm. For example, to access the variable, use the member
function getValue(var) where var is an instance of the class IloIntVar.

If there is no value to return for var, this member function raises an error. This member
function throws the exception NotExtractedException if there is no value to
return (for example, if var was not extracted by the invoking algorithm).

public IloNum getValue(const IloNumVar) const

This member function returns the numeric value of a numeric variable in the current
solution of the invoking algorithm. For example, to access the value of the variable, use
the member function getValue(var) where var is an instance of the class
IloNumVar.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 54

IloAlgorithm
If there is no value to return for var, this member function raises an error. This member
function throws the exception NotExtractedException if there is no value to
return (for example, if var was not extracted by the invoking algorithm).

public void getValues(const IloIntVarArray,
IloNumArray) const

This member function accepts an array of variables vars and puts the corresponding
values into the array vals; the corresponding values come from the current solution of
the invoking algorithm. The array vals must be a clean, empty array when you pass it
to this member function.

If there are no values to return for vars, this member function raises an error. On
platforms that support C++ exceptions, when exceptions are enabled, this member
function throws the exception NotExtractedException in such a case.

public void getValues(const IloNumVarArray,
IloNumArray) const

This member function accepts an array of variables vars and puts the corresponding
values into the array vals; the corresponding values come from the current solution of
the invoking algorithm. The array vals must be a clean, empty array when you pass it
to this member function.

If there are no values to return for vars, this member function raises an error. On
platforms that support C++ exceptions, when exceptions are enabled, this member
function throws the exception NotExtractedException in such a case.

public IloBool isExtracted(const IloExtractable) const

This member function returns IloTrue if extr has been extracted for the invoking
algorithm; otherwise, it returns IloFalse.

public ostream & out() const

This member function returns a reference to the stream currently used for logging.
General output from the invoking algorithm is accessible through this member function.
IloAlgorithm::out is initialized with the value of IloEnv::out.

public void printTime() const

This member function directs the output of the member function getTime to an output
channel of the invoking algorithm. (The member function getTime accesses the
elapsed time in seconds since the most recent reset of the invoking algorithm.)

public void resetTime() const

This member function resets the timer on the invoking algorithm. The type of timer is
platform dependent. On Windows systems, the time is elapsed wall clock time. On
UNIX systems, the time is CPU time.

public void setError(ostream &)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 55

IloAlgorithm
This member function sets the stream for errors generated by the invoking algorithm. By
default, the stream is defined by an instance of IloEnv as cerr.

public void setOut(ostream &)

This member function redirects the out() stream with the stream given as an
argument.

This member function can be used with IloEnv::getNullStream to suppress
screen output by redirecting it to the null stream.

public void setWarning(ostream &)

This member function sets the stream for warnings from the invoking algorithm. By
default, the stream is defined by an instance of IloEnv as cout.

public IloBool solve() const

This member function solves the current model in the invoking algorithm. In other
words, solve works with all extractable objects extracted from the model for the
algorithm. The member function returns IloTrue if it finds a solution (not necessarily
an optimal one). Here is an example of its use:

 if (algo.solve()) {
 algo.out() << "Status is " << algo.getStatus() << endl;
 };

If an objective of the model has been extracted into the invoking algorithm, this member
function solves the model to optimality. If there is currently no objective, this member
function searches for the first feasible solution. A feasible solution is not necessarily
optimal, though it satisfies all constraints.

public ostream & warning() const

This member function returns a reference to the stream currently used for warnings from
the invoking algorithm. IloAlgorithm::warning is initialized with the value of
IloEnv::warning.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 56

IloAlgorithm::CannotExtractException
IloAlgorithm::CannotExtractException

Category Inner Class

InheritancePath

Definition File ilconcert/iloalg.h

Summary The class of exceptions thrown if an object cannot be extracted from a model.

Description If an attempt to extract an object from a model fails, this exception is thrown.

Methods public void end()

This member function deletes the invoking exception. That is, it frees memory
associated with the invoking exception.

public const IloAlgorithmI * getAlgorithm() const

The member function getAlgorithm returns the algorithm from which the exception
was thrown.

public IloExtractableArray & getExtractables()

Method Summary
public void end()

public const IloAlgorithmI * getAlgorithm() const

public IloExtractableArray & getExtractables()

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 57

IloAlgorithm::CannotExtractException
The member function getExtractables returns the extractable objects that triggered the
exception.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 58

IloAlgorithm::CannotRemoveException
IloAlgorithm::CannotRemoveException

Category Inner Class

InheritancePath

Definition File ilconcert/iloalg.h

Summary The class of exceptions thrown if an object cannot be removed from a model.

Description If an attempt to remove an extractable object from a model fails, this exception is
thrown.

Methods public void end()

This member function deletes the invoking exception. That is, it frees memory
associated with the invoking exception.

public const IloAlgorithmI * getAlgorithm() const

The member function getAlgorithm returns the algorithm from which the exception
was thrown.

public IloExtractableArray & getExtractables()

Method Summary
public void end()

public const IloAlgorithmI * getAlgorithm() const

public IloExtractableArray & getExtractables()

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 59

IloAlgorithm::CannotRemoveException
The member function getExtractables returns the extractable objects that triggered the
exception.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 60

IloAlgorithm::Exception
IloAlgorithm::Exception

Category Inner Class

InheritancePath

Definition File ilconcert/iloalg.h

Summary The base class of exceptions thrown by classes derived from IloAlgorithm.

Description IloAlgorithm is the base class of algorithms in Concert Technology.

The class IloAlgorithm::Exception, derived from the class IloException, is the
base class of exceptions thrown by classes derived from IloAlgorithm.

On platforms that support C++ exceptions, when exceptions are enabled, the member
function extract will throw an exception if you attempt to extract an unsuitable
object from your model for an algorithm. An extractable object is unsuitable for an
algorithm if there is no member function to extract the object from your model to that
algorithm.

For example, an attempt to extract more than one objective into an algorithm that
accepts only one objective will throw an exception.

Similarly, the member function getValue will throw an exception if you attempt to
access the value of a variable that has not yet been bound to a value.

See Also IloAlgorithm, IloException

Constructors public Exception(const char * str)

This constructor creates an exception thrown from a member of IloAlgorithm. The
exception contains the message string str, which can be queried with the member
function IloException::getMessage.

Constructor Summary
public Exception(const char * str)

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 61

IloAlgorithm::NotExtractedException
IloAlgorithm::NotExtractedException

Category Inner Class

InheritancePath

Definition File ilconcert/iloalg.h

Summary The class of exceptions thrown if an extractable object has no value in the current
solution of an algorithm.

Description If an expression, numeric variable, objective, or array of extractable objects has no value
in the current solution of an algorithm, this exception is thrown.

Constructors public NotExtractedException(const IloAlgorithmI *,
 const IloExtractable)

Constructor Summary
public NotExtractedException(const IloAlgorithmI

*,const IloExtractable)

Method Summary
public const IloAlgorithmI * getAlgorithm() const

public const IloExtractable & getExtractable()

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 62

IloAlgorithm::NotExtractedException
The constructor NotExtractedException creates an exception thrown from the
algorithm object alg for the extractable object extr.

Methods public const IloAlgorithmI * getAlgorithm() const

The member function getAlgorithm returns the algorithm from which the exception
was thrown.

public const IloExtractable & getExtractable()

The member function getExtractable returns the extractable object that triggered
the exception.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 63

IloAlgorithm::Status
IloAlgorithm::Status

Category Inner Enumeration

Definition File ilconcert/iloalg.h

Synopsis Status{
 Unknown,
 Feasible,
 Optimal,
 Infeasible,
 Unbounded,
 InfeasibleOrUnbounded,
 Error
};

Summary An enumeration for the class IloAlgorithm.

Description IloAlgorithm is the base class of algorithms in Concert Technology, and
IloAlgorithm::Status is an enumeration limited in scope to the class
IloAlgorithm. The member function getStatus returns a status showing
information about the current model and the solution.

Unknown specifies that the algorithm has no information about the solution of the
model.

Feasible specifies that the algorithm found a feasible solution (that is, an assignment
of values to variables that satisfies the constraints of the model, though it may not
necessarily be optimal). The member functions getValue access this feasible
solution.

Optimal specifies that the algorithm found an optimal solution (that is, an assignment
of values to variables that satisfies all the constraints of the model and that is proved
optimal with respect to the objective of the model). The member functions getValue
access this optimal solution.

Infeasible specifies that the algorithm proved the model infeasible; that is, it is not
possible to find an assignment of values to variables satisfying all the constraints in the
model.

Unbounded specifies that the algorithm proved the model unbounded.

InfeasibleOrUnbounded specifies that the model is infeasible or unbounded.

Error specifies that an error occurred and, on platforms that support exceptions, that
an exception has been thrown.

See Also the enumeration IloCplex::Status in the ILOG CPLEX Reference
Manual for status specific to the CPLEX algorithms.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 64

IloAlgorithm::Status
See Also IloAlgorithm, operator

Fields Unknown
Feasible
Optimal
Infeasible
Unbounded
InfeasibleOrUnbounded
Error
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 65

IloAnd
IloAnd

Category Class

InheritancePath

Definition File ilconcert/ilomodel.h

Summary Defines a logical conjunctive-AND among other constraints.

Constructor Summary
public IloAnd()

public IloAnd(IloAndI * impl)

public IloAnd(const IloEnv env,const char * name=0)

Method Summary
public void add(const IloConstraintArray array) const

public void add(const IloConstraint constraint) const

public IloAndI * getImpl() const

public void remove(const IloConstraintArray array) const

public void remove(const IloConstraint constraint) const

Inherited methods from IloConstraint
IloConstraint::getImpl
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 66

IloAnd
Description An instance of IloAnd represents a conjunctive constraint. In other words, it defines a
logical conjunctive-AND among any number of constraints. It lets you represent a
constraint on constraints in your model. Since an instance of IloAnd is a constraint
itself, you can build up extensive conjunctions by adding constraints to an instance of
IloAnd by means of the member function add. You can also remove constraints from
an instance of IloAnd by means of the member function remove.

The elements of a conjunctive constraint must be in the same environment.

In order for the constraint to take effect, you must add it to a model with the template
IloAdd or the member function IloModel::add and extract the model for an
algorithm with the member function extract.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Conjunction of Goals

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 67

IloAnd
If you want to represent the conjunction of goals (rather than constraints) in your
model, then you should consider the function IloAndGoal (documented in the ILOG
Solver Reference Manual).

What Is Extracted

All the constraints (that is, instances of IloConstraint or one of its subclasses) that
have been added to a conjunctive constraint (an instance of IloAnd) and that have not
been removed from it will be extracted when an algorithm such as IloCplex, IloCP,
or IloSolver extracts the constraint.

Example

For example, you may write:

 IloAnd and(env);
 and.add(constraint1);
 and.add(constraint2);
 and.add(constraint3);

Those lines are equivalent to :

 IloAnd and = constraint1 && constraint2 && constraint3;

See Also IloConstraint, IloOr, operator &&

Constructors public IloAnd()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloAnd(IloAndI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloAnd(const IloEnv env,
 const char * name=0)

This constructor creates a conjunctive constraint for use in the environment env. In
order for the constraint to take effect, you must add it to a model with the template
IloAdd or the member function IloModel::add and extract the model for an
algorithm with the member function extract.

The optional argument name is set to 0 by default.

Methods public void add(const IloConstraintArray array) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 68

IloAnd
This member function makes all the elements in array elements of the invoking
conjunctive constraint. In other words, it applies the invoking conjunctive constraint to
all the elements of array.

public void add(const IloConstraint constraint) const

This member function makes constraint one of the elements of the invoking
conjunctive constraint. In other words, it applies the invoking conjunctive constraint to
constraint.

public IloAndI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public void remove(const IloConstraintArray array) const

This member function removes all the elements of array from the invoking
conjunctive constraint so that the invoking conjunctive constraint no longer applies to
any of those elements.

public void remove(const IloConstraint constraint) const

This member function removes constraint from the invoking conjunctive constraint
so that the invoking conjunctive constraint no longer applies to constraint.

Note: The member function add notifies Concert Technology algorithms
about this change to the invoking object.

Note: The member function add notifies Concert Technology algorithms
about this change to the invoking object.

Note: The member function remove notifies Concert Technology
algorithms about this change to the invoking object.

Note: The member function remove notifies Concert Technology
algorithms about this change to the invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 69

IloArcCos
IloArcCos

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloArcCos(const IloNumExprArg arg)
public IloNum IloCos(IloNum val)
public IloNum IloSin(IloNum val)
public IloNum IloTan(IloNum val)
public IloNum IloArcCos(IloNum val)
public IloNum IloArcSin(IloNum val)
public IloNum IloArcTan(IloNum val)
public IloNumExprArg IloSin(const IloNumExprArg arg)
public IloNumExprArg IloCos(const IloNumExprArg arg)
public IloNumExprArg IloTan(const IloNumExprArg arg)
public IloNumExprArg IloArcSin(const IloNumExprArg arg)
public IloNumExprArg IloArcTan(const IloNumExprArg arg)

Summary Trigonometric functions.

Description Concert Technology offers predefined functions that return an expression from a
trigonometric function on an expression. These predefined functions also return a
numeric value from a trigonometric function on a numeric value as well.

Programming Hint

If you want to manipulate constrained floating-point expressions in degrees, we strongly
recommend that you call the trigonometric functions on variables expressed in radians
and then convert the results to degrees (rather than declaring the constrained floating-
point expressions in degrees and then converting them to radians to call the
trigonometric functions).

The reason for that advice is that the method we recommend gives more accurate results
in the context of the usual floating-point pitfalls.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 70

IloArray
IloArray

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary A template to create classes of arrays for elements of a given class.

Description This C++ template creates a class of arrays for elements of a given class. In other words,
you can use this template to create arrays of Concert Technology objects; you can also
use this template to create arrays of arrays (that is, multidimensional arrays).

In its synopsis, X represents a class, x is an instance of the class X. This template creates
the array class (IloArrayX) for any class in Concert Technology, including classes
with names in the form IloXArray, such as IloExtractableArray. Concert
Technology predefines the array classes listed here as See Also. The member functions
defined by this template are documented in each of those predefined classes.

Constructor Summary
public IloArray(IloEnv env,IloInt max=0)

Method Summary
public void add(IloArray< X > ax) const

public void add(IloInt more,X x) const

public void add(X x) const

public void clear()

public void end()

public IloEnv getEnv() const

public IloInt getSize() const

public X & operator[](IloInt i)

public const X & operator[](IloInt i) const

public void remove(IloInt first,IloInt nb=1)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 71

IloArray
The classes you create in this way consist of extensible arrays. That is, you can add
elements to the array as needed.

Deleting Arrays

The member function end created by this template deletes only the array; the member
function does not delete the elements of the array.

Copying Arrays

Like certain other Concert Technology classes, a class of arrays created by IloArray
is a handle class corresponding to an implementation class. In other words, an instance
of an IloArray class is a handle pointing to a corresponding implementation object.
More than one handle may point to the same implementation object.

Input and Output of Multidimensional Arrays

The template operator >> makes it possible to read numeric values from a file in the
format [x, y, z, ...] where x, y, z are the results of the operator >> for
class X. Class X must provide a default constructor for operator >> to work. That
is, the statement X x; must work for X. This input operator is limited to numeric values.

Likewise, the template operator << makes it possible to write to a file in the format
[x, y, z, ...] where x, y, z are the results of the operator << for class X.
(This output operator is not limited to numeric values, as the input operator is.)

These two operators make it possible to read and write multidimensional arrays of
numeric values like this:

 IloArray<IloArray<IloIntArray> >

(Notice the space between > > at the end of that statement. It is necessary in C++.)

However, there is a practical limit of four on the number of dimensions supported by the
input operator for reading multidimensional arrays. This limit is due to the inability of
certain C++ compilers to support templates correctly. Specifically, you can read input by
means of the input operator for multidimensional arrays of one, two, three, or four
dimensions. There is no such limit on the number of dimensions with respect to the
output operator for multidimensional arrays.

See Also these classes in the ILOG CPLEX Reference Manual:
IloSemiContVarArray, IloSOS1Array, IloSOS2Array,
IloNumColumnArray.

See Also IloAnyArray, IloAnySetVarArray, IloAnyVarArray, IloBoolArray,
IloBoolVarArray, IloConstraintArray, IloExprArray,
IloExtractableArray, IloFloatArray, IloFloatVarArray, IloIntArray,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 72

IloArray
IloIntVarArray, IloNumVarArray, IloRangeArray,
IloSolutionArray

Constructors public IloArray(IloEnv env,
IloInt max=0)

This constructor creates an array of max elements, all of which are empty handles.

Methods public void add(IloArray< X > ax) const

This member function appends the elements in ax to the invoking array.

public void add(IloInt more,
 X x) const

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(X x) const

This member function appends x to the invoking array.

public void clear()

This member function removes all the elements from the invoking array. In other words,
it produces an empty array.

public void end()

This member function first removes the invoking extractable object from all other
extractable objects where it is used (such as a model, ranges, etc.) and then deletes the
invoking extractable object. That is, it frees all the resources used by the invoking object.
After a call to this member function, you cannot use the invoking extractable object
again.

public IloEnv getEnv() const

This member function returns the environment where the invoking array was created.
The elements of the invoking array belong to the same environment.

public IloInt getSize() const

This member function returns an integer specifying the size of the invoking array. An
empty array has size 0 (zero).

public X & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the
position specified by the index i.

public const X & operator[](IloInt i) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 73

IloArray
This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloArray operator[] (IloInt i) const;

public void remove(IloInt first,
IloInt nb=1)

This member function removes elements from the invoking array. It begins removing
elements at the index specified by first, and it removes nb elements (nb = 1 by
default).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 74

IloBarrier
IloBarrier

Category Class

InheritancePath

Definition File ilconcert/ilothread.h

Summary A system class to synchronize threads at a specified number.

Description The class IloBarrier provides synchronization primitives adapted to Concert
Technology. A barrier, an instance of this class, serves as a rendezvous for a specific
number of threads. After you create a barrier for n threads, the first n-1 threads to reach
that barrier will be blocked. The nth thread to arrive at the barrier completes the
synchronization and wakes up the n-1 threads already waiting at that barrier. When the
nth thread arrives, the barrier resets itself. Any other thread that arrives at this point is
blocked and will participate in a new barrier of size n.

See ILOUSEMT for details about the compilation macro to use with instances of this
class.

System Class

IloBarrier is a system class.

Constructor Summary
public IloBarrier(int count)

Method Summary
public int wait()

Note:The class IloBarrier has nothing to do with the ILOG CPLEX
barrier optimizer.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 75

IloBarrier
Most Concert Technology classes are actually handle classes whose instances point to
objects of a corresponding implementation class. For example, instances of the Concert
Technology class IloNumVar are handles pointing to instances of the implementation
class IloNumVarI. Their allocation and de-allocation in a Concert Technology
environment are managed by an instance of IloEnv.

However, system classes, such as IloBarrier, differ from that Concert Technology
pattern. IloBarrier is an ordinary C++ class. Its instances are allocated on the C++
heap.

Instances of IloBarrier are not automatically de-allocated by a call to
IloEnv::end. You must explicitly destroy instances of IloBarrier by means of a
call to the delete operator (which calls the appropriate destructor) when your application
no longer needs instances of this class.

Furthermore, you should not allocate—neither directly nor indirectly—any instance of
IloBarrier in a Concert Technology environment because the destructor for that
instance of IloBarrier will never be called automatically by IloEnv::end when
it cleans up other Concert Technology objects in that Concert Technology environment.

For example, it is not a good idea to make an instance of IloBarrier part of a
conventional Concert Technology model allocated in a Concert Technology
environment because that instance will not automatically be de-allocated from the
Concert Technology environment along with the other Concert Technology objects.

De-allocating Instances of IloBarrier

Instances of IloBarrier differ from the usual Concert Technology objects because
they are not allocated in a Concert Technology environment, and their de-allocation is
not managed automatically for you by IloEnv::end. Instead, you must explicitly
destroy instances of IloBarrier by calling the delete operator when your
application no longer needs those objects.

See Also IloCondition, IloFastMutex, ILOUSEMT

Constructors public IloBarrier(int count)

This constructor creates an instance of IloBarrier of size count and allocates it on
the C++ heap (not in a Concert Technology environment).

Methods public int wait()

The first count-1 calls to this member function block the calling thread. The last call
(that is, the call numbered count) wakes up all the count-1 waiting threads. Once a
thread has been woken up, it leaves the barrier. When a thread leaves the barrier (that is,
when it returns from the wait call), it will return either 1 (one) or 0 (zero). If the thread
returns 0, the barrier is not yet empty. If the thread returns 1, it was the last thread at the
barrier.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 76

IloBarrier
A nonempty barrier contains blocked threads or exiting threads.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 77

IloBaseEnvMutex
IloBaseEnvMutex

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary A class to initialize multithreading in an application.

Description An instance of this base class in the function IloInitMT initializes multithreading in a
Concert Technology application. For a general purpose mutex, see the class
IloFastMutex.

See Also IloFastMutex, IloInitMT

Methods public virtual void lock()

This member function locks a mutex.

public virtual void unlock()

This member function unlocks a mutex.

Method Summary
public virtual void lock()

public virtual void unlock()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 78

IloBool
IloBool

Category Type Definition

Definition File ilconcert/ilosys.h

Synopsis IloInt IloBool

Summary Type for Boolean values.

Description This type definition represents Boolean values in Concert Technology. Those values are
IloTrue and IloFalse. Booleans are, in fact, integers of type IloInt.
IloFalse is 0 (zero), and IloTrue is 1 (one). This type anticipates the built-in
bool type proposed for standard C++. By using this type, you can be sure that the
Concert Technology components of your application will port in this respect without
source changes across different hardware platforms.

See Also IloBoolArray, IloInt, IloModel, IloNum
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 79

IloBoolArray
IloBoolArray

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary IloBoolArray is the array class of the basic Boolean class for a model.

Description IloBoolArray is the array class of the basic Boolean class for a model. It is a handle
class. The implementation class for IloBoolArray is the undocumented class
IloBoolArrayI.

Constructor Summary
public IloBoolArray(IloArrayI * i=0)

public IloBoolArray(const IloEnv env,IloInt n=0)

public IloBoolArray(const IloEnv env,IloInt n,const
IloBool v0,const IloBool v1...)

Method Summary
public void add(IloInt more,const IloBool x)

public void add(const IloBool x)

public void add(const IloBoolArray x)

Inherited methods from IloIntArray
IloIntArray::contains, IloIntArray::contains, IloIntArray::discard,
IloIntArray::discard, IloIntArray::operator[], IloIntArray::operator[],
IloIntArray::operator[], IloIntArray::toNumArray
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 80

IloBoolArray
Instances of IloBoolArray are extensible. (They differ from instances of
IlcBoolArray in this respect.) References to an array change whenever an element
is added to or removed from the array.

For each basic type, Concert Technology defines a corresponding array class. That array
class is a handle class. In other words, an object of that class contains a pointer to
another object allocated in a Concert Technology environment associated with a model.
Exploiting handles in this way greatly simplifies the programming interface since the
handle can then be an automatic object: as a developer using handles, you do not have to
worry about memory allocation.

As handles, these objects should be passed by value, and they should be created as
automatic objects, where “automatic” has the usual C++ meaning.

Member functions of a handle class correspond to member functions of the same name
in the implementation class.

Assert and NDEBUG

Most member functions of the class IloBoolArray are inline functions that contain
an assert statement. This statement checks that the handle pointer is not null. These
statements can be suppressed by the macro NDEBUG. This option usually reduces
execution time. The price you pay for this choice is that attempts to access through null
pointers are not trapped and usually result in memory faults.

See Also IloBool

Constructors public IloBoolArray(IloArrayI * i=0)

This constructor creates an array of Boolean values from an implementation object.

public IloBoolArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n Boolean values for use in a model in the
environment specified by env. By default, its elements are empty handles.

public IloBoolArray(const IloEnv env,
IloInt n,

 const IloBool v0,
 const IloBool v1...)

This constructor creates an array of n Boolean values; the elements of the new array take
the corresponding values: v0, v1, ...,v(n-1).

Methods public void add(IloInt more,
 const IloBool x)

This member function appends x to the invoking array of Boolean values; it appends x
more times.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 81

IloBoolArray
public void add(const IloBool x)

This member function appends the value x to the invoking array.

public void add(const IloBoolArray x)

This member function appends the values in the array x to the invoking array.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 82

IloBoolVar
IloBoolVar

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary An instance of this class represents a constrained Boolean variable in a Concert
Technology model.

Constructor Summary
public IloBoolVar(IloEnv env,IloInt min=0,IloInt

max=1,const char * name=0)

public IloBoolVar(IloEnv env,const char * name)

public IloBoolVar(const IloAddNumVar & column,const
char * name=0)

Inherited methods from IloIntVar
IloIntVar::getImpl, IloIntVar::getLB, IloIntVar::getMax,
IloIntVar::getMin, IloIntVar::getUB, IloIntVar::setBounds,
IloIntVar::setLB, IloIntVar::setMax, IloIntVar::setMin,
IloIntVar::setPossibleValues, IloIntVar::setUB

Inherited methods from IloIntExprArg
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 83

IloBoolVar
Description An instance of this class represents a constrained Boolean variable in a Concert
Technology model. Boolean variables are also known as binary decision variables. They
can assume the values 0 (zero) or 1 (one).

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

What Is Extracted

An instance of IloBoolVar is extracted by IloSolver (documented in the ILOG
Solver Reference Manual) as an instance of the class IlcBoolVar (also documented
in the ILOG Solver Reference Manual).

An instance of IloBoolVar is extracted by IloCplex (documented in the ILOG
CPLEX Reference Manual) as a column representing a numeric variable of type Bool
with bounds as specified by IloBoolVar.

See Also IloIntVar, IloNumVar

Constructors public IloBoolVar(IloEnv env,
IloInt min=0,
IloInt max=1,

IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 84

IloBoolVar
 const char * name=0)

This constructor creates a Boolean variable and makes it part of the environment env.
By default, the Boolean variable assumes a value of 0 (zero) or 1 (one). By default, its
name is the empty string, but you can specify a name of your own choice.

public IloBoolVar(IloEnv env,
 const char * name)

This constructor creates a Boolean variable and makes it part of the environment env.
By default, its name is the empty string, but you can specify a name of your own choice.

public IloBoolVar(const IloAddNumVar & column,
 const char * name=0)

This constructor creates an instance of IloBoolVar like this:

IloNumVar(column, 0.0, 1.0, ILOBOOL, name);
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 85

IloBoolVarArray
IloBoolVarArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary IloBoolVarArray is the array class of the Boolean variable class.

Constructor Summary
public IloBoolVarArray(IloDefaultArrayI * i=0)

public IloBoolVarArray(const IloEnv env,IloInt n)

public IloBoolVarArray(const IloEnv env,const
IloNumColumnArray columnarray)

Method Summary
public void add(IloInt more,const IloBoolVar x)

public void add(const IloBoolVar x)

public void add(const IloBoolVarArray x)

public IloBoolVar operator[](IloInt i) const

public IloBoolVar & operator[](IloInt i)

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

Inherited methods from IloIntVarArray
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 86

IloBoolVarArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloBoolVarArray is the array class of the Boolean variable class for a model. It is a
handle class.

Instances of IloBoolVarArray are extensible.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloBoolVar

Constructors public IloBoolVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of Boolean variables.

public IloBoolVarArray(const IloEnv env,
IloInt n)

This constructor creates an extensible array of n Boolean variables.

public IloBoolVarArray(const IloEnv env,
 const IloNumColumnArray columnarray)

This constructor creates an extensible array of Boolean variables from a column array.

IloIntVarArray::add, IloIntVarArray::add, IloIntVarArray::add,
IloIntVarArray::endElements, IloIntVarArray::operator[],
IloIntVarArray::operator[], IloIntVarArray::operator[],
IloIntVarArray::toNumVarArray

Inherited methods from IloIntExprArray
IloIntExprArray::add, IloIntExprArray::add, IloIntExprArray::add,
IloIntExprArray::endElements, IloIntExprArray::operator[],
IloIntExprArray::operator[], IloIntExprArray::operator[]

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 87

IloBoolVarArray
Methods public void add(IloInt more,
 const IloBoolVar x)

This member function appends x to the invoking array of Boolean variables. The
argument more specifies how many times.

public void add(const IloBoolVar x)

This member function appends the value x to the invoking array.

public void add(const IloBoolVarArray x)

This member function appends the variables in the array x to the invoking array.

public IloBoolVar operator[](IloInt i) const

This operator returns a reference to the extractable object located in the invoking array at
the position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloBoolVar operator[] (IloInt i) const;

public IloBoolVar & operator[](IloInt i)

This operator returns a reference to the extractable object located in the invoking array at
the position specified by the index i.

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or
expression. For clarity, let's call A the invoking array. When anIntegerExpr is
bound to the value i, the domain of the expression is the domain of A[i]. More
generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element constraint.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 88

IloCeil
IloCeil

Category Global Function

Definition File ilconcert/iloenv.h

Synopsis public IloNum IloCeil(IloNum val)

Summary Computes the least integer value not less than its argument.

Description This function computes the least integer value not less than val.

Examples:

 IloCeil(IloInfinity) is IloInfinity.
 IloCeil(-IloInfinity) is -IloInfinity.
 IloCeil(0) is 0.
 IloCeil(0.4) is 1.
 IloCeil(-0.4) is 0.
 IloCeil(0.5) is 1.
 IloCeil(-0.5) is 0.
 IloCeil(0.6) is 1.
 IloCeil(-0.6) is 0.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 89

IloCondition
IloCondition

Category Class

InheritancePath

Definition File ilconcert/ilothread.h

Summary Provides synchronization primitives adapted to Concert Technology for use in a parallel
application.

Description The class IloCondition provides synchronization primitives adapted to Concert
Technology for use in a parallel application.

See ILOUSEMT for details about the compilation macro to use with instances of this
class.

An instance of the class IloCondition allows several threads to synchronize on a
specific event. In this context, inter-thread communication takes place through signals.
A thread expecting a condition of the computation state (say, conditionC) to be true
before it executes a treatmentT can wait until the condition is true. When
computation reaches a state where conditionC holds, then another thread can signal
this fact by notifying a single waiting thread or by broadcasting to all the waiting threads
that conditionC has now been met.

The conventional template for waiting on conditionC looks like this:

Constructor Summary
public IloCondition()

Method Summary
public void broadcast()

public void notify()

public void wait(IloFastMutex * m)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 90

IloCondition
 mutex.lock();
 while (conditionC does not hold)
 condition.wait(&mutex);
 doTreatmentT();
 mutex.unlock();

That template has the following properties:

◆ The whole fragment is a critical section so that the evaluation of conditionC is
protected. (Indeed, it would be unsafe to evaluate conditionC while at the same
time another thread modifies the computation state and affects the truth value of
conditionC.) The pair of member functions IloFastMutex::lock and
IloFastMutex::unlock delimit the critical section.

◆ When a thread enters the wait call, the mutex is automatically unlocked by the
system.

◆ The loop that repeatedly checks conditionC is essential to the correctness of the
code fragment. It protects against the following possibility: between the time that a
thread modifies the computation state (so that conditionC holds) and notifies a
waiting thread and the moment the waiting thread wakes up, the computation state
might have been changed by another thread, and conditionC might very well be
false.

◆ Upon returning from the wait call, the mutex is locked. The operation of waking up
and locking the mutex is atomic. In other words, nothing can happen between the
waking and the locking.

System Class

IloCondition is a system class.

Most Concert Technology classes are actually handle classes whose instances point to
objects of a corresponding implementation class. For example, instances of the Concert
Technology class IloNumVar are handles pointing to instances of the implementation
class IloNumVarI. Their allocation and de-allocation on the Concert Technology heap
are managed by an instance of IloEnv.

However, system classes, such as IloCondition, differ from that Concert
Technology pattern. IloCondition is an ordinary C++ class. Its instances are
allocated on the C++ heap.

Instances of IloCondition are not automatically de-allocated by a call to
IloEnv::end. You must explicitly destroy instances of IloCondition by means
of a call to the delete operator (which calls the appropriate destructor) when your
application no longer needs instances of this class.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 91

IloCondition
Furthermore, you should not allocate—neither directly nor indirectly—any instance of
IloCondition on the Concert Technology heap because the destructor for that
instance of IloCondition will never be called automatically by IloEnv::end
when it cleans up other Concert Technology objects on the Concert Technology heap.

For example, it is not a good idea to make an instance of IloCondition part of a
conventional Concert Technology model allocated on the Concert Technology heap
because that instance will not automatically be de-allocated from the Concert
Technology heap along with the other Concert Technology objects.

De-allocating Instances of IloCondition

Instances of IloCondition differ from the usual Concert Technology objects
because they are not allocated on the Concert Technology heap, and their de-allocation
is not managed automatically for you by IloEnv::end. Instead, you must explicitly
destroy instances of IloCondition by calling the delete operator when your
application no longer needs those objects.

See Also IloFastMutex, ILOUSEMT

Constructors public IloCondition()

This constructor creates an instance of IloCondition and allocates it on the C++
heap (not in a Concert Technology environment). The instance contains data structures
specific to an operating system.

Methods public void broadcast()

This member function wakes all threads currently waiting on the invoking condition. If
there are no threads waiting, this member function does nothing.

public void notify()

This member function wakes one of the threads currently waiting on the invoking
condition.

public void wait(IloFastMutex * m)

This member function first puts the calling thread to sleep while it unlocks the mutex m.
Then, when either of the member functions broadcast or notify wakes up that
thread, this member function acquires the lock on m and returns.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 92

IloConstraint
IloConstraint

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary An instance of this class is a constraint in a model.

Constructor Summary
public IloConstraint()

public IloConstraint(IloConstraintI * impl)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 93

IloConstraint
Description An instance of this class is a constraint in a model. To create a constraint, you can:

◆ use a constructor from a subclass of IloConstraint, such as IloRange,
IloAllDiff, etc. For example:

 IloAllDiff allDiff(env, vars);

◆ use a logical operator between constraints to return a constraint. For example, you
can use the logical operators on other constraints, like this:

 IloOr myOr = myConstraint1 || myConstraint2;

Method Summary
public IloConstraintI * IloConstraint::getImpl() const

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 94

IloConstraint
◆ use an arithmetic operator between a numeric variable and an expression to return a
constraint. For example, you can use the arithmetic operators on numeric variables
or expressions, like this:

 IloRange rng = (x + 3*y <= 7);

After you create a constraint, you must explicitly add it to the model in order for it to be
taken into account. To do so, use the member function IloModel::add or the
template IloAdd. Then extract the model for an algorithm with the member function
extract.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloConstraintArray, IloModel, IloRange

Constructors public IloConstraint()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloConstraint(IloConstraintI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

Methods public IloConstraintI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 95

IloConstraintArray
IloConstraintArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary IloConstraintArray is the array class of constraints for a model.

Constructor Summary
public IloConstraintArray(IloDefaultArrayI * i=0)

public IloConstraintArray(const IloConstraintArray &
copy)

public IloConstraintArray(const IloEnv env,IloInt
n=0)

Method Summary
public void add(IloInt more,const IloConstraint x)

public void add(const IloConstraint x)

public void add(const IloConstraintArray x)

public IloConstraint operator[](IloInt i) const

public IloConstraint & operator[](IloInt i)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 96

IloConstraintArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloConstraintArray is the array class of constraints for a model.

Instances of IloConstraintArray are extensible. That is, you can add more
elements to such an array. References to an array change whenever an element is added
or removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Arrays

See Also IloConstraint, operator>>, operator

Constructors public IloConstraintArray(IloDefaultArrayI * i=0)

This constructor creates an empty array. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default
constructor, it allows you to pass 0 (zero) as a value to an optional argument in functions
and member functions that accept an array as an argument.

public IloConstraintArray(const IloConstraintArray & copy)

This copy constructor makes a copy of the array specified by copy.

public IloConstraintArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n elements, each of which is an empty handle.

Methods public void add(IloInt more,
 const IloConstraint x)

This member function appends constraint to the invoking array multiple times. The
argument more specifies how many times.

public void add(const IloConstraint x)

This member function appends constraint to the invoking array.

public void add(const IloConstraintArray x)

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 97

IloConstraintArray
This member function appends the elements in array to the invoking array.

public IloConstraint operator[](IloInt i) const

This operator returns a reference to the constraint located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloConstraint operator[] (IloInt i) const;

public IloConstraint & operator[](IloInt i)

This operator returns a reference to the constraint located in the invoking array at the
position specified by the index i.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 98

IloCplex::Status
IloCplex::Status

Category Inner Type Definition

Definition File ilcplex/ilocplexi.h

Synopsis CplexStatus Status

Summary An enumeration for the class IloAlgorithm.

Description IloAlgorithm is the base class of algorithms in Concert Technology, and
IloAlgorithm::Status is an enumeration limited in scope to the class
IloAlgorithm. The member function getStatus returns a status showing
information about the current model and the solution.

Unknown specifies that the algorithm has no information about the solution of the
model.

Feasible specifies that the algorithm found a feasible solution (that is, an assignment
of values to variables that satisfies the constraints of the model, though it may not
necessarily be optimal). The member functions getValue access this feasible
solution.

Optimal specifies that the algorithm found an optimal solution (that is, an assignment
of values to variables that satisfies all the constraints of the model and that is proved
optimal with respect to the objective of the model). The member functions getValue
access this optimal solution.

Infeasible specifies that the algorithm proved the model infeasible; that is, it is not
possible to find an assignment of values to variables satisfying all the constraints in the
model.

Unbounded specifies that the algorithm proved the model unbounded.

InfeasibleOrUnbounded specifies that the model is infeasible or unbounded.

Error specifies that an error occurred and, on platforms that support exceptions, that
an exception has been thrown.

See Also the enumeration IloCplex::Status in the ILOG CPLEX Reference
Manual for status specific to the CPLEX algorithms.

See Also IloAlgorithm, operator
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 99

IloDeleterMode
IloDeleterMode

Category Enumeration

Definition File ilconcert/iloenv.h

Synopsis IloDeleterMode{
 IloLinearDeleterMode,
 IloSafeDeleterMode,
 IloRecursiveDeleterMode,
 IloSmartDeleterMode
};

Summary An enumeration to set the mode of an IloDeleter.

Description This enumeration allows you to set the IloDeleter mode. The modes
IloRecursiveDeleterMode and IloSmartDeleterMode are not documented
and should not be used.

You can set the mode using the member function IloEnv::setDeleter. For a
description of deletion in ILOG Concert Technology, refer to Deletion of Extractable
Objects.

Fields IloLinearDeleterMode
IloSafeDeleterMode
IloRecursiveDeleterMode
IloSmartDeleterMode
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 100

IloDiff
IloDiff

Category Class

InheritancePath

Definition File ilconcert/ilomodel.h

Summary Constraint that enforces inequality.

Constructor Summary
public IloDiff()

public IloDiff(IloDiffI * impl)

public IloDiff(const IloEnv env,const IloNumExprArg
expr1,const IloNumExprArg expr2,const char *
name=0)

public IloDiff(const IloEnv env,const IloNumExprArg
expr1,IloNum val,const char * name=0)

Method Summary
public IloDiffI * getImpl() const

Inherited methods from IloConstraint
IloConstraint::getImpl
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 101

IloDiff
Description An instance of this class is a constraint that enforces inequality (that is, “not equal” as
specified by !=) in Concert Technology.

To create a constraint, you can:

◆ use the inequality operator!= on constrained variables (instances of
IloNumVar and its subclasses) or expressions (instances of IloExpr and its
subclasses).

◆ use a constructor from this class.

In order for the constraint to take effect, you must add it to a model with the template
IloAdd or the member function IloModel::add and extract the model for an
algorithm with the member function extract.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloAllDiff, IloConstraint, IloExpr, IloNumVar

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 102

IloDiff
Constructors public IloDiff()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloDiff(IloDiffI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloDiff(const IloEnv env,
 const IloNumExprArg expr1,
 const IloNumExprArg expr2,
 const char * name=0)

This constructor creates a constraint that enforces inequality (!=) in a model between the
two expressions that are passed as its arguments. You must use the template IloAdd or
the member function IloModel::add to add this constraint to a model in order for it
to be taken into account.

The optional argument name is set to 0 by default.

public IloDiff(const IloEnv env,
 const IloNumExprArg expr1,

IloNum val,
 const char * name=0)

This constructor creates a constraint that enforces inequality (!=) in a model between the
expression expr1 and the floating-point value that are passed as its arguments. You
must use the template IloAdd or the member function IloModel::add to add this
constraint to a model in order for it to be taken into account.

The optional argument name is set to 0 by default.

Methods public IloDiffI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 103

IloDisableNANDetection
IloDisableNANDetection

Category Global Function

Definition File ilconcert/ilosys.h

Synopsis public void IloDisableNANDetection()

Summary Disables NaN (Not a number) detection.

Description This function turns off NaN (Not a number) detection.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 104

IloDiv
IloDiv

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloIntExprArg IloDiv(const IloIntExprArg x,
 const IloIntExprArg y)
public IloIntExprArg IloDiv(const IloIntExprArg x,

IloInt y)
public IloIntExprArg IloDiv(IloInt x,
 const IloIntExprArg y)

Summary This function is available for integer division.

Description This function is available for integer division. For numeric division, use operator/.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 105

IloEmptyHandleException
IloEmptyHandleException

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary The class of exceptions thrown if an empty handle is passed.

Description The exception IloEmptyHandleException is thrown if an empty handle is passed
as an argument to a method, function, or class constructor.

Constructors public IloEmptyHandleException()

public IloEmptyHandleException(const char * message)

This constructor creates an exception containing the message string message.

Constructor Summary
public IloEmptyHandleException()

public IloEmptyHandleException(const char * message)

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 106

IloEnableNANDetection
IloEnableNANDetection

Category Global Function

Definition File ilconcert/ilosys.h

Synopsis public void IloEnableNANDetection()

Summary Enables NaN (Not a number) detection.

Description This function enables your application to detect invalid data as a NaN (Not a number).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 107

IloEndMT
IloEndMT

Category Global Function

Definition File ilconcert/iloenv.h

Synopsis public void IloEndMT()

Summary This function ends multithreading.

Description This function ends multithreading in a Concert Technology application.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 108

IloEnv
IloEnv

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary The class of environments for models or algorithms in Concert Technology.

Constructor Summary
public IloEnv()

public IloEnv(IloEnvI * impl)

Method Summary
public void IloEnv::end()

public ostream & IloEnv::error() const

public IloExtractableI * getExtractable(IloInt id)

public IloEnvI * getImpl() const

public IloInt getMaxId() const

public IloInt getMemoryUsage() const

public ostream & IloEnv::getNullStream() const

public IloRandom getRandom() const

public IloNum getTime() const

public IloInt getTotalMemoryUsage() const

public const char * getVersion() const

public IloBool isValidId(IloInt id) const

public ostream & IloEnv::out() const

public void printTime() const

public void IloEnv::setDeleter(IloDeleterMode mode)
const

public void setError(ostream & s)

public void setNormalizer(IloBool val) const

public void setOut(ostream & s)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 109

IloEnv
Description An instance of this class is an environment, managing memory and identifiers for
modeling objects. Every Concert Technology object, such as an extractable object, a
model, or an algorithm, must belong to an environment. In C++ terms, when you
construct a model (an instance of IloModel) or an algorithm (an instance of
IloCplex, IloCP, or IloSolver, for example), then you must pass one instance of
IloEnv as an argument of that constructor.

Environment and Memory Management

An environment (an instance of IloEnv) efficiently manages memory allocations for
the objects constructed with that environment as an argument. For example, when
Concert Technology objects in your model are extracted by an algorithm, those
extracted objects are handled as efficiently as possible with respect to memory
management; there is no unnecessary copying that might cause memory explosions in
your application on the part of Concert Technology.

When your application deletes an instance of IloEnv, Concert Technology will
automatically delete all models and algorithms depending on that environment as well.
You delete an environment by calling the member function env.end.

The memory allocated for Concert Technology arrays, expressions, sets, and columns is
not freed until all references to these objects have terminated and the objects themselves
have been deleted.

Certain classes documented in this manual, such as IloFastMutex, are known as
system classes. They do not belong to a Concert Technology environment; in other
words, an instance of IloEnv is not an argument in their constructors. As a
consequence, a Concert Technology environment does not attempt to manage their
memory allocation and de-allocation; a call of IloEnv:end will not delete an instance
of a system class. These system classes are clearly designated in this documentation,
and the appropriate constructors and destructors for them are documented in this manual
as well.

Environment and Initialization

An instance of IloEnv in your application initializes certain data structures and
modeling facilities for Concert Technology. For example, IloEnv initializes the
symbolic constant IloInfinity.

The environment also specifies the current assumptions about normalization or the
reduction of terms in linear expressions. For an explanation of this concept, see the
concept Normalization: Reducing Linear Terms

public void setWarning(ostream & s)

public void unsetDeleter() const

public ostream & IloEnv::warning() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 110

IloEnv
Environment and Communication Streams

An instance of IloEnv in your application initializes the default output streams for
general information, for error messages, and for warnings.

Environment and Extractable Objects

Every extractable object in your problem must belong to an instance of IloEnv. In C++
terms, in the constructor of certain extractable objects that you create, such as a
constrained variable, you must pass an instance of IloEnv as an argument to specify
which environment the extractable object belongs to. An extractable object (that is, an
instance of IloExtractable or one of its derived subclasses) is tied throughout its
lifetime to the environment where it is created. It can be used only with extractable
objects belonging to the same environment. It can be extracted only for an algorithm
attached to the same environment.

Two different environments cannot share the same extractable object.

You can extract objects from only one environment into a given algorithm. In other
words, algorithms do not extract objects from two or more different environments.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloException, IloModel, operator new

Constructors public IloEnv()

This constructor creates an environment to manage the extractable objects in Concert
Technology.

public IloEnv(IloEnvI * impl)

This constructor creates an environment (a handle) from its implementation object.

Methods public void end()

When you call this member function, it cleans up the invoking environment. In other
words, it deletes all the extractable objects (instances of IloExtractable and its
subclasses) created in that environment and frees the memory allocated for them. It also
deletes all algorithms (instances of IloAlgorithm and its subclasses) created in that
environment and frees memory allocated for them as well, including the representations
of extractable objects extracted for those algorithms.

The memory allocated for Concert Technology arrays, expressions, sets, and columns is
not freed until all references to these objects have terminated and the objects themselves
have been deleted.

public ostream & error() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 111

IloEnv
This member function returns a reference to the output stream currently used for error
messages from the invoking environment. It is initialized as cerr.

public IloExtractableI * getExtractable(IloInt id)

This member function returns the extractable associated with the specified identifier id.

public IloEnvI * getImpl() const

This member function returns the implementation object of the invoking environment.

public IloInt getMaxId() const

 This member function returns the highest id of all extractables int the current IloEnv

public IloInt getMemoryUsage() const

This member function returns a value in bytes specifying how full the heap is.

public ostream & getNullStream() const

This member function calls the null stream of the environment. This member function
can be used with IloAlgorithm::setOut() to suppress screen output by
redirecting it to the null stream.

public IloRandom getRandom() const

Each instance of IloEnv contains a random number generator, an instance of the class
IloRandom. This member function returns that IloRandom instance.

public IloNum getTime() const

This member function returns the amount of time elapsed in seconds since the
construction of the invoking environment. (The member function printTime directs
this information to the output stream of the invoking environment.)

public IloInt getTotalMemoryUsage() const

This member function returns a value in bytes specifying how large the heap is.

public const char * getVersion() const

This member function returns a string specifying the version of ILOG Concert
Technology.

public IloBool isValidId(IloInt id) const

This methods tells you if the current id is associated with a live extractable.

public ostream & out() const

This member function returns a reference to the output stream currently used for
logging. General output from the invoking environment is accessible through this
member function. By default, the logging output stream is defined by an instance of
IloEnv as cout.

public void printTime() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 112

IloEnv
This member function directs the output of the member function getTime to the output
stream of the invoking environment. (The member function getTime accesses the
elapsed time in seconds since the creation of the invoking environment.)

public void setDeleter(IloDeleterMode mode) const

This member function sets the mode for the deletion of extractables, as described in the
concept Deletion of Extractable Objects. The mode can be
IloLinearDeleterMode or IloSafeDeleterMode.

public void setError(ostream & s)

This member function sets the stream for errors generated by the invoking environment.
By default, the stream is defined by an instance of IloEnv as cerr.

public void setNormalizer(IloBool val) const

This member function turns on or off the facilities in Concert Technology for
normalizing linear expressions. Normalizing linear expressions is also known as
reducing the terms of a linear expression. In this context, a linear expression that does
not contain multiple terms with the same variable is said to be normalized. The concept
in this manual offers examples of this idea.

When val is IloTrue, (the default), then Concert Technology analyzes linear
expressions to determine whether any variable appears more than once in a given linear
expression. It then combines terms in the linear expression to eliminate any duplication
of variables. This mode may require more time during preliminary computation, but it
avoids the possibility of an assertion failing in the case of duplicated variables in the
terms of a linear expression.

When val is IloFalse, then Concert Technology assumes that all linear expressions
in the invoking environment have already been processed to reduce them to their most
efficient form. In other words, Concert Technology assumes that linear expressions have
been normalized. This mode may save time during computation, but it entails the risk
that a linear expression may contain one or more variables, each of which appears in one
or more terms. This situation will cause certain assert statements in Concert
Technology to fail if you do not compile with the flag -DNDEBUG.

public void setOut(ostream & s)

This member function redirects the out() stream with the stream given as an
argument.

This member function can be used with IloEnv::getNullStream to suppress
screen output by redirecting it to the null stream.

public void setWarning(ostream & s)

This member function sets the stream for warnings from the invoking environment. By
default, the stream is defined by an instance of IloEnv as cout.

public void unsetDeleter() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 113

IloEnv
This member function unsets the mode for the deletion of extractables, as described in
the concept Deletion of Extractable Objects.

public ostream & warning() const

This member function returns a reference to the output stream currently used for
warnings from the invoking environment. By default, the warning output stream is
defined by an instance of IloEnv as cout.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 114

IloEnvironmentMismatch
IloEnvironmentMismatch

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary This exception is thrown if you try to build an object using objects from another
environment.

Description The IloEnvironmentMismatch exception is thrown if you try to build an object
using objects from another environment.

Constructors public IloEnvironmentMismatch()

public IloEnvironmentMismatch(const char * message)

Constructor Summary
public IloEnvironmentMismatch()

public IloEnvironmentMismatch(const char * message)

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 115

IloException
IloException

Category Class

InheritancePath

Definition File ilconcert/ilosys.h

Summary Base class of Concert Technology exceptions.

Description This class is the base class for exceptions in Concert Technology. An instance of this
class represents an exception on platforms that support exceptions when exceptions are
enabled.

See Also IloEnv, operator

Constructors protected IloException(const char * message=0,
IloBool deleteMessage=IloFalse)

This protected constructor creates an exception.

Constructor Summary
protected IloException(const char * message=0,IloBool

deleteMessage=IloFalse)

Method Summary
public virtual void IloException::end()

public virtual const char * IloException::getMessage() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 116

IloException
Methods public virtual void end()

This member function deletes the invoking exception. That is, it frees memory
associated with the invoking exception.

public virtual const char * getMessage() const

This member function returns the message (a character string) of the invoking exception.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 117

IloExponent
IloExponent

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloExponent(const IloNumExprArg arg)
public IloNum IloExponent(IloNum val)

Summary Returns the exponent of its argument.

Description Concert Technology offers predefined functions that return an expression from an
algebraic function on expressions. These predefined functions also return a numeric
value from an algebraic function on numeric values as well.

IloExponent returns the exponentiation of its argument. In order to conform to IEEE
754 standards for floating-point arithmetic, you should use this function in your Concert
Technology applications, rather than the standard C++ exp.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 118

IloExpr
IloExpr

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary An instance of this class represents an expression in a model.

Constructor Summary
public IloExpr()

public IloExpr(IloNumExprI * expr)

public IloExpr(const IloNumLinExprTerm term)

public IloExpr(const IloIntLinExprTerm term)

public IloExpr(IloNumExprArg)

public IloExpr(const IloEnv env,IloNum=0)

Method Summary
public IloNum getConstant() const

public IloNumLinTermI * getImpl() const

public
IloExpr::LinearIterator

getLinearIterator() const

public IloBool isNormalized() const

public IloInt normalize() const

public IloExpr & operator *=(IloNum val)

public IloExpr & operator+=(const IloIntLinExprTerm term)

public IloExpr & operator+=(const IloNumLinExprTerm term)

public IloExpr & operator+=(const IloIntVar var)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 119

IloExpr
public IloExpr & operator+=(const IloNumVar var)

public IloExpr & operator+=(const IloNumExprArg expr)

public IloExpr & operator+=(IloNum val)

public IloExpr & operator-=(const IloIntLinExprTerm term)

public IloExpr & operator-=(const IloNumLinExprTerm term)

public IloExpr & operator-=(const IloIntVar var)

public IloExpr & operator-=(const IloNumVar var)

public IloExpr & operator-=(const IloNumExprArg expr)

public IloExpr & operator-=(IloNum val)

public IloExpr & operator/=(IloNum val)

public void remove(const IloNumVarArray vars)

public void setConstant(IloNum cst)

public void setLinearCoef(const IloNumVar var,IloNum
value)

public void setLinearCoefs(const IloNumVarArray
vars,IloNumArray values)

public void setNumConstant(IloNum constant)

Inherited methods from IloNumExpr
IloNumExpr::getImpl, IloNumExpr::operator *=, IloNumExpr::operator+=,
IloNumExpr::operator+=, IloNumExpr::operator-=, IloNumExpr::operator-=,
IloNumExpr::operator/=

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 120

IloExpr
Description An instance of this class represents an expression in a model. An instance of IloExpr
is a handle.

Expressions in Environments

The variables in an expression must all belong to the same environment as the
expression itself. In other words, you must not mix variables from different
environments within the same expression.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Programming Hint: Creating Expressions

In addition to using a constructor of this class to create an expression, you may also
initialize an instance of IloExpr as a C++ expression built from variables of a model.
For example:

 IloNumVar x;
 IloNumVar y;
 IloExpr expr = x + y;

Programming Hint: Empty Handles and Null Expressions

This statement creates an empty handle:

IloExpr e1;

IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject

Inner Class
IloExpr::IloExpr::LinearIter
ator

 An iterator over the linear part of an
expression.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 121

IloExpr
You must initialize it before you use it. For example, if you attempt to use it in this way:

e1 += 10; // BAD IDEA

Without the compiler option -DNDEBUG, that line will cause an assert statement to
fail because you are attempting to use an empty handle.

In contrast, the following statement

IloExpr e2(env);

creates a handle to a null expression. You can use this handle to build up an expression,
for example, in this way:

e2 += 10; // OK

Normalizing Linear Expressions: Reducing the Terms

Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by
arithmetic operations; for example, x + 3y is a linear expression of two terms consisting
of two variables. In some expressions, a given variable may appear in more than one
term, for example, x + 3y +2x. Concert Technology has more than one way of dealing
with linear expressions in this respect, and you control which way Concert Technology
treats expressions from your application.

In one mode, Concert Technology analyzes linear expressions that your application
passes it and attempts to reduce them so that a given variable appears in only one term in
the linear expression. This is the default mode. You set this mode with the member
function setNormalizer(IloTrue).

In the other mode, Concert Technology assumes that no variable appears in more than
one term in any of the linear expressions that your application passes to Concert
Technology. We call this mode assume normalized linear expressions. You set this mode
with the member function setNormalizer(IloFalse).

Certain constructors and member functions in this class check this setting in the
environment and behave accordingly: they assume that no variable appears in more than
one term in a linear expression. This mode may save time during computation, but it
entails the risk that a linear expression may contain one or more variables, each of which
appears in one or more terms. Such a case may cause certain assertions in member
functions of this class to fail if you do not compile with the flag -DNDEBUG.

Certain constructors and member functions in this class check this setting in the
environment and behave accordingly: they attempt to reduce expressions. This mode
may require more time during preliminary computation, but it avoids of the possibility
of a failed assertion in case of duplicates.

See Also IloExprArray, IloModel
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 122

IloExpr
Constructors public IloExpr()

This constructor creates an empty handle. You must initialize it before you use it.

public IloExpr(IloNumExprI * expr)

This constructor creates an expression from a pointer to the implementation class of
numeric expressions IloNumExprI*.

public IloExpr(const IloNumLinExprTerm term)

This constructor creates an integer expression with linear terms using the undocumented
class IloNumLinExprTerm.

public IloExpr(const IloIntLinExprTerm term)

This constructor creates an integer expression with linear terms using the undocumented
class IloIntLinExprTerm.

public IloExpr(IloNumExprArg)

This constructor creates an expression using the undocumented class
IloNumExprArg.

public IloExpr(const IloEnv env,
IloNum=0)

This constructor creates an expression in the environment specified by env. It may be
used to build other expressions from variables belonging to env. You must not mix
variables of different environments within an expression.

Methods public IloNum getConstant() const

This member function returns the constant term in the invoking expression.

public IloNumLinTermI * getImpl() const

This member function returns the implementation object of the invoking enumerated
variable.

public IloExpr::LinearIterator getLinearIterator() const

This methods returns a linear iterator on the invoking expression.

public IloBool isNormalized() const

This member function returns IloTrue if the invoking expression has been normalized
using normalize.

public IloInt normalize() const

This member function normalizes the invoking linear expression. Normalizing is
sometimes known as reducing the terms of a linear expression. That is, if there is more
than one linear term using the same variable in the invoking linear expression, then this
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 123

IloExpr
member function merges those linear terms into a single term expressed in that variable.
The return value specifies the number of merged terms.

For example, 1*x + 17*y - 3*x becomes 17*y - 2*x, and the member function
returns 1 (one).

If you attempt to use this member function on a nonlinear expression, it throws an
exception.

public IloExpr & operator *=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x * ...

public IloExpr & operator+=(const IloIntLinExprTerm term)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloExpr & operator+=(const IloNumLinExprTerm term)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloExpr & operator+=(const IloIntVar var)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloExpr & operator+=(const IloNumVar var)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloExpr & operator+=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloExpr & operator+=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloExpr & operator-=(const IloIntLinExprTerm term)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloExpr & operator-=(const IloNumLinExprTerm term)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloExpr & operator-=(const IloIntVar var)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 124

IloExpr
This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloExpr & operator-=(const IloNumVar var)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloExpr & operator-=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloExpr & operator-=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloExpr & operator/=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x / ...

public void remove(const IloNumVarArray vars)

This member function removes all occurrences of all variables listed in the array vars
from the invoking expression. For linear expressions, the effect of this member function
is equivalent to setting the coefficient for all the variables listed in vars to 0 (zero).

public void setConstant(IloNum cst)

This member function assigns cst as the constant term in the invoking expression.

public void setLinearCoef(const IloNumVar var,
IloNum value)

This member function assigns value as the coefficient of var in the invoking
expression if the invoking expression is linear. This member function applies only to
linear expressions. In other words, you can not use this member function to change the
coefficient of a non linear expression. An attempt to do so will cause Concert
Technology to throw an exception.

public void setLinearCoefs(const IloNumVarArray vars,
IloNumArray values)

For each of the variables in vars, this member function assigns the corresponding
value of values as its linear coefficient if the invoking expression is linear. This
member function applies only to linear expressions. In other words, you can not use this
member function to change the coefficient of a nonlinear expression. An attempt to do
so will cause Concert Technology to throw an exception.

public void setNumConstant(IloNum constant)

This member function assigns cst as the constant term in the invoking expression.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 125

IloExprArray
IloExprArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary IloExprArray is the array class of the expressions class.

Constructor Summary
public IloExprArray(IloDefaultArrayI * i=0)

public IloExprArray(const IloEnv env,IloInt n=0)

Method Summary
public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

Inherited methods from IloNumExprArray
IloNumExprArray::add, IloNumExprArray::add, IloNumExprArray::add,
IloNumExprArray::endElements, IloNumExprArray::operator[]

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 126

IloExprArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloExprArray is the array class of the expressions class (IloExpr) for a model.

Instances of IloExprArray are extensible. That is, you can add more elements to
such an array. References to an array change whenever an element is added to or
removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloExpr

Constructors public IloExprArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of expressions for use in a model. You cannot
create instances of the undocumented class IloDefaultArrayI. As an argument in
this default constructor, it allows you to pass 0 (zero) as a value to an optional argument
in functions and member functions that accept an array as an argument.

public IloExprArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty
handles.

Methods public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or
expression. For clarity, let's call A the invoking array. When anIntegerExpr is
bound to the value i, the domain of the expression is the domain of A[i]. More
generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element constraint.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 127

IloExpr::LinearIterator
IloExpr::LinearIterator

Category Inner Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary An iterator over the linear part of an expression.

Description An instance of the nested class IloExpr::LinearIterator is an iterator that traverses the
linear part of an expression.

Example

Start with an expression that contains both linear and non linear terms:

IloExpr e = 2*x + 3*y + cos(x);

Now define a linear iterator for the expression:

IloExpr::LinearIterator it(e);

That constructor creates a linear iterator initialized on the first linear term in e, that is,
the term (2*x). Consequently, a call to the member function ok returns IloTrue.

it.ok(); // returns IloTrue

A call to the member function getCoef returns the coefficient of the current linear
term.

Method Summary
public IloNum getCoef() const

public IloNumVar getVar() const

public IloBool ok() const

public void operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 128

IloExpr::LinearIterator
it.getCoef(); // returns 2 from the term (2*x)

Likewise, the member function getVar returns the handle of the variable of the current
linear term.

it.getVar(); // returns handle of x from the term (2*x)

A call to the operator++ at this point advances the iterator to the next linear term,
(3*y). The iterator ignores nonlinear terms in the expression.

 ++it; // goes to next linear term (3*y)
 it.ok(); // returns IloTrue
 it.getCoef(); // returns 3 from the term (3*y)
 it.getVar(); // returns handle of y from the term (3*y)
 ++it; // goes to next linear term, if there is one in the expression
 it.ok(); // returns IloFalse because there is no linear term

Methods public IloNum getCoef() const

This member function returns the coefficient of the current term.

public IloNumVar getVar() const

This member function returns the variable of the current term.

public IloBool ok() const

This member function returns IloTrue if there is a current element and the iterator
points to it. Otherwise, it returns IloFalse.

public void operator++()

This operator advances the iterator to point to the next term of the linear part of the
expression.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 129

IloExtractable
IloExtractable

Category Class

InheritancePath

Definition File ilconcert/iloextractable.h

Summary Base class of all extractable objects.

Constructor Summary
public IloExtractable(IloExtractableI * obj=0)

Method Summary
public IloConstraint IloExtractable::asConstraint() const

public IloIntExprArg IloExtractable::asIntExpr() const

public IloModel IloExtractable::asModel() const

public IloNumExprArg IloExtractable::asNumExpr() const

public IloObjective IloExtractable::asObjective() const

public IloNumVar IloExtractable::asVariable() const

public void IloExtractable::end()

public IloEnv IloExtractable::getEnv() const

public IloInt IloExtractable::getId() const

public IloExtractableI * IloExtractable::getImpl() const

public const char * IloExtractable::getName() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 130

IloExtractable
Description This class is the base class of all extractable objects (that is, instances of such classes as
IloConstraint, IloNumVar, and so forth). Instances of subclasses of this class
represent objects (such as constraints, constrained variables, objectives, and so forth)
that can be extracted by Concert Technology from your model for use by your
application in Concert Technology algorithms.

Not every algorithm can extract every extractable object of a model. For example, a
model may include more than one objective, but you can extract only one objective for
an instance of IloCplex.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Adding Extractable Objects

Generally, for an extractable object to be taken into account by one of the algorithms in
Concert Technology, you must add the extractable object to a model with the member
function IloModel::add and extract the model for the algorithm with the member
function extract.

Environment and Extractable Objects

Every extractable object in your model must belong to one instance of IloEnv. An
extractable object (that is, an instance of IloExtractable or one of its derived
subclasses) is tied throughout its lifetime to the environment where it is created. It can
be used only with extractable objects belonging to the same environment. It can be
extracted only for an algorithm attached to the same environment.

Notification

When you change an extractable object, for example by removing it from a model,
Concert Technology notifies algorithms that have extracted the model containing this
extractable object about the change. Member functions that carry out such notification
are noted in this documentation.

public IloAny IloExtractable::getObject() const

public IloBool IloExtractable::isConstraint() const

public IloBool IloExtractable::isIntExpr() const

public IloBool IloExtractable::isModel() const

public IloBool IloExtractable::isNumExpr() const

public IloBool IloExtractable::isObjective() const

public IloBool IloExtractable::isVariable() const

public void IloExtractable::setName(const char * name)
const

public void IloExtractable::setObject(IloAny obj) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 131

IloExtractable
See Also IloEnv, IloGetClone, IloModel

Constructors public IloExtractable(IloExtractableI * obj=0)

This constructor creates a handle to the implementation object.

Methods public IloConstraint asConstraint() const

 This method returns the given extractable as a constraint or a null pointer

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloIntExprArg asIntExpr() const

 This method returns the given extractable as an integer expression or a null pointer

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloModel asModel() const

 This method returns the given extractable as a model or a null pointer

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloNumExprArg asNumExpr() const

 This method returns the given extractable as a floating expression or a null pointer

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloObjective asObjective() const

 This method returns the given extractable as an objective or a null pointer

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloNumVar asVariable() const

 This method returns the given extractable as a variable or a null pointer

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 132

IloExtractable
public void end()

This member function first removes the invoking extractable object from all other
extractable objects where it is used (such as a model, ranges, etc.) and then deletes the
invoking extractable object. That is, it frees all the resources used by the invoking object.
After a call to this member function, you can not use the invoking extractable object
again.

public IloEnv getEnv() const

This member function returns the environment to which the invoking extractable object
belongs. An extractable object belongs to exactly one environment; different
environments can not share the same extractable object.

public IloInt getId() const

This member function returns the ID of the invoking extractable object.

public IloExtractableI * getImpl() const

This member function returns a pointer to the implementation object of the invoking
extractable object. This member function is useful when you need to be sure that you are
using the same copy of the invoking extractable object in more than one situation.

public const char * getName() const

This member function returns a character string specifying the name of the invoking
object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is
one). Normally, an associated object contains user data pertinent to the invoking object.

public IloBool isConstraint() const

 This method tells you wether the given extractable is a constraint or not

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloBool isIntExpr() const

 This method tells you wether the given extractable is an integer expression or not

 See also IloExtractableVisitor if you want to introspect an expression

Note: The member function end notifies Concert Technology algorithms
about the destruction of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 133

IloExtractable
See Also IloExtractableVisitor

public IloBool isModel() const

 This method tells you wether the given extractable is a model or not

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloBool isNumExpr() const

 This method tells you wether the given extractable is a floating expression or not

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloBool isObjective() const

 This method tells you wether the given extractable is an objective or not

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public IloBool isVariable() const

 This method tells you wether the given extractable is a variable or not

 See also IloExtractableVisitor if you want to introspect an expression

See Also IloExtractableVisitor

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function
getObject accesses this associated object afterward. Normally, obj contains user
data pertinent to the invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 134

IloExtractableArray
IloExtractableArray

Category Class

InheritancePath

Definition File ilconcert/iloextractable.h

Summary An array of extractable objects.

Constructor Summary
public IloExtractableArray(IloDefaultArrayI * i=0)

public IloExtractableArray(const IloExtractableArray
& r)

public IloExtractableArray(const IloEnv env,IloInt
n=0)

Method Summary
public void IloExtractableArray::add(IloInt more,const

IloExtractable x)

public void IloExtractableArray::add(const
IloExtractable x)

public void IloExtractableArray::add(const
IloExtractableArray x)

public void IloExtractableArray::endElements()

public void IloExtractableArray::setNames(const char *
name)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 135

IloExtractableArray
Description An instance of this class is an array of extractable objects (instances of the class
IloExtractable or its subclasses).

Instances of IloExtractableArray are extensible. That is, you can add more
elements to such an array. References to an array change whenever an element is added
to or removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

For information on arrays, see the concept Arrays

See Also IloArray, IloExtractable, operator

Constructors public IloExtractableArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of elements. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default
constructor, it allows you to pass 0 (zero) as a value to an optional argument in
functions and member functions that accept an array as an argument.

public IloExtractableArray(const IloExtractableArray & r)

This copy constructor creates a handle to the array of extractable objects specified by r.

public IloExtractableArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n elements, each of which is an empty handle.

Methods public void add(IloInt more,
 const IloExtractable x)

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(const IloExtractable x)

This member function appends x to the invoking array.

public void add(const IloExtractableArray x)

This member function appends the elements in the arrayx to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the
invoking array. This deletes all the extractables identified by the array, leaving the
handles in the array intact. This member function is the recommended way to delete the
elements of an array.

public void setNames(const char * name)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 136

IloExtractableArray
This member function set the name for all elements of the invoking array. All elements
must be different, otherwise raise an error.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 137

IloExtractableVisitor
IloExtractableVisitor

Category Class

InheritancePath

Definition File ilconcert/iloextractable.h

Summary The class IloExtractableVisitor inspects all nodes of an expression.

Description The class IloExtractableVisitor is used to introspect a Concert object and
inspect all nodes of the expression.

For example, you can introspect a given expression and look for all the variables within.

You can do this by specializing the visitChildren methods and calling the
beginVisit method on the extractable you want to introspect.

For example, if you visit an IloDiff object, you will visit the first expression, then the
second expression. When visiting the first or second expression, you will visit their sub-
expressions, and so on.

Constructors public IloExtractableVisitor()

The default constructor.

Constructor Summary
public IloExtractableVisitor()

Method Summary
public virtual void beginVisit(IloExtractableI * e)

public virtual void endVisit(IloExtractableI * e)

public virtual void visitChildren(IloExtractableI *
parent,IloExtractableArray children)

public virtual void visitChildren(IloExtractableI *
parent,IloExtractableI * child)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 138

IloExtractableVisitor
Methods public virtual void beginVisit(IloExtractableI * e)

This method begins the introspection.

public virtual void endVisit(IloExtractableI * e)

This method ends the inspection.

public virtual void visitChildren(IloExtractableI * parent,
IloExtractableArray children)

This method is called when the member of the object is an array.

For example, when visiting an IloAllDiff(env, [x,y,z]) , you use

 visitChildren(AllDiff, [x,y,z])

public virtual void visitChildren(IloExtractableI * parent,
 IloExtractableI * child)

This method is called when visiting a sub-extractable.

 For example, if you want to display all the variables in your object, you use:

 visitChildren(IloExtractableI* parent, IloExtractableI* child){
 IloExtractable extr(child); if (child.isVariable()) cout << extr;
 }

 If you visit IloDiff(env, X, Y) , for example, you would call this method as:

 visitChildren(Diff, X)

then

 visitChildren(Diff, Y)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 139

IloFastMutex
IloFastMutex

Category Class

InheritancePath

Definition File ilconcert/ilothread.h

Summary Synchronization primitives adapted to the needs of Concert Technology.

Description The class IloFastMutex provides synchronization primitives adapted to the needs
of Concert Technology. In particular, an instance of the class IloFastMutex is a
nonrecursive mutex that implements mutual exclusion from critical sections of code in
multithreaded applications. The purpose of a mutex is to guarantee that concurrent calls
to a critical section of code in a multithreaded application are serialized. If a critical
section of code is protected by a mutex, then two (or more) threads cannot execute the
critical section simultaneously. That is, an instance of this class makes it possible for
you to serialize potentially concurrent calls.

Concert Technology implements a mutex by using a single resource that you lock when
your application enters the critical section and that you unlock when you leave. Only
one thread can own that resource at a given time.

See ILOUSEMT for details about the compilation macro to use with instances of this
class.

Protection by a Mutex

Constructor Summary
public IloFastMutex()

Method Summary
public int isLocked()

public void IloFastMutex::lock()

public void IloFastMutex::unlock()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 140

IloFastMutex
A critical section of code in a multithreaded application is protected by a mutex when
that section of code is encapsulated by a pair of calls to the member functions
IloFastMutex::lock and IloFastMutex::unlock.

In fact, we say that a pair of calls to the member functions lock and unlock defines
a critical section. The conventional way of defining a critical section looks like this:

 mutex.lock();
 while (conditionC does not hold)
 condition.wait(&mutex);
 doTreatmentT();
 mutex.unlock();

The class IloCondition provides synchronization primitives to express conditions
in critical sections of code.

State of a Mutex

A mutex (an instance of IloFastMutex) has a state; the state may be locked or
unlocked. You can inquire about the state of a mutex to determine whether it is locked or
unlocked by using the member function isLocked. When a thread enters a critical
section of code in a multithreaded application and then locks the mutex defining that
critical section, we say that the thread owns that lock and that lock belongs to the thread
until the thread unlocks the mutex.

Exceptions

The member functions IloFastMutex::lock and IloFastMutex::unlock
can throw C++ exceptions when exceptions are enabled on platforms that support them.
These are the possible exceptions:

◆ IloMutexDeadlock: Instances of IloFastMutex are not recursive.
Consequently, if a thread locks a mutex and then attempts to lock that mutex again,
the member function lock throws the exception MutexDeadlock. On platforms
that do not support exceptions, it causes the application to exit.

◆ IloMutexNotOwner: The thread that releases a given lock (that is, the thread that
unlocks a mutex) must be the same thread that locked the mutex in the first place.
For example, if a thread A takes lock L and thread B attempts to unlock L, then the
member function unlock throws the exception MutexNotOwner. On platforms
that do not support exceptions, it causes the application to exit.

◆ IloMutexNotOwner: The member function unlock throws this exception
whenever a thread attempts to unlock an instance of IloFastMutex that is not
already locked. On platforms that do not support exceptions, it causes the application
to exit.

System Class: Memory Management
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 141

IloFastMutex
IloFastMutex is a system class.

Most Concert Technology classes are actually handle classes whose instances point to
objects of a corresponding implementation class. For example, instances of the Concert
Technology class IloNumVar are handles pointing to instances of the implementation
class IloNumVarI. Their allocation and de-allocation in internal data structures of
Concert Technology are managed by an instance of IloEnv.

However, system classes, such as IloFastMutex, differ from that pattern.
IloFastMutex is an ordinary C++ class. Its instances are allocated on the C++ heap.

Instances of IloFastMutex are not automatically de-allocated by a call to
IloEnv::end. You must explicitly destroy instances of IloFastMutex by means
of a call to the delete operator (which calls the appropriate destructor) when your
application no longer needs instances of this class.

Furthermore, you should not allocate—neither directly nor indirectly—any instance of
IloFastMutex in the Concert Technology environment because the destructor for
that instance of IloFastMutexwill never be called automatically by IloEnv::end
when it cleans up other Concert Technology objects in the Concert Technology
environment. In other words, allocation of any instance of IloFastMutex in the
Concert Technology environment will produce memory leaks.

For example, it is not a good idea to make an instance of IloFastMutex part of a
conventional Concert Technology model allocated in the Concert Technology
environment because that instance will not automatically be de-allocated from the
Concert Technology environment along with the other Concert Technology objects.

De-allocating Instances of IloFastMutex

Instances of IloFastMutex differ from the usual Concert Technology objects
because they are not allocated in the Concert Technology environment, and their de-
allocation is not managed automatically for you by IloEnv::end. Instead, you must
explicitly destroy instances of IloFastMutex by calling the delete operator when
your application no longer needs those objects.

See Also IloBarrier, IloCondition, ILOUSEMT

Constructors public IloFastMutex()

This constructor creates an instance of IloFastMutex and allocates it on the C++
heap (not in the Concert Technology environment). This mutex contains operating
system-specific resources to represent a lock. You may use this mutex for purposes that
are private to a process. Its behavior is undefined for inter-process locking.

Methods public int isLocked()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 142

IloFastMutex
This member function returns a Boolean value that shows the state of the invoking
mutex. That is, it tells you whether the mutex is locked by the calling thread (0) or
unlocked (1) or locked by a thread other than the calling thread (also 1).

public void lock()

This member function acquires a lock for the invoking mutex on behalf of the calling
thread. That lock belongs to the calling thread until the member function unlock is
called.

If you call this member function and the invoking mutex has already been locked, then
the calling thread is suspended until the first lock is released.

public void unlock()

This member function releases the lock on the invoking mutex, if there is such a lock.

If you call this member function on a mutex that has not been locked, then this member
function throws an exception if C++ exceptions have been enabled on a platform that
supports exceptions. Otherwise, it causes the application to exit.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 143

IloFloatVar
IloFloatVar

Category Macro

Synopsis IloFloatVar()

Summary An instance of this class represents a constrained floating-point variable in Concert
Technology.

Description An instance of this class represents a constrained floating-point variable in Concert
Technology.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloFloatVarArray, IloNumVar
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 144

IloFloatVarArray
IloFloatVarArray

Category Macro

Synopsis IloFloatVarArray()

Summary The array class of IloFloatVar.

Description For each basic type, Concert Technology defines a corresponding array class.
IloFloatVarArray is the array class of the floating-point variable class for a model.
It is a handle class.

Instances of IloFloatVarArray are extensible.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloFloatVar
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 145

IloFloor
IloFloor

Category Global Function

Definition File ilconcert/iloenv.h

Synopsis public IloNum IloFloor(IloNum val)

Summary This function computes the largest integer value not greater.

Description This function computes the largest integer value not greater than val.

Examples:

 IloFloor(IloInfinity) is IloInfinity.
 IloFloor(-IloInfinity) is -IloInfinity.
 IloFloor(0) is 0.
 IloFloor(0.4) is 0.
 IloFloor(-0.4) is -1.
 IloFloor(0.5) is 0.
 IloFloor(-0.5) is -1.
 IloFloor(0.6) is 0.
 IloFloor(-0.6) is -1.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 146

IloGetClone
IloGetClone

Category Global Function

Definition File ilconcert/iloextractable.h

Synopsis public X IloGetClone(IloEnvI * env,
 const X x)

Summary Creates a clone.

Description This C++ template creates a clone (that is, an exact copy) of an instance of the class X.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 147

IloHalfPi
IloHalfPi

Category Macro

Synopsis IloHalfPi()

Summary Half pi.

Description Concert Technology predefines conventional trigonometric constants to conform to
IEEE 754 standards for quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloHalfPi; // = 1.57079632679489661923
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 148

IloIfThen
IloIfThen

Category Class

InheritancePath

Definition File ilconcert/ilomodel.h

Summary This class represents a condition constraint.

Constructor Summary
public IloIfThen()

public IloIfThen(IloIfThenI * impl)

public IloIfThen(const IloEnv env,const
IloConstraint left,const IloConstraint
right,const char * name=0)

Method Summary
public IloIfThenI * getImpl() const

Inherited methods from IloConstraint
IloConstraint::getImpl
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 149

IloIfThen
Description An instance of IloIfThen represents a condition constraint. Generally, a condition
constraint is composed of an if part (the conditional statement or left side) and a then
part (the consequence or right side).

In order for a constraint to take effect, you must add it to a model with the template
IloAdd or the member function IloModel::add and extract the model for an
algorithm with the member function extract.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloConstraint

Constructors public IloIfThen()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloIfThen(IloIfThenI * impl)

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 150

IloIfThen
 This constructor creates a handle object from a pointer to an implementation object.

public IloIfThen(const IloEnv env,
 const IloConstraint left,
 const IloConstraint right,
 const char * name=0)

This constructor creates a condition constraint in the environment specified by env.
The argument left specifies the if-part of the condition. The argument right
specifies the then-part of the condition. The string name specifies the name of the
constraint; it is 0 (zero) by default. For the constraint to take effect, you must add it to a
model and extract the model for an algorithm.

Methods public IloIfThenI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 151

IloInitMT
IloInitMT

Category Global Function

Definition File ilconcert/iloenv.h

Synopsis public void IloInitMT()
public void IloInitMT(IloBaseEnvMutex *)

Summary This function initializes multithreading.

Description This function initializes multithreading in a Concert Technology application.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 152

IloInt
IloInt

Category Type Definition

Definition File ilconcert/ilosys.h

Synopsis long IloInt

Summary Type for signed integers.

Description This type definition represents signed integers in Concert Technology.

See Also IloBool, IloModel, IloNum
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 153

IloIntArray
IloIntArray

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary IloIntArray is the array class of the basic integer class.

Description IloIntArray is the array class of the basic integer class for a model. It is a handle
class. The implementation class for IloIntArray is the undocumented class
IloIntArrayI.

Constructor Summary
public IloIntArray(IloArrayI * i=0)

public IloIntArray(const IloEnv env,IloInt n=0)

public IloIntArray(const IloEnv env,IloInt n,IloInt
v0,IloInt v1...)

Method Summary
public IloBool IloIntArray::contains(IloIntArray ax) const

public IloBool IloIntArray::contains(IloInt value) const

public void IloIntArray::discard(IloIntArray ax)

public void IloIntArray::discard(IloInt value)

public IloIntExprArg IloIntArray::operator[](IloIntExprArg
intExp) const

public IloInt & IloIntArray::operator[](IloInt i)

public const IloInt & IloIntArray::operator[](IloInt i) const

public IloNumArray IloIntArray::toNumArray() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 154

IloIntArray
Instances of IloIntArray are extensible. (They differ from instances of
IlcIntArray in this respect.) References to an array change whenever an element is
added to or removed from the array.

For each basic type, Concert Technology defines a corresponding array class. That array
class is a handle class. In other words, an object of that class contains a pointer to
another object allocated in a Concert Technology environment associated with a model.
Exploiting handles in this way greatly simplifies the programming interface since the
handle can then be an automatic object: as a developer using handles, you do not have to
worry about memory allocation.

As handles, these objects should be passed by value, and they should be created as
automatic objects, where “automatic” has the usual C++ meaning.

Member functions of a handle class correspond to member functions of the same name
in the implementation class.

Assert and NDEBUG

Most member functions of the class IloIntArray are inline functions that contain an
assert statement. This statement checks that the handle pointer is not null. These
statements can be suppressed by the macro NDEBUG. This option usually reduces
execution time. The price you pay for this choice is that attempts to access through null
pointers are not trapped and usually result in memory faults.

IloIntArray inherits additional methods from the template IloArray:

◆ add

◆ add

◆ clear

◆ getEnv

◆ getSize

◆ remove

◆ operator[]

◆ operator[]

See Also IloInt

Constructors public IloIntArray(IloArrayI * i=0)

This constructor creates an array of integers from an implementation object.

public IloIntArray(const IloEnv env,
IloInt n=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 155

IloIntArray
This constructor creates an array of n integers for use in a model in the environment
specified by env. By default, its elements are empty handles.

public IloIntArray(const IloEnv env,
IloInt n,
IloInt v0,
IloInt v1...)

This constructor creates an array of n integers; the elements of the new array take the
corresponding values: v0, v1, ..., v(n-1).

Methods public IloBool contains(IloIntArray ax) const

This member function checks whether all the values of ax are contained or not.

public IloBool contains(IloInt value) const

This member function checks whether the value is contained or not.

public void discard(IloIntArray ax)

This member function removes elements from the invoking array. It removes the array
ax.

public void discard(IloInt value)

This member function removes elements from the invoking array. It removes the
element.

public IloIntExprArg operator[](IloIntExprArg intExp) const

This subscripting operator returns an expression node for use in a constraint or
expression. For clarity, let's call A the invoking array. When intExp is bound to the
value i, then the domain of the expression is the domain of A[i]. More generally, the
domain of the expression is the union of the domains of the expressions A[i] where the
i are in the domain of intExp.

This operator is also known as an element constraint.

public IloInt & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the
position specified by the index i.

public const IloInt & operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloArray operator[] (IloInt i) const;
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 156

IloIntArray
public IloNumArray toNumArray() const

This constructor creates an array of integers from an array of numeric values.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 157

IloIntExpr
IloIntExpr

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary The class of integer expressions in Concert Technology.

Constructor Summary
public IloIntExpr()

public IloIntExpr(IloIntExprI * impl)

public IloIntExpr(const IloIntExprArg arg)

public IloIntExpr(const IloIntLinExprTerm term)

public IloIntExpr(const IloEnv env,IloInt constant=0)

Method Summary
public IloIntExprI * getImpl() const

public IloIntExpr & operator *=(IloInt val)

public IloIntExpr & operator+=(const IloIntExprArg expr)

public IloIntExpr & operator+=(IloInt val)

public IloIntExpr & operator-=(const IloIntExprArg expr)

public IloIntExpr & operator-=(IloInt val)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 158

IloIntExpr
Description Integer expressions in Concert Technology are represented using objects of type
IloIntEpr.

Constructors public IloIntExpr()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloIntExpr(IloIntExprI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloIntExpr(const IloIntExprArg arg)

This constructor creates an integer expression using the undocumented class
IloIntExprArg.

public IloIntExpr(const IloIntLinExprTerm term)

This constructor creates an integer expression with linear terms using the undocumented
class IloIntLinExprTerm.

public IloIntExpr(const IloEnv env,

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 159

IloIntExpr
IloInt constant=0)

This constructor creates a constant integer expression with the value constant that
the user can modify subsequently with the operators +=, -=, ?= in the environment
env.

Methods public IloIntExprI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloIntExpr & operator *=(IloInt val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x *

public IloIntExpr & operator+=(const IloIntExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x +

public IloIntExpr & operator+=(IloInt val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x +

public IloIntExpr & operator-=(const IloIntExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x -

public IloIntExpr & operator-=(IloInt val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x -
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 160

IloIntExprArg
IloIntExprArg

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary A class used internally in Concert Technology.

Constructor Summary
public IloIntExprArg()

public IloIntExprArg(IloIntExprI * impl)

Method Summary
public IloIntExprI * IloIntExprArg::getImpl() const

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 161

IloIntExprArg
Description Concert Technology uses instances of these classes internally as temporary objects when
it is parsing a C++ expression in order to build an instance of IloIntExpr. As a
Concert Technology user, you will not need this class yourself; in fact, you should not
use them directly. They are documented here because the return value of certain
functions, such as IloSum or IloScalProd, can be an instance of this class.

Constructors public IloIntExprArg()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloIntExprArg(IloIntExprI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

Methods public IloIntExprI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 162

IloIntExprArray
IloIntExprArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary The array class of IloIntExpr.

Constructor Summary
public IloIntExprArray(IloDefaultArrayI * i=0)

public IloIntExprArray(const IloEnv env,IloInt n=0)

Method Summary
public void IloIntExprArray::add(IloInt more,const

IloIntExpr x)

public void IloIntExprArray::add(const IloIntExpr x)

public void IloIntExprArray::add(const IloIntExprArray
array)

public void IloIntExprArray::endElements()

public IloIntExprArg IloIntExprArray::operator[](IloIntExprArg
anIntegerExpr) const

public IloIntExpr IloIntExprArray::operator[](IloInt i) const

public IloIntExpr & IloIntExprArray::operator[](IloInt i)

Inherited methods from IloExtractableArray
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 163

IloIntExprArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloIntExprArray is the array class of the integer expressions class
(IloIntExpr) for a model.

Instances of IloIntExprArray are extensible. That is, you can add more elements
to such an array. References to an array change whenever an element is added to or
removed from the array.

Constructors public IloIntExprArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of elements. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default
constructor, it allows you to pass 0 (zero) as a value to an optional argument in
functions and member functions that accept an array as an argument.

public IloIntExprArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty
handles.

Methods public void add(IloInt more,
 const IloIntExpr x)

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(const IloIntExpr x)

This member function appends x to the invoking array.

public void add(const IloIntExprArray array)

This member function appends the elements in array to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the
invoking array. This deletes all the extractables identified by the array, leaving the
handles in the array intact. This member function is the recommended way to delete the
elements of an array.

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or
expression. For clarity, let's call A the invoking array. When anIntegerExpr is

IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 164

IloIntExprArray
bound to the value i, the domain of the expression is the domain of A[i]. More
generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element constraint.

public IloIntExpr operator[](IloInt i) const

This operator returns a reference to the extractable object located in the invoking array at
the position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloIntExpr operator[] (IloInt i) const;

public IloIntExpr & operator[](IloInt i)

This operator returns a reference to the extractable object located in the invoking array at
the position specified by the index i.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 165

IloIntSet
IloIntSet

Category Class

InheritancePath

Definition File ilconcert/iloset.h

Summary An instance of this class offers a convenient way to represent a set of integer values.

Constructor Summary
public IloIntSet(const IloEnv env,const IloIntArray

array,IloBool withIndex=IloFalse)

public IloIntSet(const IloEnv env,const IloNumArray
array,IloBool withIndex=IloFalse)

public IloIntSet(const IloEnv env,IloBool
withIndex=IloFalse)

public IloIntSet(IloIntSetI * impl=0)

Method Summary
public void add(IloIntSet set)

public void add(IloInt elt)

public IloBool contains(IloIntSet set) const

public IloBool contains(IloInt elt) const

public void empty()

public IloInt getFirst() const

public IloIntSetI * getImpl() const

public IloInt getLast() const

public IloInt getNext(IloInt value,IloInt offset=1) const

public IloInt getNextC(IloInt value,IloInt offset=1) const

public IloInt getPrevious(IloInt value,IloInt offset=1)
const

public IloInt getPreviousC(IloInt value,IloInt offset=1)
const

public IloInt getSize() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 166

IloIntSet
Description An instance of this class offers a convenient way to represent a set of integer values as a
constrained variable in Concert Technology.

An instance of this class represents a set of enumerated values. The same enumerated
value will not appear more than once in a set. The elements of a set are not ordered. The
class IloIntSet::Iterator offers you a way to traverse the elements of such a
set.

If you are considering modeling issues where you want to represent repeated elements
or where you want to exploit an indexed order among the elements, then you might want
to look at the class IloAnyArray instead of this class for sets.

See Also IloCard, IloEqIntersection, IloEqUnion, IloExtractable, IloMember, IloModel,
IloNotMember, IloNullIntersect, IloIntSetVarArray, IloSubset, IloSubsetEq

Constructors public IloIntSet(const IloEnv env,
 const IloIntArray array,

IloBool withIndex=IloFalse)

This constructor creates a set of integer values in the environment env from the
elements in array. The optional flag withIndex corresponds to the activation or not
of internal Hash Tables to improve speed of add/getIndex methods.

public IloIntSet(const IloEnv env,
 const IloNumArray array,

IloBool withIndex=IloFalse)

This constructor creates a set of numeric values in the environment env from the
elements in array. The optional flag withIndex corresponds to the activation or not
of internal Hash Tables to improve speed of add/getIndex methods.

public IloIntSet(const IloEnv env,
IloBool withIndex=IloFalse)

public IloBool intersects(IloIntSet set) const

public void remove(IloIntSet set)

public void remove(IloInt elt)

public void setIntersection(IloIntSet set)

public void setIntersection(IloInt elt)

Inner Class
IloIntSet::IloIntSet::Iterat
or

 This class is an iterator that traverses the
elements of a finite set of numeric values.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 167

IloIntSet
This constructor creates an empty set (no elements) in the environment env. You must
use the member function IloIntSet::add to fill this set with elements. The
optional flag withIndex corresponds to the activation or not of internal Hash Tables
to improve speed of add/getIndex methods.

public IloIntSet(IloIntSetI * impl=0)

This constructor creates a handle to a set of integer values from its implementation
object.

Methods public void add(IloIntSet set)

This member function adds set to the invoking set. Here, "adds" means that the
invoking set becomes the union of its former elements and the elements of set.

To calculate the arithmetic sum of values in an array, use the function IloSum.

public void add(IloInt elt)

This member function adds elt to the invoking set. Here, "adds" means that the
invoking set becomes the union of its former elements and the new elt.

public IloBool contains(IloIntSet set) const

This member function returns a Boolean value (zero or one) that specifies whether set
contains the invoking set. The value one specifies that the invoking set contains all the
elements of set, and that the intersection of the invoking set with set is precisely
set. The value zero specifies that the intersection of the invoking set and set is not
precisely set.

public IloBool contains(IloInt elt) const

This member function returns a Boolean value (zero or one) that specifies whether elt
is an element of the invoking set. The value one specifies that the invoking set contains
elt; the value zero specifies that the invoking set does not contain elt.

public void empty()

This member function removes the elements from the invoking set. In other words, the
invoking set becomes the empty set.

public IloInt getFirst() const

 Returns the first item of the collection.

Returns : Returns the first item of the collection.

public IloIntSetI * getImpl() const

This member function returns a pointer to the implementation object of the invoking set.

public IloInt getLast() const

 Returns the last item of the collection.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 168

IloIntSet
Returns : Returns the last item of the collection.

public IloInt getNext(IloInt value,
IloInt offset=1) const

 This method returns the value next to the given argument in the set.

 If the given value does not exist, it throws an exception

 If no value follows (that is, you are at the end of the set), it throws an exception.

 See also getNextC, getPreviousC for circular search.

 S = {1,2,3,4}
 S.next(2,1) will return 3

Parameters : value

 Value used as an index.

offset

 The offset to apply for the computation. An offset of 0 returns the same object.

 S = {1,2,3,4}
 S.next(2,1) will return 3

public IloInt getNextC(IloInt value,
IloInt offset=1) const

 This method returns the value next to the given argument in the set.

 If the given value does not exist, it throws an exception.

 If no value follows (that is, you are at the end of the set), it will give you the first value
(circular search).

 See also getNext, getPrevious.

See Also getNext

Parameters : value

 Value used as an index.

offset

 The offset to apply for the computation. An offset of 0 returns the same object.

public IloInt getPrevious(IloInt value,
IloInt offset=1) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 169

IloIntSet
 This method returns the value previous to the given argument in the set.

 If the given value does not exist, it throws an exception

 If no value is previous (that is, you are at the beginning of the set), it throws an
exception.

 See also getNextC, getPreviousC for circular search.

See Also getNext

Parameters : value

 Value used as an index.

offset

 The offset to apply for the computation. An offset of 0 returns the same object.

public IloInt getPreviousC(IloInt value,
IloInt offset=1) const

 This method returns the value previous to the given argument in the set.

 If the given value does not exist, it throws an exception.

 If no value is previous (that is, you are at the beginning of the set), it will give you the
last value (circular search).

 See also getNext, getPrevious.

See Also getNext

Parameters : value

 Value used as an index.

offset

 The offset to apply for the computation. An offset of 0 returns the same object.

public IloInt getSize() const

This member function returns an integer specifying the size of the invoking set (that is,
how many elements it contains).

public IloBool intersects(IloIntSet set) const

This member function returns a Boolean value (zero or one) that specifies whether set
intersects the invoking set. The value one specifies that the intersection of set and the
invoking set is not empty (at least one element in common); the value zero specifies
that the intersection of set and the invoking set is empty (no elements in common).

public void remove(IloIntSet set)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 170

IloIntSet
This member function removes all the elements of set from the invoking set.

public void remove(IloInt elt)

This member function removes elt from the invoking set.

public void setIntersection(IloIntSet set)

This member function changes the invoking set so that it includes only the elements of
set. In other words, the invoking set becomes the intersection of its former elements
with the elements of set.

public void setIntersection(IloInt elt)

This member function changes the invoking set so that it includes only the element
specified by elt. In other words, the invoking set becomes the intersection of its
former elements with elt.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 171

IloIntSet::Iterator
IloIntSet::Iterator

Category Inner Class

InheritancePath

Definition File ilconcert/iloset.h

Summary This class is an iterator that traverses the elements of a finite set of numeric values.

Description An instance of the nested class IloIntSet::Iterator is an iterator that traverses
the elements of a finite set of numeric values (an instance of IloIntSet).

See Also IloIntSet

Constructors public Iterator(const IloIntSet coll)

 Creates an iterator over the given set.

Methods public IloBool ok() const

This member function returns IloTrue if there is a current element and the invoking
iterator points to it. Otherwise, it returns IloFalse.

To traverse the elements of a finite set of pointers, use the following code:

 for(IloIntSet::Iterator iter(set); iter.ok(); ++iter){
 IloInt val = *iter;
 // do something with val
 }

Constructor Summary
public Iterator(const IloIntSet coll)

Method Summary
public IloBool ok() const

public IloInt operator *()

public void operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 172

IloIntSet::Iterator
public IloInt operator *()

This operator returns the current value.

public void operator++()

This operator advances the iterator to point to the next value in the dataset.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 173

IloIntSetVar
IloIntSetVar

Category Class

InheritancePath

Definition File ilconcert/iloset.h

Summary The class IloIntSetVar represents a set of integer values.

Constructor Summary
public IloIntSetVar()

public IloIntSetVar(IloIntSetVarI * impl)

public IloIntSetVar(const IloEnv env,const
IloIntArray array,const char * name=0)

public IloIntSetVar(const IloEnv env,const
IloIntArray possible,const IloIntArray
required,const char * name=0)

public IloIntSetVar(const IloEnv env,const
IloNumArray array,const char * name=0)

public IloIntSetVar(const IloEnv env,const
IloNumArray possible,const IloNumArray
required,const char * name=0)

public IloIntSetVar(const IloIntCollection
possible,const char * name=0)

public IloIntSetVar(const IloIntCollection
possible,const IloIntCollection required,const
char * name=0)

public IloIntSetVar(const IloNumCollection
possible,const char * name=0)

public IloIntSetVar(const IloNumCollection
possible,const IloNumCollection required,const
char * name=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 174

IloIntSetVar
Description An instance of this class represents a set of integer values. The same integer value will
not appear more than once in a set. The elements of a set are not ordered.

A constrained variable representing a set of integer values (that is, an instance of
IloIntSetVar) is defined in terms of two other sets: its required elements and its
possible elements. Its required elements are those that must be in the set. Its possible
elements are those that may be in the set. This class offers member functions for
accessing the required and possible elements of a set of integer values.

The function IloCard offers you a way to constrain the number of elements in a set
variable. That is, IloCard constrains the cardinality of a set variable.

Constructors public IloIntSetVar()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloIntSetVar(IloIntSetVarI * impl)

Method Summary
public void addPossible(IloInt elt) const

public void addRequired(IloInt elt) const

public IloIntSetVarI * getImpl() const

public void getPossibleSet(IloIntSet set) const

public IloIntSet getPossibleSet() const

public void getRequiredSet(IloIntSet set) const

public IloIntSet getRequiredSet() const

public void removePossible(IloInt elt) const

public void removeRequired(IloInt elt) const

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 175

IloIntSetVar
 This constructor creates a handle object from a pointer to an implementation object.

public IloIntSetVar(const IloEnv env,
 const IloIntArray array,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values. By default, its name is the empty string,
but you can specify a name of your choice.

public IloIntSetVar(const IloEnv env,
 const IloIntArray possible,
 const IloIntArray required,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values. The array possible specifies the set of
possible elements of the set variable; the array required specifies the set of required
elements of the set variable. By default, its name is the empty string, but you can
specify a name of your choice.

public IloIntSetVar(const IloEnv env,
 const IloNumArray array,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values. By default, its name is the empty string,
but you can specify a name of your choice.

public IloIntSetVar(const IloEnv env,
 const IloNumArray possible,
 const IloNumArray required,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values. The numeric array possible specifies
the set of possible elements of the set variable; the numeric array required specifies
the set of required elements of the set variable. By default, its name is the empty string,
but you can specify a name of your choice.

public IloIntSetVar(const IloIntCollection possible,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values.

public IloIntSetVar(const IloIntCollection possible,
 const IloIntCollection required,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 176

IloIntSetVar
public IloIntSetVar(const IloNumCollection possible,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values.

public IloIntSetVar(const IloNumCollection possible,
 const IloNumCollection required,
 const char * name=0)

This constructor creates a constrained set variable and makes it part of the environment
env, where the set consists of integer values.

Methods public void addPossible(IloInt elt) const

This member function adds elt to the set of possible elements of the invoking set
variable.

public void addRequired(IloInt elt) const

This member function adds elt to the set of required elements of the invoking set
variable.

public IloIntSetVarI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public void getPossibleSet(IloIntSet set) const

This member function accesses the possible elements of the invoking set variable and
puts those elements into its argument set.

public IloIntSet getPossibleSet() const

This member function returns the possible elements of the invoking set variable.

public void getRequiredSet(IloIntSet set) const

This member function accesses the possible elements of the invoking set variable and
puts those elements into its argument set.

Note: The member function addPossible notifies Concert Technology
algorithms about this change of this invoking object.

Note: The member function addRequired notifies Concert Technology
algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 177

IloIntSetVar
public IloIntSet getRequiredSet() const

This member function returns the required elements of the invoking set variable.

public void removePossible(IloInt elt) const

This member function removes elt as a possible element of the invoking set variable.

public void removeRequired(IloInt elt) const

This member function removes elt as a required element of the invoking set variable.

Note: The member function removePossible notifies Concert
Technology algorithms about this change of this invoking object.

Note: The member function removeRequired notifies Concert
Technology algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 178

IloIntSetVarArray
IloIntSetVarArray

Category Class

InheritancePath

Definition File ilconcert/iloset.h

Summary The array class of the set variable class for integer values.

Constructor Summary
public IloIntSetVarArray(IloDefaultArrayI * i=0)

public IloIntSetVarArray(const IloEnv env,IloInt
n=0)

Method Summary
public void add(IloInt more,const IloIntSetVar x)

public void add(const IloIntSetVar x)

public void add(const IloIntSetVarArray array)

public IloIntSetVar operator[](IloInt i) const

public IloIntSetVar & operator[](IloInt i)

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 179

IloIntSetVarArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloIntSetVarArray is the array class of the set variable class for integer values
(IloIntSetVar) in a model.

Instances of IloIntSetVarArray are extensible. That is, you can add more
elements to such an array. References to an array change whenever an element is added
or removed from the array.

Constructors public IloIntSetVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of set variables. You cannot create
instances of the undocumented class IloDefaultArrayI. As an argument in this
default constructor, it allows you to pass 0 (zero) as a value to an optional argument in
functions and member functions that accept an array as an argument.

public IloIntSetVarArray(const IloEnv env,
IloInt n=0)

This constructor creates an extensible array of n set variables, where each set is a set of
integer values.

Methods public void add(IloInt more,
 const IloIntSetVar x)

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(const IloIntSetVar x)

This member function appends x to the invoking array.

public void add(const IloIntSetVarArray array)

This member function appends the elements in array to the invoking array.

public IloIntSetVar operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloIntSetVar operator[] (IloInt i) const;

public IloIntSetVar & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the
position specified by the index i.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 180

IloIntTupleSet
IloIntTupleSet

Category Class

InheritancePath

Definition File ilconcert/ilotupleset.h

Summary Ordered set of values represented by an array.

Description A tuple is an ordered set of values represented by an array. A set of enumerated tuples in
a model is represented by an instance of IloIntTupleSet. That is, the elements of a
tuple set are tuples of enumerated values (such as pointers). The number of values in a
tuple is known as the arity of the tuple, and the arity of the tuples in a set is called the
arity of the set. (In contrast, the number of tuples in the set is known as the cardinality of
the set.)

As a handle class, IloIntTupleSet manages certain set operations efficiently. In
particular, elements can be added to such a set. It is also possible to search a given set
with the member function isIn to see whether or not the set contains a given element.

Constructor Summary
public IloIntTupleSet(const IloEnv env,const IloInt

arity)

Method Summary
public IloBool add(const IloIntArray tuple) const

public void end()

public IloInt getArity() const

public IloInt getCardinality() const

public IloIntTupleSetI * getImpl() const

public IloBool isIn(const IloIntArray tuple) const

public IloBool remove(const IloIntArray tuple) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 181

IloIntTupleSet
In addition, a set of tuples can represent a constraint defined on a constrained variable,
either as the set of allowed combinations of values of the constrained variable on which
the constraint is defined, or as the set of forbidden combinations of values.

There are a few conventions governing tuple sets:

◆ When you create the set, you must specify the arity of the tuple-elements it contains.

◆ You use the member function IloIntTupleSet::add to add tuples to the set.
You can add tuples to the set in a model; you cannot add tuples to an instance of this
class during a search, nor inside a constraint, nor inside a goal.

Concert Technology will throw an exception if you attempt:

◆ to add a tuple with a different number of variables from the arity of the set;

◆ to search for a tuple with an arity different from the set arity.

See Also IloIntTupleSetIterator, IloExtractable

Constructors public IloIntTupleSet(const IloEnv env,
 const IloInt arity)

This constructor creates a set of tuples (an instance of the class IloIntTupleSet)
with the arity specified by arity.

Methods public IloBool add(const IloIntArray tuple) const

This member function adds a tuple represented by the array tuple to the invoking set.
If you attempt to add an element that is already in the set, that element will not be added
again. Added elements are not copied; that is, there is no memory duplication. Concert
Technology will throw an exception if the size of the array is not equal to the arity of the
invoking set. You may use this member function to add tuples to the invoking set in a
model; you may not add tuples in this way during a search, inside a constraint, or inside
a goal. For those purposes, see IlcIntTupleSet, documented in the ILOG CP
Optimizer Reference Manual and the ILOG Solver Reference Manual.

public void end()

This member function deletes the invoking set. That is, it frees all the resources used by
the invoking object. After a call to this member function, you cannot use the invoking
extractable object again.

public IloInt getArity() const

This member function returns the arity of the tupleset.

public IloInt getCardinality() const

This member function returns the cardinality of the tupleset.

public IloIntTupleSetI * getImpl() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 182

IloIntTupleSet
 This member function returns a pointer to the implementation object of the invoking
extractable object. This member function is useful when you need to be sure that you
are using the same copy of the invoking extractable object in more than one situation.

public IloBool isIn(const IloIntArray tuple) const

This member function returns IloTrue if tuple belongs to the invoking set.
Otherwise, it returns IloFalse. Concert Technology will throw an exception if the
size of the array is not equal to the arity of the invoking set.

public IloBool remove(const IloIntArray tuple) const

This member function removes tuple from the invoking set in a model. You may use
this member function to remove tuples from the invoking set in a model; you may not
remove tuples in this way during a search, inside a constraint, or inside a goal.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 183

IloIntTupleSetIterator
IloIntTupleSetIterator

Category Class

InheritancePath

Definition File ilconcert/ilotupleset.h

Summary Class of iterators to traverse enumerated values of a tuple-set.

Description An instance of the class IloIntTupleSetIterator is an iterator that traverses the
elements of a finite set of tuples of enumerated values (instance of
IloIntTupleSet).

See Also the classes IlcIntTupleSet in the ILOG CP Optimizer Reference Manual
and the ILOG Solver Reference Manual.

Constructors public IloIntTupleSetIterator(const IloEnv env,
IloIntTupleSet tset)

This constructor creates an iterator associated with tSet to traverse its elements.

Methods public IloIntArray operator *() const

This operator returns the current element, the one to which the invoking iterator points.

Constructor Summary
public IloIntTupleSetIterator(const IloEnv

env,IloIntTupleSet tset)

Method Summary
public IloIntArray operator *() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 184

IloIntVar
IloIntVar

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary An instance of this class represents a constrained integer variable in a Concert
Technology model.

Constructor Summary
public IloIntVar()

public IloIntVar(IloNumVarI * impl)

public IloIntVar(IloEnv env,IloInt vmin=0,IloInt
vmax=IloIntMax,const char * name=0)

public IloIntVar(const IloAddNumVar & var,IloInt
lowerBound=0,IloInt upperBound=IloIntMax,const
char * name=0)

public IloIntVar(const IloEnv env,const IloIntArray
values,const char * name=0)

public IloIntVar(const IloAddNumVar & var,const
IloIntArray values,const char * name=0)

public IloIntVar(const IloNumVar var)

public IloIntVar(const IloIntRange coll,const char *
name=0)

Method Summary
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 185

IloIntVar
Description An instance of this class represents a constrained integer variable in a Concert
Technology model. If you are looking for a class of numeric variables that may assume
integer values and may be relaxed to assume floating-point values, then consider the

public IloNumVarI * IloIntVar::getImpl() const

public IloNum IloIntVar::getLB() const

public IloInt IloIntVar::getMax() const

public IloInt IloIntVar::getMin() const

public IloNum IloIntVar::getUB() const

public void IloIntVar::setBounds(IloInt lb,IloInt ub)
const

public void IloIntVar::setLB(IloNum min) const

public void IloIntVar::setMax(IloInt max) const

public void IloIntVar::setMin(IloInt min) const

public void IloIntVar::setPossibleValues(const
IloIntArray values) const

public void IloIntVar::setUB(IloNum max) const

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 186

IloIntVar
class IloNumVar. If you are looking for a class of binary decision variables (that is,
variables that assume only the values 0 (zero) or 1 (one), then consider the class
IloBoolVar.

Bounds of an Integer Variable

The lower and upper bound of an instance of this class is an integer.

What Is Extracted

An instance of IloIntVar is extracted by IloCP or IloSolver as an instance of
IlcIntVar.

An instance of IloIntVar is extracted by IloCplex as a column representing a
numeric variable of type Int with bounds as specified by IloIntVar.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloBoolVar, IloNumVar

Constructors public IloIntVar()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloIntVar(IloNumVarI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloIntVar(IloEnv env,
IloInt vmin=0,
IloInt vmax=IloIntMax,

 const char * name=0)

This constructor creates an instance of IloIntVar like this:

IloNumVar(env, vmin, vmax, ILOINT, name);

public IloIntVar(const IloAddNumVar & var,
IloInt lowerBound=0,
IloInt upperBound=IloIntMax,

 const char * name=0)

Note:When numeric bounds are given to an integer variable (an instance of
IloIntVar or IloNumVar with Type = Int) in the constructors or via a
modifier (such as setUB, setLB, setBounds), they are inwardly rounded
to an integer value. LB is rounded down and UB is rounded up.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 187

IloIntVar
This constructor creates an instance of IloIntVar like this:

IloNumVar(column, lowerBound, upperBound, ILOINT, name);

public IloIntVar(const IloEnv env,
 const IloIntArray values,
 const char * name=0)

This constructor calls upon its corresponding IloNumVar constructor.

public IloIntVar(const IloAddNumVar & var,
 const IloIntArray values,
 const char * name=0)

This constructor calls upon its corresponding IloNumVar constructor.

public IloIntVar(const IloNumVar var)

This constructor creates a new handle on var if it is of type ILOINT. Otherwise, an
exception is thrown.

public IloIntVar(const IloIntRange coll,
 const char * name=0)

 This constructor creates an instance of IloIntVar from the given collection

 *

Methods public IloNumVarI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloNum getLB() const

This member function returns the lower bound of the invoking variable.

public IloInt getMax() const

This member function returns the maximal value of the invoking variable.

public IloInt getMin() const

This member function returns the minimal value of the invoking variable.

public IloNum getUB() const

This member function returns the upper bound of the invoking variable.

public void setBounds(IloInt lb,
IloInt ub) const

This member function sets lb as the lower bound and ub as the upper bound of the
invoking numeric variable.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 188

IloIntVar
public void setLB(IloNum min) const

This member function sets min as the lower bound of the invoking variable.

public void setMax(IloInt max) const

This member function returns the minimal value of the invoking variable to max.

public void setMin(IloInt min) const

This member function returns the minimal value of the invoking variable to min.

public void setPossibleValues(const IloIntArray values) const

This member function sets values as the domain of the invoking integer variable.

public void setUB(IloNum max) const

This member function sets max as the upper bound of the invoking variable.

Note:The member function setBounds notifies Concert Technology
algorithms about the change of bounds in this numeric variable.

Note:The member function setLB notifies Concert Technology algorithms
about the change of bounds in this numeric variable.

Note:The member function setMax notifies Concert Technology
algorithms about the change of bounds in this numeric variable.

Note:The member function setMin notifies Concert Technology
algorithms about the change of bounds in this numeric variable.

Note:The member function setPossibleValues notifies Concert
Technology algorithms about the change of bounds in this numeric variable.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 189

IloIntVar
Note:The member function setUB notifies Concert Technology algorithms
about the change of bounds in this numeric variable.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 190

IloIntVarArray
IloIntVarArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary The array class of IloIntVar.

Constructor Summary
public IloIntVarArray(IloDefaultArrayI * i=0)

public IloIntVarArray(const IloEnv env,IloInt n=0)

public IloIntVarArray(const IloEnv env,const
IloIntArray lb,const IloIntArray ub)

public IloIntVarArray(const IloEnv env,IloInt
lb,const IloIntArray ub)

public IloIntVarArray(const IloEnv env,const
IloIntArray lb,IloInt ub)

public IloIntVarArray(const IloEnv env,IloInt
n,IloInt lb,IloInt ub)

public IloIntVarArray(const IloEnv env,const
IloNumColumnArray columnarray)

public IloIntVarArray(const IloEnv env,const
IloNumColumnArray columnarray,const
IloNumArray lb,const IloNumArray ub)

Method Summary
public void IloIntVarArray::add(IloInt more,const

IloIntVar x)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 191

IloIntVarArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloIntVarArray is the array class of the integer variable class for a model. It is a
handle class.

Instances of IloIntVarArray are extensible.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloIntVar

Constructors public IloIntVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of integer variables.

public IloIntVarArray(const IloEnv env,
IloInt n=0)

This constructor creates an extensible array of n integer variables.

public void IloIntVarArray::add(const IloIntVar x)

public void IloIntVarArray::add(const IloIntVarArray x)

public void IloIntVarArray::endElements()

public IloIntVar IloIntVarArray::operator[](IloInt i) const

public IloIntVar & IloIntVarArray::operator[](IloInt i)

public IloIntExprArg IloIntVarArray::operator[](IloIntExprArg
anIntegerExpr) const

public IloNumVarArray IloIntVarArray::toNumVarArray() const

Inherited methods from IloIntExprArray
IloIntExprArray::add, IloIntExprArray::add, IloIntExprArray::add,
IloIntExprArray::endElements, IloIntExprArray::operator[],
IloIntExprArray::operator[], IloIntExprArray::operator[]

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 192

IloIntVarArray
public IloIntVarArray(const IloEnv env,
 const IloIntArray lb,
 const IloIntArray ub)

This constructor creates an extensible array of integer variables with lower and upper
bounds as specified.

public IloIntVarArray(const IloEnv env,
IloInt lb,

 const IloIntArray ub)

This constructor creates an extensible array of integer variables with a lower bound and
an array of upper bounds as specified.

public IloIntVarArray(const IloEnv env,
 const IloIntArray lb,

IloInt ub)

This constructor creates an extensible array of integer variables with an array of lower
bounds and an upper bound as specified.

public IloIntVarArray(const IloEnv env,
IloInt n,
IloInt lb,
IloInt ub)

This constructor creates an extensible array of n integer variables, with a lower and an
upper bound as specified.

public IloIntVarArray(const IloEnv env,
 const IloNumColumnArray columnarray)

This constructor creates an extensible array of integer variables from a column array.

public IloIntVarArray(const IloEnv env,
 const IloNumColumnArray columnarray,
 const IloNumArray lb,
 const IloNumArray ub)

This constructor creates an extensible array of integer variables with lower and upper
bounds as specified from a column array.

Methods public void add(IloInt more,
 const IloIntVar x)

This member function appends x to the invoking array of integer variables; it appends x
more times.

public void add(const IloIntVar x)

This member function appends the value x to the invoking array.

public void add(const IloIntVarArray x)

This member function appends the variables in the array x to the invoking array.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 193

IloIntVarArray
public void endElements()

This member function calls IloExtractable::end for each of the elements in the
invoking array. This deletes all the extractables identified by the array, leaving the
handles in the array intact. This member function is the recommended way to delete the
elements of an array.

public IloIntVar operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator

 IloIntVar operator[] (IloInt i) const;

public IloIntVar & operator[](IloInt i)

This operator returns a reference to the extractable object located in the invoking array at
the position specified by the index i.

public IloIntExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or
expression. For clarity, let's call A the invoking array. When anIntegerExpr is
bound to the value i, the domain of the expression is the domain of A[i]. More
generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element constraint.

public IloNumVarArray toNumVarArray() const

This member function copies the invoking array into a new IloNumVarArray.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 194

IloIsNAN
IloIsNAN

Category Global Function

Definition File ilconcert/ilosys.h

Synopsis public int IloIsNAN(double)

Summary Tests whether a double value is a NaN.

Description This function tests whether a double value is a NaN (Not a number).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 195

IloIterator
IloIterator

Category Class

InheritancePath

Definition File ilconcert/iloiterator.h

Summary A template to create iterators for a class of extractable objects.

Description This template creates iterators for a given class of extractable objects (denoted by E in
the template) within an instance of IloEnv.

By default, an iterator created in this way will traverse instances of E and of its
subclasses. You can prevent the iterator from traversing instances of subclasses of E
(that is, you can limit its effect) by setting the argument withSubClasses to
IloFalse in the constructor of the iterator.

While an iterator created in this way is working, you must not create nor destroy any
extractable objects in the instance of IloEnv where it is working. In other words, an
iterator created in this way works only in a stable environment.

An iterator created with this template differs from an instance of
IloModel::Iterator. An instance of IloModel::Iterator works only on
extractable objects (instances of IloExtractable or its subclasses) that have
explicitly been added to a model (an instance of IloModel). In contrast, an iterator
created with this template will work on all extractable objects within a given
environment, whether or not they have been explicitly added to a model.

Constructor Summary
public IloIterator(const IloEnv env,IloBool

withSubClasses=IloTrue)

Method Summary
public IloBool ok()

public void operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 196

IloIterator
See Also IloEnv, IloExtractable, IloModel, IloModel::Iterator

Constructors public IloIterator(const IloEnv env,
IloBool withSubClasses=IloTrue)

This template constructor creates an iterator for instances of the class E. When the
argument withSubClasses is IloTrue (its default value), the iterator will also
work on instances of the subclasses of E. When withSubClasses is IloFalse,
the iterator works only on instances of E.

Example

Here is an example of an iterator created by this template for the class IloNumVar.

 typedef IloIterator<IloNumVar> IloNumVarIterator;
 void displayAllVars(IloEnv env) {
 for (IloNumVarIterator it(env); it.ok(); ++it) {
 IloNumVar ext = *it;
 cout << ext;
 }
 }

Methods public IloBool ok()

This member function returns IloTrue if there is a current element and the iterator
points to it. Otherwise, it returns IloFalse.

public void operator++()

This operator advances the iterator to point to the next value in the iteration.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 197

IloLexicographic
IloLexicographic

Category Global Function

Definition File ilconcert/ilomodel.h

Synopsis public IloConstraint IloLexicographic(IloEnv env,
IloIntExprArray x,
IloIntExprArray y,

 const char *=0)

Description The IloLexicographic function returns a constraint which maintains two arrays to
be lexicographically ordered.

More specifically, IloLexicographic(x, y)maintains that x is less than or equal
to y in the lexicographical sense of the term. This means that either both arrays are
equal or that there exists i < size(x) such that for all j < i, x[j] = y[j] and
x[i] < y[i].

Note that the size of the two arrays must be the same.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 198

IloLog
IloLog

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloLog(const IloNumExprArg arg)
public IloNum IloLog(IloNum val)

Summary Returns the natural logarithm of its argument.

Description Concert Technology offers predefined functions that return an expression from an
algebraic function on expressions. These predefined functions also return a numeric
value from an algebraic function on numeric values as well.

IloLog returns the natural logarithm of its argument. In order to conform to IEEE 754
standards for floating-point arithmetic, you should use this function in your Concert
Technology applications, rather than the standard C++ log.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 199

IloMax
IloMax

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNum IloMax(const IloNumArray vals)
public IloNum IloMax(IloNum val1,

IloNum val2)
public IloInt IloMax(const IloIntArray vals)
public IloNumExprArg IloMax(const IloNumExprArray exprs)
public IloIntExprArg IloMax(const IloIntExprArray exprs)
public IloNumExprArg IloMax(const IloNumExprArg x,
 const IloNumExprArg y)
public IloNumExprArg IloMax(const IloNumExprArg x,

IloNum y)
public IloNumExprArg IloMax(IloNum x,
 const IloNumExprArg y)
public IloIntExprArg IloMax(const IloIntExprArg x,
 const IloIntExprArg y)
public IloIntExprArg IloMax(const IloIntExprArg x,

IloInt y)
public IloNumExprArg IloMax(const IloIntExprArg x,

IloNum y)
public IloIntExprArg IloMax(const IloIntExprArg x,
 int y)
public IloIntExprArg IloMax(IloInt x,
 const IloIntExprArg y)
public IloNumExprArg IloMax(IloNum x,
 const IloIntExprArg y)
public IloIntExprArg IloMax(int x,
 const IloIntExprArg y)

Summary Returns a numeric value representing the max of numeric values.

Description These functions compare their arguments and return the greatest value.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 200

IloMaximize
IloMaximize

Category Global Function

Definition File ilconcert/ilolinear.h

Synopsis public IloObjective IloMaximize(const IloEnv env,
IloNum constant=0.0,

 const char * name=0)
public IloObjective IloMaximize(const IloEnv env,
 const IloNumExprArg expr,
 const char * name=0)

Summary This function defines a maximization objective in a model.

Description This function defines a maximization objective in a model. In other words, it simply
offers a convenient way to create an instance of IloObjective with its sense defined
as Maximize. However, an instance of IloObjective created by IloMaximize
may not necessarily maintain its sense throughout the lifetime of the instance. The
optional argument name is set to 0 by default.

You may define more than one objective in a model. However, algorithms
conventionally take into account only one objective at a time.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 201

IloMin
IloMin

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNum IloMin(const IloNumArray vals)
public IloNum IloMin(IloNum val1,

IloNum val2)
public IloInt IloMin(const IloIntArray vals)
public IloNumExprArg IloMin(const IloNumExprArray exprs)
public IloIntExprArg IloMin(const IloIntExprArray exprs)
public IloNumExprArg IloMin(const IloNumExprArg x,
 const IloNumExprArg y)
public IloNumExprArg IloMin(const IloNumExprArg x,

IloNum y)
public IloNumExprArg IloMin(IloNum x,
 const IloNumExprArg y)
public IloIntExprArg IloMin(const IloIntExprArg x,
 const IloIntExprArg y)
public IloIntExprArg IloMin(const IloIntExprArg x,

IloInt y)
public IloNumExprArg IloMin(const IloIntExprArg x,

IloNum y)
public IloIntExprArg IloMin(const IloIntExprArg x,
 int y)
public IloIntExprArg IloMin(IloInt x,
 const IloIntExprArg y)
public IloNumExprArg IloMin(IloNum x,
 const IloIntExprArg y)
public IloIntExprArg IloMin(int x,
 const IloIntExprArg y)

Summary Returns a numeric value representing the min of numeric values.

Description These functions compare their arguments and return the least value. When its argument
is an array, the function compares the elements of that array and returns the least value.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 202

IloMinimize
IloMinimize

Category Global Function

Definition File ilconcert/ilolinear.h

Synopsis public IloObjective IloMinimize(const IloEnv env,
IloNum constant=0.0,

 const char * name=0)
public IloObjective IloMinimize(const IloEnv env,
 const IloNumExprArg expr,
 const char * name=0)

Summary This function defines a minimization objective in a model.

Description This function defines a minimization objective in a model. In other words, it simply
offers a convenient way to create an instance of IloObjective with its sense defined
as Minimize. However, an instance of IloObjective created by IloMinimize
may not necessarily maintain its sense throughout the lifetime of the instance. The
optional argument name is set to 0 by default.

You may define more than one objective in a model. However, algorithms
conventionally take into account only one objective at a time.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 203

IloModel
IloModel

Category Class

InheritancePath

Definition File ilconcert/ilomodel.h

Summary Class for models.

Constructor Summary
public IloModel()

public IloModel(IloModelI * impl)

public IloModel(const IloEnv env,const char * name=0)

Method Summary
public const
IloExtractableArray &

IloModel::add(const IloExtractableArray & x)
const

public IloExtractable add(const IloExtractable x) const

public IloModelI * getImpl() const

public void remove(const IloExtractableArray x) const

public void remove(const IloExtractable x) const

Inherited methods from IloExtractable
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 204

IloModel
Description An instance of this class represents a model. A model consists of the extractable objects
such as constraints, constrained variables, objectives, and possibly other modeling
objects, that represent a problem. Concert Technology extracts information from a
model and passes the information in an appropriate form to algorithms that solve the
problem. (For information about extracting objects into algorithms, see the member
function extract and the template IloAdd.)

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Models and Submodels

With Concert Technology, you may create more than one model in a given environment
(an instance of IloEnv). In fact, you can create submodels. That is, you can add one
model to another model within the same environment.

What Is Extracted from a Model

All the extractable objects (that is, instances of IloExtractable or one of its
subclasses) that have been added to a model (an instance of IloModel) and that have
not been removed from it will be extracted when an algorithm extracts the model. An
instance of the nested class IloModel::Iterator accesses those extractable
objects.

See Also IloEnv, IloExtractable, IloModel::Iterator

Constructors public IloModel()

IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject

Inner Class
IloModel::IloModel::Iterator Nested class of iterators to traverse the

extractable objects in a model.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 205

IloModel
 This constructor creates an empty handle. You must initialize it before you use it.

public IloModel(IloModelI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloModel(const IloEnv env,
 const char * name=0)

This constructor creates a model. By default, the name of the model is the empty string,
but you can attribute a name to the model at its creation.

Methods public const IloExtractableArray & add(const IloExtractableArray & x) const

This member function adds the array of extractable objects to the invoking model.

public IloExtractable add(const IloExtractable x) const

This member function adds the extractable object to the invoking model.

public IloModelI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public void remove(const IloExtractableArray x) const

This member function removes the array of extractable objects from the invoking model.

public void remove(const IloExtractable x) const

This member function removes the extractable object from the invoking model.

Note: The member function add notifies Concert Technology algorithms
about this addition to the model.

Note: The member function add notifies Concert Technology algorithms
about this addition to the model.

Note: The member function remove notifies Concert Technology
algorithms about this removal from the model.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 206

IloModel
Note: The member function remove notifies Concert Technology
algorithms about this removal from the model.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 207

IloModel::Iterator
IloModel::Iterator

Category Inner Class

InheritancePath

Definition File ilconcert/ilomodel.h

Summary Nested class of iterators to traverse the extractable objects in a model.

Description An instance of this nested class is an iterator capable of traversing the extractable objects
in a model.

An iterator of this class differs from one created by the template IloIterator.
Instances of IloIterator traverse all the extractable objects of a given class
(specified by E in the template) within a given environment (an instance of IloEnv),
whether or not those extractable objects have been explicitly added to a model. Instances
of IloModel::Iterator traverse only those extractable objects that have
explicitly been added to a given model (an instance of IloModel).

See Also IloIterator, IloModel

Constructors public Iterator(const IloModel model)

This constructor creates an iterator to traverse the extractable objects in the model
specified by model.

Methods public IloBool ok() const

This member function returns IloTrue if there is a current element and the iterator
points to it. Otherwise, it returns IloFalse.

Constructor Summary
public Iterator(const IloModel model)

Method Summary
public IloBool ok() const

public IloExtractable operator *()

public void operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 208

IloModel::Iterator
public IloExtractable operator *()

This operator returns the current extractable object, the one to which the invoking
iterator points.

public void operator++()

This operator advances the iterator to point to the next extractable object in the model.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 209

IloMutexDeadlock
IloMutexDeadlock

Category Class

InheritancePath

Definition File ilconcert/ilothread.h

Summary The class of exceptions thrown due to mutex deadlock.

Description This is the class of exceptions thrown if two or more threads become deadlocked waiting
for a mutex owned by the other(s).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 210

IloMutexNotOwner
IloMutexNotOwner

Category Class

InheritancePath

Definition File ilconcert/ilothread.h

Summary The class of exceptions thrown.

Description The class of exceptions thrown if a thread attempts to unlock a mutex that it does not
own.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 211

IloMutexProblem
IloMutexProblem

Category Class

InheritancePath

Definition File ilconcert/ilothread.h

Summary Exception.

Description The class IloMutexProblem is part of the hierarchy of classes representing
exceptions in Concert Technology. Concert Technology uses instances of this class
when an error occurs with respect to a mutex, an instance of IloFastMutex.

An exception is thrown; it is not allocated in a Concert Technology environment; it is
not allocated on the C++ heap. It is not necessary for you as a programmer to delete an
exception explicitly. Instead, the system calls the constructor of the exception to create
it, and the system calls the destructor of the exception to delete it.

When exceptions are enabled on a platform that supports C++ exceptions, an instance of
IloMutexProblem makes it possible for Concert Technology to throw an exception
in case of error. On platforms that do not support C++ exceptions, an instance of this
class makes it possible for Concert Technology to exit in case of error.

Throwing and Catching Exceptions

Exceptions are thrown by value. They are not allocated on the C++ heap, nor in a
Concert Technology environment. The correct way to catch an exception is to catch a
reference to the error (specified by the ampersand &), like this:

 catch(IloMutexProblem& error);

Constructor Summary
public IloMutexProblem(const char * msg)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 212

IloMutexProblem
See Also IloException, IloFastMutex

Constructors public IloMutexProblem(const char * msg)

This constructor creates an instance of IloMutexProblem to represent an exception in
case of an error involving a mutex. This instance is not allocated on C++ heap; it is not
allocated in a Concert Technology environment either.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 213

IloNot
IloNot

Category Class

InheritancePath

Definition File ilconcert/ilomodel.h

Summary Negation of its argument.

Constructor Summary
public IloNot()

public IloNot(IloNotI * impl)

Method Summary
public IloNotI * getImpl() const

Inherited methods from IloConstraint
IloConstraint::getImpl

Inherited methods from IloIntExprArg
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 214

IloNot
Description The class IloNot represents a constraint that is the negation of its argument. In order
to be taken into account, this constraint must be added to a model and extracted by an
algorithm, such as IloCplex or IloSolver.

See Also operator!

Constructors public IloNot()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloNot(IloNotI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

Methods public IloNotI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 215

IloNum
IloNum

Category Type Definition

Definition File ilconcert/ilosys.h

Synopsis double IloNum

Summary Type for numeric values as floating-point numbers.

Description This type definition represents numeric values as floating-point numbers in Concert
Technology.

See Also IloModel, IloInt
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 216

IloNumArray
IloNumArray

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary IloNumArray is the array class of the basic floating-point class.

Description For each basic type, Concert Technology defines a corresponding array class.
IloNumArray is the array class of the basic floating-point class (IloNum) for a
model.

Instances of IloNumArray are extensible. That is, you can add more elements to such
an array. References to an array change whenever an element is added to or removed
from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Constructor Summary
public IloNumArray(IloArrayI * i=0)

public IloNumArray(const IloNumArray & cpy)

public IloNumArray(const IloEnv env,IloInt n=0)

public IloNumArray(const IloEnv env,IloInt n,IloNum
f0,IloNum f1,...)

Method Summary
public IloBool contains(IloNum value) const

public IloNum & operator[](IloInt i)

public const IloNum & operator[](IloInt i) const

public IloNumExprArg operator[](IloIntExprArg intExp) const

public IloIntArray toIntArray() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 217

IloNumArray
IloNumArray inherits additional methods from the template IloArray:

◆ add

◆ add

◆ add

◆ clear

◆ getEnv

◆ getSize

◆ remove

◆ operator[]

◆ operator[]

See Also IloNum, operator>>, operator

Constructors public IloNumArray(IloArrayI * i=0)

This constructor creates an empty array of floating-point numbers for use in a model.
You cannot create instances of the undocumented class IloDefaultArrayI. As an
argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an
argument.

public IloNumArray(const IloNumArray & cpy)

This copy constructor creates a handle to the array of floating-point objects specified by
cpy.

public IloNumArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty
handles.

public IloNumArray(const IloEnv env,
IloInt n,
IloNum f0,
IloNum f1,

 ...)

This constructor creates an array of n floating-point objects for use in a model.

Methods public IloBool contains(IloNum value) const

This member function checks whether the value is contained or not.

public IloNum & operator[](IloInt i)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 218

IloNumArray
This operator returns a reference to the object located in the invoking array at the
position specified by the index i.

public const IloNum & operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloArray operator[] (IloInt i) const;

public IloNumExprArg operator[](IloIntExprArg intExp) const

This subscripting operator returns an expression node for use in a constraint or
expression. For clarity, let's call A the invoking array. When intExp is bound to the
value i, then the domain of the expression is the domain of A[i]. More generally, the
domain of the expression is the union of the domains of the expressions A[i] where the
i are in the domain of intExp.

This operator is also known as an element constraint.

public IloIntArray toIntArray() const

This member function copies the invoking numeric array to a new instance of
IloIntArray, checking the type of the values during the copy.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 219

IloNumExpr
IloNumExpr

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary The class of numeric expressions in a Concert model.

Constructor Summary
public IloNumExpr()

public IloNumExpr(IloNumExprI * impl)

public IloNumExpr(const IloNumExprArg expr)

public IloNumExpr(const IloEnv env,IloNum=0)

public IloNumExpr(const IloNumLinExprTerm term)

public IloNumExpr(const IloIntLinExprTerm term)

public IloNumExpr(const IloExpr & expr)

Method Summary
public IloNumExprI * IloNumExpr::getImpl() const

public IloNumExpr & IloNumExpr::operator *=(IloNum val)

public IloNumExpr & IloNumExpr::operator+=(const IloNumExprArg
expr)

public IloNumExpr & IloNumExpr::operator+=(IloNum val)

public IloNumExpr & IloNumExpr::operator-=(const IloNumExprArg
expr)

public IloNumExpr & IloNumExpr::operator-=(IloNum val)

public IloNumExpr & IloNumExpr::operator/=(IloNum val)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 220

IloNumExpr
Description Numeric expressions in Concert Technology are represented using the class
IloNumExpr.

Constructors public IloNumExpr()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloNumExpr(IloNumExprI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloNumExpr(const IloNumExprArg expr)

This constructor creates a numeric expression using the undocumented class
IloNumExprArg.

public IloNumExpr(const IloEnv env,
IloNum=0)

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject

Inner Class
IloNumExpr::IloNumExpr::NonL
inearExpression

 The class of exceptions thrown if a numeric
constant of a nonlinear expression is set or
queried.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 221

IloNumExpr
This constructor creates a constant numeric expression with the value n that the user can
modify subsequently with the operators +=, -=, ?= in the environment specified by
env. It may be used to build other expressions from variables belonging to env.

public IloNumExpr(const IloNumLinExprTerm term)

This constructor creates a numeric expression using the undocumented class
IloNumLinExprTerm.

public IloNumExpr(const IloIntLinExprTerm term)

This constructor creates a numeric expression using the undocumented class
IloIntLinExprTerm.

public IloNumExpr(const IloExpr & expr)

This is the copy constructor for this class.

Methods public IloNumExprI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloNumExpr & operator *=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x * ...

public IloNumExpr & operator+=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloNumExpr & operator+=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x + ...

public IloNumExpr & operator-=(const IloNumExprArg expr)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloNumExpr & operator-=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x - ...

public IloNumExpr & operator/=(IloNum val)

This operator is recommended for building a Concert Technology expression in a loop.
It is more efficient than x = x / ...
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 222

IloNumExprArg
IloNumExprArg

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary A class used internally in Concert Technology.

Constructor Summary
public IloNumExprArg()

public IloNumExprArg(IloNumExprI * impl)

Method Summary
public IloNumExprI * IloNumExprArg::getImpl() const

Inherited methods from IloExtractable
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 223

IloNumExprArg
Description Concert Technology uses instances of this class internally as temporary objects when it
is parsing a C++ expression in order to build an instance of IloNumExpr. As a Concert
Technology user, you will not need this class yourself; in fact, you should not use them
directly. They are documented here because the return value of certain functions, such as
IloSum or IloScalProd, can be an instance of this class.

Constructors public IloNumExprArg()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloNumExprArg(IloNumExprI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

Methods public IloNumExprI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 224

IloNumExprArray
IloNumExprArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary The class IloNumExprArray.

Constructor Summary
public IloNumExprArray(IloDefaultArrayI * i=0)

public IloNumExprArray(const IloEnv env,IloInt n=0)

Method Summary
public void IloNumExprArray::add(IloInt more,const

IloNumExpr x)

public void IloNumExprArray::add(const IloNumExpr x)

public void IloNumExprArray::add(const IloNumExprArray
array)

public void IloNumExprArray::endElements()

public IloNumExprArg IloNumExprArray::operator[](IloIntExprArg
anIntegerExpr) const

Inherited methods from IloExtractableArray
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 225

IloNumExprArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloNumExprArray is the array class of the numeric expressions class
(IloNumExpr) for a model.

Instances of IloNumExprArray are extensible. That is, you can add more elements
to such an array. References to an array change whenever an element is added to or
removed from the array.

Constructors public IloNumExprArray(IloDefaultArrayI * i=0)

This constructor creates an empty array of numeric expressions for use in a model. You
cannot create instances of the undocumented class IloDefaultArrayI. As an
argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an
argument.

public IloNumExprArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n elements. Initially, the n elements are empty
handles.

Methods public void add(IloInt more,
 const IloNumExpr x)

This member function appends x to the invoking array. The argument more specifies
how many times.

public void add(const IloNumExpr x)

This member function appends x to the invoking array.

public void add(const IloNumExprArray array)

This member function appends the elements in array to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the
invoking array. This deletes all the extractables identified by the array, leaving the
handles in the array intact. This member function is the recommended way to delete the
elements of an array.

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 226

IloNumExprArray
This subscripting operator returns an expression argument for use in a constraint or
expression. For clarity, let's call A the invoking array. When anIntegerExpr is
bound to the value i, the domain of the expression is the domain of A[i]. More
generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element constraint.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 227

IloNumExpr::NonLinearExpression
IloNumExpr::NonLinearExpression

Category Inner Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary The class of exceptions thrown if a numeric constant of a nonlinear expression is set or
queried.

DescriptionMethods public const IloNumExprArg getExpression() const

The member function getExprUsed returns the expression involved in the exception.

Method Summary
public const IloNumExprArg getExpression() const

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 228

IloNumVar
IloNumVar

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary An instance of this class represents a numeric variable in a model.

Constructor Summary
public IloNumVar()

public IloNumVar(IloNumVarI * impl)

public IloNumVar(const IloEnv env,IloNum lb=0,IloNum
ub=IloInfinity,IloNumVar::Type
type=Float,const char * name=0)

public IloNumVar(const IloEnv env,IloNum
lowerBound,IloNum upperBound,const char * name)

public IloNumVar(const IloAddNumVar & var,IloNum
lowerBound=0.0,IloNum
upperBound=IloInfinity,IloNumVar::Type
type=Float,const char * name=0)

public IloNumVar(const IloEnv env,const IloNumArray
values,IloNumVar::Type type=Float,const char *
name=0)

public IloNumVar(const IloAddNumVar & var,const
IloNumArray values,IloNumVar::Type
type=Float,const char * name=0)

public IloNumVar(const IloConstraint constraint)

public IloNumVar(const IloNumRange coll,const char *
name=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 229

IloNumVar
Description An instance of this class represents a numeric variable in a model. A numeric variable
may be either an integer variable or a floating-point variable; that is, a numeric variable

Method Summary
public IloNumVarI * getImpl() const

public IloNum getLB() const

public void getPossibleValues(IloNumArray values) const

public IloNumVar::Type getType() const

public IloNum getUB() const

public void setBounds(IloNum lb,IloNum ub) const

public void setLB(IloNum num) const

public void setPossibleValues(const IloNumArray values)
const

public void setUB(IloNum num) const

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject

Inner Enumeration
IloNumVar::Type nested enumeration.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 230

IloNumVar
has a type, a value of the nested enumeration IloNumVar::Type. By default, its type
is Float. It also has a lower and upper bound. A numeric variable cannot assume
values less than its lower bound, nor greater than its upper bound.

If you are looking for a class of variables that can assume only constrained integer
values, consider the class IloIntVar. If you are looking for a class of binary decision
variables that can assume only the values 0 (zero) or 1 (one), then consider the class
IloBoolVar.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Programming Hint

For each enumerated value in the nested enumeration IloNumVar::Type, Concert
Technology offers an equivalent predefined C++ #define to make programming
easier. For example, in your applications, you may write either statement:

 IloNumVar x(env, 0, 17, IloNumVar::Int); // using the enumeration
 IloNumVar x(env, 0, 17, ILOINT); // using the #define

See Also IloBoolVar, IloIntVar, IloModel, IloNumVarArray,
IloNumVar::Type

Constructors public IloNumVar()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloNumVar(IloNumVarI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloNumVar(const IloEnv env,
IloNum lb=0,
IloNum ub=IloInfinity,
IloNumVar::Type type=Float,

 const char * name=0)

Note:When numeric bounds are given to an integer variable (an instance of
IloIntVar or IloNumVar with Type = Int) in the constructors or via a
modifier (setUB, setLB, setBounds), they are inwardly rounded to an
integer value. LB is rounded down and UB is rounded up.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 231

IloNumVar
This constructor creates a constrained numeric variable and makes it part of the
environment env. By default, the numeric variable ranges from 0.0 (zero) to the
symbolic constant IloInfinity, but you can specify other upper and lower bounds
yourself. By default, the numeric variable assumes floating-point values. However, you
can constrain it to be an integer by setting its type = Int. By default, its name is the
empty string, but you can specify a name of your own choice.

public IloNumVar(const IloEnv env,
IloNum lowerBound,
IloNum upperBound,

 const char * name)

This constructor creates a constrained numeric variable and makes it part of the
environment env. The bounds of the variable are set by lowerBound and
upperBound. By default, its name is the empty string, but you can specify a name of
your own choice.

public IloNumVar(const IloAddNumVar & var,
IloNum lowerBound=0.0,
IloNum upperBound=IloInfinity,
IloNumVar::Type type=Float,

 const char * name=0)

This constructor creates a constrained numeric variable in column format. For more
information on adding columns to a model, refer to the concept Column-Wise Modeling.

public IloNumVar(const IloEnv env,
 const IloNumArray values,

IloNumVar::Type type=Float,
 const char * name=0)

This constructor creates a constrained discrete numeric variable and makes it part of the
environment env. The new discrete variable will be limited to values in the set specified
by the array values. By default, its name is the empty string, but you can specify a
name of your own choice. You can use the member function setPossibleValues
with instances created by this constructor.

public IloNumVar(const IloAddNumVar & var,
 const IloNumArray values,

IloNumVar::Type type=Float,
 const char * name=0)

This constructor creates a constrained discrete numeric variable from var by limiting
its domain to the values specified in the array values. You may use the member
function setPossibleValues with instances created by this constructor.

public IloNumVar(const IloConstraint constraint)

This constructor creates a constrained numeric variable which is equal to the truth value
of constraint. The truth value of constraint is either 0 for IloFalse or 1 for
IloTrue. You can use this constructor to cast a constraint to a constrained numeric
variable. That constrained numeric variable can then be used like any other constrained
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 232

IloNumVar
numeric variable. It is thus possible to express sums of constraints, for example. The
following line expresses the idea that all three variables cannot be equal:

 model.add((x != y) + (y != z) + (z != x) >= 2);

public IloNumVar(const IloNumRange coll,
 const char * name=0)

 This constructor creates a constrained discrete numeric variable from the given
collection

Methods public IloNumVarI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloNum getLB() const

This member function returns the lower bound of the invoking numeric variable.

public void getPossibleValues(IloNumArray values) const

This member function accesses the possible values of the invoking numeric variable and
puts them in the array values.

public IloNumVar::Type getType() const

This member function returns the type of the invoking numeric variable, specifying
whether it is integer (Int) or floating-point (Float).

public IloNum getUB() const

This member function returns the upper bound of the invoking numeric variable.

public void setBounds(IloNum lb,
IloNum ub) const

This member function sets lb as the lower bound and ub as the upper bound of the
invoking numeric variable.

public void setLB(IloNum num) const

This member function sets num as the lower bound of the invoking numeric variable.

Note:The member function setBounds notifies Concert Technology
algorithms about this change of bounds in this numeric variable.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 233

IloNumVar
public void setPossibleValues(const IloNumArray values) const

This member function sets values as the domain of the invoking discrete numeric
variable. This member function can be called only on instances of IloNumVar that
have been created with one of the two discrete constructors; that is, instances of
IloNumVar which have been defined by an explicit array of discrete values.

public void setUB(IloNum num) const

This member function sets num as the upper bound of the invoking numeric variable.

Note:The member function setLB notifies Concert Technology algorithms
about this change of bound in this numeric variable.

Note: The member function setPossibleValues notifies Concert
Technology algorithms about this change of domain in this discrete numeric
variable.

Note: The member function setUB notifies Concert Technology algorithms
about this change of bound in this numeric variable.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 234

IloNumVarArray
IloNumVarArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary The array class of IloNumVar.

Constructor Summary
public IloNumVarArray(IloDefaultArrayI * i=0)

public IloNumVarArray(const IloEnv env,IloInt n=0)

public IloNumVarArray(const IloEnv env,const
IloNumArray lb,const IloNumArray
ub,IloNumVar::Type type=ILOFLOAT)

public IloNumVarArray(const IloEnv env,IloNum
lb,const IloNumArray ub,IloNumVar::Type
type=ILOFLOAT)

public IloNumVarArray(const IloEnv env,const
IloNumArray lb,IloNum ub,IloNumVar::Type
type=ILOFLOAT)

public IloNumVarArray(const IloEnv env,IloInt
n,IloNum lb,IloNum ub,IloNumVar::Type
type=ILOFLOAT)

public IloNumVarArray(const IloEnv env,const
IloNumColumnArray
columnarray,IloNumVar::Type type=ILOFLOAT)

public IloNumVarArray(const IloEnv env,const
IloNumColumnArray columnarray,const
IloNumArray lb,const IloNumArray
ub,IloNumVar::Type type=ILOFLOAT)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 235

IloNumVarArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloNumVarArray is the array class of the numeric variable class for a model.

Instances of IloNumVarArray are extensible. That is, you can add more elements to
such an array. References to an array change whenever an element is added to or
removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloAllDiff, IloModel, IloNumVar, operator>>, operator

Constructors public IloNumVarArray(IloDefaultArrayI * i=0)

Method Summary
public void add(IloInt more,const IloNumVar x)

public void add(const IloNumVar x)

public void add(const IloNumVarArray array)

public void endElements()

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

public void setBounds(const IloNumArray lb,const
IloNumArray ub)

public IloIntExprArray toIntExprArray() const

public IloIntVarArray toIntVarArray() const

public IloNumExprArray toNumExprArray() const

Inherited methods from IloNumExprArray
IloNumExprArray::add, IloNumExprArray::add, IloNumExprArray::add,
IloNumExprArray::endElements, IloNumExprArray::operator[]

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 236

IloNumVarArray
This constructor creates an empty extensible array of numeric variables. You cannot
create instances of the undocumented class IloDefaultArrayI. As an argument in
this default constructor, it allows you to pass 0 (zero) optionally or to use 0 (zero) as a
default value of an argument in a constructor.

public IloNumVarArray(const IloEnv env,
IloInt n=0)

This constructor creates an extensible array of n numeric variables in env. Initially, the
n elements are empty handles.

public IloNumVarArray(const IloEnv env,
 const IloNumArray lb,
 const IloNumArray ub,

IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables in env with lower and
upper bounds and type as specified. The instances of IloNumVar to fill this array are
constructed at the same time. The length of the array lb must be the same as the length
of the array ub. In other words, lb.getSize == ub.getSize. This constructor
will construct an array with the number of elements in the array ub.

public IloNumVarArray(const IloEnv env,
IloNum lb,

 const IloNumArray ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables in env with lower and
upper bounds and type as specified. The instances of IloNumVar to fill this array are
constructed at the same time. The length of the new array will be the same as the length
of the array ub.

public IloNumVarArray(const IloEnv env,
 const IloNumArray lb,

IloNum ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables in env with lower and
upper bounds and type as specified. The instances of IloNumVar to fill this array are
constructed at the same time.

public IloNumVarArray(const IloEnv env,
IloInt n,
IloNum lb,
IloNum ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of n numeric variables in env with lower
and upper bounds and type as specified. The instances of IloNumVar to fill this array
are constructed at the same time.

public IloNumVarArray(const IloEnv env,
 const IloNumColumnArray columnarray,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 237

IloNumVarArray
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables with type as specified.
The instances of IloNumVar to fill this array are constructed at the same time.

public IloNumVarArray(const IloEnv env,
 const IloNumColumnArray columnarray,
 const IloNumArray lb,
 const IloNumArray ub,

IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of numeric variables with lower and upper
bounds and type as specified. The instances of IloNumVar to fill this array are
constructed at the same time.

Methods public void add(IloInt more,
 const IloNumVar x)

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(const IloNumVar x)

This member function appends x to the invoking array.

public void add(const IloNumVarArray array)

This member function appends the elements in array to the invoking array.

public void endElements()

This member function calls IloExtractable::end for each of the elements in the
invoking array. This deletes all the extractables identified by the array, leaving the
handles in the array intact. This member function is the recommended way to delete the
elements of an array.

public IloNumExprArg operator[](IloIntExprArg anIntegerExpr) const

This subscripting operator returns an expression argument for use in a constraint or
expression. For clarity, let's call A the invoking array. When anIntegerExpr is
bound to the value i, the domain of the expression is the domain of A[i]. More
generally, the domain of the expression is the union of the domains of the expressions
A[i] where the i are in the domain of anIntegerExpr.

This operator is also known as an element constraint.

public void setBounds(const IloNumArray lb,
 const IloNumArray ub)

For each element in the invoking array, this member function sets lb as the lower bound
and ub as the upper bound of the corresponding numeric variable in the invoking array.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 238

IloNumVarArray
public IloIntExprArray toIntExprArray() const

This member function copies the invoking array to a new IloIntExprArray,
checking the type of the variables during the copy.

public IloIntVarArray toIntVarArray() const

This member function copies the invoking array to a new IloIntVarArray,
checking the type of the variables during the copy.

public IloNumExprArray toNumExprArray() const

This member function copies the invoking array to a new IloNumExprArray,
checking the type of the variables during the copy.

Note: The member function setBounds notifies Concert Technology
algorithms about this change of bounds in this array of numeric variables.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 239

IloNumVar::Type
IloNumVar::Type

Category Inner Enumeration

Definition File ilconcert/iloexpression.h

Synopsis Type{
 Int,
 Float,
 Bool
};

Summary nested enumeration.

Description This nested enumeration enables you to specify whether an instance of IloNumVar is
of type integer (Int), Boolean (Bool), or floating-point (Float).

Programming Hint

For each enumerated value in IloNumVar::Type, there is a predefined equivalent
C++ #define in the Concert Technology include files to make programming easier.
For example, instead of writing IloNumVar::Int in your application, you can write
ILOINT. Likewise, ILOFLOAT is defined for IloNumVar::Float and ILOBOOL
for IloNumVar::Bool.

See Also IloNumVar

Fields Int
Float
Bool
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 240

IloObjective
IloObjective

Category Class

InheritancePath

Definition File ilconcert/ilolinear.h

Summary An instance of this class is an objective in a model.

Constructor Summary
public IloObjective()

public IloObjective(IloObjectiveI * impl)

public IloObjective(const IloEnv env,IloNum
constant=0.0,IloObjective::Sense
sense=Minimize,const char * name=0)

public IloObjective(const IloEnv env,const
IloNumExprArg expr,IloObjective::Sense
sense=Minimize,const char * name=0)

Method Summary
public IloNum getConstant() const

public IloNumExprArg getExpr() const

public IloObjectiveI * getImpl() const

public IloObjective::Sense getSense() const

public IloAddValueToObj operator()(IloNum value)

public IloAddValueToObj operator()()

public void setConstant(IloNum constant)

public void setExpr(const IloNumExprArg)

public void setLinearCoef(const IloNumVar var,IloNum
value)

public void setLinearCoefs(const IloNumVarArray
vars,const IloNumArray values)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 241

IloObjective
Description An instance of this class is an objective in a model. An objective consists of its sense
(specifying whether it is a minimization or maximization) and an expression. The
expression may be a constant.

An objective belongs to the environment that the variables in its expression belong to.
Generally, you will create an objective, add it to a model, and extract the model for an
algorithm.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

What Is Extracted

All the variables (that is, instances of IloNumVar or one of its subclasses) in the
objective (an instance of IloObjective) will be extracted when an algorithm such as
IloCplex, documented in the ILOG CPLEX Reference Manual, extracts the
objective.

Multiple Objectives

public void setSense(IloObjective::Sense sense)

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject

Inner Enumeration
IloObjective::Sense Specifies objective as minimization or

maximization.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 242

IloObjective
You may create more than one objective in a model, for example, by creating more than
one group. However, certain algorithms, such as an instance of IloCplex, will throw
an exception (on a platform that supports C++ exceptions, when exceptions are
enabled) if you attempt to extract more than one objective at a time.

Also see the functions IloMaximize and IloMinimize for “short cuts” to create
objectives.

Normalizing Linear Expressions: Reducing the Terms

Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by
arithmetic operations; for example, x + 3y is a linear expression of two terms consisting
of two variables. In some linear expressions, a given variable may appear in more than
one term, for example, x + 3y +2x. Concert Technology has more than one way of
dealing with linear expressions in this respect, and you control which way Concert
Technology treats linear expressions from your application.

In one mode (the default mode), Concert Technology analyzes expressions that your
application passes it and attempts to reduce them so that a given variable appears in
only one term in the expression. You set this mode with the member function
setNormalizer.

Certain constructors and member functions in this class check this setting in the model
and behave accordingly: they attempt to reduce expressions. This mode may require
more time during preliminary computation, but it avoids the possibility of an assertion
failing for certain member functions of this class in case of duplicates.

In the other mode, Concert Technology assumes that no variable appears in more than
one term in any of the linear expressions that your application passes to Concert
Technology. We call this mode assume no duplicates. You set this mode with the
member function setNormalizer.

Certain constructors and member functions in this class check this setting in the model
and behave accordingly: they assume that no variable appears in more than one term in
an expression. This mode may save time during computation, but it entails the risk that
an expression may contain one or more variables, each of which appears in one or more
terms. This situation will cause certain assert statements in Concert Technology to
fail if you do not compile with the flag -DNDEBUG.

See Also IloMaximize, IloMinimize, IloModel, IloObjective::Sense

Constructors public IloObjective()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloObjective(IloObjectiveI * impl)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 243

IloObjective
 This constructor creates a handle object from a pointer to an implementation object.

public IloObjective(const IloEnv env,
IloNum constant=0.0,
IloObjective::Sense sense=Minimize,

 const char * name=0)

This constructor creates an objective consisting of a constant and belonging to env.
The sense of the objective (whether it is a minimization or maximization) is specified by
sense; by default, it is a minimization. You may supply a name for the objective; by
default, its name is the empty string. This constructor is useful when you want to
create an empty objective and fill it later by column-wise modeling.

public IloObjective(const IloEnv env,
 const IloNumExprArg expr,

IloObjective::Sense sense=Minimize,
 const char * name=0)

This constructor creates an objective to add to a model from expr.

After you create an objective from an expression with this constructor, you must use the
member function add explicitly to add your objective to your model or to a group in
order for the objective to be taken into account.

Methods public IloNum getConstant() const

This member function returns the constant term from the expression of the invoking
objective.

public IloNumExprArg getExpr() const

This member function returns the expression of the invoking IloObjective object.

public IloObjectiveI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloObjective::Sense getSense() const

This member function returns the sense of the invoking objective, specifying whether
the objective is a minimization (Minimize) or a maximization (Maximize).

public IloAddValueToObj operator()(IloNum value)

Note: When it accepts an expression as an argument, this constructor
checks the setting of setNormalizer to determine whether to assume
the expression has already been reduced or to reduce the expression
before using it.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 244

IloObjective
This casting operator uses a floating-point value to create an instance of
IloAddNumVar or one of its subclasses and to add that value to that instance. See
the concept Column-Wise Modeling for an explanation of how to use this operator in
column-wise modeling.

public IloAddValueToObj operator()()

This casting operator uses a floating-point value to create an instance of
IloAddNumVar or one of its subclasses and to add that value to that instance. If no
argument is given, it assumes 1.0. See the concept Column-Wise Modeling for an
explanation of how to use this operator in column-wise modeling.

public void setConstant(IloNum constant)

This member function sets constant as the constant term in the invoking objective,
and it creates the appropriate instance of the undocumented class IloChange to notify
algorithms about this change of an extractable object in the model.

public void setExpr(const IloNumExprArg)

This member function sets the expression of the invoking IloObjective object.

public void setLinearCoef(const IloNumVar var,
IloNum value)

This member function sets value as the linear coefficient of the variable var in the
invoking objective, and it creates the appropriate instance of the undocumented class
IloChange to notify algorithms about this change of an extractable object in the
model.

If you attempt to use setLinearCoef on a nonlinear expression, it will throw an
exception on platforms that support C++ exceptions when exceptions are enabled.

public void setLinearCoefs(const IloNumVarArray vars,
 const IloNumArray values)

For each of the variables in vars, this member function sets the corresponding value of
values (whether integer or floating-point) as its linear coefficient in the invoking
objective, and it creates the appropriate instance of the undocumented class

Note: The member function setConstant notifies Concert Technology
algorithms about this change of this invoking object.

Note: The member function setLinearCoef notifies Concert Technology
algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 245

IloObjective
IloChange to notify algorithms about this change of an extractable object in the
model.

If you attempt to use setLinearCoef on a non linear expression, Concert
Technology will throw an exception on platforms that support C++ exceptions when
exceptions are enabled.

public void setSense(IloObjective::Sense sense)

This member function sets sense to specify whether the invoking objective is a
maximization (Maximize) or minimization (Minimize), and it creates the
appropriate instance of the undocumented class IloChange to notify algorithms
about this change of an extractable object in the model.

Note: The member function setLinearCoefs notifies Concert
Technology algorithms about this change of this invoking object.

Note: The member function setSense notifies Concert Technology
algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 246

IloObjective::Sense
IloObjective::Sense

Category Inner Enumeration

Definition File ilconcert/ilolinear.h

Synopsis Sense{
 Minimize,
 Maximize
};

Summary Specifies objective as minimization or maximization.

Description An instance of the class IloObjective represents an objective in a model. This
nested enumeration is limited in scope to that class, and its values specify the sense of an
objective; that is, whether it is a minimization (Minimize) or a maximization
(Maximize).

See Also IloObjective

Fields Minimize
Maximize
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 247

IloOr
IloOr

Category Class

InheritancePath

Definition File ilconcert/ilomodel.h

Summary Represents a disjunctive constraint.

Constructor Summary
public IloOr()

public IloOr(IloOrI * impl)

public IloOr(const IloEnv env,const char * name=0)

Method Summary
public void add(const IloConstraintArray cons) const

public void add(const IloConstraint con) const

public IloOrI * getImpl() const

public void remove(const IloConstraintArray cons) const

public void remove(const IloConstraint con) const

Inherited methods from IloConstraint
IloConstraint::getImpl
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 248

IloOr
Description An instance of IloOr represents a disjunctive constraint. In other words, it defines a
disjunctive-OR among any number of constraints. Since an instance of IloOr is a
constraint itself, you can build up extensive disjunctions by adding constraints to an
instance of IloOr by means of the member function add. You can also remove
constraints from an instance of IloOr by means of the member function remove.

The elements of a disjunctive constraint must be in the same environment.

In order for the constraint to take effect, you must add it to a model with the template
IloAdd or the member function IloModel::add and extract the model for an
algorithm with the member function extract.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Disjunctive Goals

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 249

IloOr
If you would like to represent a disjunctive-OR as a goal (rather than a constraint), then
you should consider the function IloOrGoal, documented in the ILOG Solver
Reference Manual.

What Is Extracted

All the constraints (that is, instances of IloConstraint or one of its subclasses) that
have been added to a disjunctive constraint (an instance of IloOr) and that have not
been removed from it will be extracted when an algorithm such as IloCplex, IloCP,
or IloSolver extracts the constraint.

Example

For example, you may write:

 IloOr myor(env);
 myor.add(constraint1);
 myor.add(constraint2);
 myor.add(constraint3);

Those lines are equivalent to :

 IloOr or = constraint1 || constraint2 || constraint3;

See Also IloAnd, IloConstraint, operator||

Constructors public IloOr()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloOr(IloOrI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloOr(const IloEnv env,
 const char * name=0)

This constructor creates a disjunctive constraint for use in env. The optional argument
name is set to 0 by default.

Methods public void add(const IloConstraintArray cons) const

This member function makes all the elements in array elements of the invoking
disjunctive constraint. In other words, it applies the invoking disjunctive constraint to all
the elements of array.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 250

IloOr
public void add(const IloConstraint con) const

This member function makes constraint one of the elements of the invoking
disjunctive constraint. In other words, it applies the invoking disjunctive constraint to
constraint.

public IloOrI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public void remove(const IloConstraintArray cons) const

This member function removes all the elements of array from the invoking disjunctive
constraint so that the invoking disjunctive constraint no longer applies to any of those
elements.

public void remove(const IloConstraint con) const

This member function removes constraint from the invoking disjunctive constraint
so that the invoking disjunctive constraint no longer applies to constraint.

Note: The member function add notifies Concert Technology algorithms
about this change of this invoking object.

Note: The member function add notifies Concert Technology algorithms
about this change of this invoking object.

Note: The member function remove notifies Concert Technology
algorithms about this change of this invoking object.

Note: The member function remove notifies Concert Technology
algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 251

IloPi
IloPi

Category Macro

Synopsis IloPi()

Summary Pi.

Description Concert Technology predefines conventional trigonometric constants to conform to
IEEE 754 standards for quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloPi; // = 3.14159265358979323846
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 252

IloPiecewiseLinear
IloPiecewiseLinear

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloPiecewiseLinear(const IloNumExprArg node,
 const IloNumArray point,
 const IloNumArray slope,

IloNum a,
IloNum fa)

public IloNumExprArg IloPiecewiseLinear(const IloNumExprArg node,
IloNum firstSlope,

 const IloNumArray point,
 const IloNumArray value,

IloNum lastSlope)

Summary Represents a continuous or discontinuous piecewise linear function.

Description The function IloPiecewiseLinear creates an expression node to represent a
continuous or discontinuous piecewise linear function f of the variable x. The array
point contains the n breakpoints of the function such that point [i-1] <= point [i] for
i = 1, . . ., n-1. The array slope contains the n+1 slopes of the n+1 segments of the
function. The values a and fa must be coordinates of a point such that fa = f(a).

When point[i-1] = point[i], there is a step at the x-coordinate point[i-1]
and its height is slope[i] to reach the y-coordinate of point[i].

Example

 IloPiecewiseLinear(x, IloNumArray(env, 2, 10., 20.),
 IloNumArray(env, 3, 0.3, 1., 2.),
 0, 0);

That expression defines a piecewise linear function f having two breakpoints at x = 10
and x = 20, and three segments; their slopes are 0.3, 1, and 2. The first segment has
infinite length and ends at the point (x = 10, f(x) = 3) since f(0) = 0. The second
segment starts at the point (x = 10, f(x) = 3) and ends at the point (x = 20, f(x) = 13),
where the third segment starts.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 253

IloPower
IloPower

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloPower(const IloNumExprArg base,
 const IloNumExprArg exponent)
public IloNumExprArg IloPower(const IloNumExprArg base,

IloNum exponent)
public IloNumExprArg IloPower(IloNum base,
 const IloNumExprArg exponent)

Summary Returns the power of its arguments.

Description Concert Technology offers predefined functions that return an expression from an
algebraic function over expressions. These predefined functions also return a numeric
value from an algebraic function over numeric values as well.

IloPower returns the result of raising its base argument to the power of its
exponent argument, that is, base**exponent. If base is a floating-point value or
variable, then exponent must be greater than or equal to 0 (zero).

What Is Extracted

An instance of IloCplex can extract only quadratic terms that are positive semi-
definite when they appear in an objective function or in constraints of a model.

An instance of IloSolver or an instance of IloCP extracts the object returned by
IloPower.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 254

IloQuarterPi
IloQuarterPi

Category Macro

Synopsis IloQuarterPi()

Summary Quarter pi.

Description Concert Technology predefines conventional trigonometric constants to conform to
IEEE 754 standards for quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloQuarterPi; // = 0.78539816339744830962
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 255

IloRandom
IloRandom

Category Class

InheritancePath

Definition File ilconcert/ilorandom.h

Summary This handle class produces streams of pseudo-random numbers.

Description This handle class produces streams of pseudo-random numbers. You can use objects of
this class to create a search with a random element. You can create any number of
instances of this class; these instances insure reproducible results in multithreaded
applications, where the use of a single source for random numbers creates problems.

See Also the class IloRandomize in the ILOG Solver Reference Manual.

Constructor Summary
public IloRandom()

public IloRandom(const IloEnv env,IloInt seed=0)

public IloRandom(IloRandomI * impl)

public IloRandom(const IloRandom & rand)

Method Summary
public void end()

public IloEnv getEnv() const

public IloNum getFloat() const

public IloRandomI * getImpl() const

public IloInt getInt(IloInt n) const

public const char * getName() const

public IloAny getObject() const

public void reSeed(IloInt seed)

public void setName(const char * name) const

public void setObject(IloAny obj) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 256

IloRandom
Constructors public IloRandom()

This constructor creates a random number generator; it is initially an empty handle. You
must assign this handle before you use its member functions.

public IloRandom(const IloEnv env,
IloInt seed=0)

This constructor creates an object that generates random numbers. You can seed the
generator by supplying a value for the integer argument seed.

public IloRandom(IloRandomI * impl)

This constructor creates a handle object (an instance of the class IloRandom) from a
pointer to an implementation object (an instance of the class IloRandomI).

public IloRandom(const IloRandom & rand)

This constructor creates a handle object from a reference to a random number generator.
After execution, both the newly constructed handle and rand point to the same
implementation object.

Methods public void end()

This member function releases all memory used by the random number generator. After
a call to this member function, you should not use the generator again.

public IloEnv getEnv() const

This member function returns the environment associated with the implementation class
of the invoking generator.

public IloNum getFloat() const

This member function returns a floating-point number drawn uniformly from the
interval [0..1).

public IloRandomI * getImpl() const

This member function returns the implementation object of the invoking handle.

public IloInt getInt(IloInt n) const

This member function returns an integer drawn uniformly from the interval [0..n).

public const char * getName() const

This member function returns a character string specifying the name of the invoking
object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is
one). Normally, an associated object contains user data pertinent to the invoking object.

public void reSeed(IloInt seed)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 257

IloRandom
This member function re-seeds the random number generator with seed.

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function
getObject accesses this associated object afterward. Normally, obj contains user
data pertinent to the invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 258

IloRange
IloRange

Category Class

InheritancePath

Definition File ilconcert/ilolinear.h

Summary An instance of this class is a range in a model.

Constructor Summary
public IloRange()

public IloRange(IloRangeI * impl)

public IloRange(const IloEnv env,IloNum lb,IloNum
ub,const char * name=0)

public IloRange(const IloEnv env,IloNum lhs,const
IloNumExprArg expr,IloNum
rhs=IloInfinity,const char * name=0)

public IloRange(const IloEnv env,const IloNumExprArg
expr,IloNum rhs=IloInfinity,const char * name=0)

Method Summary
public IloNumExprArg getExpr() const

public IloRangeI * getImpl() const

public IloNum getLB() const

public IloNum getUB() const

public IloAddValueToRange operator()(IloNum value) const

public void setBounds(IloNum lb,IloNum ub)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 259

IloRange
Description An instance of this class is a range in a model, that is, a constraint of the form:

public void setExpr(const IloNumExprArg expr)

public void setLB(IloNum lb)

public void setLinearCoef(const IloNumVar var,IloNum
value)

public void setLinearCoefs(const IloNumVarArray
vars,const IloNumArray values)

public void setUB(IloNum ub)

Inherited methods from IloConstraint
IloConstraint::getImpl

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 260

IloRange
 lowerBound <= expression <= upperBound

You can create a range from the constructors in this class or from the arithmetic
operators on numeric variables (instances of IloNumVar and its subclasses) or on
expressions (instances of IloExpr and its subclasses):

◆ operator <=

◆ operator >=

◆ operator ==

After you create a constraint, such as an instance of IloRange, you must explicitly add
it to the model in order for it to be taken into account. To do so, use the member function
IloModel::add to add the range to a model and the member function extract to
extract the model for an algorithm.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

What Is Extracted

All the variables (that is, instances of IloNumVar or one of its subclasses) in the range
(an instance of IloRange) will be extracted when an algorithm such as IloCplex,
documented in the ILOG CPLEX Reference Manual, extracts the range.

Normalizing Linear Expressions: Reducing the Terms

Normalizing is sometimes known as reducing the terms of a linear expression.

Linear expressions consist of terms made up of constants and variables related by
arithmetic operations; for example, x + 3y. In some linear expressions, a given variable
may appear in more than one term, for example, x + 3y +2x. Concert Technology has
more than one way of dealing with linear expressions in this respect, and you control
which way Concert Technology treats linear expressions from your application.

In one mode (the default mode), Concert Technology analyzes linear expressions that
your application passes it, and attempts to reduce them so that a given variable appears
in only one term in the expression. You set this mode with the member function
setNormalizer(IloTrue) .

Certain constructors and member functions in this class check this setting in the model
and behave accordingly: they attempt to reduce expressions. This mode may require
more time during preliminary computation, but it avoids the possibility of an assertion in
some of the member functions of this class failing in the case of duplicates.

In the other mode, Concert Technology assumes that no variable appears in more than
one term in any of the linear expressions that your application passes to Concert
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 261

IloRange
Technology. We call this mode assume normalized linear expressions. You set this mode
with the member function setNormalizer(IloFalse).

Certain constructors and member functions in this class check this setting in the model
and behave accordingly: they assume that no variable appears in more than one term in
an expression. This mode may save time during computation, but it entails the risk that
an expression may contain one or more variables, each of which appears in one or more
terms. This situation will cause certain assert statements in Concert Technology to
fail if you do not compile with the flag -DNDEBUG.

See Also IloConstraint, IloRangeArray

Constructors public IloRange()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloRange(IloRangeI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloRange(const IloEnv env,
IloNum lb,
IloNum ub,

 const char * name=0)

This constructor creates an empty range constraint. Before you use this constraint, you
must fill the range. The optional argument name is set to 0 by default.

After you create a range constraint, you must explicitly add it to a model in order for it
to be taken into account. To do so, use the member function IloModel::add.

public IloRange(const IloEnv env,
IloNum lhs,

 const IloNumExprArg expr,
IloNum rhs=IloInfinity,

 const char * name=0)

This constructor creates a range constraint from an expression (an instance of the class
IloNumExprArg) and its upper bound (rhs). The default bound for rhs is the
symbolic constant IloInfinity. The optional argument name is set to 0 by default.

public IloRange(const IloEnv env,
 const IloNumExprArg expr,

Note:When it accepts an expression as an argument, this constructor
checks the setting of setNormalizer to determine whether to assume
the expression has already been reduced or to reduce the expression
before using it.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 262

IloRange
IloNum rhs=IloInfinity,
 const char * name=0)

This constructor creates a range constraint from an expression (an instance of the class
IloNumExprArg) and its upper bound (rhs). Its lower bound (lhs) will be -
IloInfinity. The default bound for rhs is IloInfinity. The optional argument
name is set to 0 by default.

Methods public IloNumExprArg getExpr() const

This member function returns the expression of the invoking IloRange object.

public IloRangeI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloNum getLB() const

This member function returns the lower bound of the invoking range.

public IloNum getUB() const

This member function returns the upper bound of the invoking range.

public IloAddValueToRange operator()(IloNum value) const

This operator creates the objects needed internally to represent a range in column-wise
modeling. See the concept Column-Wise Modeling for an explanation of how to use this
operator in column-wise modeling.

public void setBounds(IloNum lb,
IloNum ub)

This member function sets lb as the lower bound and ub as the upper bound of the
invoking range, and it creates the appropriate instance of the undocumented class
IloChange to notify algorithms about this change of an extractable object in the
model.

Note:When it accepts an expression as an argument, this constructor
checks the setting of setNormalizer to determine whether to assume
the expression has already been reduced or to reduce the expression
before using it.

Note: The member function setBounds notifies Concert Technology
algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 263

IloRange
public void setExpr(const IloNumExprArg expr)

This member function sets expr as the invoking range, and it creates the appropriate
instance of the undocumented class IloChange to notify algorithms about this change
of an extractable object in the model.

public void setLB(IloNum lb)

This member function sets lb as the lower bound of the invoking range, and it creates
the appropriate instance of the undocumented class IloChange to notify algorithms
about this change of an extractable object in the model.

public void setLinearCoef(const IloNumVar var,
IloNum value)

This member function sets value as the linear coefficient of the variable var in the
invoking range, and it creates the appropriate instance of the undocumented class
IloChange to notify algorithms about this change of an extractable object in the
model.

If you attempt to use setLinearCoef on a non linear expression, it will throw an
exception on platforms that support C++ exceptions when exceptions are enabled.

public void setLinearCoefs(const IloNumVarArray vars,
 const IloNumArray values)

For each of the variables in vars, this member function sets the corresponding value of
values (whether integer or floating-point) as its linear coefficient in the invoking
range, and it creates the appropriate instance of the undocumented class IloChange to
notify algorithms about this change of an extractable object in the model.

Note: The member function setExpr notifies Concert Technology
algorithms about this change of this invoking object.

Note: The member function setLB notifies Concert Technology algorithms
about this change of this invoking object.

Note: The member function setLinearCoef notifies Concert Technology
algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 264

IloRange
If you attempt to use setLinearCoef on a non linear expression, it will throw an
exception on platforms that support C++ exceptions when exceptions are enabled.

public void setUB(IloNum ub)

This member function sets ub as the upper bound of the invoking range, and it creates
the appropriate instance of the undocumented class IloChange to notify algorithms
about this change of an extractable object in the model.

Note: The member function setLinearCoefs notifies Concert
Technology algorithms about this change of this invoking object.

Note: The member function setUB notifies Concert Technology algorithms
about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 265

IloRangeArray
IloRangeArray

Category Class

InheritancePath

Definition File ilconcert/ilolinear.h

Summary IloRangeArray is the array class of ranges for a model.

Constructor Summary
public IloRangeArray(IloDefaultArrayI * i=0)

public IloRangeArray(const IloEnv env,IloInt n=0)

public IloRangeArray(const IloEnv env,IloInt
n,IloNum lb,IloNum ub)

public IloRangeArray(const IloEnv env,const
IloNumArray lbs,const IloNumExprArray
rows,const IloNumArray ubs)

public IloRangeArray(const IloEnv env,IloNum
lb,const IloNumExprArray rows,const
IloNumArray ubs)

public IloRangeArray(const IloEnv env,const
IloNumArray lbs,const IloNumExprArray
rows,IloNum ub)

public IloRangeArray(const IloEnv env,IloNum
lb,const IloNumExprArray rows,IloNum ub)

public IloRangeArray(const IloEnv env,const
IloIntArray lbs,const IloNumExprArray
rows,const IloIntArray ubs)

public IloRangeArray(const IloEnv env,IloNum
lb,const IloNumExprArray rows,const
IloIntArray ubs)

public IloRangeArray(const IloEnv env,const
IloIntArray lbs,const IloNumExprArray
rows,IloNum ub)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 266

IloRangeArray
public IloRangeArray(const IloEnv env,const
IloNumArray lbs,const IloNumArray ubs)

public IloRangeArray(const IloEnv env,const
IloIntArray lbs,const IloIntArray ubs)

public IloRangeArray(const IloEnv env,IloNum
lb,const IloNumArray ubs)

public IloRangeArray(const IloEnv env,const
IloNumArray lbs,IloNum ub)

public IloRangeArray(const IloEnv env,IloNum
lb,const IloIntArray ubs)

public IloRangeArray(const IloEnv env,const
IloIntArray lbs,IloNum ub)

Method Summary
public void add(IloInt more,const IloRange range)

public void add(const IloRange range)

public void add(const IloRangeArray array)

public IloNumColumn operator()(const IloNumArray vals)

public IloNumColumn operator()(const IloIntArray vals)

public IloRange operator[](IloInt i) const

public IloRange & operator[](IloInt i)

public void setBounds(const IloIntArray lbs,const
IloIntArray ubs)

public void setBounds(const IloNumArray lbs,const
IloNumArray ubs)

Inherited methods from IloConstraintArray
add, add, add, operator[], operator[]

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 267

IloRangeArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloRangeArray is the array class of ranges for a model.

Instances of IloRangeArray are extensible. That is, you can add more elements to
such an array. References to an array change whenever an element is added to or
removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

For information on arrays, see the concept Arrays

See Also IloRange, operator>>, operator

Constructors public IloRangeArray(IloDefaultArrayI * i=0)

This default constructor creates an empty range array. You cannot create instances of
the undocumented class IloDefaultArrayI. As an argument in this default
constructor, it allows you to pass 0 (zero) as a value to an optional argument in functions
and member functions that accept an array as an argument.

public IloRangeArray(const IloEnv env,
IloInt n=0)

This constructor creates an array of n elements, each of which is an empty handle.

public IloRangeArray(const IloEnv env,
IloInt n,
IloNum lb,
IloNum ub)

This constructor creates an array of n elements, each with the lower bound lb and the
upper bound ub.

public IloRangeArray(const IloEnv env,
 const IloNumArray lbs,
 const IloNumExprArray rows,
 const IloNumArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. It uses
the corresponding elements of the arrays lbs and ubs to set the lower and upper
bounds of elements in the new array. The length of rows must equal the length of lbs
and ubs.

public IloRangeArray(const IloEnv env,

Note:IloRangeArray has access to member functions defined in the
IloArray template.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 268

IloRangeArray
IloNum lb,
 const IloNumExprArray rows,
 const IloNumArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. The
lower bound of every element in the new array will be lb. The upper bound of each
element of the new array will be the corresponding element of the array ubs. The length
of rows must equal the length of ubs.

public IloRangeArray(const IloEnv env,
 const IloNumArray lbs,
 const IloNumExprArray rows,

IloNum ub)

This constructor creates an array of ranges from rows, an array of expressions. The
upper bound of every element in the new array will be ub. The lower bound of each
element of the new array will be the corresponding element of the array lbs. The length
of rows must equal the length of lbs.

public IloRangeArray(const IloEnv env,
IloNum lb,

 const IloNumExprArray rows,
IloNum ub)

This constructor creates an array of ranges from rows, an array of expressions. The
lower bound of every element in the new array will be lb. The upper bound of every
element in the new array will be ub.

public IloRangeArray(const IloEnv env,
 const IloIntArray lbs,
 const IloNumExprArray rows,
 const IloIntArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. It uses
the corresponding elements of the arrays lbs and ubs to set the lower and upper
bounds of elements in the new array. The length of rows must equal the length of lbs
and ubs.

public IloRangeArray(const IloEnv env,
IloNum lb,

 const IloNumExprArray rows,
 const IloIntArray ubs)

This constructor creates an array of ranges from rows, an array of expressions. The
lower bound of every element in the new array will be lb. The upper bound of each
element of the new array will be the corresponding element of the array ubs. The length
of rows must equal the length of ubs.

public IloRangeArray(const IloEnv env,
 const IloIntArray lbs,
 const IloNumExprArray rows,

IloNum ub)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 269

IloRangeArray
This constructor creates an array of ranges from rows, an array of expressions. The
upper bound of every element in the new array will be ub. The lower bound of each
element of the new array will be the corresponding element of the array lbs. The length
of rows must equal the length of lbs.

public IloRangeArray(const IloEnv env,
 const IloNumArray lbs,
 const IloNumArray ubs)

This constructor creates an array of ranges. The number of elements in the new array
will be equal to the number of elements in the arrays lbs (or ubs). The number of
elements in lbs must be equal to the number of elements in ubs. The lower bound of
each element in the new array will be equal to the corresponding element in the array
lbs. The upper bound of each element in the new array will be equal to the
corresponding element in the array ubs.

public IloRangeArray(const IloEnv env,
 const IloIntArray lbs,
 const IloIntArray ubs)

This constructor creates an array of ranges. The number of elements in the new array
will be equal to the number of elements in the arrays lbs (or ubs). The number of
elements in lbs must be equal to the number of elements in ubs. The lower bound of
each element in the new array will be equal to the corresponding element in the array
lbs. The upper bound of each element in the new array will be equal to the
corresponding element in the array ubs.

public IloRangeArray(const IloEnv env,
IloNum lb,

 const IloNumArray ubs)

This constructor creates an array of ranges. The number of elements in the new array
will be equal to the number of elements in the array ubs. The lower bound of every
element in the new array will be equal to lb. The upper bound of each element in the
new array will be equal to the corresponding element in the array ubs.

public IloRangeArray(const IloEnv env,
 const IloNumArray lbs,

IloNum ub)

This constructor creates an array of ranges. The number of elements in the new array
will be equal to the number of elements in the array ubs. The lower bound of every
element in the new array will be equal to lb. The upper bound of each element in the
new array will be equal to the corresponding element in the array ubs.

public IloRangeArray(const IloEnv env,
IloNum lb,

 const IloIntArray ubs)

This constructor creates an array of ranges. The number of elements in the new array
will be equal to the number of elements in the array ubs. The lower bound of every
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 270

IloRangeArray
element in the new array will be equal to lb. The upper bound of each element in the
new array will be equal to the corresponding element in the array ubs.

public IloRangeArray(const IloEnv env,
 const IloIntArray lbs,

IloNum ub)

This constructor creates an array of ranges. The number of elements in the new array
will be equal to the number of elements in the array ubs. The lower bound of every
element in the new array will be equal to lb. The upper bound of each element in the
new array will be equal to the corresponding element in the array ubs.

Methods public void add(IloInt more,
 const IloRange range)

This member function appends range to the invoking array multiple times. The
argument more specifies how many times.

public void add(const IloRange range)

This member function appends range to the invoking array.

public void add(const IloRangeArray array)

This member function appends the elements in array to the invoking array.

public IloNumColumn operator()(const IloNumArray vals)

This operator constructs ranges in column representation. That is, it creates an instance
of IloNumColumn that will add a newly created variable to all the ranged constraints
in the invoking object, each as a linear term with the corresponding value specified in the
array values.

public IloNumColumn operator()(const IloIntArray vals)

This operator constructs ranges in column representation. That is, it creates an instance
of IloNumColumn that will add a newly created variable to all the ranged constraints
in the invoking object, each as a linear term with the corresponding value specified in the
array values.

public IloRange operator[](IloInt i) const

This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloRange operator[] (IloInt i) const;

public IloRange & operator[](IloInt i)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 271

IloRangeArray
This operator returns a reference to the object located in the invoking array at the
position specified by the index i.

public void setBounds(const IloIntArray lbs,
 const IloIntArray ubs)

This member function does not change the array itself; instead, it changes the bounds of
all the ranged constraints that are elements of the invoking array. At the same time, it
also creates an instance of the undocumented class IloChange to notify Concert
Technology algorithms about this change in an extractable object of the model. The
elements of the arrays lbs and ubs may be integer or floating-point values. The size of
the invoking array must be equal to the size of lbs and the size of ubs.

public void setBounds(const IloNumArray lbs,
 const IloNumArray ubs)

This member function does not change the array itself; instead, it changes the bounds of
all the ranged constraints that are elements of the invoking array. At the same time, it
also creates an instance of the undocumented class IloChange to notify Concert
Technology algorithms about this change in an extractable object of the model. The
elements of the arrays lbs and ubs may be integer or floating-point values. The size of
the invoking array must be equal to the size of lbs and the size of ubs.

Note: The member function setBounds notifies Concert Technology
algorithms about this change of bounds for all the elements in this invoking
array.

Note: The member function setBounds notifies Concert Technology
algorithms about this change of bounds for all the elements in this invoking
array.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 272

IloRound
IloRound

Category Global Function

Definition File ilconcert/iloenv.h

Synopsis public IloNum IloRound(IloNum val)

Summary This function computes the nearest integer value.

Description This function computes the nearest integer value to val. Halfway cases are rounded to
the larger in magnitude.

Examples:

 IloRound(IloInfinity) is IloInfinity.
 IloRound(-IloInfinity) is -IloInfinity.
 IloRound(0) is 0.
 IloRound(0.4) is 0.
 IloRound(-0.4) is 0.
 IloRound(0.5) is 1.
 IloRound(-0.5) is -1.
 IloRound(0.6) is 1.
 IloRound(-0.6) is -1.
 IloRound(1e300) is 1e300.
 IloRound(1.0000001e6) is 1e6.
 IloRound(1.0000005e6) is 1.000001e6.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 273

IloScalProd
IloScalProd

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloScalProd(const IloNumArray values,
 const IloNumVarArray vars)
public IloNumExprArg IloScalProd(const IloNumVarArray vars,
 const IloNumArray values)
public IloNumExprArg IloScalProd(const IloNumArray values,
 const IloIntVarArray vars)
public IloNumExprArg IloScalProd(const IloIntVarArray vars,
 const IloNumArray values)
public IloNumExprArg IloScalProd(const IloIntArray values,
 const IloNumVarArray vars)
public IloNumExprArg IloScalProd(const IloNumVarArray vars,
 const IloIntArray values)
public IloNumExprArg IloScalProd(const IloNumExprArray leftExprs,
 const IloNumExprArray rightExprs)

Summary Represents the scalar product.

Description This function returns an instance of IloNumExprArg, the internal building block of
an expression, representing the scalar product of the variables in the arrays vars and
values or the arrays leftExprs and rightExprs.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 274

IloScalProd
IloScalProd

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloIntExprArg IloScalProd(const IloIntArray values,
 const IloIntVarArray vars)
public IloIntExprArg IloScalProd(const IloIntVarArray vars,
 const IloIntArray values)
public IloIntExprArg IloScalProd(const IloIntExprArray leftExprs,
 const IloIntExprArray rightExprs)

Summary Represents the scalar product.

Description This function returns an instance of IloIntExprArg, the internal building block of an
integer expression, representing the scalar product of the variables in the arrays vars
and values or the arrays leftExprs and rightExprs.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 275

IloScalProd
IloScalProd

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNum IloScalProd(const IloNumArray vals1,
 const IloNumArray vals2)
public IloNum IloScalProd(const IloIntArray vals1,
 const IloNumArray vals2)
public IloNum IloScalProd(const IloNumArray vals1,
 const IloIntArray vals2)

Summary Represents the scalar product.

Description This function returns a numeric value representing the scalar product of numeric values
in the arrays vals1 and vals2.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 276

IloScalProd
IloScalProd

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloInt IloScalProd(const IloIntArray vals1,
 const IloIntArray vals2)

Summary Represents the scalar product.

Description This function returns an integer value representing the scalar product of integer values in
the arrays vals1 and vals2.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 277

IloSemaphore
IloSemaphore

Category Class

InheritancePath

Definition File ilconcert/ilothread.h

Summary Provides synchronization primitives.

Description The class IloSemaphore provides synchronization primitives adapted to Concert
Technology. This class supports inter-thread communication in multithread applications.
An instance of this class, a semaphore, is a counter; its value is always positive. This
counter can be incremented or decremented. You can always increment a semaphore,
and incrementing is not a blocking operation. However, the value of the counter cannot
be negative, so any thread that attempts to decrement a semaphore whose counter is
already equal to 0 (zero) is blocked until another thread increments the semaphore.

See ILOUSEMT for details about the compilation macro to use with instances of this
class.

System Class

IloSemaphore is a system class.

Most Concert Technology classes are actually handle classes whose instances point to
objects of a corresponding implementation class. For example, instances of the Concert
Technology class IloNumVar are handles pointing to instances of the implementation

Constructor Summary
public IloSemaphore(int value=0)

Method Summary
public void post()

public int tryWait()

public void wait()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 278

IloSemaphore
class IloNumVarI. Their allocation and de-allocation in a Concert Technology
environment are managed by an instance of IloEnv.

However, system classes, such as IloSemaphore, differ from that pattern.
IloSemaphore is an ordinary C++ class. Its instances are allocated on the C++ heap.

Instances of IloSemaphore are not automatically de-allocated by a call to the
member function IloEnv::end. You must explicitly destroy instances of
IloSemaphore by means of a call to the delete operator (which calls the appropriate
destructor) when your application no longer needs instances of this class.

Furthermore, you should not allocate—neither directly nor indirectly—any instance of
IloSemaphore in a Concert Technology environment because the destructor for that
instance of IloSemaphore will never be called automatically by IloEnv::end
when it cleans up other Concert Technology objects in that Concert Technology
environment.

For example, it is not a good idea to make an instance of IloSemaphore part of a
conventional Concert Technology model allocated in a Concert Technology
environment because that instance will not automatically be de-allocated from the
Concert Technology environment along with the other Concert Technology objects.

De-allocating Instances of IloSemaphore

Instances of IloSemaphore differ from the usual Concert Technology objects
because they are not allocated in a Concert Technology environment, and their de-
allocation is not managed automatically for you by IloEnv::end. Instead, you must
explicitly destroy instances of IloSemaphore by calling the delete operator when
your application no longer needs those objects.

See Also IloBarrier, IloCondition, ILOUSEMT

Constructors public IloSemaphore(int value=0)

This constructor creates an instance of IloSemaphore, initializes it to value, and
allocates it on the C++ heap (not in a Concert Technology environment). If you do not
pass a value argument, the constructor initializes the semaphore at 0 (zero).

Methods public void post()

This member function increments the invoking semaphore by 1 (one). If there are
threads blocked at this semaphore, then this member function wakes one of them.

public int tryWait()

This member function attempts to decrement the invoking semaphore by 1 (one). If this
decrement leaves the counter positive, then the call succeeds and returns 1 (one). If the
decrement would make the counter strictly negative, then the decrement does not occur,
the call fails, and the member function returns 0 (zero).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 279

IloSemaphore
public void wait()

This member function decrements the invoking semaphore by 1 (one).

If this decrement would make the semaphore strictly negative, then this member
function blocks the calling thread. The thread wakes up when the member function can
safely decrement the semaphore without causing the counter to become negative (for
example, if another entity increments the semaphore). If this member function cannot
decrement the invoking semaphore, then it leads to deadlock.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 280

IloSolution
IloSolution

Category Class

InheritancePath

Definition File ilconcert/ilosolution.h

Summary Instances of this class store solutions to problems.

Constructor Summary
public IloSolution()

public IloSolution(IloSolutionI * impl)

public IloSolution(const IloSolution & solution)

public IloSolution(IloEnv mem,const char * name=0)

Method Summary
public void add(IloAnySetVarArray a) const

public void add(IloAnySetVar var) const

public void add(IloAnyVarArray a) const

public void add(IloAnyVar var) const

public void add(IloNumVarArray a) const

public void add(IloNumVar var) const

public void add(IloObjective objective) const

public IloBool contains(IloExtractable extr) const

public void copy(IloExtractable extr,IloSolution solution)
const

public void copy(IloSolution solution) const

public void end()

public IloEnv getEnv() const

public IloSolutionI * getImpl() const

public IloNum getMax(IloNumVar var) const

public IloNum getMin(IloNumVar var) const

public const char * getName() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 281

IloSolution
public IloAny getObject() const

public IloObjective getObjective() const

public IloNum getObjectiveValue() const

public IloNumVar getObjectiveVar() const

public IloAnySet getPossibleSet(IloAnySetVar var) const

public IloAnySet getRequiredSet(IloAnySetVar var) const

public IloAny getValue(IloAnyVar var) const

public IloNum getValue(IloNumVar var) const

public IloNum getValue(IloObjective obj) const

public IloBool isBetterThan(IloSolution solution) const

public IloBool isBound(IloAnySetVar var) const

public IloBool isBound(IloNumVar var) const

public IloBool isEquivalent(IloExtractable extr,IloSolution
solution) const

public IloBool isEquivalent(IloSolution solution) const

public IloBool isFixed(IloIntVar var) const

public IloBool isObjectiveSet() const

public IloBool isRestorable(IloExtractable extr) const

public IloBool isWorseThan(IloSolution solution) const

public IloSolution makeClone(IloEnv env) const

public void operator=(const IloSolution & solution)

public void remove(IloExtractableArray extr) const

public void remove(IloExtractable extr) const

public void restore(IloExtractable extr,IloAlgorithm
algorithm) const

public void restore(IloAlgorithm algorithm) const

public void setFalse(IloBoolVar var) const

public void setMax(IloNumVar var,IloNum max) const

public void setMin(IloNumVar var,IloNum min) const

public void setName(const char * name) const

public void setNonRestorable(IloExtractableArray array)
const

public void setNonRestorable(IloExtractable extr) const

public void setObject(IloAny obj) const

public void setObjective(IloObjective objective) const

public void setPossibleSet(IloAnySetVar var,IloAnySet
possible) const

public void setRequiredSet(IloAnySetVar var,IloAnySet
required) const

public void setRestorable(IloExtractableArray array)
const

public void setRestorable(IloExtractable ex) const

public void setTrue(IloBoolVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 282

IloSolution
Description Instances of this class store solutions to problems. The fundamental property of
IloSolution is its ability to transfer stored values from or to the active objects
associated with it. In particular, the member function store stores the values from
algorithm variables while the member function restore instantiates the actual
variables with stored values. Variables in the solution may be selectively restored. This
class also offers member functions to copy and to compare solutions.

Information about these classes of variables can be stored in an instance of
IloSolution:

◆ IloAnySet: the required and possible sets are stored; when the variable is bound,
the required and possible sets are equivalent.

◆ IloAnyVar: the value of the variable is stored.

◆ IloBoolVar: the value (true or false) of the variable is stored. Some of the
member functions for IloBoolVar are covered by the member function for
IloNumVar, as IloBoolVar is a subclass of IloNumVar. For example, there is
no explicit member function to add objects of type IloBoolVar.

◆ IloIntSetVar: the required and possible sets are stored; when the variable is
bound, the required and possible sets are equivalent.

◆ IloNumVar: the lower and upper bounds are stored; when the variable is bound,
the current lower and upper bound are equivalent.

◆ IloObjective: the value of the objective is stored. Objectives are never restored;
operations such as setRestorable cannot change this. More than one instance of
IloObjective can be added to a solution,. In such cases, there is the idea of an
active objective, which is returned by IloSolution::getObjective. The

public void setValue(IloAnyVar var,IloAny value) const

public void setValue(IloNumVar var,IloNum value) const

public void setValue(IloObjective objective,IloNum value)
const

public void store(IloExtractable extr,IloAlgorithm
algorithm) const

public void store(IloAlgorithm algorithm) const

public void unsetObjective() const

Inner Class
IloSolution::IloSolution::It
erator

 It allows you to traverse the variables in a
solution.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 283

IloSolution
active objective typically specifies the optimization criterion for the problem to
which the solution object is a solution. For example, the ILOG Solver class
IloImprove uses the idea of an active objective.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

Objects of type IloSolution have a scope, comprising the set of variables that have
their values stored in the solution. The scope is given before the basic operations of
storing and restoring are performed, via add and remove methods. For example,

 IloNumVar var(env);
 IloSolution soln(env);
 solution.add(var);

creates a numeric variable and a solution and adds the variable to the solution. Arrays
of variables can also be added to the solution. For example,

 IloNumVarArray arr(env, 10, 0, 1);
 soln.add(arr);

adds 10 variables with range [0...1]. When an array of variables is added to the
solution, the array object itself is not present in the scope of the solution; only the
elements are present. If the solution is then stored by means of
soln.store(algorithm), the values of variable var and arr[0] to arr[9]
are saved. Any attempt to add a variable that is already present in a solution throws an
exception, an instance of IloException.

Accessors allow access to the stored values of the variables, regardless of the state (or
existence) of the algorithm they were stored from. For example,

 cout << "arr[3] = " << soln.getValue(arr[3]) << endl;

Any attempt to access a variable that is not present in the solution throws an instance of
IloException.

A variable or an array of variables can be removed from a solution. For example,

 soln.remove(var);
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 284

IloSolution
removes var from the scope of the solution; and

 soln.remove(arr);

removes arr[0] to arr[9] from the solution.

Any attempt to remove a variable that is not present in the solution throws an instance of
IloException.

See Also the classes IloStoreSolution and IloRestoreSolution in the
ILOG Solver Reference Manual.

See Also IloAnySetVar, IloAnyVar, IloNumVar, IloIntSetVar, IloObjective

Constructors public IloSolution()

This constructor creates a solution whose implementation pointer is 0 (zero). The handle
must be assigned before its methods can be used.

public IloSolution(IloSolutionI * impl)

This constructor creates a handle object (an instance of the class IloSolution) from
a pointer to an implementation object (an instance of the class IloSolutionI).

public IloSolution(const IloSolution & solution)

This constructor creates a handle object from a reference to a solution. After execution,
both the newly constructed handle and solution point to the same implementation
object.

public IloSolution(IloEnv mem,
 const char * name=0)

This constructor creates an instance of the IloSolution class. The optional argument
name, if supplied, becomes the name of the created object.

Methods public void add(IloAnySetVarArray a) const

This member function adds each element of array to the invoking solution.

public void add(IloAnySetVar var) const

This member function adds the set variable var to the invoking solution.

public void add(IloAnyVarArray a) const

This member function adds each element of array to the invoking solution.

public void add(IloAnyVar var) const

This member function adds the variable var to the invoking solution.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 285

IloSolution
public void add(IloNumVarArray a) const

This member function adds each element of array to the invoking solution.

public void add(IloNumVar var) const

This member function adds the variable var to the invoking solution.

public void add(IloObjective objective) const

This member function adds objective to the invoking solution. If the solution has no
active objective, then objective becomes the active objective. Otherwise, the active
objective remains unchanged.

public IloBool contains(IloExtractable extr) const

This member function returns IloTrue if extr is present in the invoking object.
Otherwise, it returns IloFalse.

public void copy(IloExtractable extr,
 IloSolution solution) const

This member function copies the saved value of extr from solution to the invoking
solution. If extr does not exist in either solution or the invoking object, this
member function throws an instance of IloException. The restorable status of
extr is not copied.

public void copy(IloSolution solution) const

For each variable that has been added to solution, this member function copies its
saved data to the invoking solution. If a particular extractable does not already exist in
the invoking solution, it is automatically added first. If variables were added to the
invoking solution, their restorable status is the same as in solution. Otherwise, their
status remains unchanged in the invoking solution.

public void end()

This member function deallocates the memory used to store the solution. If you no
longer need a solution, calling this member function can reduce memory consumption.

public IloEnv getEnv() const

This member function returns the environment specified when the invoking object was
constructed.

public IloSolutionI * getImpl() const

This member function returns a pointer to the implementation object corresponding to
the invoking solution.

public IloNum getMax(IloNumVar var) const

This member function returns the maximal value of the variable var in the invoking
solution.

public IloNum getMin(IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 286

IloSolution
This member function returns the minimal value of the variable var in the invoking
solution.

public const char * getName() const

This member function returns a character string specifying the name of the invoking
object (if there is one).

public IloAny getObject() const

This member function returns the object associated with the invoking object (if there is
one). Normally, an associated object contains user data pertinent to the invoking object.

public IloObjective getObjective() const

This member function returns the active objective as set via a previous call to add or
setObjective(IloObjective). If there is no active objective, an empty handle
is returned.

public IloNum getObjectiveValue() const

This member function returns the saved value of the current active objective. It can be
seen as performing the action getValue(getObjective()).

public IloNumVar getObjectiveVar() const

If the active objective corresponds to a simple IloNumVar, this member function
returns that variable. If there is no active objective or if the objective is not a simple
variable, an empty handle is returned.

public IloAnySet getPossibleSet(IloAnySetVar var) const

This member function returns the set of possible values for the variable var, as stored in
the invoking solution.

public IloAnySet getRequiredSet(IloAnySetVar var) const

This member function returns the set of required values for the variable var, as stored
in the invoking solution.

public IloAny getValue(IloAnyVar var) const

This member function returns the value of the variable var in the invoking solution.

public IloNum getValue(IloNumVar var) const

This member function returns the value of the variable var in the invoking solution. If
the saved minimum and maximum of the variable are not equal, this member function
throws an instance of IloException.

public IloNum getValue(IloObjective obj) const

This member function returns the saved value of objective objective in the invoking
solution.

public IloBool isBetterThan(IloSolution solution) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 287

IloSolution
This member function returns IloTrue if the invoking solution and solution have
the same objective and if the invoking solution has a strictly higher quality objective
value (according to the sense of the objective). In all other situations, it returns
IloFalse.

public IloBool isBound(IloAnySetVar var) const

The method isBound has been deprecated. Consider the method isFixed instead.

This member function returns IloTrue if the stored required and possible sets for the
set variable var are equal in the invoking solution. Otherwise, it returns IloFalse.

See Also isFixed

public IloBool isBound(IloNumVar var) const

The method isBound has been deprecated. Consider the method isFixed instead.

This member function returns IloTrue if var takes a single value in the invoking
solution. Otherwise, it returns IloFalse.

See Also isFixed

public IloBool isEquivalent(IloExtractable extr,
 IloSolution solution) const

This member function returns IloTrue if the saved value of extr is the same in the
invoking solution and solution. Otherwise, it returns IloFalse. If extr does not
exist in either solution or the invoking object, the member function throws an
instance of IloException.

public IloBool isEquivalent(IloSolution solution) const

This member function returns IloTrue if the invoking object and solution contain
the same variables with the same saved values. Otherwise, it returns IloFalse.

public IloBool isFixed(IloIntVar var) const

This member function returns IloTrue if var takes a single value in the invoking
solution. Otherwise, it returns IloFalse.

public IloBool isObjectiveSet() const

This member function returns IloTrue if the invoking solution has an active objective.
Otherwise, it returns IloFalse.

public IloBool isRestorable(IloExtractable extr) const

This member function returns IloFalse if setNonRestorable(extr) was
called more recently than setRestorable(extr). Otherwise, it returns IloTrue.
This member function always returns IloFalse when it is passed an
IloObjective object.

public IloBool isWorseThan(IloSolution solution) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 288

IloSolution
This member function returns IloTrue if the invoking solution and solution have
the same objective and if the invoking solution has a strictly lower quality objective
value (according to the sense of the objective). In all other situations, it returns
IloFalse.

public IloSolution makeClone(IloEnv env) const

This member function allocates a new solution on env and adds to it all variables that
were added to the invoking object. The “restorable” status of all variables in the clone is
the same as that in the invoking solution. Likewise, the active objective in the clone is
the same as that in the invoking solution. The newly created solution is returned.

public void operator=(const IloSolution & solution)

This operator assigns an address to the handle pointer of the invoking solution. That
address is the location of the implementation object of solution. After the execution
of this operator, the invoking solution and solution both point to the same
implementation object.

public void remove(IloExtractableArray extr) const

This member function removes each element of array from the invoking solution. If
the invoking solution does not contain all elements of array, the member function
throws an instance of IloException.

public void remove(IloExtractable extr) const

This member function removes extractable extr from the invoking solution. If the
invoking solution does not contain extr, the member function throws an instance of
IloException.

public void restore(IloExtractable extr,
IloAlgorithm algorithm) const

This member function restores the value of the extractable corresponding to extr by
reference to algorithm. The use of this member function depends on the state of
algorithm. If algorithm is an instance of the ILOG Solver class IloSolver,
this member function can only be used during search. If extr does not exist in the
invoking solution, the member function throws an instance of IloException.

public void restore(IloAlgorithm algorithm) const

This member function uses algorithm to instantiate the variables in the invoking
solution with their saved values. The value of any objective added to the solution is not
restored. The use of this member function depends on the state of algorithm. If
algorithm is an instance of the ILOG Solver class IloSolver, this member
function can only be used during search.

public void setFalse(IloBoolVar var) const

This member function sets the stored value of var to IloFalse in the invoking
solution.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 289

IloSolution
public void setMax(IloNumVar var,
IloNum max) const

This member function sets the maximal value of the variable var in the invoking
solution to max.

public void setMin(IloNumVar var,
IloNum min) const

This member function sets the minimal value of the variable var in the invoking
solution to min.

public void setName(const char * name) const

This member function assigns name to the invoking object.

public void setNonRestorable(IloExtractableArray array) const

This member function specifies to the invoking solution that when the solution is
restored by means of restore(IloAlgorithm) or
restore(IloExtractable, IloAlgorithm), no elements of array will be
restored. When an array of variables is added to a solution, each variable is added in a
“restorable” state.

public void setNonRestorable(IloExtractable extr) const

This member function specifies to the invoking solution that when the solution is
restored by means of restore(IloAlgorithm) or
restore(IloExtractable, IloAlgorithm), extr will not be restored.
When a variable is added to a solution, it is added in a “restorable” state.

public void setObject(IloAny obj) const

This member function associates obj with the invoking object. The member function
getObject accesses this associated object afterward. Normally, obj contains user
data pertinent to the invoking object.

public void setObjective(IloObjective objective) const

This member function adds objective to the invoking solution, if it is not already
present, and sets the active objective to objective.

public void setPossibleSet(IloAnySetVar var,
 IloAnySet possible) const

This member function sets the stored possible values for var as possible in the
invoking solution.

public void setRequiredSet(IloAnySetVar var,
 IloAnySet required) const

This member function sets the stored required values for var as required in the
invoking solution.

public void setRestorable(IloExtractableArray array) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 290

IloSolution
This member function specifies to the invoking solution that when the solution is
restored by means of restore(IloAlgorithm) or
restore(IloExtractable, IloAlgorithm), the appropriate element(s) of
array will be restored. When an array of variables is added to a solution, each
variable is added in a “restorable” state. This call has no effect on objects of type
IloObjective; objects of this type are never restored.

public void setRestorable(IloExtractable ex) const

This member function specifies to the invoking solution that when the solution is
restored by means of restore(IloAlgorithm) or
restore(IloExtractable, IloAlgorithm), extr will be restored. When
a variable is added to a solution, it is added in a “restorable” state. This call has no
effect on objects of type IloObjective; objects of that type are never restored.

public void setTrue(IloBoolVar var) const

This member function sets the stored value of var to IloTrue in the invoking
solution.

public void setValue(IloAnyVar var,
 IloAny value) const

This member function sets the value of the variable var to value in the invoking
solution.

public void setValue(IloNumVar var,
IloNum value) const

This member function sets the value (both minimum and maximum) of the variable var
to value in the invoking solution.

public void setValue(IloObjective objective,
IloNum value) const

This member function sets the value of objective as stored in the invoking solution
to value. This member function should be used with care and only when the objective
value of the solution is known exactly.

public void store(IloExtractable extr,
IloAlgorithm algorithm) const

This member function stores the value of the extractable corresponding to extr by
reference to algorithm. If extr does not exist in the invoking solution, the member
function throws an instance of IloException.

public void store(IloAlgorithm algorithm) const

This member function stores the values of the objects added to the solution by reference
to algorithm.

public void unsetObjective() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 291

IloSolution
This member function asserts that there should be no active objective in the invoking
solution, although the previous active object is still present. A new active objective can
be set via add or setObjective.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 292

IloSolutionArray
IloSolutionArray

Category Type Definition

Definition File ilconcert/ilosolution.h

Synopsis IloSimpleArray< IloSolution > IloSolutionArray

Summary This type definition represents arrays of instances of IloSolution.

Description This type definition represents arrays of instances of IloSolution.

Instances of IloSolutionArray are extensible. That is, you can add more elements
to such an array. References to an array change whenever an element is added or
removed from the array.

See Also IloSolution
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 293

IloSolutionIterator
IloSolutionIterator

Category Class

InheritancePath

Definition File ilconcert/ilosolution.h

Summary This template class creates a typed iterator over solutions.

Description This template class creates a typed iterator over solutions. You can use this iterator to
discover all extractable objects added to a solution and of a particular type. The type is
denoted by E in the template.

This iterator is not robust. If the variable at the current position is deleted from the
solution being iterated over, the behavior of this iterator afterward is undefined.

An iterator created with this template differs from an instance of
IloSolution::Iterator. An instance of IloSolution::Iterator works
on all extractable objects within a given solution (an instance of IloSolution). In
contrast, an iterator created with this template only iterates over extractable objects of
the specified type.

See Also IloSolution, IloSolution::Iterator

Constructors public IloSolutionIterator(IloSolution s)

This constructor creates an iterator for instances of the class E.

Constructor Summary
public IloSolutionIterator(IloSolution s)

Method Summary
public E operator *() const

public void operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 294

IloSolutionIterator
Methods public E operator *() const

This operator returns the current element, the one to which the invoking iterator points.
This current element is a handle to an extractable object (not a pointer to the
implementation object).

public void operator++()

This operator advances the iterator by one position.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 295

IloSolution::Iterator
IloSolution::Iterator

Category Inner Class

InheritancePath

Definition File ilconcert/ilosolution.h

Summary It allows you to traverse the variables in a solution.

Description Iterator is a class nested in the class IloSolution. It allows you to traverse the
variables in a solution. The iterator scans the objects in the same order as they were
added to the solution.

This iterator is not robust. If the variable at the current position is deleted from the
solution being iterated over, the behavior of this iterator afterward is undefined.

◆ iter can be safely used after the following code has executed:

 IloExtractable elem = *iter;
 ++iter;
 solution.remove(elem);

◆ iter cannot be safely used after the following code has executed:

 solution.remove(*iter); // bad idea
 ++iter;

Constructor Summary
public Iterator(IloSolution solution)

Method Summary
public IloBool ok() const

public IloExtractable operator *() const

public Iterator & operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 296

IloSolution::Iterator
See Also IloIterator, IloSolution

Constructors public Iterator(IloSolution solution)

This constructor creates an iterator to traverse the variables of solution. The iterator
traverses variables in the same order they were added to solution.

Methods public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid
one. It returns IloFalse if all variables have been scanned by the iterator.

public IloExtractable operator *() const

This operator returns the extractable object corresponding to the variable located at the
current iterator position. If all variables have been scanned, this operator returns an
empty handle.

public Iterator & operator++()

This operator moves the iterator to the next variable in the solution.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 297

IloSolutionManip
IloSolutionManip

Category Class

InheritancePath

Definition File ilconcert/ilosolution.h

Summary An instance of this class accesses a specific part of a solution.

Description An instance of this class accesses a specific part of a solution so that you can display it.
You construct the class IloSolutionManip from a solution and an extractable
object. You use the operator<< with this constructed class to display information
stored on the specified extractable object in the solution.

See Also IloSolution, operator

Constructors public IloSolutionManip(IloSolution solution,
IloExtractable extr)

This constructor creates an instance of IloSolutionManip from the solution
specified by solution and from the extractable object extr. The constructor throws
an exception (an instance of IloException) if extr has not been added to
solution. You can use the operator<< with the newly created object to display
the information in extr stored in solution.

Constructor Summary
public IloSolutionManip(IloSolution

solution,IloExtractable extr)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 298

IloSquare
IloSquare

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloSquare(const IloNumExprArg arg)
public IloNum IloSquare(IloNum val)
public IloInt IloSquare(IloInt val)
public IloInt IloSquare(int val)
public IloIntExprArg IloSquare(const IloIntExprArg arg)

Summary Returns the square of its argument.

Description Concert Technology offers predefined functions that return an expression from an
algebraic function over expressions. These predefined functions also return a numeric
value from an algebraic function over numeric values as well.

IloSquare returns the square of its argument (that is, val*val or expr*expr).

What Is Extracted

IloSquare is extracted by an instance of IloCplex as a quadratic term. If the
quadratic term is positive semi-definite, it may appear in an objective function or
constraint.

IloSquare is extracted by an instance of IloCP or IloSolver as an instance of
IlcSquare.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 299

IloSum
IloSum

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg IloSum(const IloNumExprArray exprs)
public IloIntExprArg IloSum(const IloIntExprArray exprs)
public IloNum IloSum(const IloNumArray values)
public IloInt IloSum(const IloIntArray values)

Summary For constraint programming: returns a numeric value representing the sum of numeric
values.

Description These functions return a numeric value representing the sum of numeric values in the
array vals, or an instance of IloNumExprArg, the internal building block of an
expression, representing the sum of the variables in the arrays exprs or values.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 300

IloThreeHalfPi
IloThreeHalfPi

Category Macro

Synopsis IloThreeHalfPi()

Summary Three half-pi.

Description Concert Technology predefines conventional trigonometric constants to conform to
IEEE 754 standards for quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloThreeHalfPi; // = 4.71238898038468985769
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 301

IloTimer
IloTimer

Category Class

InheritancePath

Definition File ilconcert/iloenv.h

Summary Represents a timer.

Description An instance of IloTimer represents a timer in a Concert Technology model. It works
like a stop watch. The timer report the CPU time. On multi threaded environment, we
summed the CPU time used by each thread.

See Also IloEnv

Constructors public IloTimer(const IloEnv env)

This constructor creates a timer.

Methods public IloEnv getEnv() const

This member function returns the environment in which the invoking timer was
constructed.

Constructor Summary
public IloTimer(const IloEnv env)

Method Summary
public IloEnv getEnv() const

public IloNum getTime() const

public void reset()

public IloNum restart()

public IloNum start()

public IloNum stop()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 302

IloTimer
public IloNum getTime() const

This member function returns the accumulated time, in seconds, since one of these
conditions:

◆ the first call of the member function start after construction of the invoking timer;

◆ the most recent call to the member function restart;

◆ a call to reset.

public void reset()

This member function sets the elapsed time of the invoking timer to 0.0. It also stops the
clock.

public IloNum restart()

This member function returns the accumulated time, resets the invoking timer to 0.0,
and starts the timer again. In other words, the member function restart is equivalent
to the member function reset followed by start.

public IloNum start()

This member function makes the invoking timer resume accumulating time. It returns
the time accumulated so far.

public IloNum stop()

This member function stops the invoking timer so that it no longer accumulates time.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 303

IloTwoPi
IloTwoPi

Category Macro

Synopsis IloTwoPi()

Summary Two pi.

Description Concert Technology predefines conventional trigonometric constants to conform to
IEEE 754 standards for quarter pi, half pi, pi, three-halves pi, and two pi.

 extern const IloNum IloTwoPi; // = 6.28318530717958647692
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 304

operator &&
operator &&

Category Global Function

Definition File ilconcert/ilomodel.h

Synopsis public IloAnd operator &&(const IloConstraint constraint1,
 const IloConstraint constraint2)

Summary Overloaded C++ operator for conjunctive constraints.

Description This overloaded C++ operator creates a conjunctive constraint that represents the
conjunction of its two arguments. The constraint can represent a conjunction of two
constraints; of a constraint and another conjunction; or of two conjunctions. In order to
be taken into account, this constraint must be added to a model and extracted by an
algorithm, such as IloCplex or IloSolver.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 305

operator *
operator *

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumLinExprTerm operator *(const IloNumVar x,
IloInt num)

public IloNumLinExprTerm operator *(IloInt num,
 const IloNumVar x)
public IloNumLinExprTerm operator *(const IloIntVar x,

IloNum num)
public IloNumLinExprTerm operator *(IloNum num,
 const IloIntVar x)
public IloIntLinExprTerm operator *(const IloIntVar x,

IloInt num)
public IloNumExprArg operator *(const IloNumExprArg x,
 const IloNumExprArg y)
public IloNumExprArg operator *(const IloNumExprArg x,

IloNum y)
public IloNumExprArg operator *(IloNum x,
 const IloNumExprArg y)
public IloIntExprArg operator *(const IloIntExprArg x,
 const IloIntExprArg y)
public IloIntExprArg operator *(const IloIntExprArg x,

IloInt y)

Summary Returns an expression equal to the product of its arguments.

Description This overloaded C++ operator returns an expression equal to the product of its
arguments. Its arguments may be numeric values, numeric variables, or other
expressions.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 306

operator new
operator new

Category Global Function

Definition File ilconcert/iloenv.h

Synopsis public void * operator new(size_t sz,
 const IloEnv & env)

Summary Overloaded C++ new operator.

Description ILOG Concert Technology offers this overloaded C++ new operator. This operator is
overloaded to allocate data on internal data structures associated with an invoking
environment (an instance of IloEnv). The memory used by objects allocated with this
overloaded operator is automatically reclaimed when you call the member function
IloEnv::end. As a developer, you must not delete objects allocated with this
operator because of this automatic freeing of memory.

In other words, you must not use the delete operator for objects allocated with this
overloaded new operator.

The use of this overloaded new operator is not obligatory in Concert Technology
applications. You will see examples of its use in the user's manuals that accompany the
ILOG optimization products.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 307

operator!
operator!

Category Global Function

Definition File ilconcert/ilomodel.h

Synopsis public IloConstraint operator!(const IloConstraint constraint)

Summary Overloaded C++ operator for negation.

Description This overloaded C++ operator returns a constraint that is the negation of its argument.
In order to be taken into account, this constraint must be added to a model and extracted
by an algorithm, such as IloCplex or IloSolver.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 308

operator!=
operator!=

Category Global Function

Definition File ilconcert/iloany.h

Synopsis public IloConstraint operator!=(const IloAnyVar var1,
 const IloAnyVar var2)
public IloConstraint operator!=(const IloAnyVar var1,
 IloAny val)
public IloConstraint operator!=(IloAny val,
 const IloAnyVar var1)
public IloConstraint operator!=(const IloAnySetVar var1,
 const IloAnySetVar var2)
public IloConstraint operator!=(const IloAnySetVar var1,
 const IloAnySet set)
public IloConstraint operator!=(const IloAnySet set,
 const IloAnySetVar var1)
public IloDiff operator!=(IloNumExprArg arg1,

IloNumExprArg arg2)
public IloDiff operator!=(IloNumExprArg arg,

IloNum val)
public IloDiff operator!=(IloNum val,

IloNumExprArg arg)
public IloConstraint operator!=(const IloIntSetVar var1,
 const IloIntSetVar var2)
public IloConstraint operator!=(const IloIntSetVar var,
 const IloIntSet set)
public IloConstraint operator!=(const IloIntSet set,
 const IloIntSetVar var)

Summary overloaded C++ operator.

Description This overloaded C++ operator constrains its two arguments to be unequal (that is,
different from each other). In order to be taken into account, this constraint must be
added to a model and extracted for an algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 309

operator%
operator%

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloIntExprArg operator%(const IloIntExprArg x,
IloInt y)

Summary Returns an expression equal to the modulo of its arguments.

Description This operator returns an instance of IloIntExprArg, the internal building block of
an expression, representing the modulo of the expression x and the integer value y.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 310

operator%
operator%

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloIntExprArg operator%(IloInt x,
 const IloIntExprArg y)

Summary Returns an expression equal to the modulo of its arguments.

Description This operator returns an instance of IloIntExprArg, the internal building block of
an expression, representing the modulo of the integer value x and the expression y.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 311

operator+
operator+

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg operator+(const IloNumExprArg x,
 const IloNumExprArg y)
public IloNumExprArg operator+(const IloNumExprArg x,

IloNum y)
public IloNumExprArg operator+(IloNum x,
 const IloNumExprArg y)
public IloIntExprArg operator+(const IloIntExprArg x,
 const IloIntExprArg y)
public IloIntExprArg operator+(const IloIntExprArg x,

IloInt y)
public IloIntExprArg operator+(IloInt x,
 const IloIntExprArg y)

Summary Returns an expression equal to the sum of its arguments.

Description This overloaded C++ operator returns an expression equal to the sum of its arguments.
Its arguments may be numeric values, numeric variables, or other expressions.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 312

operator-
operator-

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg operator-(const IloNumExprArg x,
 const IloNumExprArg y)
public IloNumExprArg operator-(const IloNumExprArg x,

IloNum y)
public IloNumExprArg operator-(IloNum x,
 const IloNumExprArg y)
public IloIntExprArg operator-(const IloIntExprArg x,
 const IloIntExprArg y)
public IloIntExprArg operator-(const IloIntExprArg x,

IloInt y)
public IloIntExprArg operator-(IloInt x,
 const IloIntExprArg y)

Summary Returns an expression equal to the difference of its arguments.

Description This overloaded C++ operator returns an expression equal to the difference of its
arguments. Its arguments may be numeric values, numeric variables, or other
expressions.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 313

operator/
operator/

Category Global Function

Definition File ilconcert/iloexpression.h

Synopsis public IloNumExprArg operator/(const IloNumExprArg x,
 const IloNumExprArg y)
public IloNumExprArg operator/(const IloNumExprArg x,

IloNum y)
public IloNumExprArg operator/(IloNum x,
 const IloNumExprArg y)

Summary Returns an expression equal to the quotient of its arguments.

Description This overloaded C++ operator returns an expression equal to the quotient of its
arguments. Its arguments may be numeric values or numeric variables. For integer
division, use IloDiv.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 314

operator<
operator<

Category Global Function

Definition File ilconcert/ilolinear.h

Synopsis public IloConstraint operator<(IloNumExprArg base,
IloNumExprArg base2)

public IloConstraint operator<(IloNumExprArg base,
IloNum val)

public IloConstraint operator<(IloNum val,
 const IloNumExprArg expr)
public IloConstraint operator<(IloIntExprArg base,

IloIntExprArg base2)
public IloConstraint operator<(IloIntExprArg base,

IloInt val)

Summary overloaded C++ operator.

Description This overloaded C++ operator constrains its first argument to be strictly less than its
second argument. In order to be taken into account, this constraint must be added to a
model and extracted for an algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 315

operator<<
operator<<

Category Global Function

Definition File ilconcert/iloalg.h

Synopsis public ostream & operator<<(ostream & out,
IloAlgorithm::Status st)

public ostream & operator<<(ostream & out,
 const IloArray< X > & a)
public ostream & operator<<(ostream & out,
 const IloNumExpr & ext)
public ostream & operator<<(ostream & os,
 const IloRandom & r)
public ostream & operator<<(ostream & stream,
 const IloSolution & solution)
public ostream & operator<<(ostream & stream,
 const IloSolutionManip & fragment)
public ostream & operator<<(ostream & o,
 const IloException & e)

Summary overloaded C++ operator.

Description This overloaded C++ operator directs output to an output stream.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 316

operator<<
operator<<

Category Global Function

Definition File ilconcert/iloextractable.h

Synopsis public ostream & operator<<(ostream & out,
 const IloExtractable & ext)

Description This overloaded C++ operator directs output to an output stream.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 317

operator<=
operator<=

Category Global Function

Definition File ilconcert/ilolinear.h

Synopsis public IloConstraint operator<=(IloNumExprArg base,
IloNumExprArg base2)

public IloRange operator<=(IloNumExprArg base,
IloNum val)

public IloRangeBase operator<=(IloNum val,
 const IloNumExprArg expr)
public IloRange operator<=(const IloRangeBase base,

IloNum val)

Summary overloaded C++ operator.

Description This overloaded C++ operator constrains its first argument to be less than or equal to its
second argument. In order to be taken into account, this constraint must be added to a
model and extracted for an algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 318

operator==
operator==

Category Global Function

Definition File ilconcert/iloany.h

Synopsis public IloConstraint operator==(const IloAnyVar var1,
 const IloAnyVar var2)
public IloConstraint operator==(const IloAnyVar var1,
 IloAny val)
public IloConstraint operator==(IloAny val,
 const IloAnyVar var1)
public IloConstraint operator==(const IloAnySetVar var1,
 const IloAnySetVar var2)
public IloConstraint operator==(const IloAnySetVar var1,
 const IloAnySet set)
public IloConstraint operator==(const IloAnySet set,
 const IloAnySetVar var1)
public IloConstraint operator==(const IloIntSetVar var1,
 const IloIntSetVar var2)
public IloConstraint operator==(const IloIntSetVar var1,
 const IloIntSet set)
public IloConstraint operator==(const IloIntSet set,
 const IloIntSetVar var)

Description This overloaded C++ operator constrains its two arguments to be equal. In order to be
taken into account, this constraint must be added to a model and extracted for an
algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 319

operator>
operator>

Category Global Function

Definition File ilconcert/ilolinear.h

Synopsis public IloConstraint operator>(IloNumExprArg base,
IloNumExprArg base2)

public IloConstraint operator>(IloNumExprArg base,
IloNum val)

public IloConstraint operator>(IloNum val,
IloNumExprArg eb)

public IloConstraint operator>(IloIntExprArg base,
IloIntExprArg base2)

public IloConstraint operator>(IloIntExprArg base,
IloInt val)

public IloConstraint operator>(IloInt val,
IloIntExprArg eb)

Summary overloaded C++ operator.

Description This overloaded C++ operator constrains its first argument to be strictly greater than its
second argument. In order to be taken into account, this constraint must be added to a
model and extracted for an algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 320

operator>=
operator>=

Category Global Function

Definition File ilconcert/ilolinear.h

Synopsis public IloConstraint operator>=(IloNumExprArg base,
IloNumExprArg base2)

public IloRange operator>=(IloNumExprArg expr,
IloNum val)

public IloRange operator>=(IloNum val,
IloNumExprArg eb)

Summary overloaded C++ operator.

Description This overloaded C++ operator constrains its first argument to be greater than or equal to
its second argument. In order to be taken into account, this constraint must be added to a
model and extracted for an algorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 321

operator>>
operator>>

Category Global Function

Definition File ilconcert/iloenv.h

Synopsis public istream & operator>>(istream & in,
IloNumArray & a)

public istream & operator>>(istream & in,
IloIntArray & a)

Summary Overloaded C++ operator redirects input.

Description This overloaded C++ operator directs input to an input stream.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 322

operator||
operator||

Category Global Function

Definition File ilconcert/ilomodel.h

Synopsis public IloOr operator||(const IloConstraint constraint1,
 const IloConstraint constraint2)

Summary Overloaded C++ operator for a disjunctive constraint.

Description This overloaded C++ operator creates a disjunctive constraint that represents the
disjunction of its two arguments. The constraint can represent a disjunction of two
constraints; of a constraint and another disjunction; or of two disjunctions. In order to
be taken into account, this constraint must be added to a model and extracted by an
algorithm, such as IloCplex or IloSolver.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 323

operator||
Group optim.concert.cplex
 The ILOG Concert API specific to CPLEX.

Description This group contains ILOG Concert classes and functions specific to ILOG CPLEX.
(Other classes and functions of CPLEX are available in the group
optim.cplex.cpp.)

Classes Summary
IloConversion For ILOG CPLEX: a means to

change the type of a numeric
variable.

IloNumColumn For ILOG CPLEX: helps you design
a model through column
representation.

IloNumColumnArray For ILOG CPLEX: array class of the
column representation class for a
model.

IloSOS1 For ILOG CPLEX: represents special
ordered sets of type 1 (SOS1).

IloSOS1Array For ILOG CPLEX: the array class of
special ordered sets of type 1
(SOS1).

IloSOS2 For ILOG CPLEX: represents special
ordered sets of type 2 (SOS2).

IloSOS2Array For ILOG CPLEX: the array class of
special ordered sets of type 2
(SOS2).

IloSemiContVar For ILOG CPLEX: instance
represents a constrained
semicontinuous variable.

IloSemiContVarArray For ILOG CPLEX: is the array class
of the semicontinuous numeric
variable class for a model.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 324

IloConversion
IloConversion

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary For ILOG CPLEX: a means to change the type of a numeric variable.

Constructor Summary
public IloConversion()

public IloConversion(IloConversionI * impl)

public IloConversion(const IloEnv env,const
IloNumVar var,IloNumVar::Type t,const char *
name=0)

public IloConversion(const IloEnv env,const
IloNumVarArray vars,IloNumVar::Type t,const
char * name=0)

public IloConversion(const IloEnv env,const
IloIntVarArray vars,IloNumVar::Type t,const
char * name=0)

Method Summary
public IloConversionI * getImpl() const

Inherited methods from IloExtractable
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 325

IloConversion
Description An instance of this class offers you a means to change the type of a numeric variable.
For example, in a model (an instance of IloModel) extracted for an algorithm (such as
an instance of the class IloCplex), you may want to convert the type of a given
numeric variable (an instance of IloNumVar) from ILOFLOAT to ILOINT or to
ILOBOOL (or from IloNumVar::Float to IloNumVar::Int or to
IloNumVar::Bool). Such a change is known as a conversion.

After you create a conversion, you must explicitly add it to the model in order for it to be
taken into account. To do so, use the member function IloModel::add or the
template IloAdd. Then extract the model for an algorithm (such as an instance of
IloCplex) with the member function extract.

Multiple Type Conversions of the Same Variable

You can convert the type of a numeric variable in a model. To do so, create an instance
of IloConversion and add it to the model. You can also convert the type of a
numeric variable after the model has been extracted for an algorithm (such as an
instance of IloCplex, documented in the ILOG CPLEX Reference Manual).

An instance of IloCplex will not accept more than one type conversion of the same
variable. That is, you can change the type once, but not twice, in a single instance of
IloCplex. Attempts to convert the type of the same variable more than once will
throw the exception IloCplex::MultipleConversionException,
documented in the ILOG CPLEX Reference Manual.

In situations where you want to change the type of a numeric variable more than once
(for example, from Boolean to integer to floating-point), there are these possibilities:

◆ You can remove a prior conversion of a given variable in a given model. To do so,
use its member function IloExtractable::end to delete it and optionally add a
new conversion.

◆ You can apply different conversions to a given variable in more than one model, like
this:

 IloNumVar x(env, 0, 10, ILOBOOL);
 IloRange rng = (x <= 10);

IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 326

IloConversion
 IloModel mdl1(env);
 mdl1.add(rng);
 mdl1.add(IloConversion(env, x, ILOINT));
 IloCplex cplex1(mdl1);
 IloModel mdl2(env);
 mdl2.add(rng);
 mdl2.add(IloConversion(env, x, ILOFLOAT));
 IloCplex cplex2(mdl2);

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also the class IloCplex in the ILOG CPLEX Reference Manual.

See Also IloModel

Constructors public IloConversion()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloConversion(IloConversionI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloConversion(const IloEnv env,
 const IloNumVar var,

IloNumVar::Type t,
 const char * name=0)

This constructor accepts a numeric variable and a type; it creates a handle to a type
conversion to change the type of the variable var to the type specified by t. You may
use the argument name to name the type conversion so that you can refer to it by a
string identifier.

public IloConversion(const IloEnv env,
 const IloNumVarArray vars,

IloNumVar::Type t,
 const char * name=0)

This constructor accepts an array of numeric variables and a type; it creates a handle to a
type conversion to change the type of each variable in the array vars to the type
specified by t. You may use the argument name to name the type conversion so that
you can refer to it by a string identifier.

public IloConversion(const IloEnv env,
 const IloIntVarArray vars,

IloNumVar::Type t,
 const char * name=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 327

IloConversion
This constructor accepts an array of integer variables and a type; it creates a handle to a
type conversion to change the type of each variable in the array vars to the type
specified by t. You may use the argument name to name the type conversion so that
you can refer to it by a string identifier.

Methods public IloConversionI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 328

IloNumColumn
IloNumColumn

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary For ILOG CPLEX: helps you design a model through column representation.

Description An instance of this class helps you design a model through column representation. In
other words, you can create a model by defining each of its columns as an instance of
this class. In particular, an instance of IloNumColumn enables you to build a column
for a numeric variable (an instance of IloNumVar) with information about the
extractable objects (such as objectives, constraints, etc.) where that numeric variable
may eventually appear, even if the numeric variable has not yet been created.

Usually you populate a column (an instance of this class) with objects returned by the
operator() of the class (such as operator()) where you want to install the newly
created variable, as in the examples below.

An instance of IloNumColumn keeps a list of those objects returned by
operator(). In other words, an instance of IloNumColumn knows the extractable
objects where a numeric variable will be added when it is created.

Constructor Summary
public IloNumColumn(const IloEnv env)

public IloNumColumn(const IloAddNumVar & var)

Method Summary
public void clear() const

public operator const IloAddNumVar &() const

public IloNumColumn & operator+=(const IloAddValueToRange & rhs)

public IloNumColumn & operator+=(const IloAddNumVar & rhs)

public IloNumColumn & operator+=(const IloNumColumn & rhs)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 329

IloNumColumn
When you create a new instance of IloNumVar with an instance of IloNumColumn
as an argument, then Concert Technology adds the newly created numeric variable to all
the extractable objects (such as constraints, ranges, objectives, etc.) for which an
instance of IloAddNumVar will be added to this instance of IloNumColumn. Note
that IloNumColumn does not support normalization, as normalization is not well
defined for constraints such as IloSOS1 and IloAllDiff.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

For information on columnwise modeling, see the concept Column-Wise Modeling.

See Also IloNumVar, IloObjective, IloRange

Constructors public IloNumColumn(const IloEnv env)

This constructor creates an empty column in the environment env.

public IloNumColumn(const IloAddNumVar & var)

This constructor creates a column and adds var to it.

Methods public void clear() const

This member function removes (from the invoking column) its list of extractable
objects.

public operator const IloAddNumVar &() const

This casting operator allows you to use instances of IloNumColumn in column
expressions. It accepts an extractable object, such as an objective (an instance of
IloObjective) or a constraint (an instance of IloConstraint). It returns the
object derived from IloAddNumVar and needed to represent the extractable object in
column format.

public IloNumColumn & operator+=(const IloAddValueToRange & rhs)

This operator adds the appropriate instances of IloAddValueToRange for the
righthand side rhs to the invoking column.

Examples:

To use an instance of this class to create a column with a coefficient of 2 in the
objective, with 10 in range1, and with 3 in range2, set:

 IloNumColumn col = obj(2) + range1(10) + range2(3);
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 330

IloNumColumn
To use an instance of this class to create a numeric variable corresponding to the column
with lower bound 0 (zero) and upper bound 10:

 IloNumVar var(env, col, 0, 10);

Another example:

 IloNumColumn col1(env);
 IloNumColumn col2 = rng7(3.1415);
 col1 += obj(1.0);
 col1 += rng(-12.0);
 col2 += rng2(13.7) + rng3(14.7);
 col2 += col1;

public IloNumColumn & operator+=(const IloAddNumVar & rhs)

This operator adds the appropriate instances of IloAddNumVar for the righthand side
rhs to the invoking column.

public IloNumColumn & operator+=(const IloNumColumn & rhs)

This operator assigns the righthand side rhs to the invoking column.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 331

IloNumColumnArray
IloNumColumnArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary For ILOG CPLEX: array class of the column representation class for a model.

Description For each basic type, Concert Technology defines a corresponding array class.
IloNumColumnArray is the array class of the column representation class for a
model. The implementation class for IloNumColumnArray is the undocumented
class IloNumColumnArrayI.

Instances of IloNumColumnArray are extensible. That is, you can add more
elements to such an array. References to an array change whenever an element is added
or removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloModel, IloNumColumn

Constructors public IloNumColumnArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of columns. You cannot create
instances of the undocumented class IloDefaultArrayI. As an argument in this
default constructor, it allows you to pass 0 (zero) as a value to an optional argument in
functions and member functions that accept an array as an argument.

public IloNumColumnArray(const IloEnv env,
IloInt n=0)

Constructor Summary
public IloNumColumnArray(IloDefaultArrayI * i=0)

public IloNumColumnArray(const IloEnv env,IloInt
n=0)

public IloNumColumnArray(const IloNumColumnArray & h)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 332

IloNumColumnArray
This constructor creates an array of n elements. Initially, the n elements are empty
handles.

public IloNumColumnArray(const IloNumColumnArray & h)

This copy constructor creates a handle to the array of column objects specified by copy.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 333

IloSOS1
IloSOS1

Category Class

InheritancePath

Definition File ilconcert/ilolinear.h

Summary For ILOG CPLEX: represents special ordered sets of type 1 (SOS1).

Constructor Summary
public IloSOS1()

public IloSOS1(IloSOS1I * impl)

public IloSOS1(const IloEnv env,const char * name=0)

public IloSOS1(const IloEnv env,const IloNumVarArray
vars,const char * name=0)

public IloSOS1(const IloEnv env,const IloNumVarArray
vars,const IloNumArray vals,const char *
name=0)

Method Summary
public IloSOS1I * getImpl() const

public void getNumVars(IloNumVarArray variables) const

public void getValues(IloNumArray values) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 334

IloSOS1
Description This handle class represents special ordered sets of type 1 (SOS1). A special ordered set
of type 1 specifies a set of variables, and only one among them may take a non zero
value. You may assign a weight to each variable in an SOS1. This weight specifies an
order among the variables. If you do not assign any weights to enforce order among the
variables, then Concert Technology considers the order in which you gave the variables
to the constructor of this set and the order in which you added variables later.

When you extract a model (an instance of IloModel) for an instance of IloCplex
(documented in the ILOG CPLEX Reference Manual), it will use the order for branching
on variables.

For more details about SOS1, see the ILOG CPLEX Reference and User Manuals.

Inherited methods from IloConstraint
IloConstraint::getImpl

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 335

IloSOS1
Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloSOS1Array, IloSOS2

Constructors public IloSOS1()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloSOS1(IloSOS1I * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloSOS1(const IloEnv env,
 const char * name=0)

This constructor creates a special ordered set of type 1 (SOS1). You must add the
variables to this set for them to be taken into account.

public IloSOS1(const IloEnv env,
 const IloNumVarArray vars,
 const char * name=0)

This constructor creates a special ordered set of type 1 (SOS1). The set includes each of
the variables specified in the array vars.

public IloSOS1(const IloEnv env,
 const IloNumVarArray vars,
 const IloNumArray vals,
 const char * name=0)

This constructor creates a special ordered set of type 1 (SOS1). The set includes the
variables specified in the array vars. The corresponding value in vals specifies the
weight of each variable in vars.

Methods public IloSOS1I * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public void getNumVars(IloNumVarArray variables) const

This member function accesses the variables in a special ordered set of type 1 (SOS1)
and puts those variables into its argument variables.

public void getValues(IloNumArray values) const

This member function accesses the weights of the variables in a special ordered set of
type 1 (SOS1) and puts those weights into its argument values.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 336

IloSOS1Array
IloSOS1Array

Category Class

InheritancePath

Definition File ilconcert/ilolinear.h

Summary For ILOG CPLEX: the array class of special ordered sets of type 1 (SOS1).

Constructor Summary
public IloSOS1Array(IloDefaultArrayI * i=0)

public IloSOS1Array(const IloEnv env,IloInt n=0)

Method Summary
public void add(IloInt more,const IloSOS1 & x)

public void add(const IloSOS1 & x)

public void add(const IloSOS1Array & x)

public IloSOS1 operator[](IloInt i) const

public IloSOS1 & operator[](IloInt i)

Inherited methods from IloConstraintArray
add, add, add, operator[], operator[]
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 337

IloSOS1Array
Description For each basic type, Concert Technology defines a corresponding array class.
IloSOS1Array is the array class of special ordered sets of type 1 (SOS1) for a model.

Instances of IloSOS1Array are extensible. That is, you can add more elements to
such an array. References to an array change whenever an element is added to or
removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

For information on arrays, see the concept Arrays

See Also IloSOS1, operator>>, operator

Constructors public IloSOS1Array(IloDefaultArrayI * i=0)

This default constructor creates an empty array. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default
constructor, it allows you to pass 0 (zero) as a value to an optional argument in functions
and member functions that accept an array as an argument.

public IloSOS1Array(const IloEnv env,
IloInt n=0)

This constructor creates an array of n empty elements in the environment env.

Methods public void add(IloInt more,
 const IloSOS1 & x)

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(const IloSOS1 & x)

This member function appends x to the invoking array.

public void add(const IloSOS1Array & x)

This member function appends the elements in array to the invoking array.

public IloSOS1 operator[](IloInt i) const

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 338

IloSOS1Array
This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloSOS1 operator[] (IloInt i) const;

public IloSOS1 & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the
position specified by the index i.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 339

IloSOS2
IloSOS2

Category Class

InheritancePath

Definition File ilconcert/ilolinear.h

Summary For ILOG CPLEX: represents special ordered sets of type 2 (SOS2).

Constructor Summary
public IloSOS2()

public IloSOS2(IloSOS2I * impl)

public IloSOS2(const IloEnv env,const char * name=0)

public IloSOS2(const IloEnv env,const IloNumVarArray
vars,const char * name=0)

public IloSOS2(const IloEnv env,const IloNumVarArray
vars,const IloNumArray vals,const char *
name=0)

Method Summary
public IloSOS2I * getImpl() const

public void getNumVars(IloNumVarArray variables) const

public void getValues(IloNumArray values) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 340

IloSOS2
Description This handle class represents special ordered sets of type 2 (SOS2). A special ordered set
of type 2 specifies a set of variables, and only two among them may take a non zero
value. These two variables must be adjacent. You may assign a weight to each variable
in an SOS2. This weight specifies an order among the variables. Concert Technology
asserts adjacency with respect to this assigned order. If you do not assign any weights to
enforce order and adjacency among the variables, then Concert Technology considers
the order in which you gave the variables to the constructor of this set and the order in
which you added variables later (for example, by column generation).

When you extract a model (an instance of IloModel) for an instance of IloCplex
(documented in the ILOG CPLEX Reference Manual), it will use the order of the SOS2
for branching on variables.

Inherited methods from IloConstraint
IloConstraint::getImpl

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 341

IloSOS2
For more details about SOS2, see the ILOG CPLEX Reference and User's Manuals.
Special ordered sets of type 2 (SOS2) commonly appear in models of piecewise linear
functions. Concert Technology provides direct support for piecewise linear models in
IloPiecewiseLinear.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloPiecewiseLinear, IloSOS1, IloSOS2Array

Constructors public IloSOS2()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloSOS2(IloSOS2I * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloSOS2(const IloEnv env,
 const char * name=0)

This constructor creates a special ordered set of type 2 (SOS2). You must add the
variables to this set for them to be taken into account.

public IloSOS2(const IloEnv env,
 const IloNumVarArray vars,
 const char * name=0)

This constructor creates a special ordered set of type 2 (SOS2). The set includes each of
the variables specified in the array vars.

public IloSOS2(const IloEnv env,
 const IloNumVarArray vars,
 const IloNumArray vals,
 const char * name=0)

This constructor creates a special ordered set of type 2 (SOS2). The set includes the
variables specified in the array vars. The corresponding value in vals specifies the
weight of each variable in vars.

Methods public IloSOS2I * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public void getNumVars(IloNumVarArray variables) const

This member function accesses the variables in a special ordered set of type 2 (SOS2)
and puts those variables into its argument variables.

public void getValues(IloNumArray values) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 342

IloSOS2
This member function accesses the weights of the variables in a special ordered set of
type 2 (SOS2) and puts those weights into its argument values.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 343

IloSOS2Array
IloSOS2Array

Category Class

InheritancePath

Definition File ilconcert/ilolinear.h

Summary For ILOG CPLEX: the array class of special ordered sets of type 2 (SOS2).

Constructor Summary
public IloSOS2Array(IloDefaultArrayI * i=0)

public IloSOS2Array(const IloEnv env,IloInt num=0)

Method Summary
public void add(IloInt more,const IloSOS2 x)

public void add(const IloSOS2 x)

public void add(const IloSOS2Array array)

public IloSOS2 operator[](IloInt i) const

public IloSOS2 & operator[](IloInt i)

Inherited methods from IloConstraintArray
add, add, add, operator[], operator[]
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 344

IloSOS2Array
Description For each basic type, Concert Technology defines a corresponding array class.
IloSOS2Array is the array class of special ordered sets of type 2 (SOS2) for a model.

Instances of IloSOS2Array are extensible. That is, you can add more elements to
such an array. References to an array change whenever an element is added to or
removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

For information on arrays, see the concept Arrays

See Also IloSOS2, operator>>, operator

Constructors public IloSOS2Array(IloDefaultArrayI * i=0)

This default constructor creates an empty array. You cannot create instances of the
undocumented class IloDefaultArrayI. As an argument in this default
constructor, it allows you to pass 0 (zero) as a value to an optional argument in functions
and member functions that accept an array as an argument.

public IloSOS2Array(const IloEnv env,
IloInt num=0)

This constructor creates an array of num empty elements in the environment env.

Methods public void add(IloInt more,
 const IloSOS2 x)

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(const IloSOS2 x)

This member function appends x to the invoking array.

public void add(const IloSOS2Array array)

This member function appends the elements in array to the invoking array.

public IloSOS2 operator[](IloInt i) const

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 345

IloSOS2Array
This operator returns a reference to the object located in the invoking array at the
position specified by the index i. On const arrays, Concert Technology uses the
const operator:

 IloSOS2 operator[] (IloInt i) const;

public IloSOS2 & operator[](IloInt i)

This operator returns a reference to the object located in the invoking array at the
position specified by the index i.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 346

IloSemiContVar
IloSemiContVar

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary For ILOG CPLEX: instance represents a constrained semicontinuous variable.

Constructor Summary
public IloSemiContVar()

public IloSemiContVar(IloSemiContVarI * impl)

public IloSemiContVar(const IloEnv env,IloNum
sclb,IloNum ub,IloNumVar::Type
type=ILOFLOAT,const char * name=0)

public IloSemiContVar(const IloAddNumVar & var,IloNum
sclb,IloNum ub,IloNumVar::Type
type=ILOFLOAT,const char * name=0)

Method Summary
public IloSemiContVarI * getImpl() const

public IloNum getSemiContLB() const

public void setSemiContLB(IloNum sclb) const

Inherited methods from IloNumVar
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 347

IloSemiContVar
Description An instance of this class represents a constrained semicontinuous variable in a Concert
Technology model. Semicontinuous variables derive from IloNumVar, the class of
numeric variables.

A semicontinuous variable may be 0 (zero) or it may take a value within an interval
defined by its semicontinuous lower and upper bound. Conventionally, semicontinuous
variables are defined as floating-point variables, but you can designate an instance of
IloSemiContVar as integer by using the type specification it inherits from
IloNumVar. In that case, Concert Technology will impose an integrality constraint on
the semicontinuous variable for you, thus further restricting the feasible set of values to
0 (zero) and the integer values in the interval defined by the semicontinuous lower and
upper bound.

getImpl, getLB, getPossibleValues, getType, getUB, setBounds, setLB,
setPossibleValues, setUB

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject

Note:When numeric bounds are given to an integer variable (an instance of
IloIntVar or IloNumVar with Type = Int) in the constructors or via a
modifier (setUB, setLB, setBounds), they are inwardly rounded to an
integer value. LB is rounded down and UB is rounded up.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 348

IloSemiContVar
In an instance of IloNumVar, lb denotes the lower bound of the variable, and ub
denotes its upper bound. In an instance of the derived class IloSemiContVar, sclb
denotes the semicontinuous lower bound.

In formal terms, if lb <= 0, then a semicontinuous variable is a numeric variable with
the feasible set of {0, [sclb, ub]}, where 0 < sclb < ub; otherwise, for
other values of lb, the feasible set of a semicontinuous variable is the intersection of
the interval [lb, ub] with the set {0, [sclb, ub]}. The semicontinuous lower
bound sclb may differ from the lower bound of an ordinary numeric variable in that
the semicontinuous variable is restricted to the semicontinuous region. For example, the
table below shows you the bounds of a semicontinuous variable and the corresponding
feasible region.

Examples of bounds on semicontinuous variables and their feasible regions

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloNumVar

Constructors public IloSemiContVar()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloSemiContVar(IloSemiContVarI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloSemiContVar(const IloEnv env,
IloNum sclb,
IloNum ub,
IloNumVar::Type type=ILOFLOAT,

 const char * name=0)

This constructor creates an instance of IloSemiContVar from its sclb (that is, its
semicontinuous lower bound) and its upper bound ub. By default, its type is floating-
point, but you can use ILOINT to specify integer; in that case, Concert Technology will
impose an integrality constraint on the variable. The value for lb is set to zero.

These conditions define these feasible regions
lb == ub < sclb {0} if lb==ub==0 or empty set if

lb==ub!=0

lb < 0 < sclb < ub {0, [sclb, ub]}

0 < lb < sclb < ub [sclb, ub]

0 < sclb < lb < ub [lb, ub]
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 349

IloSemiContVar
public IloSemiContVar(const IloAddNumVar & var,
IloNum sclb,
IloNum ub,
IloNumVar::Type type=ILOFLOAT,

 const char * name=0)

This constructor creates an instance of IloSemiContVar from the prototype var.

Methods public IloSemiContVarI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloNum getSemiContLB() const

This member function returns the semicontinuous lower bound (that is, its sclb) of the
invoking semicontinuous variable.

public void setSemiContLB(IloNum sclb) const

This member function makes sclb the semicontinuous lower bound of the invoking
semicontinuous variable.

Note: The member function setSemiContinuousLb notifies Concert
Technology algorithms about this change of this invoking object.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 350

IloSemiContVarArray
IloSemiContVarArray

Category Class

InheritancePath

Definition File ilconcert/iloexpression.h

Summary For ILOG CPLEX: is the array class of the semicontinuous numeric variable class for a
model.

Constructor Summary
public IloSemiContVarArray(IloDefaultArrayI * i=0)

public IloSemiContVarArray(const IloEnv env)

public IloSemiContVarArray(const IloEnv env,IloInt
n)

public IloSemiContVarArray(const IloEnv env,IloInt
n,IloNum sclb,IloNum ub,IloNumVar::Type
type=ILOFLOAT)

public IloSemiContVarArray(const IloEnv env,const
IloNumColumnArray columnarray,const
IloNumArray sclb,const IloNumArray
ub,IloNumVar::Type type=ILOFLOAT)

Method Summary
public void add(IloInt more,const IloSemiContVar x)

public void add(const IloSemiContVar x)

public void add(const IloSemiContVarArray array)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 351

IloSemiContVarArray
Description For each basic type, Concert Technology defines a corresponding array class.
IloSemiContVarArray is the array class of the semicontinuous numeric variable
class for a model.

Instances of IloSemiContVarArray are extensible. That is, you can add more
elements to such an array. References to an array change whenever an element is added
to or removed from the array.

Most member functions in this class contain assert statements. For an explanation of
the macro NDEBUG (a way to turn on or turn off these assert statements), see the
concept Assert and NDEBUG.

See Also IloSemiContVar, IloModel, IloNumVar, operator>>, operator

Constructors public IloSemiContVarArray(IloDefaultArrayI * i=0)

This constructor creates an empty extensible array of semicontinuous numeric variables.
You cannot create instances of the undocumented class IloDefaultArrayI. As an
argument in this default constructor, it allows you to pass 0 (zero) as a value to an
optional argument in functions and member functions that accept an array as an
argument.

public IloSemiContVarArray(const IloEnv env)

Inherited methods from IloNumVarArray
add, add, add, endElements, operator[], setBounds, toIntExprArray,
toIntVarArray, toNumExprArray

Inherited methods from IloNumExprArray
IloNumExprArray::add, IloNumExprArray::add, IloNumExprArray::add,
IloNumExprArray::endElements, IloNumExprArray::operator[]

Inherited methods from IloExtractableArray
IloExtractableArray::add, IloExtractableArray::add,
IloExtractableArray::add, IloExtractableArray::endElements,
IloExtractableArray::setNames
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 352

IloSemiContVarArray
This constructor creates an extensible array of semicontinuous numeric variables in
env. Initially, the array contains zero elements.

public IloSemiContVarArray(const IloEnv env,
IloInt n)

This constructor creates an extensible array of n semicontinuous numeric variables in
env. Initially, the n elements are empty handles.

public IloSemiContVarArray(const IloEnv env,
IloInt n,
IloNum sclb,
IloNum ub,
IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of n semicontinuous numeric variables in
the environment env. Each element of the array has a semicontinuous lower bound of
sclb and an upper bound of ub. The type (whether integer, Boolean, or floating-point)
of each element is specified by type. The default type is floating-point.

public IloSemiContVarArray(const IloEnv env,
 const IloNumColumnArray columnarray,
 const IloNumArray sclb,
 const IloNumArray ub,

IloNumVar::Type type=ILOFLOAT)

This constructor creates an extensible array of semicontinuous numeric variables from a
column array in the environment env. The array sclb specifies the corresponding
semicontinuous lower bound, and the array ub specifies the corresponding upper bound
for each new element. The argument type specifies the type (whether integer, Boolean,
or floating point) of each new element. The default type is floating-point.

Methods public void add(IloInt more,
 const IloSemiContVar x)

This member function appends x to the invoking array multiple times. The argument
more specifies how many times.

public void add(const IloSemiContVar x)

This member function appends x to the invoking array.

public void add(const IloSemiContVarArray array)

This member function appends the elements in array to the invoking array.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 353

IloSemiContVarArray
Group optim.concert.extensions
 The ILOG Concert Extensions Library.

Classes Summary
IloCsvLine Represents a line in a csv file.
IloCsvReader Reads a formatted csv file.
IloCsvReader::IloColumnHeade
rNotFoundException

 Exception thrown for unfound
header.

IloCsvReader::IloCsvReaderPa
rameterException

 Exception thrown for incorrect
arguments in constructor.

IloCsvReader::IloDuplicatedT
ableException

 Exception thrown for tables of same
name in csv file.

IloCsvReader::IloFieldNotFou
ndException

Exception thrown for field not found.

IloCsvReader::IloFileNotFoun
dException

 Exception thrown when file is not
found.

IloCsvReader::IloIncorrectCs
vReaderUseException

 Exception thrown for call to
inappropriate csv reader.

IloCsvReader::IloLineNotFoun
dException

 Exception thrown for unfound line.

IloCsvReader::IloTableNotFou
ndException

 Exception thrown for unfound table.

IloCsvReader::LineIterator Line-iterator for csv readers.
IloCsvReader::TableIterator Table-iterator of csv readers.
IloCsvTableReader Reads a csv table with format.
IloCsvTableReader::LineItera
tor

 Line-iterator for csv table readers.

IloIntervalList Represents a list of nonoverlapping
intervals.

IloIntervalListCursor Inspects the intervals of an interval
list.

IloNumToAnySetStepFunction Represents a step function that
associates sets with intervals.

IloNumToAnySetStepFunctionCu
rsor

Allows you to inspect the contents of
an IloNumToAnySetStepFunction.

IloNumToNumSegmentFunction Piecewise linear function over a
segment.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 354

IloSemiContVarArray
IloNumToNumSegmentFunctionCu
rsor

Cursor over segments of a piecewise
linear function.

IloNumToNumStepFunction Represents a step function that is
defined everywhere on an interval.

IloNumToNumStepFunctionCurso
r

Allows you to inspect the contents of
an instance of
IloNumToNumStepFunction.

Global Functions Summary
IloDifference Creates and returns a function equal

to the difference between the
functions.

IloDifference Creates and returns the difference
between two interval lists.

IloIntersection creates and returns a function equal
to the intersection between the
functions.

IloMax This operator creates and returns a
function equal to the maximal value of
the functions f1 and f2.

IloMin This operator creates and returns a
function equal to the minimal value of
the functions f1 and f2.

IloUnion Represents a function equal to the
union of the functions.

IloUnion Creates and returns the union of two
interval lists.

operator * These operators create and return a
function equal to the function f1

multiplied by a factor k.

operator+ This operator creates and returns a
function equal the sum of the
functions f1 and f2.

operator- This operator creates and returns a
function equal to the difference
between functions f1 and f2.

operator Overloaded operator for csv output.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 355

IloCsvLine
DescriptionIloCsvLine

Category Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Represents a line in a csv file.

operator== Returns IloTrue for same interval

lists. same.

operator== overloaded operator.
operator== Overloaded operator tests equality of

numeric functions.

Constructor Summary
public IloCsvLine()

public IloCsvLine(IloCsvLineI * impl)

public IloCsvLine(const IloCsvLine & csvLine)

Method Summary
public void copy(const IloCsvLine)

public IloBool emptyFieldByHeader(const char * name) const

public IloBool emptyFieldByPosition(IloInt i) const

public void end()

public IloNum getFloatByHeader(const char * name) const

public IloNum getFloatByHeaderOrDefaultValue(const char *
name,IloNum defaultValue) const

public IloNum getFloatByPosition(IloInt i) const

public IloNum getFloatByPositionOrDefaultValue(IloInt
i,IloNum defaultValue) const

public IloCsvLineI * getImpl() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 356

IloCsvLine
Description An instance of IloCsvLine represents a single line in a file of comma-separated
values (csv file).

Constructors public IloCsvLine()

This constructor creates a csv line object whose handle pointer is null. This object must
be assigned before it can be used.

public IloCsvLine(IloCsvLineI * impl)

This constructor creates a handle object (an instance of IloCsvLine) from a pointer
to an implementation object (an instance of the class IloCsvLineI).

public IloCsvLine(const IloCsvLine & csvLine)

This copy constructor creates a handle from a reference to a csv line object. The csv line
object and csvLine both point to the same implementation object.

Methods public void copy(const IloCsvLine)

This member function returns the real number of the invoking csv line in the data file.

public IloBool emptyFieldByHeader(const char * name) const

This member function returns IloTrue if the field denoted by the string name in the
invoking csv line is empty. Otherwise, it returns IloFalse

public IloBool emptyFieldByPosition(IloInt i) const

This member function returns IloTrue if the field denoted by i in the invoking csv
line is empty. Otherwise, it returns IloFalse

public IloInt getIntByHeader(const char * name) const

public IloInt getIntByHeaderOrDefaultValue(const char *
name,IloInt defaultValue) const

public IloInt getIntByPosition(IloInt i) const

public IloInt getIntByPositionOrDefaultValue(IloInt
i,IloInt defaultValue) const

public IloInt getLineNumber() const

public IloInt getNumberOfFields() const

public char * getStringByHeader(const char * name) const

public char * getStringByHeaderOrDefaultValue(const char *
name,const char * defaultValue) const

public char * getStringByPosition(IloInt i) const

public char * getStringByPositionOrDefaultValue(IloInt
i,const char * defaultValue) const

public void operator=(const IloCsvLine & csvLine)

public IloBool printValueOfKeys() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 357

IloCsvLine
public void end()

This member function deallocates the memory used by the csv line. If you no longer
need a csv line, you can call this member function to reduce memory consumption.

public IloNum getFloatByHeader(const char * name) const

This member function returns the float contained in the field name in the invoking csv
line.

If you have a loop in which you are getting a string, integer, or float by header on several
lines with the same header name, it is better for performance to get the position of the
header named name using the member function
IloCsvReader::getPosition(name) than using getFloatByPosition
(position of name in the header line).

public IloNum getFloatByHeaderOrDefaultValue(const char * name,
IloNum defaultValue) const

This member function returns the float contained in the field name in the invoking csv
line if this field contains a value. Otherwise, it returns defaultValue.

public IloNum getFloatByPosition(IloInt i) const

This member function returns the float contained in the field i in the invoking csv line.

public IloNum getFloatByPositionOrDefaultValue(IloInt i,
IloNum defaultValue) const

This member function returns the float contained in the field i in the invoking csv line if
this field contains a value. Otherwise, it returns defaultValue.

public IloCsvLineI * getImpl() const

This member function returns a pointer to the implementation object corresponding to
the invoking csv line.

public IloInt getIntByHeader(const char * name) const

This member function returns the integer contained in the field name in the invoking csv
line.

If you have a loop in which you are getting a string, integer, or float by header on several
lines with the same header name, it is better for performance to get the position of the
header named name using the member function
IloCsvReader::getPosition(name) than using getIntByPosition
(position of name in the header line).

public IloInt getIntByHeaderOrDefaultValue(const char * name,
IloInt defaultValue) const

This member function returns the integer contained in the field name in the invoking csv
line if this field contains a value. Otherwise, it returns defaultValue.

public IloInt getIntByPosition(IloInt i) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 358

IloCsvLine
This member function returns the integer contained in the field i in the invoking csv
line.

public IloInt getIntByPositionOrDefaultValue(IloInt i,
IloInt defaultValue) const

This member function returns the integer contained in the field i in the invoking csv line
if this field contains a value. Otherwise, it returns defaultValue.

public IloInt getLineNumber() const

This member function returns the real number of the invoking csv line in the data file.

public IloInt getNumberOfFields() const

This member function returns the number of fields in the line.

public char * getStringByHeader(const char * name) const

This member function returns a reference to the string contained in the field name in the
invoking csv line.

If you have a loop in which you are getting a string, integer, or float by header on several
lines with the same header name, it is better for performance to get the position of the
header named name using the member function
IloCsvReader::getPosition(name) than using getStringByPosition
(position of name in the header line).

public char * getStringByHeaderOrDefaultValue(const char * name,
 const char * defaultValue) const

This member function returns the string contained in the field name in the invoking csv
line if this field contains a value. Otherwise, it returns defaultValue.

public char * getStringByPosition(IloInt i) const

This member function returns a reference to the string contained in the field number i in
the invoking csv line.

public char * getStringByPositionOrDefaultValue(IloInt i,
 const char * defaultValue) const

This member function returns the string contained in the field i in the invoking csv line
if this field contains a value. Otherwise, it returns defaultValue.

public void operator=(const IloCsvLine & csvLine)

This operator assigns an address to the handle pointer of the invoking csv line. This
address is the location of the implementation object of the argument csvLine.

After execution of this operator, the invoking csv line and csvLine both point to the
same implementation object.

public IloBool printValueOfKeys() const

This member function prints the values of the keys fields in this line.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 359

IloCsvReader
IloCsvReader

Category Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Reads a formatted csv file.

Constructor Summary
public IloCsvReader()

public IloCsvReader(IloCsvReaderI * impl)

public IloCsvReader(const IloCsvReader & csv)

public IloCsvReader(IloEnv env,const char *
problem,IloBool multiTable=IloFalse,IloBool
allowTableSplitting=IloFalse,const char *
separator=",;",const char decimalp='.',const
char quote='"',const char comment='#')

Method Summary
public void end()

public IloNum getCsvFormat()

public IloCsvLine getCurrentLine() const

public IloEnv getEnv() const

public IloNum getFileVersion()

public IloCsvReaderI * getImpl() const

public IloCsvLine getLineByKey(IloInt numberOfKeys,const char
*,...)

public IloCsvLine getLineByNumber(IloInt i)

public IloInt getNumberOfColumns()

public IloInt getNumberOfItems()

public IloInt getNumberOfKeys() const

public IloInt getNumberOfTables()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 360

IloCsvReader
Description An instance of IloCsvReader reads a file of comma-separated values of a specified
format. The csv file can be a multitable or a single table file. Empty lines and
commented lines are allowed everywhere in the file.

Format of multitable files

public IloInt IloCsvReader::getPosition(const char *
headingName) const

public IloCsvTableReader getReaderForUniqueTableFile() const

public const char * getRequiredBy()

public IloCsvTableReader getTable()

public IloCsvTableReader getTableByName(const char * name)

public IloCsvTableReader getTableByNumber(IloInt i)

public IloBool isHeadingExists(const char * headingName) const

public void operator=(const IloCsvReader & csv)

public IloBool printKeys() const

Inner Class
IloCsvReader::IloCsvReader::
IloColumnHeaderNotFoundExcep
tion

 Exception thrown for unfound header.

IloCsvReader::IloCsvReader::
TableIterator

 Table-iterator of csv readers.

IloCsvReader::IloCsvReader::
LineIterator

 Line-iterator for csv readers.

IloCsvReader::IloCsvReader::
IloFileNotFoundException

 Exception thrown when file is not found.

IloCsvReader::IloCsvReader::
IloFieldNotFoundException

 Exception thrown for field not found.

IloCsvReader::IloCsvReader::
IloCsvReaderParameterExcepti
on

 Exception thrown for incorrect arguments in
constructor.

IloCsvReader::IloCsvReader::
IloDuplicatedTableException

 Exception thrown for tables of same name in
csv file.

IloCsvReader::IloCsvReader::
IloTableNotFoundException

 Exception thrown for unfound table.

IloCsvReader::IloCsvReader::
IloIncorrectCsvReaderUseExce
ption

 Exception thrown for call to inappropriate csv
reader.

IloCsvReader::IloCsvReader::
IloLineNotFoundException

 Exception thrown for unfound line.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 361

IloCsvReader
The first column of the table must contain the name of the table.

Each table can begin with a line containing column headers, the first field of this line
must have this format: tableName|NAMES

The keys can be specified in the data file by adding a line at the beginning of the table.
This line is formatted as follows:

◆ the first field is tableName|KEYS

◆ the other fields have the value 1 if the corresponding column is a key for the table; if
not they have the value 0.

If this line doesn't exist, all columns form a key. If you need to get a line having a
specific value for a field, you must add the key line in which you specify that this field is
a key for the table.

Any line containing '|' in its first field is ignored by the reader.

A table can be split in several parts in the file (for example, you have a part of table TA,
then table TB, then the end of table TA).

Example

 NODES|NAMES,node_type,node_name,xcoord,ycoord
 NODES|KEYS,1,1,0,0
 NODES,1,node1,0,1
 NODES,1,node2,0,2
 NODES,2,node1,0,4

Format of single table files

The line containing the column headers, if it exists, must have a first field of the
following format: Field|NAMES.

Table keys can be specified by adding a line at the beginning of the table. This line must
have a first field with this format: tableName|KEYS. If this line doesn't exist, all
columns form a key.

Example

 Field|NAMES,nodeName,xCoord,yCoord
 Field|KEYS,1,0,0
 node1,0,1
 node2,0,2

Constructors public IloCsvReader()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 362

IloCsvReader
This constructor creates a csv reader object whose handle pointer is null. This object
must be assigned before it can be used.

public IloCsvReader(IloCsvReaderI * impl)

This constructor creates a handle object (an instance of IloCsvReader) from a
pointer to an implementation object (an instance of the class IloCsvReaderI).

public IloCsvReader(const IloCsvReader & csv)

This copy constructor creates a handle from a reference to a csv reader object. Both the
csv reader object and csv point to the same implementation object.

public IloCsvReader(IloEnv env,
 const char * problem,

IloBool multiTable=IloFalse,
IloBool allowTableSplitting=IloFalse,

 const char * separator=",;",
 const char decimalp='.',
 const char quote='"',
 const char comment='#')

This constructor creates a csv reader object for the file problem in the environment
env. If the argument isCached has the value IloTrue, the data of the file will be
stored in the memory.

The cached mode is useful only if you need to read lines by keys. It needs consequent
memory consumption and takes time to load data according to the csv file size.

If the argument isMultiTable has the value IloTrue, the file problem is read as
a multitable file. The default value is IloFalse.

If the argument allowTableSplitting has the value IloFalse, splitting the
table into several parts in the file is not permitted. The default value is IloFalse.

The string separator represents the characters used as separator in the data file. The
default values are , ; .

The character decimal represents the character used to write decimal numbers in the
data file. The default value is . (period).

The character quote represents the character used to quote expressions.

The character comment represents the character used at the beginning of each
commented line. The default value is #.

Methods public void end()

This member function deallocates the memory used by the csv reader. If you no longer
need a csv reader, you can reduce memory consumption by calling this member
function.

public IloNum getCsvFormat()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 363

IloCsvReader
This member function returns the format of the csv data file. This format is identified in
the data file by ILOG_CSV_FORMAT.

Example

ILOG_CSV_FORMAT;1

getCsvFormat() returns 1.

public IloCsvLine getCurrentLine() const

This member function returns the last line read by getLineByKey or
getLineByNumber.

public IloEnv getEnv() const

This member function returns the environment object corresponding to the invoking csv
reader.

public IloNum getFileVersion()

This member function returns the version of the csv data file. This information is
identified in the data file by ILOG_DATA_SCHEMA.

Example

ILOG_DATA_SCHEMA;PROJECTNAME;0.9

getFileVersion() returns 0.9.

public IloCsvReaderI * getImpl() const

Note:This member function can be used only if isMultiTable has the
value IloTrue.

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloTrue.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 364

IloCsvReader
This member function returns a pointer to the implementation object corresponding to
the invoking csv reader.

public IloCsvLine getLineByKey(IloInt numberOfKeys,
 const char *,
 ...)

This member function takes numberOfKeys arguments; these arguments are used as
one key to identify a line. It returns an instance of IloCsvLine representing the line
having (key1, key2, ...) in the data file. If the number of keys specified is less
than the number of keys in the table, this member function throws an exception. Each
time getLineByNumber or getLineByKey is called, the previous line read by one
of these methods is deleted.

public IloCsvLine getLineByNumber(IloInt i)

This member function returns an instance of IloCsvLine representing the line
numbered i in the data file. If i does not exist, this member function throws an
exception. Each time getLineByNumber or getLineByKey is called, the previous
line read by one of these methods is deleted.

public IloInt getNumberOfColumns()

This member function returns the number of columns in the table. If the first column
contains the name of the table it is ignored.

public IloInt getNumberOfItems()

This member function returns the number of lines of the table excluding blank lines,
commented lines, and the header line.

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloFalse.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 365

IloCsvReader
public IloInt getNumberOfKeys() const

This member function returns the number of keys for the table.

public IloInt getNumberOfTables()

This member function returns the number of tables in the data file.

public IloInt getPosition(const char * headingName) const

This member function returns the position (column number) of the headingName in
the file.

public IloCsvTableReader getReaderForUniqueTableFile() const

This member function returns an IloCsvTableReader for the unique table
contained in the csv data file.

public const char * getRequiredBy()

This member function returns the name of the project that uses the csv data file. This
information is identified in the data file by ILOG_DATA_SCHEMA.

Example

ILOG_DATA_SCHEMA;PROJECTNAME;0.9

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloFalse.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 366

IloCsvReader
getRequiredBy() returns PROJECTNAME.

public IloCsvTableReader getTable()

This member function returns an instance of IloCsvTableReader representing the
unique table in the data file.

public IloCsvTableReader getTableByName(const char * name)

This member function returns an instance of IloCsvTableReader representing the
table named name in the data file.

public IloCsvTableReader getTableByNumber(IloInt i)

This member function returns an instance of IloCsvTableReader representing the
table numbered i in the data file.

public IloBool isHeadingExists(const char * headingName) const

This member function returns IloTrue if the column header headingName exists.
Otherwise, it returns IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloTrue.

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloTrue.

Note:This member function can be used only if isMultiTable has the
value IloTrue.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 367

IloCsvReader
public void operator=(const IloCsvReader & csv)

This operator assigns an address to the handle pointer of the invoking csv reader. This
address is the location of the implementation object of the argument csv.

After execution of this operator, both the invoking csv reader and csv point to the same
implementation object.

public IloBool printKeys() const

This member function prints the column header of keys if the header exists. Otherwise,
it prints the column numbers of keys.

Note:This member function can be used only if isMultiTable has the
value IloFalse.

Note:This member function can be used only if isMultiTable has the
value IloFalse.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 368

IloCsvReader::IloColumnHeaderNotFoundException
IloCsvReader::IloColumnHeaderNotFoundException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown for unfound header.

Description This exception is thrown by the member functions listed below if a header (column
name) that you use does not exist.

◆ getFloatByHeader

◆ getIntByHeader

◆ getStringByHeader

◆ getFloatByHeaderOrDefaultValue

◆ getIntByHeaderOrDefaultValue

◆ getStringByHeaderOrDefaultValue

◆ IloCsvReader::getPosition

◆ IloCsvTableReader::getPosition
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 369

IloCsvReader::IloCsvReaderParameterException
IloCsvReader::IloCsvReaderParameterException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown for incorrect arguments in constructor.

Description This exception is thrown in the constructor of the csv reader if the argument values
used in the csv reader constructor are incorrect.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 370

IloCsvReader::IloDuplicatedTableException
IloCsvReader::IloDuplicatedTableException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown for tables of same name in csv file.

Description This exception is thrown in the constructor of the csv reader if you read a multitable file
in which two tables have the same name but table splitting has not been specified.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 371

IloCsvReader::IloFieldNotFoundException
IloCsvReader::IloFieldNotFoundException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown for field not found.

Description This exception is thrown by the IloCsvLine methods listed below if the
corresponding field does not exist.

◆ getFloatByPosition

◆ getIntByPosition

◆ getStringByPosition

◆ getFloatByHeader

◆ getIntByHeader

◆ getStringByHeader

◆ getFloatByPositionOrDefaultValue

◆ getIntByPositionOrDefaultValue

◆ getStringByPositionOrDefaultValue

◆ getFloatByHeaderOrDefaultValue

◆ getIntByHeaderOrDefaultValue

◆ getStringByHeaderOrDefaultValue
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 372

IloCsvReader::IloFileNotFoundException
IloCsvReader::IloFileNotFoundException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown when file is not found.

Description This exception is thrown in the constructor of the csv reader if a specified file is not
found.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 373

IloCsvReader::IloIncorrectCsvReaderUseException
IloCsvReader::IloIncorrectCsvReaderUseException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown for call to inappropriate csv reader.

Description This exception is thrown in the following member functions if you call them from a
reader built as a multitable csv reader.

◆ getLineByNumber

◆ getLineByKey

◆ getNumberOfItems

◆ getNumberOfColumns

◆ getNumberOfKeys

◆ getReaderForUniqueTableFile

◆ getTable

◆ isHeadingExists

◆ printKeys

This exception is throw in the following member functions if you call them from a
reader built as a unique table csv reader.

◆ getCsvFormat

◆ getFileVersion

◆ getTableByName

◆ getTableByNumber

◆ getRequiredBy
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 374

IloCsvReader::IloLineNotFoundException
IloCsvReader::IloLineNotFoundException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown for unfound line.

Description This exception is thrown by the following member functions if the line is not found.

◆ IloCsvTableReader::getLineByKey

◆ IloCsvTableReader::getLineByNumber

◆ getLineByKey

◆ getLineByNumber
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 375

IloCsvReader::IloTableNotFoundException
IloCsvReader::IloTableNotFoundException

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Exception thrown for unfound table.

Description This exception is thrown by the constructor
IloCsvTableReader(IloCsvReaderI *, const char * name = 0)
and by the member functions listed below if the table you want to construct or to get is
not found.

◆ getTableByNumber

◆ getTableByName

◆ getTable
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 376

IloCsvReader::LineIterator
IloCsvReader::LineIterator

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Line-iterator for csv readers.

Description LineIterator is a nested class of the class IloCsvReader. It is to be used only
with csv reader objects built to read a unique-table data file.

IloCsvReader::LineIterator allows you to step through all the lines of the csv
data file (except blank lines and commented lines) on which the csv reader was created.

Constructors public LineIterator()

This constructor creates an empty LineIterator object. This object must be
assigned before it can be used.

public LineIterator(IloCsvReader csv)

This constructor creates an iterator to traverse all the lines in the csv data file on which
the csv reader csv was created.

The iterator does not traverse blank lines and commented lines.

Methods public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid
one.

Constructor Summary
public LineIterator()

public LineIterator(IloCsvReader csv)

Method Summary
public IloBool ok() const

public IloCsvLine operator *() const

public LineIterator & operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 377

IloCsvReader::LineIterator
It returns IloFalse if the iterator reaches the end of the table.

public IloCsvLine operator *() const

This operator returns the current instance of IloCsvLine (representing the current
line in the csv file); the one to which the invoking iterator points.

public LineIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance
of IloCsvLine representing the next line in the file.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 378

IloCsvReader::TableIterator
IloCsvReader::TableIterator

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Table-iterator of csv readers.

Description TableIterator is a nested class of the class IloCsvReader. It is to be used only
for multitable files.

IloCsvReader::TableIterator allows you to step through all the tables of the
multitable csv data file on which the csv reader was created.

Constructors public TableIterator(IloCsvReader csv)

This constructor creates an iterator to traverse all the tables in the csv data file on which
the csv reader csv was created.

Methods public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid
one.

It returns IloFalse if the iterator reaches the end of the table.

public IloCsvTableReader operator *() const

Constructor Summary
public TableIterator(IloCsvReader csv)

Method Summary
public IloBool ok() const

public IloCsvTableReader operator *() const

public TableIterator & operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 379

IloCsvReader::TableIterator
This operator returns the current instance of IloCsvTable (representing the current
table in the csv file); the one to which the invoking iterator points.

public TableIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance
of IloCsvTableReader representing the next line in the file.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 380

IloCsvTableReader
IloCsvTableReader

Category Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Reads a csv table with format.

Constructor Summary
public IloCsvTableReader()

public IloCsvTableReader(IloCsvTableReaderI * impl)

public IloCsvTableReader(const IloCsvTableReader &
csv)

public IloCsvTableReader(IloCsvReaderI *
csvReaderImpl,const char * name=0)

Method Summary
public void end()

public IloCsvLine getCurrentLine() const

public IloEnv getEnv() const

public IloCsvTableReaderI * getImpl() const

public IloCsvLine IloCsvTableReader::getLineByKey(IloInt
numberOfKeys,const char *,...)

public IloCsvLine IloCsvTableReader::getLineByNumber(IloInt
i)

public const char * getNameOfTable() const

public IloInt getNumberOfColumns()

public IloInt getNumberOfItems()

public IloInt getNumberOfKeys() const

public IloInt IloCsvTableReader::getPosition(const char *)
const

public IloBool isHeadingExists(const char * headingName) const

public void operator=(const IloCsvTableReader & csv)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 381

IloCsvTableReader
Description An instance of IloCsvTableReader is used to read a table of comma-separated
values (csv) with a specified format.

An instance is built using a pointer to an implementation class of IloCsvReader,
which must be created first.

Constructors public IloCsvTableReader()

This constructor creates a table csv reader object whose handle pointer is null. This
object must be assigned before it can be used.

public IloCsvTableReader(IloCsvTableReaderI * impl)

This constructor creates a handle object (an instance of IloCsvReader) from a
pointer to an implementation object (an instance of the class IloCsvReaderI).

public IloCsvTableReader(const IloCsvTableReader & csv)

This copy constructor creates a handle from a reference to a table csv reader object.

The table csv reader object and csv both point to the same implementation object.

public IloCsvTableReader(IloCsvReaderI * csvReaderImpl,
 const char * name=0)

This constructor creates a table csv reader object using the implementation class of a csv
reader csvimpl. The second argument is the name of the table.

Methods public void end()

This member function deallocates the memory used by the table csv reader.

If you no longer need the table csv reader, calling this member function can reduce
memory consumption.

public IloCsvLine getCurrentLine() const

This member function returns the last line read using getLineByKey or
getLineByNumber.

public IloEnv getEnv() const

public IloBool printKeys() const

Inner Class
IloCsvTableReader::IloCsvTab
leReader::LineIterator

 Line-iterator for csv table readers.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 382

IloCsvTableReader
This member function returns the environment object corresponding to the invoking
table csv reader.

public IloCsvTableReaderI * getImpl() const

This member function returns a pointer to the implementation object corresponding to
the invoking table csv reader.

public IloCsvLine getLineByKey(IloInt numberOfKeys,
 const char *,
 ...)

This member function takes numberOfKeys arguments. These arguments are used as
one key to identify a line. If the specified number of keys is less than the number of keys
of the table, this member function throws an exception.

Otherwise, it returns an instance of IloCsvLine representing the line having (key1,
key2, ...) in the data file.

public IloCsvLine getLineByNumber(IloInt i)

This member function returns an instance of IloCsvLine representing the line
number i in the data file if it exists. Otherwise, it throws an exception.

Each time getLineByNumber or getLineByKey is called, the previous line read
by one of those methods is deleted.

public const char * getNameOfTable() const

This member function returns the name of the table.

public IloInt getNumberOfColumns()

This member function returns the number of columns in the table. If the first column
contains the name of the table, it is ignored.

public IloInt getNumberOfItems()

This member function returns the number of lines of the table excluding blank lines,
commented lines, and the header line.

public IloInt getNumberOfKeys() const

This member function returns the number of keys in the table.

public IloInt getPosition(const char *) const

This member function returns the position (column number) of headingName in the
table.

Note:This member function can be used only if isMultiTable has the
value IloFalse.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 383

IloCsvTableReader
public IloBool isHeadingExists(const char * headingName) const

This member function returns IloTrue if the column header named headingName
exists. Otherwise, it returns IloFalse.

public void operator=(const IloCsvTableReader & csv)

This operator assigns an address to the handle pointer of the invoking table csv reader.

This address is the location of the implementation object of the argument csv.

After execution of this operator, the invoking table csv reader and csv both point to the
same implementation object.

public IloBool printKeys() const

This member function prints the column headers of keys if they exist. Otherwise, it
prints the column numbers of keys.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 384

IloCsvTableReader::LineIterator
IloCsvTableReader::LineIterator

Category Inner Class

InheritancePath

Definition File ilconcert/ilocsvreader.h

Summary Line-iterator for csv table readers.

Description LineIterator is a nested class of the class IloCsvTableReader. It allows you
to step through all the lines of a table from a csv data file (except blank lines and
commented lines) on which the table csv reader was created.

Constructors public LineIterator()

This constructor creates an empty LineIterator object.

This object must be assigned before it can be used.

public LineIterator(IloCsvTableReader csv)

This constructor creates an iterator to traverse all the lines in the table csv data file on
which the csv reader csv was created.

The iterator does not traverse blank lines and commented lines.

Methods public IloBool ok() const

Constructor Summary
public LineIterator()

public LineIterator(IloCsvTableReader csv)

Method Summary
public IloBool ok() const

public IloCsvLine operator *() const

public LineIterator & operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 385

IloCsvTableReader::LineIterator
This member function returns IloTrue if the current position of the iterator is a valid
one.

It returns IloFalse if the iterator reaches the end of the table.

public IloCsvLine operator *() const

This operator returns the current instance of IloCsvLine (representing the current
line in the csv file); the one to which the invoking iterator points.

public LineIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance
of IloCsvLine representing the next line in the file.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 386

IloDifference
IloDifference

Category Global Function

Definition File ilconcert/ilointervals.h

Synopsis public IloIntervalList IloDifference(const IloIntervalList intervals1,
 const IloIntervalList intervals2)

Summary Creates and returns the difference between two interval lists.

Description This operator creates and returns an interval list equal to the difference between the
interval list intervals1 and the interval list intervals2. The arguments
intervals1 and intervals2 must be defined on the same interval. The resulting
interval list is defined on the same interval as the arguments. See also
IloIntervalList.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 387

IloDifference
IloDifference

Category Global Function

Definition File ilconcert/ilosetfunc.h

Synopsis public IloNumToAnySetStepFunction IloDifference(const
IloNumToAnySetStepFunction f1,
 const IloNumToAnySetStepFunction f2)

Summary Creates and returns a function equal to the difference between the functions.

Description This operator creates and returns a function equal to the difference between the
functions f1 and f2. The argument functions f1 and f2 must be defined on the same
interval. The resulting function is defined on the same interval as the arguments. See
also: IloNumToAnySetStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 388

IloIntersection
IloIntersection

Category Global Function

Definition File ilconcert/ilosetfunc.h

Synopsis public IloNumToAnySetStepFunction IloIntersection(const
IloNumToAnySetStepFunction f1,
 const IloNumToAnySetStepFunction f2)

Summary creates and returns a function equal to the intersection between the functions.

Description This operator creates and returns a function equal to the intersection between the
functions f1 and f2. The argument functions f1 and f2 must be defined on the same
interval. The resulting function is defined on the same interval as the arguments. See
also: IloNumToAnySetStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 389

IloIntervalList
IloIntervalList

Category Class

InheritancePath

Definition File ilconcert/ilointervals.h

Summary Represents a list of nonoverlapping intervals.

Constructor Summary
public IloIntervalList(const IloEnv env,IloNum min=-

IloInfinity,IloNum max=+IloInfinity,const char
* name=0)

public IloIntervalList(const IloEnv env,const
IloNumArray times,const IloNumArray
types,const char * name=0)

Method Summary
public void addInterval(IloNum start,IloNum end,IloNum

type=0L) const

public void addPeriodicInterval(IloNum start,IloNum
duration,IloNum period,IloNum end,IloNum
type=0L) const

public IloBool contains(const IloIntervalList intervals) const

public IloIntervalList copy() const

public void dilate(IloNum k) const

public void empty() const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloBool isEmpty() const

public IloBool isKeptOpen() const

public void keepOpen(IloBool val=IloTrue) const

public void removeInterval(IloNum start,IloNum end) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 390

IloIntervalList
Description An instance of the class IloIntervalList represents a list of nonoverlapping
intervals. Each interval [timeMin, timeMax) from the list is associated with a
numeric type.

Note that if n is the number of intervals in the list, the random access to a given interval
(see the member functions addInterval, contains, and removeInterval) has
a worst-case complexity in O(log(n)).

Furthermore, when two consecutive intervals of the list have the same types, these
intervals are merged so that the list is always represented with the minimal number of
intervals.

See Also IloIntervalListCursor, IloUnion, IloDifference

Constructors public IloIntervalList(const IloEnv env,
IloNum min=-IloInfinity,
IloNum max=+IloInfinity,

 const char * name=0)

This constructor creates a new instance of IloIntervalList and adds it to the set of
interval lists managed in the given environment. The arguments min and max
respectively represent the origin and the horizon of the interval list. The new interval list
does not contain any intervals.

public IloIntervalList(const IloEnv env,
 const IloNumArray times,
 const IloNumArray types,
 const char * name=0)

This constructor creates an interval list whose intervals are defined by the two arrays
times and types. More precisely, if n is the size of array times, then the size of
array types must be n-1 and the following contiguous intervals are created on the
interval list: [times[i],times[i+1]) with type types[i] for all i in [0, n-
1].

Methods public void addInterval(IloNum start,

public void removeIntervalOnDuration(IloNum start,IloNum
duration) const

public void removePeriodicInterval(IloNum start,IloNum
duration,IloNum period,IloNum end) const

public void setDifference(const IloIntervalList intervals)
const

public void setPeriodic(const IloIntervalList
intervals,IloNum x0,IloNum n=IloInfinity) const

public void setUnion(const IloIntervalList intervals) const

public void shift(IloNum dx) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 391

IloIntervalList
IloNum end,
IloNum type=0L) const

This member function adds an interval of type type to the invoking interval list. The
start time and end time of that newly added interval are set to start and end. By
default, the type of the interval is 0. Adding a new interval that overlaps with an already
existing interval of a different type will override the existing type on the intersection.

public void addPeriodicInterval(IloNum start,
IloNum duration,
IloNum period,
IloNum end,
IloNum type=0L) const

This member function adds a set of intervals to the invoking interval list. For every i
>= 0 such that start + i * period < end, an interval of [start + i *
period, start + duration + i * period) is added. By default, the type
of these intervals is 0. Adding a new interval that overlaps with an already existing
interval of a different type will override the existing type on the intersection.

public IloBool contains(const IloIntervalList intervals) const

This member function returns IloTrue if and only if each interval of intervals is
included in an interval of the invoking interval list, regardless of interval type.

public IloIntervalList copy() const

This member function creates and returns a new interval list that is a copy of the
invoking interval list.

public void dilate(IloNum k) const

This member function multiplies by k the scale of times for the invoking interval list. k
must be a positive number.

public void empty() const

This member function removes all the intervals from the invoking interval list.

public IloNum getDefinitionIntervalMax() const

This member function returns the right most point (horizon) of the definition interval of
the invoking interval list.

public IloNum getDefinitionIntervalMin() const

This member function returns the left most point (origin) of the definition interval of the
invoking interval list.

public IloBool isEmpty() const

This member function returns IloTrue if and only if the invoking interval list is
empty.

public IloBool isKeptOpen() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 392

IloIntervalList
This member function returns IloTrue if the interval list must be kept open.
Otherwise, it returns IloFalse.

public void keepOpen(IloBool val=IloTrue) const

If the argument val is equal to IloTrue, this member function states that the invoking
interval list must be kept open during the search for a solution to the problem. It means
that additional intervals may be added during the search. Otherwise, if the argument
val is equal to IloFalse, it states that all the intervals of the invoking interval list
will be defined in the model before starting to solve the problem. By default, it is
supposed that all the intervals of the invoking interval list are defined in the model
before starting to solve the problem.

public void removeInterval(IloNum start,
IloNum end) const

This member function removes all intervals on the invoking interval list between start
and end. If start is placed inside an interval [start1, end1), that is, start1 <
start < end1, this results in an interval [start1, start). If end is placed
inside an interval [start2, end2) this results in an interval [end, end2).

public void removeIntervalOnDuration(IloNum start,
IloNum duration) const

This member function removes all intervals on the invoking resource between start
and start+duration.

public void removePeriodicInterval(IloNum start,
IloNum duration,
IloNum period,
IloNum end) const

This member function removes intervals from the invoking interval list. More precisely,
for every i >= 0 such that start + i * period < end, this function
removes all intervals between start + i * period and start + duration
+ i * period.

public void setDifference(const IloIntervalList intervals) const

This member function removes from the invoking interval list all the intervals
contained in the interval list intervals. The definition interval of the invoking
interval list is not changed.

public void setPeriodic(const IloIntervalList intervals,
IloNum x0,
IloNum n=IloInfinity) const

This member function initializes the invoking interval list as an interval list that repeats
the interval list intervals n times after x0.

public void setUnion(const IloIntervalList intervals) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 393

IloIntervalList
This member function sets the invoking interval list to be the union between the current
interval list and the interval list intervals. An instance of IloException is
thrown if two intervals with different types overlap. The definition interval of the
invoking interval list is set to the union between the current definition interval and the
definition interval of intervals.

public void shift(IloNum dx) const

This member function shifts the intervals of the invoking interval list from dx to the
right if dx > 0 or from -dx to the left if dx < 0. It has no effect if dx = 0.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 394

IloIntervalListCursor
IloIntervalListCursor

Category Class

InheritancePath

Definition File ilconcert/ilointervals.h

Summary Inspects the intervals of an interval list.

Description An instance of the class IloIntervalListCursor allows you to inspect the
intervals of an interval list, that is, an instance of IloIntervalList. Cursors are
intended to iterate forward or backward over the intervals of an interval list.

Constructor Summary
public IloIntervalListCursor(const IloIntervalList)

public IloIntervalListCursor(const
IloIntervalList,IloNum x)

public IloIntervalListCursor(const
IloIntervalListCursor &)

Method Summary
public IloNum getEnd() const

public IloNum getStart() const

public IloNum getType() const

public IloBool ok() const

public void operator++()

public void operator--()

public void operator=(const IloIntervalListCursor &)

public void seek(IloNum)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 395

IloIntervalListCursor
See Also IloIntervalList

Constructors public IloIntervalListCursor(const IloIntervalList)

This constructor creates a cursor to inspect the interval list argument. This cursor lets
you iterate forward or backward over the intervals of the interval list. The cursor initially
specifies the first interval of the interval list.

public IloIntervalListCursor(const IloIntervalList,
IloNum x)

This constructor creates a cursor to inspect the interval list intervals. This cursor
lets you iterate forward or backward over the interval list. The cursor initially specifies
the interval of the interval list that contains x.

Note that if n is the number of intervals of the interval list given as argument, the worst-
case complexity of this constructor is O(log(n)).

public IloIntervalListCursor(const IloIntervalListCursor &)

This constructor creates a new cursor that is a copy of the argument. The new cursor
initially specifies the same interval and the same interval list as the argument cursor.

Methods public IloNum getEnd() const

This member function returns the end point of the interval currently specified by the
cursor.

public IloNum getStart() const

This member function returns the start point of the interval currently specified by the
cursor.

public IloNum getType() const

This member function returns the type of the interval currently specified by the cursor.

public IloBool ok() const

This member function returns IloFalse if the cursor does not currently specify an
interval included in the interval list. Otherwise, it returns IloTrue.

public void operator++()

Note: The structure of the interval list cannot be changed while a cursor is
being used to inspect it. Therefore, functions that change the structure of
the interval list, such as addInterval, should not be called while the
cursor is being used.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 396

IloIntervalListCursor
This operator moves the cursor to the interval adjacent to the current interval (forward
move).

public void operator--()

This operator moves the cursor to the interval adjacent to the current interval (backward
move).

public void operator=(const IloIntervalListCursor &)

This operator assigns an address to the handle pointer of the invoking instance of
IloIntervalListCursor. That address is the location of the implementation
object of the argument cursor. After the execution of this operator, the invoking object
and cursor both point to the same implementation object.

public void seek(IloNum)

This member function sets the cursor to specify the first interval of the interval list
whose end is strictly greater than x. Note that if n is the number of intervals of the
interval list traversed by the invoking iterator, the worst-case complexity of this member
function is O(log(n)). An instance of IloException is thrown if x does not belong
to the interval of definition of the invoking interval list.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 397

IloMax
IloMax

Category Global Function

Definition File ilconcert/ilonumfunc.h

Synopsis public IloNumToNumStepFunction IloMax(const IloNumToNumStepFunction f1,
 const IloNumToNumStepFunction f2)

Summary This operator creates and returns a function equal to the maximal value of the functions
f1 and f2.

Description This operator creates and returns a function equal to the maximal value of the functions
f1 and f2. That is, for all points x in the definition interval, the resulting function is
equal to the max(f1(x), f2(x)). The argument functions f1 and f2 must be
defined on the same interval. The resulting function is defined on the same interval as
the arguments. See also: IloNumToNumStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 398

IloMin
IloMin

Category Global Function

Definition File ilconcert/ilonumfunc.h

Synopsis public IloNumToNumStepFunction IloMin(const IloNumToNumStepFunction f1,
 const IloNumToNumStepFunction f2)

Summary This operator creates and returns a function equal to the minimal value of the functions
f1 and f2.

Description This operator creates and returns a function equal to the minimal value of the functions
f1 and f2. That is, for all points x in the definition interval, the resulting function is
equal to the min(f1(x), f2(x)). The argument functions f1 and f2 must be
defined on the same interval. The resulting function is defined on the same interval as
the arguments. See also: IloNumToNumStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 399

IloNumToAnySetStepFunction
IloNumToAnySetStepFunction

Category Class

InheritancePath

Definition File ilconcert/ilosetfunc.h

Summary Represents a step function that associates sets with intervals.

Constructor Summary
public IloNumToAnySetStepFunction(const IloEnv

env,IloNum xmin=-IloInfinity,IloNum
xmax=IloInfinity,const char * name=0)

public IloNumToAnySetStepFunction(const IloEnv
env,IloNum xmin,IloNum xmax,const IloAnySet
dval,const char * name=0)

Method Summary
public void add(const IloNumToAnySetStepFunction f) const

public void add(IloNum xMin,IloNum xMax,IloAny elt) const

public void add(IloNum xMin,IloNum xMax,const IloAnySet
elts,IloBool complt=IloFalse) const

public IloBool alwaysContains(const
IloNumToAnySetStepFunction f) const

public IloBool alwaysContains(IloNum xMin,IloNum xMax,const
IloAnySet elts) const

public IloBool alwaysContains(IloNum xMin,IloNum xMax,IloAny
elt) const

public IloBool alwaysIntersects(const
IloNumToAnySetStepFunction f) const

public IloBool alwaysIntersects(IloNum xMin,IloNum
xMax,const IloAnySet elts) const

public IloBool contains(IloNum x,const IloAnySet elts) const

public IloBool contains(IloNum x,IloAny elt) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 400

IloNumToAnySetStepFunction
public
IloNumToAnySetStepFunction

copy() const

public void dilate(IloNum k) const

public void empty(IloNum xMin,IloNum xMax) const

public IloBool everContains(const IloNumToAnySetStepFunction
f) const

public IloBool everContains(IloNum xMin,IloNum xMax,const
IloAnySet elts) const

public IloBool everContains(IloNum xMin,IloNum xMax,IloAny
elt) const

public IloBool everIntersects(const
IloNumToAnySetStepFunction f) const

public IloBool everIntersects(IloNum xMin,IloNum xMax,const
IloAnySet elts) const

public void fill(IloNum xMin,IloNum xMax) const

public IloAnySet getComplementSet(IloNum x) const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloAnySet getSet(IloNum x) const

public IloBool intersects(IloNum x,const IloAnySet elts)
const

public IloBool isEmpty(IloNum x) const

public IloBool isFull(IloNum x) const

public void remove(const IloNumToAnySetStepFunction f)
const

public void remove(IloNum xMin,IloNum xMax,IloAny elt)
const

public void remove(IloNum xMin,IloNum xMax,const IloAnySet
elts,IloBool complt=IloFalse) const

public void set(IloNum xMin,IloNum xMax,IloAny elt) const

public void set(IloNum xMin,IloNum xMax,const IloAnySet
elts,IloBool complt=IloFalse) const

public void setIntersection(const
IloNumToAnySetStepFunction f) const

public void setIntersection(IloNum xMin,IloNum
xMax,IloAny elt) const

public void setIntersection(IloNum xMin,IloNum xMax,const
IloAnySet elts,IloBool complt=IloFalse) const

public void setPeriodic(const IloNumToAnySetStepFunction
f,IloNum x0,IloNum n,const IloAnySet dval)
const

public void shift(IloNum dx,const IloAnySet dval) const

public IloBool usesComplementaryRepresentation(IloNum x)
const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 401

IloNumToAnySetStepFunction
Description An instance of IloNumToAnySetStepFunction represents a step function that
associates sets with intervals. It is defined everywhere on an interval [xMin,xMax). Each
interval [x1,x2) on which the function has the same set is called a step.

Note that if n is the number of steps of the function, the random access to a given step
(see the member functions add, alwaysIntersects, contains, empty,
everContains, everIntersects, fill, getComplementSet, getSet,
intersects, isEmpty, isFull, remove, set, and setIntersection) has a
worst-case complexity of O(log(n)).

Complementary Representation of Values

IloNumToAnySetStepFunction allows the implicit representation of infinite sets
through the representation of the complement of the actual set value. This, for example,
allows you to completely fill a set (using the fill member function) and then specify
the elements that are not in the set. Under normal circumstances, it is not necessary to
know if the value of the step function at a particular point is represented by the set or its
complement: all the member functions that manipulate the step function value will
correctly adapt to either representation. The only case where it is necessary to know the
internal representation is if you want to directly access the set that represents a value
(using the getSet or getComplementSetmember functions). In that circumstance
only, it is necessary to use the usesComplementaryRepresentation member
function to determine the internal representation, and then use either getSet or
getComplementSet depending on the return value of
usesComplementaryRepresentation. Note that getSetwill raise an error if it
is used to access a set that is represented as a complement set. getComplementSet
will raise an error if it is used to access a set that is directly represented.

See Also IloNumToAnySetStepFunctionCursor

Constructors public IloNumToAnySetStepFunction(const IloEnv env,
IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity,

 const char * name=0)

This constructor creates a step function defined everywhere on the interval [xMin,
xMax) with empty set as the value.

public IloNumToAnySetStepFunction(const IloEnv env,
IloNum xmin,
IloNum xmax,

 const IloAnySet dval,
 const char * name=0)

This constructor creates a step function defined everywhere on the interval [xMin,
xMax) with the same set dval.

Methods public void add(const IloNumToAnySetStepFunction f) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 402

IloNumToAnySetStepFunction
This member function adds the value of f at point x to the value of the invoking step
function at point x, for all points x in the definition interval of the invoking step
function. An instance of IloException is thrown if the definition interval of f is not
equal to the definition interval of the invoking step function.

public void add(IloNum xMin,
IloNum xMax,

 IloAny elt) const

This member function adds elt to the value of the invoking step function on the
interval [xMin, xMax).

public void add(IloNum xMin,
IloNum xMax,

 const IloAnySet elts,
IloBool complt=IloFalse) const

This member function adds the elements of elts to the value of the invoking step
function on the interval [xMin, xMax).

public IloBool alwaysContains(const IloNumToAnySetStepFunction f) const

This member function returns IloTrue if for all points x on the definition interval of
the invoking step function, the value of f at point x is a subset of the value of the
invoking step function at point x. An instance of IloException is thrown if the
definition interval of f is not equal to the definition interval of the invoking step
function.

public IloBool alwaysContains(IloNum xMin,
IloNum xMax,

 const IloAnySet elts) const

This member function returns IloTrue if elts is a subset of the value of the invoking
step function at all points on the interval [xMin, xMax).

public IloBool alwaysContains(IloNum xMin,
IloNum xMax,

 IloAny elt) const

This member function returns IloTrue if at all points on the interval [xMin,
xMax) the value of the invoking step function contains elt.

public IloBool alwaysIntersects(const IloNumToAnySetStepFunction f) const

This member function returns IloTrue if for all points x in the definition interval of
the invoking step function, the intersection of f and the invoking step function is not
empty. An instance of IloException is thrown if the definition interval of f is not
equal to the definition interval of the invoking step function.

public IloBool alwaysIntersects(IloNum xMin,
IloNum xMax,

 const IloAnySet elts) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 403

IloNumToAnySetStepFunction
This member function returns IloTrue if for all x on the interval [xMin, xMax)
the intersection of elts and the value of the invoking step function at point x is not
empty.

public IloBool contains(IloNum x,
 const IloAnySet elts) const

This member function returns IloTrue if elts is a subset of the value of the invoking
step function at point x.

public IloBool contains(IloNum x,
 IloAny elt) const

This member function returns IloTrue if the invoking step function contains element
elt at point x.

public IloNumToAnySetStepFunction copy() const

This member function creates and returns a new function that is a copy of the invoking
function.

public void dilate(IloNum k) const

This member function multiplies by k the scale of x for the invoking step function. k
must be a nonnegative numeric value. More precisely, if the invoking step function was
defined over an interval [xMin, xMax), it will be redefined over the interval
[k*xMin, k*xMax) and the value at x will be the former value at x/k.

public void empty(IloNum xMin,
IloNum xMax) const

This member function sets the value of the invoking step function on the interval
[xMin, xMax) to be the empty set.

public IloBool everContains(const IloNumToAnySetStepFunction f) const

This member function returns IloTrue if at any point x in the definition interval of the
invoking step function, f at point x is a subset of the invoking step function at point x.
An instance of IloException is thrown if the definition interval of f is not equal to
the definition interval of the invoking step function.

public IloBool everContains(IloNum xMin,
IloNum xMax,

 const IloAnySet elts) const

This member function returns IloTrue if at any point on the interval [xMin,
xMax)elts is a subset of the value of the invoking step function.

public IloBool everContains(IloNum xMin,
IloNum xMax,

 IloAny elt) const

This member function returns IloTrue if at any point on the interval [xMin,
xMax) the value of the invoking step function contains elt.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 404

IloNumToAnySetStepFunction
public IloBool everIntersects(const IloNumToAnySetStepFunction f) const

This member function returns IloTrue if at some point x in the definition interval of
the invoking step function, the intersection of f and the invoking step function is not
empty. An instance of IloException is thrown if the definition interval of f is not
equal to the definition interval of the invoking step function.

public IloBool everIntersects(IloNum xMin,
IloNum xMax,

 const IloAnySet elts) const

This member function returns IloTrue if at any point x on the interval [xMin,
xMax) the intersection of elts and the value of the invoking step function at point x
is not empty.

public void fill(IloNum xMin,
IloNum xMax) const

This member function sets the value of the invoking step function on the interval
[xMin, xMax) to be the full set.

public IloAnySet getComplementSet(IloNum x) const

This member function returns the complement of the value of the invoking step function
at point x. An instance of IloException is thrown if the invoking step function at
point x does not use the complementary representation. See Complementary
Representation of Values for more information.

public IloNum getDefinitionIntervalMax() const

This member function returns the right-most point of the definition interval of the
invoking step function.

public IloNum getDefinitionIntervalMin() const

This member function returns the left-most point of the definition interval of the
invoking step function.

public IloAnySet getSet(IloNum x) const

This member function returns the value of the invoking step function at point x. An
instance of IloException is thrown if the invoking step function at point x uses the
complementary representation. See Complementary Representation of Values for more
information.

public IloBool intersects(IloNum x,
 const IloAnySet elts) const

This member function returns IloTrue if the intersection of elts and the value of the
invoking step function at point x is not empty.

public IloBool isEmpty(IloNum x) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 405

IloNumToAnySetStepFunction
This member function returns IloTrue if the function is empty at point x. In other
words, a return of IloTrue means that the member function empty has been applied
to point x and no elements have been subsequently added to the value of the invoking
step function at point x.

public IloBool isFull(IloNum x) const

This member function returns IloTrue if the function is full at point x. In other words,
a return of IloTrue means that the member function fill has been applied to point
x and no elements have been subsequently removed from the value of the invoking step
function at point x.

public void remove(const IloNumToAnySetStepFunction f) const

This member function removes the value of f from the value of the invoking step
function at all points on the definition interval of the invoking step function. An instance
of IloException is thrown if the definition interval of f is not equal to the definition
interval of the invoking step function.

public void remove(IloNum xMin,
IloNum xMax,

 IloAny elt) const

This member function removes elt from the value of the invoking step function on the
interval [xMin, xMax).

public void remove(IloNum xMin,
IloNum xMax,

 const IloAnySet elts,
IloBool complt=IloFalse) const

This member function removes all the elements in elts from the value of the invoking
step function on the interval [xMin, xMax).

public void set(IloNum xMin,
IloNum xMax,

 IloAny elt) const

This member function sets the value of the invoking step function to be elt on the
interval [xMin, xMax).

public void set(IloNum xMin,
IloNum xMax,

 const IloAnySet elts,
IloBool complt=IloFalse) const

This member function sets the value of the invoking step function to be elts on the
interval [xMin, xMax).

public void setIntersection(const IloNumToAnySetStepFunction f) const

This member function assigns the value of the invoking step function at all points x on
the definition interval of the invoking step function to be the intersection of the value of
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 406

IloNumToAnySetStepFunction
f at point x and the value of the invoking step function at point x. An instance of
IloException is thrown if the definition interval of f is not equal to the definition
interval of the invoking step function.

public void setIntersection(IloNum xMin,
IloNum xMax,

 IloAny elt) const

This member function assigns the value of the invoking step function at all points x on
the interval [xMin, xMax) to be the intersection of the set containing elt and the
value of the invoking set function at point x.

public void setIntersection(IloNum xMin,
IloNum xMax,

 const IloAnySet elts,
IloBool complt=IloFalse) const

This member function assigns the value of the invoking step function at all points x on
the interval [xMin, xMax) to be the intersection of elts and the value of the
invoking set function at point x.

public void setPeriodic(const IloNumToAnySetStepFunction f,
IloNum x0,
IloNum n,

 const IloAnySet dval) const

This member function initializes the invoking step function as a function that repeats the
step function f, n times after x0. More precisely, if f is defined on
[xfpMin,xfpMax) and if the invoking step function is defined on [xMin,xMax),
the value of the invoking step function will be:

◆ dval on [xMin, x0),

◆ f((x-x0) % (xfpMax-xfpMin)) for x in [x0, Min(x0+n*(xfpMax-
xfpMin), xMax)), and

◆ dval on [Min(x0+n*(xfpMax-xfpMin), xMax), xMax)

public void shift(IloNum dx,
 const IloAnySet dval) const

This member function shifts the invoking step function from dx to the right if dx > 0,
or from -dx to the left if dx < 0. It has no effect if dx = 0. More precisely, if the
invoking step function is defined on [xMin,xMax) and dx > 0, the new value of the
invoking step function is:

◆ dval on the interval [xMin, xMin+dx),

◆ for all x in [xMin+dx, xMax), the former value at x-dx.

If dx < 0, the new value of the invoking step function is:

◆ for all x in [xMin, xMax+dx), the former value at x-dx,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 407

IloNumToAnySetStepFunction
◆ dval on the interval [xMax+dx, xMax).

public IloBool usesComplementaryRepresentation(IloNum x) const

This member function returns IloTrue if the value of the invoking function at point x
is represented by a complementary set, rather than by directly representing the value as a
set itself. See Complementary Representation of Values for more information.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 408

IloNumToAnySetStepFunctionCursor
IloNumToAnySetStepFunctionCursor

Category Class

InheritancePath

Definition File ilconcert/ilosetfunc.h

Summary Allows you to inspect the contents of an IloNumToAnySetStepFunction.

Description An instance of the class IloNumToAnySetStepFunctionCursor allows you to
inspect the contents of an IloNumToAnySetStepFunction. A step of a step

Constructor Summary
public IloNumToAnySetStepFunctionCursor(const

IloNumToAnySetStepFunction)

public IloNumToAnySetStepFunctionCursor(const
IloNumToAnySetStepFunction,IloNum x)

public IloNumToAnySetStepFunctionCursor(const
IloNumToAnySetStepFunctionCursor &)

Method Summary
public IloAnySet getComplementSet() const

public IloNum getSegmentMax() const

public IloNum getSegmentMin() const

public IloAnySet getSet() const

public IloBool isEmpty() const

public IloBool isFull() const

public IloBool ok() const

public void operator++()

public void operator--()

public void operator=(const
IloNumToAnySetStepFunctionCursor &)

public void seek(IloNum)

public IloBool usesComplementaryRepresentation() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 409

IloNumToAnySetStepFunctionCursor
function is defined as an interval [x1,x2) over which the value of the function is the
same. Cursors are intended to iterate forward or backward over the steps of a step
function.

See Also IloNumToAnySetStepFunction

Constructors public IloNumToAnySetStepFunctionCursor(const
IloNumToAnySetStepFunction)

This constructor creates a cursor to inspect the step function argument. This cursor lets
you iterate forward or backward over the steps of the function. The cursor initially
specifies the first step of the function.

public IloNumToAnySetStepFunctionCursor(const
IloNumToAnySetStepFunction,

IloNum x)

This constructor creates a cursor to inspect the step function argument. This cursor lets
you iterate forward or backward over the steps of the function. The cursor initially
specifies the step of the function that contains x.

Note that if n is the number of steps of the function given as argument, the worst-case
complexity of this constructor is O(log(n)).

public IloNumToAnySetStepFunctionCursor(const
IloNumToAnySetStepFunctionCursor &)

This constructor creates a new cursor that is a copy of the argument. The new cursor
initially specifies the same step and the same function as the argument cursor.

Methods public IloAnySet getComplementSet() const

This member function returns the set representing the complement of the value of the
step currently specified by the cursor. An instance of IloException is thrown if the
value of the step does not use a complementary representation.

public IloNum getSegmentMax() const

This member function returns the right-most point of the step currently specified by the
cursor.

public IloNum getSegmentMin() const

Note: The structure of the step function cannot be changed while a cursor
is being used to inspect it. Therefore, functions that change the structure of
the step function, such as set, should not be called while the cursor is
being used.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 410

IloNumToAnySetStepFunctionCursor
This member function returns the left-most point of the step currently specified by the
cursor.

public IloAnySet getSet() const

This member function returns the value of the step currently specified by the cursor. An
instance of IloException is thrown if the value of the step uses a complementary
representation.

public IloBool isEmpty() const

This member function returns IloTrue if the value of the current step is the empty set.

public IloBool isFull() const

This member function returns IloTrue if the value of the current step is the full set.
(See also: isFull).

public IloBool ok() const

This member function returns IloFalse if the cursor does not currently specify a step
included in the definition interval of the step function. Otherwise, it returns IloTrue.

public void operator++()

This operator moves the cursor to the step adjacent to the current step (forward move).

public void operator--()

This operator moves the cursor to the step adjacent to the current step (backward move).

public void operator=(const IloNumToAnySetStepFunctionCursor &)

This operator assigns an address to the handle pointer of the invoking instance of
IloNumToAnySetStepFunctionCursor. That address is the location of the
implementation object of the argument cursor. After the execution of this operator,
the invoking object and cursor both point to the same implementation object.

public void seek(IloNum)

This member function sets the cursor to specify the step of the function that contains x.
Note that if n is the number of steps of the step function traversed by the invoking
iterator, the worst-case complexity of this member function is O(log(n)). An instance of
IloException is thrown if x does not belong to the definition interval of the
invoking function.

public IloBool usesComplementaryRepresentation() const

This member function returns IloTrue if the value of the current step uses the
complementary representation.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 411

IloNumToNumSegmentFunction
IloNumToNumSegmentFunction

Category Class

InheritancePath

Definition File ilconcert/ilosegfunc.h

Summary Piecewise linear function over a segment.

Constructor Summary
public IloNumToNumSegmentFunction(const IloEnv

env,IloNum xmin=-IloInfinity,IloNum
xmax=IloInfinity,IloNum dval=0.0,const char *
name=0)

public IloNumToNumSegmentFunction(const IloEnv
env,const IloNumArray x,const IloNumArray
v,IloNum xmin=-IloInfinity,IloNum
xmax=IloInfinity,const char * name=0)

public IloNumToNumSegmentFunction(const
IloNumToNumStepFunction & numFunction)

Method Summary
public void addValue(IloNum x1,IloNum x2,IloNum v) const

public
IloNumToNumSegmentFunction

copy() const

public void dilate(IloNum k) const

public IloNum getArea(IloNum x1,IloNum x2) const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloNum getMax(IloNum x1,IloNum x2) const

public IloNum getMin(IloNum x1,IloNum x2) const

public IloNum getValue(IloNum x) const

public void operator *=(IloNum k) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 412

IloNumToNumSegmentFunction
Description An instance of IloNumToNumSegmentFunction represents a piecewise linear
function that is defined everywhere on an interval [xMin, xMax). Each interval [x1, x2)
on which the function is linear is called a segment.

Note that if n is the number of segments of the function, the random access to a given
segment (see the member functions addValue, getArea, getValue, setValue)
has a worst-case complexity in O(log(n)).

Furthermore, when two consecutive segments of the function are co-linear, these
segments are merged so that the function is always represented with the minimal number
of segments.

See Also IloNumToNumSegmentFunctionCursor

Constructors public IloNumToNumSegmentFunction(const IloEnv env,
IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity,
IloNum dval=0.0,

 const char * name=0)

public void operator+=(const IloNumToNumSegmentFunction
fct) const

public void operator-=(const IloNumToNumSegmentFunction
fct) const

public void setMax(const IloNumToNumSegmentFunction fct)
const

public void setMax(IloNum x1,IloNum v1,IloNum x2,IloNum
v2) const

public void setMax(IloNum x1,IloNum x2,IloNum v) const

public void setMin(const IloNumToNumSegmentFunction fct)
const

public void setMin(IloNum x1,IloNum v1,IloNum x2,IloNum
v2) const

public void setMin(IloNum x1,IloNum x2,IloNum v) const

public void setPeriodic(const IloNumToNumSegmentFunction
f,IloNum x0,IloNum n=IloInfinity,IloNum
dval=0) const

public void setPeriodicValue(IloNum x1,IloNum x2,const
IloNumToNumSegmentFunction f,IloNum offset=0)
const

public void setPoints(const IloNumArray x,const
IloNumArray v) const

public void setSlope(IloNum x1,IloNum x2,IloNum v,IloNum
slope) const

public void setValue(IloNum x1,IloNum x2,IloNum v) const

public void shift(IloNum dx,IloNum dval=0) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 413

IloNumToNumSegmentFunction
This constructor creates a piecewise linear function that is constant. It is defined
everywhere on the interval [xmin,xmax) with the same value dval.

public IloNumToNumSegmentFunction(const IloEnv env,
 const IloNumArray x,
 const IloNumArray v,

IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity,

 const char * name=0)

This constructor creates a piecewise linear function defined everywhere on the interval
[xmin, xmax) whose segments are defined by the two argument arrays x and v.
More precisely, the size n of array x must be equal to the size of array v and, if the
created function is defined on the interval [xmin,xmax), its values will be:

◆ v[0] on interval [xmin, x[0]),

◆ v[i] + (t-x[i])*(v[i+1]-v[i])/(x[i+1]-x[i]) for t in [x[i],
x[i+1]) for all i in [0, n-2] such that x[i-1] <> x[i], and

◆ v[n-1] on interval [x[n-1],xmax).

public IloNumToNumSegmentFunction(const IloNumToNumStepFunction &
numFunction)

This copy constructor creates a new piecewise linear function. The new piecewise linear
function is a copy of the step function numFunction. They point to different
implementation objects.

Methods public void addValue(IloNum x1,
IloNum x2,
IloNum v) const

This member function adds v to the value of the invoking piecewise linear function
everywhere on the interval [x1,x2).

public IloNumToNumSegmentFunction copy() const

This member function creates and returns a new function that is a copy of the invoking
function.

public void dilate(IloNum k) const

This member function multiplies by k the scale of x for the invoking piecewise linear
function. k must be a nonnegative numeric value. More precisely, if the invoking
function was defined over an interval [xMin,xMax), it will be redefined over the
interval [k*xMin,k*xMax) and the value at x will be the former value at x/k.

public IloNum getArea(IloNum x1,
IloNum x2) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 414

IloNumToNumSegmentFunction
This member function returns the area of the invoking piecewise linear function on the
interval [x1,x2). An instance of IloException is thrown if the interval [x1,x2)
is not included in the definition interval of the invoking function.

public IloNum getDefinitionIntervalMax() const

This member function returns the right-most point of the definition interval of the
invoking piecewise linear function.

public IloNum getDefinitionIntervalMin() const

This member function returns the left-most point of the definition interval of the
invoking piecewise linear function.

public IloNum getMax(IloNum x1,
IloNum x2) const

This member function returns the maximal value of the invoking piecewise linear
function on the interval [x1,x2). An instance of IloException is thrown if the
interval [x1,x2) is not included in the definition interval of the invoking function.

public IloNum getMin(IloNum x1,
IloNum x2) const

This member function returns the minimal value of the invoking piecewise linear
function on the interval [x1,x2). An instance of IloException is thrown if the
interval [x1,x2) is not included in the definition interval of the invoking function.

public IloNum getValue(IloNum x) const

This member function returns the value of the function at point x.

public void operator *=(IloNum k) const

This operator multiplies by a factor k the value of the invoking piecewise linear function
everywhere on the definition interval.

public void operator+=(const IloNumToNumSegmentFunction fct) const

This operator adds the argument function fct to the invoking piecewise linear function.

public void operator-=(const IloNumToNumSegmentFunction fct) const

This operator subtracts the argument function fct from the invoking piecewise linear
function.

public void setMax(const IloNumToNumSegmentFunction fct) const

This member function sets the value of the invoking piecewise linear function to be the
maximum between the current value and the value of fct everywhere on the definition
interval of the invoking function. The interval of definition of fct must be the same as
that of the invoking piecewise linear function.

public void setMax(IloNum x1,
IloNum v1,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 415

IloNumToNumSegmentFunction
IloNum x2,
IloNum v2) const

This member function sets the value of the invoking piecewise linear function to be the
maximum between the current value and the value of the linear function:

x --> v1 + (x-x1)*(v2-v1)/(x2-x1) everywhere on the interval [x1,
x2).

public void setMax(IloNum x1,
IloNum x2,
IloNum v) const

This member function sets the value of the invoking piecewise linear function to be the
maximum between the current value and v everywhere on the interval [x1,x2).

public void setMin(const IloNumToNumSegmentFunction fct) const

This member function sets the value of the invoking piecewise linear function to be the
minimum between the current value and the value of fct everywhere on the definition
interval of the invoking function. The definition interval of fct must be the same as the
one of the invoking piecewise linear function.

public void setMin(IloNum x1,
IloNum v1,
IloNum x2,
IloNum v2) const

This member function sets the value of the invoking piecewise linear function to be the
minimum between the current value and the value of the linear function:

x --> v1 + (x-x1)*(v2-v1)/(x2-x1) everywhere on the interval [x1,x2).

public void setMin(IloNum x1,
IloNum x2,
IloNum v) const

This member function sets the value of the invoking piecewise linear function to be the
minimum between the current value and v everywhere on the interval [x1,x2).

public void setPeriodic(const IloNumToNumSegmentFunction f,
IloNum x0,
IloNum n=IloInfinity,
IloNum dval=0) const

This member function initializes the invoking function as a piecewise linear function
that repeats the piecewise linear function f, n times after x0. More precisely, if f is
defined on [xfpMin,xfpMax) and if the invoking function is defined on
[xMin,xMax), the value of the invoking function will be:

◆ dval on [xMin, x0),

◆ f((x-x0) % (xfpMax-xfpMin)) for x in [x0, Min(x0+n*(xfpMax-
xfpMin), xMax)), and
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 416

IloNumToNumSegmentFunction
◆ dval on [Min(x0+n*(xfpMax-xfpMin), xMax), xMax)

public void setPeriodicValue(IloNum x1,
IloNum x2,

 const IloNumToNumSegmentFunction f,
IloNum offset=0) const

This member function changes the value of the invoking function on the interval
[x1,x2). On this interval, the invoking function is set to equal a repetition of the
pattern function f with an initial offset of offset. The invoking function is not
modified outside the interval [x1,x2). More precisely, if [min,max) denotes the
definition interval of f, for all t in [x1,x2), the invoking function at t is set to equal
f(min + (offset+t-x1)%(max-min))) where % denotes the modulo operator.
By default, the offset is equal to 0.

public void setPoints(const IloNumArray x,
 const IloNumArray v) const

This member function initializes the invoking function as a piecewise linear function
whose segments are defined by the two argument arrays x and v.

More precisely, the size n of array x must be equal to the size of array v, and if the
created function is defined on the interval [xmin,xmax), its values will be:

◆ v[0] on interval [xmin, x[0]),

◆ v[i] + (t-x[i])*(v[i+1]-v[i])/(x[i+1]-x[i]) for t in [x[i],
x[i+1]) for all i in [0, n-2] such that x[i-1] ? x[i], and

◆ v[n-1] on interval [x[n-1],xmax).

public void setSlope(IloNum x1,
IloNum x2,
IloNum v,
IloNum slope) const

This member function sets the value of the invoking piecewise linear function equal to
f, associating for each x in [x1,x2) -> f(x) = v + slope * (x-x1).

public void setValue(IloNum x1,
IloNum x2,
IloNum v) const

This member function sets the value of the invoking piecewise linear function to be
constant and equal to v on the interval [x1,x2).

public void shift(IloNum dx,
IloNum dval=0) const

This member function shifts the invoking function from dx to the right if dx > 0 or -
dx to the left if dx < 0. It has no effect if dx = 0. More precisely, if the invoking
function is defined on [xMin,xMax) and dx > 0, the new value of the invoking
function is:
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 417

IloNumToNumSegmentFunction
◆ dval on the interval [xMin,xMin+dx),

◆ for all x in [xMin+dx,xMax), the former value at x-dx.

If dx < 0, the new value of the invoking function is:

◆ for all x in [xMin,xMax+dx), the former value at x-dx,

◆ dval on the interval [xMax+dx,xMax).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 418

IloNumToNumSegmentFunctionCursor
IloNumToNumSegmentFunctionCursor

Category Class

InheritancePath

Definition File ilconcert/ilosegfunc.h

Summary Cursor over segments of a piecewise linear function.

Description An instance of the class IloNumToNumSegmentFunctionCursor allows you to
inspect the contents of an IloNumToNumSegmentFunction. A segment of a
piecewise linear function is defined as an interval [x1, x2) over which the function is
linear. Cursors are intended to iterate forward or backward over the segments of a
piecewise linear function.

Constructor Summary
public IloNumToNumSegmentFunctionCursor(const

IloNumToNumSegmentFunction,IloNum x)

public IloNumToNumSegmentFunctionCursor(const
IloNumToNumSegmentFunctionCursor &)

Method Summary
public IloNum getSegmentMax() const

public IloNum getSegmentMin() const

public IloNum getValue(IloNum t) const

public IloNum getValueLeft() const

public IloNum getValueRight() const

public IloBool ok() const

public void operator++()

public void operator--()

public void seek(IloNum)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 419

IloNumToNumSegmentFunctionCursor
See Also IloNumToNumSegmentFunction

Constructors public IloNumToNumSegmentFunctionCursor(const
IloNumToNumSegmentFunction,

IloNum x)

This constructor creates a cursor to inspect the piecewise linear function argument. This
cursor lets you iterate forward or backward over the segments of the function. The
cursor initially specifies the segment of the function that contains x.

Note that if n is the number of steps of the function given as argument, the worst-case
complexity of this constructor is O(log(n)).

public IloNumToNumSegmentFunctionCursor(const
IloNumToNumSegmentFunctionCursor &)

This constructor creates a new cursor that is a copy of the argument cursor. The new
cursor initially specifies the same segment and the same function as the argument
cursor.

Methods public IloNum getSegmentMax() const

This member function returns the right-most point of the segment currently specified by
the cursor.

public IloNum getSegmentMin() const

This member function returns the left-most point of the segment currently specified by
the cursor.

public IloNum getValue(IloNum t) const

This member function returns the value of the piecewise linear function at time t. t
must be between the left-most and the right-most point of the segment currently
specified by the cursor.

public IloNum getValueLeft() const

This member function returns the value of the function at the left-most point of the
segment currently specified by the cursor.

public IloNum getValueRight() const

Note: The structure of the piecewise linear function cannot be changed
while a cursor is being used to inspect it. Therefore, functions that change
the structure of the piecewise linear function, such as setValue, should
not be called while the cursor is being used.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 420

IloNumToNumSegmentFunctionCursor
This member function returns the value of the function at the right-most point of the
segment currently specified by the cursor.

public IloBool ok() const

This member function returns IloFalse if the cursor does not currently specify a
segment included in the definition interval of the piecewise linear function. Otherwise, it
returns IloTrue.

public void operator++()

This operator moves the cursor to the segment adjacent to the current step (forward
move).

public void operator--()

This operator moves the cursor to the segment adjacent to the current step (backward
move).

public void seek(IloNum)

This member function sets the cursor to specify the segment of the function that contains
x. An IloException is thrown if x does not belong to the definition interval of the
piecewise linear function associated with the invoking cursor.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 421

IloNumToNumStepFunction
IloNumToNumStepFunction

Category Class

InheritancePath

Definition File ilconcert/ilonumfunc.h

Summary Represents a step function that is defined everywhere on an interval.

Constructor Summary
public IloNumToNumStepFunction(const IloEnv

env,IloNum xmin=-IloInfinity,IloNum
xmax=IloInfinity,IloNum dval=0.0,const char *
name=0)

public IloNumToNumStepFunction(const IloEnv
env,const IloNumArray x,const IloNumArray
v,IloNum xmin=-IloInfinity,IloNum
xmax=IloInfinity,const char * name=0)

Method Summary
public void addValue(IloNum x1,IloNum x2,IloNum v) const

public
IloNumToNumStepFunction

copy() const

public void dilate(IloNum k) const

public IloNum getArea(IloNum x1,IloNum x2) const

public IloNum getDefinitionIntervalMax() const

public IloNum getDefinitionIntervalMin() const

public IloNum getMax(IloNum x1,IloNum x2) const

public IloNum getMin(IloNum x1,IloNum x2) const

public IloNum getValue(IloNum x) const

public void operator *=(IloNum k) const

public void operator+=(const IloNumToNumStepFunction fct)
const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 422

IloNumToNumStepFunction
Description An instance of IloNumToNumStepFunction represents a step function that is
defined everywhere on an interval [xMin, xMax). Each interval [x1, x2) on which the
function has the same value is called a step.

Note that if n is the number of steps of the function, the random access to a given step
(see the member functions addValue, getArea, getValue, setValue) has a
worst-case complexity in O(log(n)).

Furthermore, when two consecutive steps of the function have the same value, these
steps are merged so that the function is always represented with the minimal number of
steps.

See Also IloNumToNumStepFunctionCursor

Constructors public IloNumToNumStepFunction(const IloEnv env,
IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity,
IloNum dval=0.0,

 const char * name=0)

This constructor creates a step function defined everywhere on the interval [xmin,
xmax) with the same value dval.

public IloNumToNumStepFunction(const IloEnv env,
 const IloNumArray x,
 const IloNumArray v,

IloNum xmin=-IloInfinity,
IloNum xmax=IloInfinity,

 const char * name=0)

public void operator-=(const IloNumToNumStepFunction fct)
const

public void setMax(const IloNumToNumStepFunction fct) const

public void setMax(IloNum x1,IloNum x2,IloNum v) const

public void setMin(const IloNumToNumStepFunction fct) const

public void setMin(IloNum x1,IloNum x2,IloNum v) const

public void setPeriodic(const IloNumToNumStepFunction
f,IloNum x0,IloNum n=IloInfinity,IloNum
dval=0) const

public void setPeriodicValue(IloNum x1,IloNum x2,const
IloNumToNumStepFunction f,IloNum offset=0)
const

public void setSteps(const IloNumArray x,const
IloNumArray v) const

public void setValue(IloNum x1,IloNum x2,IloNum v) const

public void shift(IloNum dx,IloNum dval=0) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 423

IloNumToNumStepFunction
This constructor creates a step function defined everywhere on the interval [xmin,
xmax) whose steps are defined by the two argument arrays x and v. More precisely, if
n is the size of array x, size of array v must be n+1 and, if the created function is
defined on the interval [xmin,xmax), its values will be:

◆ v[0] on interval [xmin,x[0]),

◆ v[i] on interval [x[i-1],x[i]) for all i in [0,n-1], and

◆ v[n] on interval [x[n-1],xmax).

The values in the array are copied, and no modification to the arrays will be taken into
account once the constructor has been called.

Methods public void addValue(IloNum x1,
IloNum x2,
IloNum v) const

This member function adds v to the value of the invoking step function everywhere on
the interval [x1, x2).

public IloNumToNumStepFunction copy() const

This member function creates and returns a new function that is a copy of the invoking
function.

public void dilate(IloNum k) const

This member function multiplies by k the scale of x for the invoking step function. k
must be a nonnegative numeric value. More precisely, if the invoking function was
defined over an interval [xMin, xMax), it will be redefined over the interval
[k*xMin, k*xMax) and the value at x will be the former value at x/k.

public IloNum getArea(IloNum x1,
IloNum x2) const

This member function returns the sum of the invoking step function on the interval
[x1, x2). An instance of IloException is thrown if the interval [x1, x2) is
not included in the definition interval of the invoking function.

public IloNum getDefinitionIntervalMax() const

This member function returns the right-most point of the definition interval of the
invoking step function.

public IloNum getDefinitionIntervalMin() const

This member function returns the left-most point of the definition interval of the
invoking step function.

public IloNum getMax(IloNum x1,
IloNum x2) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 424

IloNumToNumStepFunction
This member function returns the maximal value of the invoking step function on the
interval [x1, x2). An instance of IloException is thrown if the interval [x1,
x2) is not included in the definition interval of the invoking function.

public IloNum getMin(IloNum x1,
IloNum x2) const

This member function returns the minimal value of the invoking step function on the
interval [x1, x2). An instance of IloException is thrown if the interval [x1,
x2) is not included in the definition interval of the invoking function.

public IloNum getValue(IloNum x) const

This member function returns the value of the invoking step function at x. An instance
of IloException is thrown if x does not belong to the definition interval of the
invoking function.

public void operator *=(IloNum k) const

This operator multiplies by a factor k the value of the invoking step function everywhere
on the definition interval.

public void operator+=(const IloNumToNumStepFunction fct) const

This operator adds the argument function fct to the invoking step function.

public void operator-=(const IloNumToNumStepFunction fct) const

This operator subtracts the argument function fct from the invoking step function.

public void setMax(const IloNumToNumStepFunction fct) const

This member function sets the value of the invoking step function to be the maximum
between the current value and the value of fct everywhere on the definition interval of
the invoking function. The interval of definition of fct must be the same as that of the
invoking step function.

public void setMax(IloNum x1,
IloNum x2,
IloNum v) const

This member function sets the value of the invoking step function to be the maximum
between the current value and v everywhere on the interval [x1, x2).

public void setMin(const IloNumToNumStepFunction fct) const

This member function sets the value of the invoking step function to be the minimum
between the current value and the value of fct everywhere on the definition interval of
the invoking function. The definition interval of fct must be the same as the one of the
invoking step function.

public void setMin(IloNum x1,
IloNum x2,
IloNum v) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 425

IloNumToNumStepFunction
This member function sets the value of the invoking step function to be the minimum
between the current value and v everywhere on the interval [x1, x2).

public void setPeriodic(const IloNumToNumStepFunction f,
IloNum x0,
IloNum n=IloInfinity,
IloNum dval=0) const

This member function initializes the invoking function as a step function that repeats the
step function f, n times after x0. More precisely, if f is defined on
[xfpMin,xfpMax) and if the invoking function is defined on [xMin,xMax), the
value of the invoking function will be:

◆ dval on [xMin, x0),

◆ fp((x-x0) % (xfpMax-xfpMin)) for x in [x0, Min(x0+n*(xfpMax-
xfpMin), xMax)), and

◆ dval on [Min(x0+n*(xfpMax-xfpMin), xMax), xMax)

public void setPeriodicValue(IloNum x1,
IloNum x2,

 const IloNumToNumStepFunction f,
IloNum offset=0) const

This member function changes the value of the invoking function on the interval
[x1,x2). On this interval, the invoking function is set to equal a repetition of the
pattern function f with an initial offset of offset. The invoking function is not
modified outside the interval [x1,x2). More precisely, if [min,max) denotes the
definition interval of f, for all t in [x1,x2), the invoking function at t is set to equal
f(min + (offset+t-x1)%(max-min))) where % denotes the modulo operator.
By default, the offset is equal to 0.

public void setSteps(const IloNumArray x,
 const IloNumArray v) const

This member function initializes the invoking function as a step function whose steps
are defined by the two arguments arrays x and v. More precisely, if n is the size of array
x, size of array v must be n+1 and, if the invoking function is defined on the interval
[xMin,xMax), its values will be:

◆ v[0] on interval [xMin,x[0]),

◆ v[i] on interval [x[i-1],x[i]) for all i in [0,n-1], and

◆ v[n] on interval [x[n-1],xMax).

public void setValue(IloNum x1,
IloNum x2,
IloNum v) const

This member function sets the value of the invoking step function to be v on the interval
[x1, x2).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 426

IloNumToNumStepFunction
public void shift(IloNum dx,
IloNum dval=0) const

This member function shifts the invoking function from dx to the right if dx > 0 or
from -dx to the left if dx < 0. It has no effect if dx = 0. More precisely, if the
invoking function is defined on [xMin,xMax) and dx > 0, the new value of the
invoking function is:

◆ dval on the interval [xMin, xMin+dx),

◆ for all x in [xMin+dx, xMax), the former value at x-dx.

 If dx < 0, the new value of the invoking function is:

◆ for all x in [xMin, xMax+dx), the former value at x-dx,

◆ dval on the interval [xMax+dx,xMax).
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 427

IloNumToNumStepFunctionCursor
IloNumToNumStepFunctionCursor

Category Class

InheritancePath

Definition File ilconcert/ilonumfunc.h

Summary Allows you to inspect the contents of an instance of IloNumToNumStepFunction.

Description An instance of the class IloNumToNumStepFunctionCursor allows you to
inspect the contents of an instance of IloNumToNumStepFunction. A step of a
step function is defined as an interval [x1,x2) over which the value of the function is the
same. Cursors are intended to iterate forward or backward over the steps of a step
function.

Constructor Summary
public IloNumToNumStepFunctionCursor(const

IloNumToNumStepFunction,IloNum x)

public IloNumToNumStepFunctionCursor(const
IloNumToNumStepFunctionCursor &)

Method Summary
public IloNum getSegmentMax() const

public IloNum getSegmentMin() const

public IloNum getValue() const

public IloBool ok() const

public void operator++()

public void operator--()

public void seek(IloNum)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 428

IloNumToNumStepFunctionCursor
See Also IloNumToNumStepFunction

Constructors public IloNumToNumStepFunctionCursor(const IloNumToNumStepFunction,
IloNum x)

This constructor creates a cursor to inspect the step function argument. This cursor lets
you iterate forward or backward over the steps of the function. The cursor initially
specifies the step of the function that contains x.

Note that if n is the number of steps of the function given as argument, the worst-case
complexity of this constructor is O(log(n)).

public IloNumToNumStepFunctionCursor(const IloNumToNumStepFunctionCursor
&)

This constructor creates a new cursor that is a copy of the argument cursor. The new
cursor initially specifies the same step and the same function as the argument cursor.

Methods public IloNum getSegmentMax() const

This member function returns the right-most point of the step currently specified by the
cursor.

public IloNum getSegmentMin() const

This member function returns the left-most point of the step currently specified by the
cursor.

public IloNum getValue() const

This member function returns the value of the step currently specified by the cursor.

public IloBool ok() const

This member function returns IloFalse if the cursor does not currently specify a step
included in the definition interval of the step function. Otherwise, it returns IloTrue.

public void operator++()

This operator moves the cursor to the step adjacent to the current step (forward move).

public void operator--()

This operator moves the cursor to the step adjacent to the current step (backward move).

Note: The structure of the step function cannot be changed while a cursor
is being used to inspect it. Therefore, methods that change the structure of
the step function, such as IloNumToNumStepFunction::setValue,
should not be called while the cursor is being used.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 429

IloNumToNumStepFunctionCursor
public void seek(IloNum)

This member function sets the cursor to specify the step of the function that contains x.
An IloException is thrown if x does not belong to the definition interval of the step
function associated with the invoking cursor.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 430

IloUnion
IloUnion

Category Global Function

Definition File ilconcert/ilointervals.h

Synopsis public IloIntervalList IloUnion(const IloIntervalList intervals1,
 const IloIntervalList intervals2)

Summary Creates and returns the union of two interval lists.

Description This operator creates and returns an interval list equal to the union of the interval lists
intervals1 and intervals2. The arguments intervals1 and intervals2
must be defined on the same interval. An instance of IloException is thrown if two
intervals with different types overlap. The resulting interval list is defined on the same
interval as the arguments. See also: IloIntervalList.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 431

IloUnion
IloUnion

Category Global Function

Definition File ilconcert/ilosetfunc.h

Synopsis public IloNumToAnySetStepFunction IloUnion(const IloNumToAnySetStepFunction
f1,
 const IloNumToAnySetStepFunction f2)

Summary Represents a function equal to the union of the functions.

Description This operator creates and returns a function equal to the union of the functions f1 and
f2. The argument functions f1 and f2 must be defined on the same interval. The
resulting function is defined on the same interval as the arguments. See also:
IloNumToAnySetStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 432

operator *
operator *

Category Global Function

Definition File ilconcert/ilonumfunc.h

Synopsis public IloNumToNumStepFunction operator *(const IloNumToNumStepFunction f1,
IloNum k)

public IloNumToNumStepFunction operator *(IloNum k,
 const IloNumToNumStepFunction f1)

Summary These operators create and return a function equal to the function f1 multiplied by a
factor k.

Description These operators create and return a function equal to the function f1 multiplied by a
factor k everywhere on the definition interval. The resulting function is defined on the
same interval as the argument function f1. See also: IloNumToNumStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 433

operator+
operator+

Category Global Function

Definition File ilconcert/ilonumfunc.h

Synopsis public IloNumToNumStepFunction operator+(const IloNumToNumStepFunction f1,
 const IloNumToNumStepFunction f2)

Summary This operator creates and returns a function equal the sum of the functions f1 and f2.

Description This operator creates and returns a function equal the sum of the functions f1 and f2.
The argument functions f1 and f2 must be defined on the same interval. The resulting
function is defined on the same interval as the arguments. See also:
IloNumToNumStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 434

operator-
operator-

Category Global Function

Definition File ilconcert/ilonumfunc.h

Synopsis public IloNumToNumStepFunction operator-(const IloNumToNumStepFunction f1,
 const IloNumToNumStepFunction f2)

Summary This operator creates and returns a function equal to the difference between functions
f1 and f2.

Description This operator creates and returns a function equal to the difference between functions
f1 and f2. The argument functions f1 and f2 must be defined on the same interval.
The resulting function is defined on the same interval as the arguments. See also:
IloNumToNumStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 435

operator<<
operator<<

Category Global Function

Definition File ilconcert/ilocsvreader.h

Synopsis public ostream & operator<<(ostream & out,
 const IloCsvLine & line)

Summary Overloaded operator for csv output.

Description This operator has been overloaded to treat an IloCsvLine object appropriately as
output. It directs its output to an output stream (normally, standard output) and displays
information about its second argument line.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 436

operator==
operator==

Category Global Function

Definition File ilconcert/ilointervals.h

Synopsis public IloBool operator==(const IloIntervalList intervals1,
 const IloIntervalList intervals2)

Summary Returns IloTrue for same interval lists. same.

Description This operator returns IloTrue if the interval lists are the same. That is, IloTrue is
returned if they have the same definition interval and if they contain the same intervals.
Note that it compares the content of the interval lists as well as the equality of
implementation pointer. See also IloIntervalList.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 437

operator==
operator==

Category Global Function

Definition File ilconcert/ilonumfunc.h

Synopsis public IloBool operator==(const IloNumToNumStepFunction f1,
 const IloNumToNumStepFunction f2)

Summary Overloaded operator tests equality of numeric functions.

Description This operator returns IloTrue if the functions f1 and f2 are the same. That is,
IloTrue is returned if they have the same definition interval and if they have the same
value over time. Note that it compares the content of the functions as well as the equality
of implementation pointer. See also: IloNumToNumStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 438

operator==
operator==

Category Global Function

Definition File ilconcert/ilosetfunc.h

Synopsis public IloBool operator==(const IloNumToAnySetStepFunction f1,
 const IloNumToAnySetStepFunction f2)

Summary overloaded operator.

Description This operator returns IloTrue if the functions are the same. That is, IloTrue is
returned if they have the same definition interval and if they have the same value over
time. Note that it compares the content of the functions as well as the equality of
implementation pointer. See also: IloNumToAnySetStepFunction.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 439

IloXmlContext
Group optim.concert.xml
 The ILOG Concert Serialization API.

DescriptionIloXmlContext

Category Class

InheritancePath

Definition File ilconcert/iloxmlcontext.h

Classes Summary
IloXmlContext

IloXmlInfo

IloXmlReader

IloXmlWriter

Constructor Summary
public IloXmlContext(IloEnv env,const char * name=0)

public IloXmlContext(IloXmlContextI * impl=0)

Method Summary
public void end()

public IloInt getChildIdReadError() const

public const char * getChildTagReadError() const

public IloIntArray getIdListReadError() const

public IloXmlContextI * getImpl() const

public IloInt getParentIdReadError() const

public const char * getParentTagReadError() const

public IloAnyArray getTagListReadError() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 440

IloXmlContext
Description An instance of IloXmlContext allows you to serialize an IloModel or an
IloSolution in XML.

You can write an IloModel using writeModel, write an IloSolution using
writeSolution, or write both using writeModelAndSolution.

You can read an IloModel in XML using readModel, read an IloSolution in
XML using readSolution, or read both using readModelAndSolution.

Other products should add their own serialization class and add them to the plug-in
using the member functions registerXML and registerXMLArray.

public const char * getWriteError() const

public int getWritePrecision() const

public IloBool readModel(IloModel model,istream & file) const

public IloBool readModel(IloModel model,const char *
fileName) const

public IloBool readModelAndSolution(IloModel model,const
char * modelFileName,IloSolution solution,const
char * solutionFileName) const

public IloBool readRtti(IloXmlReader reader,IloXmlElement *
element) const

public IloBool readSolution(IloSolution solution,istream &
file) const

public IloBool readSolution(IloSolution solution,const char *
fileName) const

public IloBool readSolutionValue(IloSolution
solution,IloXmlElement * root,IloXmlReader
reader) const

public void registerXML(IloTypeIndex index,IloXmlInfo *
xmlinfo) const

public void registerXMLArray(IloXmlInfo * xmlinfo) const

public IloBool setWriteMode(IloInt mode) const

public void setWritePrecision(int writePrecision) const

public IloBool writeModel(const IloModel model,const char *
fileName) const

public IloBool writeModelAndSolution(const IloModel
model,const char * modelFileName,const
IloSolution solution,const char *
solutionFileName) const

public IloBool writeRtti(const IloRtti * it,IloXmlWriter
writer,IloXmlElement * masterElement) const

public IloBool writeSolution(const IloSolution
solution,const char * fileName) const

public void writeSolutionValue(const IloExtractable
it,const IloSolution solution,IloXmlWriter
writer) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 441

IloXmlContext
 Examples

 For example, you can write:

 IloModel model(env);
IloSolution solution(env);
 ...;
 IloXmlContext context(env);
 context.writeModel(model, "model.xml");
 context.writeSolution(solution, "solution.xml");

or you can write

 IloModel model(env);
IloSolution solution(env);
IloXmlContext context(env);
context.readModel(model, "model.xml");
context.readSolution(solution, "solution.xml");

See Also IloXmlReader, IloXmlWriter, IloXmlInfo

Constructors public IloXmlContext(IloEnv env,
 const char * name=0)

 This constructor creates an XML context and makes it part of the environment env.

public IloXmlContext(IloXmlContextI * impl=0)

 This constructor creates a XML context from its implementation object.

Methods public void end()

This member function deletes the invoking XML context.

public IloInt getChildIdReadError() const

This member function returns the XML ID of the child unparsed XML element in cases
where a problem occurs when reading an IloModel.

public const char * getChildTagReadError() const

This member function returns the XML tag of the child unparsed XML element in cases
where a problem occurs when reading an IloModel

public IloIntArray getIdListReadError() const

This member function returns the XML ID list of the unparsed XML elements in cases
where a problem occurs when reading an IloModel. The list is composed of the tags
from the parent to the child elements.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 442

IloXmlContext
public IloXmlContextI * getImpl() const

 This member function returns the IloXmlContextI implementation.

public IloInt getParentIdReadError() const

This member function returns the XML ID of the parent unparsed XML element in
cases where a problem occurs when reading an IloModel.

public const char * getParentTagReadError() const

 This member function returns the XML tag of the parent unparsed XML element in
cases where a problem occurs when reading an IloModel.

public IloAnyArray getTagListReadError() const

This member function returns the XML tag list of the unparsed XML elements in cases
where a problem occurs when reading an IloModel. The list is composed of the tags
from the parent to the child elements.

public const char * getWriteError() const

This member function returns the name of the extractable called in cases where a
problem occurs when reading an IloModel.

public int getWritePrecision() const

 This member function returns the write precision for floats

public IloBool readModel(IloModel model,
 istream & file) const

 This member function reads model from an XML stream.

public IloBool readModel(IloModel model,
 const char * fileName) const

 This member function reads model from the XML file fileName.

public IloBool readModelAndSolution(IloModel model,
 const char * modelFileName,

IloSolution solution,
 const char * solutionFileName) const

 This member function reads model and solution from their respective XML files,
modelFileName and solutionFileName.

public IloBool readRtti(IloXmlReader reader,
 IloXmlElement * element) const

This member function tries to read all extractables from the XML element.

public IloBool readSolution(IloSolution solution,
 istream & file) const

This member function reads solution from an XML stream.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 443

IloXmlContext
public IloBool readSolution(IloSolution solution,
 const char * fileName) const

This member function reads solution from the XML file fileName.

public IloBool readSolutionValue(IloSolution solution,
 IloXmlElement * root,

IloXmlReader reader) const

 This member function reads an IloSolution object from an XML element.

public void registerXML(IloTypeIndex index,
IloXmlInfo * xmlinfo) const

This member function registers the serialization class of an extractable with a linked ID,
usually its RTTI index. In write mode, the RTTI index is used to catch the correct
serialization class.

In read mode, IloXmlInfo::getTagName is used to link the correct serialization
class to the correct tag.

 IlpXmlContext context(env);
 context.registerXML(IloAllDiffI::GetTypeIndex(), new (env)
IloXmlInfo_AllDiff(context));

public void registerXMLArray(IloXmlInfo * xmlinfo) const

This member function registers the serialization class of an array of extractables with a
linked ID.

 context.registerXMLArray(new (env) IloXmlInfo_SOS2Array(context));

public IloBool setWriteMode(IloInt mode) const

This member function sets the write mode. The write mode can be set to NoUnknown
or EvenUnknown. NoUnknown throws an exception if an attempt is made to serialize

Note: This member function only works if a model has already been
serialized.

Note: This member function only works if a model has already been
serialized.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 444

IloXmlContext
an unknown extractable. EvenUnknown writes a Unknown tag with the name of the
extractable in a type attribute.

public void setWritePrecision(int writePrecision) const

 This member function sets the write precision for floats. By default, there is no
rounding mode on an IloNum or an IloNumArray. You can also choose the no
rounding mode with the IloNoRoundingMode constant.

public IloBool writeModel(const IloModel model,
 const char * fileName) const

This member function writes model to the file fileNamein XML format.

public IloBool writeModelAndSolution(const IloModel model,
 const char * modelFileName,
 const IloSolution solution,
 const char * solutionFileName) const

This member function writes model to the file modelFileName and solution to
the file solutionFileName in XML format.

public IloBool writeRtti(const IloRtti * it,
IloXmlWriter writer,

 IloXmlElement * masterElement) const

This member function writes a specified extractable. It is used from the serialization
class of an extractable to write a embedded extractable.

The IloOr object calls this method on its constrained vars.

See Also IloXmlInfo::writeRtti

public IloBool writeSolution(const IloSolution solution,
 const char * fileName) const

This member function writes solution to the file fileName in XML format.

public void writeSolutionValue(const IloExtractable it,
 const IloSolution solution,

IloXmlWriter writer) const

This member function writes a specified extractable of a solution in XML. It is used
from the serialization class of an extractable to write an embedded extractable.

See Also IloXmlInfo::writeSolutionValue
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 445

IloXmlInfo
IloXmlInfo

Category Class

InheritancePath

Definition File ilconcert/iloxmlabstract.h

Constructor Summary
public IloXmlInfo(IloXmlContextI * context,const char

* version=0)

public IloXmlInfo()

Method Summary
public IloBool checkAttExistence(IloXmlReader

reader,IloXmlElement * element,const char *
attribute)

public IloBool checkExprExistence(IloXmlReader
reader,IloXmlElement * element,const char *
attribute,IloInt & id)

public IloXmlContextI * getContext()

protected IloBool getIntValArray(IloXmlReader
reader,IloXmlElement * element,IloIntArray &
intArray)

protected IloBool getNumValArray(IloXmlReader
reader,IloXmlElement * element,IloNumArray &
numArray)

public IloBool getRefInChild(IloXmlReader
reader,IloXmlElement * element,IloInt & id)

public virtual const char * getTag()

public virtual IloXmlElement
*

getTagElement(IloXmlWriter writer,const
IloRtti * exprI)

public static const char * IloXmlInfo::getTagName()

protected IloNumVar::Type getVarType(IloXmlReader reader,IloXmlElement *
element)

protected const char * getVersion()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 446

IloXmlInfo
protected virtual IloRtti * read(IloXmlReader reader,IloXmlElement *
element)

public virtual
IloExtractableArray *

readArrayFromXml(IloXmlReader
reader,IloXmlElement * element)

public virtual IloRtti * readFrom(IloXmlReader reader,IloXmlElement *
element)

public virtual
IloExtractableI *

readFromXml(IloXmlReader reader,IloXmlElement
* element)

public IloBool readRtti(IloXmlReader reader,IloXmlElement *
element)

public virtual IloBool readSolution(IloXmlReader reader,IloSolution
solution,IloXmlElement * element)

protected virtual
IloExtractableI *

readXml(IloXmlReader reader,IloXmlElement *
element)

protected virtual
IloExtractableArray *

readXmlArray(IloXmlReader
reader,IloXmlElement * element)

protected IloXmlElement * setBoolArray(IloXmlWriter writer,const
IloBoolArray Array)

public IloXmlElement * setCommonArrayXml(IloXmlWriter writer,const
IloExtractableArray * extractable)

public IloXmlElement * setCommonValueXml(IloXmlWriter writer,const
IloRtti * exprI)

public IloXmlElement * setCommonXml(IloXmlWriter writer,const
IloRtti * exprI)

protected IloXmlElement * setIntArray(IloXmlWriter writer,const
IloIntArray Array)

protected IloXmlElement * setIntSet(IloXmlWriter writer,const IloIntSet
Array)

protected IloXmlElement * setNumArray(IloXmlWriter writer,const
IloNumArray Array)

protected IloXmlElement * setNumSet(IloXmlWriter writer,const IloNumSet
Array)

protected void setVersion(const char * version)

public void setXml(IloXmlWriter writer,IloXmlElement *
element,const IloRtti * exprI)

public virtual int write(IloXmlWriter writer,const
IloExtractableArray *
extractable,IloXmlElement * masterElement)

public virtual IloBool write(IloXmlWriter writer,const IloRtti *
exprI,IloXmlElement * masterElement)

public IloBool writeExtractable(IloXmlWriter
writer,IloXmlElement * element,const
IloExtractable extractable,const char *
attribute=0)

public virtual IloBool writeRef(IloXmlWriter writer,const IloRtti *
exprI,IloXmlElement * masterElement)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 447

IloXmlInfo
public IloBool IloXmlInfo::writeRtti(IloXmlWriter
writer,IloXmlElement * element,const IloRtti *
rtti,const char * attribute=0)

public virtual void writeSolution(IloXmlWriter writer,const
IloSolution solution,const IloExtractable
extractable)

public void IloXmlInfo::writeSolutionValue(IloXmlWriter
writer,const IloSolution solution,IloXmlElement
* element,const IloRtti * rtti,const char *
attribute)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloSOS2Array
array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloSOS1Array
array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement *
element,IloSemiContVarArray array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement *
element,IloConstraintArray array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloRangeArray
array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloNumVarArray
array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement *
element,IloIntSetVarArray array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloNumExprArray
array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloIntExprArray
array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloBoolVarArray
array)

protected IloBool writeVarArray(IloXmlWriter
writer,IloXmlElement * element,IloIntVarArray
array)

public virtual IloBool writeXml(IloXmlWriter writer,const
IloExtractableI * exprI,IloXmlElement *
masterElement)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 448

IloXmlInfo
Description The class IloXmlInfo allows you to serialize an IloModel or an IloSolution
in XML.

Constructors public IloXmlInfo(IloXmlContextI * context,
 const char * version=0)

This constructor creates an instance of the handle class IloXmlInfo from a pointer to
an instance of the undocumented implementation class IloXmlContextI.

public IloXmlInfo()

This constructor creates an empty instance of the handle class IloXmlInfo.

Methods public IloBool checkAttExistence(IloXmlReader reader,
 IloXmlElement * element,
 const char * attribute)

Given a specified attribute, this member function checks element to establish whether
the attribute exists. If the attribute does not exist, this member function throws an
exception.

You can use this member function to dynamically validate an XML element.

public IloBool checkExprExistence(IloXmlReader reader,
 IloXmlElement * element,
 const char * attribute,

IloInt & id)

Given a specified attribute, this member function checks element to establish whether
the attribute exists, fills the id, and checks in the XML context memory whether an
object with this id exists.

You can use this member function to dynamically validate an XML element.

Example: in the read method of the IloDiff, check that the IdRef object is already
serialized

public IloXmlContextI * getContext()

This member function returns the related IloXmlContextI of the constructor.

protected IloBool getIntValArray(IloXmlReader reader,
 IloXmlElement * element,

IloIntArray & intArray)

This member function returns the contained IloIntArray in the XML element
element.

public virtual IloBool writeXmlRef(IloXmlWriter writer,const
IloExtractableI * exprI,IloXmlElement *
masterElement)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 449

IloXmlInfo
See Also IloXmlReader::string2IntArray

protected IloBool getNumValArray(IloXmlReader reader,
 IloXmlElement * element,

IloNumArray & numArray)

This member function returns the IloNumArray in the XML element element.

See Also IloXmlReader::string2NumArray

public IloBool getRefInChild(IloXmlReader reader,
 IloXmlElement * element,

IloInt & id)

 Given an XML element, this member function checks for the first value id or RefId
in the element and its children.

public virtual const char * getTag()

This member function returns the related XML tag.

public virtual IloXmlElement * getTagElement(IloXmlWriter writer,
 const IloRtti * exprI)

 For backward compatibility with 2.0 and the XML for IloExtractable objects, if this
method is not specialized, by default the getTagElement method with IloExtractableI
will be called

public static const char * getTagName()

 This static member function returns the linked XML tag of this serialization class.

protected IloNumVar::Type getVarType(IloXmlReader reader,
 IloXmlElement * element)

This member function returns the type of an IloNumVar - IloFloat, IloInt, or
IloBool - in the XML element element.

protected const char * getVersion()

This member function returns the version of the object.

protected virtual IloRtti * read(IloXmlReader reader,
 IloXmlElement * element)

This member function reads an IloRtti from the given XML element.

This is the method to specialize for each serialization class

 For backward compatibility with Concert 2.0 and the XML for IloExtractable objects,
by default the method readXml with IloExtractableI will be called

public virtual IloExtractableArray * readArrayFromXml(IloXmlReader reader,
 IloXmlElement * element)

This member function reads an array of IloRtti* from the given XML element.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 450

IloXmlInfo
This is the method to specialize when writing a serialization class for an array of
extractables.

public virtual IloRtti * readFrom(IloXmlReader reader,
 IloXmlElement * element)

This member function reads an IloRtti from the given XML element. It asks the
XML context to read the extractable in the XML child element using a call to
readRtti; it then calls readXml.

 For backward compatibility with Concert 2.0 and the XML for IloExtractable objects,
by default the method readFromXml with IloExtractableI will be called

public virtual IloExtractableI * readFromXml(IloXmlReader reader,
 IloXmlElement * element)

This member function reads an IloRtti from the given XML element. It asks the
XML context to read the extractable in the XML child element using a call to
readRtti; it then calls readXml.

public IloBool readRtti(IloXmlReader reader,
 IloXmlElement * element)

This member function asks the XML context to read the IloRtti in the child element
and then calls readFromXml to read the parent extractable.

public virtual IloBool readSolution(IloXmlReader reader,
IloSolution solution,

 IloXmlElement * element)

 This member function reads a variable for IloSolution from the XML element
element.

protected virtual IloExtractableI * readXml(IloXmlReader reader,
 IloXmlElement * element)

This member function reads an IloRtti from the given XML element.

This is the method to specialize for each serialization class

protected virtual IloExtractableArray * readXmlArray(IloXmlReader reader,
 IloXmlElement * element)

This member function reads an array of IloRtti* from the given XML element.

It is called by the XML context. It first asks the XML context to read from XML child
elements using a call to readRtti and then calls readArrayFromXml.

protected IloXmlElement * setBoolArray(IloXmlWriter writer,
 const IloBoolArray Array)

This member function creates an XML element containing the IloBoolArray.

See Also IloXmlWriter::IntArray2String
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 451

IloXmlInfo
public IloXmlElement * setCommonArrayXml(IloXmlWriter writer,
 const IloExtractableArray *
extractable)

This member function creates a XML element with the common header for
IloExtractable arrays.

public IloXmlElement * setCommonValueXml(IloXmlWriter writer,
 const IloRtti * exprI)

This member function creates an XML element with the given header for IloRtti
from IloSolution.

public IloXmlElement * setCommonXml(IloXmlWriter writer,
 const IloRtti * exprI)

This member function creates an XML element with the common header for IloRtti.

protected IloXmlElement * setIntArray(IloXmlWriter writer,
 const IloIntArray Array)

This member function creates an XML element containing the IloIntArray.

See Also IloXmlWriter::IntArray2String

protected IloXmlElement * setIntSet(IloXmlWriter writer,
 const IloIntSet Array)

 This member function creates an XML element containing the IloIntSet.

See Also IloXmlWriter::IntSet2String

protected IloXmlElement * setNumArray(IloXmlWriter writer,
 const IloNumArray Array)

This member function creates an XML element containing the IloNumArray.

See Also IloXmlWriter::NumArray2String

protected IloXmlElement * setNumSet(IloXmlWriter writer,
 const IloNumSet Array)

 This member function creates an XML element containing the IloNumSet.

See Also IloXmlWriter::NumSet2String

protected void setVersion(const char * version)

This member function sets the version of the object.

public void setXml(IloXmlWriter writer,
 IloXmlElement * element,
 const IloRtti * exprI)

This member function adds a name attribute and a ID attribute to the XML element.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 452

IloXmlInfo
public virtual int write(IloXmlWriter writer,
 const IloExtractableArray * extractable,
 IloXmlElement * masterElement)

This member function writes the given IloExtractableArray in XML and adds it
to the XML document of writer. This is the method to specialize when writing a
serialization class

public virtual IloBool write(IloXmlWriter writer,
 const IloRtti * exprI,
 IloXmlElement * masterElement)

This member function writes the IloRtti object exprI in XML and adds it to the
XML document of the IloXmlWriter object writer.

 For backward compatibility with Concert 2.0 and the XML for IloExtractable objects,
by default the method writeXml with IloExtractableI will be called

public IloBool writeExtractable(IloXmlWriter writer,
 IloXmlElement * element,
 const IloExtractable extractable,
 const char * attribute=0)

See
IloXmlContext::writeRtti(IloXmlWriter,IloXmlElement*,const
IloRtti*,const char*) instead. There is no longer need for the extractable
argument.

public virtual IloBool writeRef(IloXmlWriter writer,
 const IloRtti * exprI,
 IloXmlElement * masterElement)

This member function writes the IloRtti object exprI in XML as a reference.

 For backward compatibility with Concert 2.0 and the XML for IloExtractable objects,
by default the method writeXmlRef with IloExtractableI will be called

public IloBool writeRtti(IloXmlWriter writer,
 IloXmlElement * element,
 const IloRtti * rtti,
 const char * attribute=0)

This member function writes an embedded extractable. Using the getId() method of
the extractable, it adds an attribute with the ID in the XML element.

For example, used with IloDiff, this member function writes the expression and links
it to the XML element via an IdRef attribute.

 // using an IloDiffI* exprI:
 writeRtti(writer, element,
 (IloRtti*)exprI->getExpr1(),
 IloXmlAttributeDef::Expr1Id);
 writeRtti(writer, element,
 (IloRtti*)exprI->getExpr2(),
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 453

IloXmlInfo
 IloXmlAttributeDef::Expr2Id);
 *

See Also writeRtti

public virtual void writeSolution(IloXmlWriter writer,
 const IloSolution solution,
 const IloExtractable extractable)

 This member function writes the specified extractable extractable from the
IloSolutionsolution in XML format.

public void writeSolutionValue(IloXmlWriter writer,
 const IloSolution solution,
 IloXmlElement * element,
 const IloRtti * rtti,
 const char * attribute)

This member function writes an embedded extractable of a solution in XML. Using the
getId() method of the extractable, it adds an attribute with the ID in the XML
element.

For example, used with IloDiff, this member function writes the expression and links
it to the XML element via an IdRef attribute.

See Also writeSolutionValue

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloSOS2Array array)

This member function writes an IloSOS2Array. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloSOS2s of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloSOS1Array array)

This member function writes an IloSOS1Array. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloSOS1s of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloSemiContVarArray array)

This member function writes an IloSemiContVarArray. It adds an attribute in the
XML element element with the ID of array, serializes array, and, if necessary,
serializes the IloSemiContVars of array.

protected IloBool writeVarArray(IloXmlWriter writer,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 454

IloXmlInfo
 IloXmlElement * element,
IloConstraintArray array)

This member function writes an IloConstraintArray. It adds an attribute in the
XML element element with the ID of array, serializes array, and, if necessary,
serializes the IloConstraints of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloRangeArray array)

This member function writes an IloRangeArray. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloRanges of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloNumVarArray array)

This member function writes an IloNumVarArray. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloNumVars of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloIntSetVarArray array)

This member function writes an IloIntSetVarArray. It adds an attribute in the
XML element element with the ID of array, serializes array, and, if necessary,
serializes the IloIntSetVars of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloNumExprArray array)

This member function writes an IloNumExprArray. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloNumExprs of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloIntExprArray array)

This member function writes an IloIntExprArray. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloIntExprs of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloBoolVarArray array)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 455

IloXmlInfo
This member function writes an IloBoolVarArray. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloBoolVars of array.

protected IloBool writeVarArray(IloXmlWriter writer,
 IloXmlElement * element,

IloIntVarArray array)

This member function writes an IloIntVarArray. It adds an attribute in the XML
element element with the ID of array, serializes array, and, if necessary,
serializes the IloIntVars of array.

Example using IloSos containing an IloIntVarArray:

 // Using an IloSOS1I* exprI;
 this.writeVarArray(writer,
 element,
 exprI->getVarArray(),
 IloXmlAttributeDef::IdRef);

This sample adds an IdRef attribute on the SOS XML element, creates an XML
element containing the IloIntVarArray with the list of IloIntVar IDs, and
creates a list of XML elements for the IloIntVars.

public virtual IloBool writeXml(IloXmlWriter writer,
 const IloExtractableI * exprI,
 IloXmlElement * masterElement)

This member function writes the IloRtti object exprI in XML and adds it to the
XML document of the IloXmlWriter object writer.

public virtual IloBool writeXmlRef(IloXmlWriter writer,
 const IloExtractableI * exprI,
 IloXmlElement * masterElement)

This member function writes the IloRtti object exprI in XML as a reference.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 456

IloXmlReader
IloXmlReader

Category Class

InheritancePath

Definition File ilconcert/iloreader.h

Constructor Summary
public IloXmlReader(IloEnv env,const char *

fileName=0)

public IloXmlReader(IloXmlReaderI * impl)

Method Summary
public IloBool checkRttiOfObjectById(IloTypeIndex

RTTI,IloRtti * exprI)

public IloBool checkRttiOfObjectById(IloTypeIndex
RTTI,IloInt Xml_Id)

public IloBool checkTypeOfObjectById(IloTypeInfo type,IloInt
Xml_Id)

public IloBool checkTypeOfObjectById(IloTypeInfo type,IloRtti
* exprI)

public void deleteAllocatedMemory(const char * pointer)

public void deleteAllocatedMemory(char * pointer)

public IloXmlElement * findElement(IloXmlElement * root,const char *
tag,const char * attribute,const char * value)

public IloXmlElement * findElementByTag(IloXmlElement * element,const
char * tag)

public IloInt getChildrenCardinal(IloXmlElement * element)

public IloEnv getEnv()

public IloEnvI * getEnvImpl()

public IloXmlElement * getFirstSubElement(IloXmlElement * element)

public IloBool getIntAttribute(IloXmlElement * element,const
char * attribute,IloInt & value)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 457

IloXmlReader
Description You can use an instance of IloXmlReader to read an IloModel or a
IloSolution in XML format.

Constructors public IloXmlReader(IloEnv env,
 const char * fileName=0)

This constructor creates an IloXmlReader object and makes it part of the
environment env.

The fileName is set to 0 by default.

public IloXmlReader(IloXmlReaderI * impl)

This constructor creates an XML reader from its implementation object.

Methods public IloBool checkRttiOfObjectById(IloTypeIndex RTTI,
 IloRtti * exprI)

This method checks the RTTI of the given object.

public IloBool checkRttiOfObjectById(IloTypeIndex RTTI,
IloInt Xml_Id)

public IloBool getNumAttribute(IloXmlElement * element,const
char * attribute,IloNum & value)

public IloAny getObjectById(IloInt id)

public IloXmlElement * getRoot()

public IloIntArray * getSerialized()

public IloIntArray * getSolutionSerialized()

public IloBool isSerialized(IloInt id)

public IloBool openDocument()

public const char * readAttribute(IloXmlElement * element,const
char * attribute)

public const char * readCData(IloXmlElement * element)

public const char * readComment(IloXmlElement * element)

public const char * readData(IloXmlElement * element)

public const char * readText(IloXmlElement * element)

public void setfileName(const char * fileName)

public IloInt string2Int(const char * str)

public IloIntArray IloXmlReader::string2IntArray(const char *
str)

public IloIntRange string2IntRange(IloXmlElement * element)

public IloIntSet string2IntSet(const char * str)

public IloNum string2Num(const char * str)

public IloNumArray IloXmlReader::string2NumArray(const char *
str)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 458

IloXmlReader
This method checks the RTTI of the object referenced by the identifier Xml_Id in the
XML. This object must already be serialized.

public IloBool checkTypeOfObjectById(IloTypeInfo type,
IloInt Xml_Id)

This method checks the TypeInfo of the object referenced by the id in the XML. This
object must have been already serialized.

public IloBool checkTypeOfObjectById(IloTypeInfo type,
 IloRtti * exprI)

This method checks the TypeInfo of the given object

public void deleteAllocatedMemory(const char * pointer)

This member function frees the memory that has been allocated by the XML reader
using, for example, the IloXmlWriter::Int2String member function.

public void deleteAllocatedMemory(char * pointer)

This member function frees the memory that has been allocated by the XML reader
using, for example, the IloXmlWriter::Int2String member function.

public IloXmlElement * findElement(IloXmlElement * root,
 const char * tag,
 const char * attribute,
 const char * value)

This member function examines the XML element root to identify the XML child
element denoted by tag, attribute, and value.

public IloXmlElement * findElementByTag(IloXmlElement * element,
 const char * tag)

This member function examines the XML element element to identify the XML child
element denoted by tag.

public IloInt getChildrenCardinal(IloXmlElement * element)

 This member function counts the number of child elements of the XML element
element.

public IloEnv getEnv()

 This member function gets the IloEnv of the object.

public IloEnvI * getEnvImpl()

 This member function gets the implementation of the IloEnv of the object.

public IloXmlElement * getFirstSubElement(IloXmlElement * element)

This member function gets the first child in the XML element element.

public IloBool getIntAttribute(IloXmlElement * element,
 const char * attribute,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 459

IloXmlReader
IloInt & value)

This member function checks the existence of attribute in the XML element
element and converts it to an IloInt.

public IloBool getNumAttribute(IloXmlElement * element,
 const char * attribute,

IloNum & value)

This member function checks the existence of attribute in the XML element
element and converts it to an IloNum.

public IloAny getObjectById(IloInt id)

 This member function gets the already serialized object of the given identifier id.

 IloDiff Diff(reader.getEnv(),
IloExpr((IloNumExprI*)reader.getObjectById(IdExpr1)),
IloExpr((IloNumExprI*)reader.getObjectById(IdExpr2)),

 reader.readAttribute(element,
IloXmlAttributeDef::Name));

The sample code creates a IloDiff from a XML element referencing its two
expressions with the attributes IdRef1 and IdRef2.

public IloXmlElement * getRoot()

This member function gets the XML root, that is, the XML document without the
header.

public IloIntArray * getSerialized()

This member function gets the IDs of the serialized extractables and the unique IDs of
the array of extractables that were serialized from the model.

public IloIntArray * getSolutionSerialized()

 This member function gets the IDs of the serialized extractables and the unique IDs of
the array of extractables that were serialized from the solution.

public IloBool isSerialized(IloInt id)

This member function checks whether the extractable with the ID id in the model has
already been serialized.

public IloBool openDocument()

This member function opens the XML document specified in the constructor or with the
setFileName method.

public const char * readAttribute(IloXmlElement * element,
 const char * attribute)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 460

IloXmlReader
 This member function returns the value of the attribute in the XML element
element.

public const char * readCData(IloXmlElement * element)

 This member function reads the CDATA of the XML element element.

public const char * readComment(IloXmlElement * element)

 This member function returns the value of the comment in the XML element
element.

public const char * readData(IloXmlElement * element)

 This member function reads the data of the XML element element.

public const char * readText(IloXmlElement * element)

 This member function returns the value of the text contained in the XML element
element, independently of its origin (data or CDATA).

public void setfileName(const char * fileName)

This member function sets fileName as the file from which to read the XML.

public IloInt string2Int(const char * str)

This member function converts str into an IloInt.

public IloIntArray string2IntArray(const char * str)

This member function converts str into an IloIntArray.

public IloIntRange string2IntRange(IloXmlElement * element)

This member function converts str into an IloIntRange.

public IloIntSet string2IntSet(const char * str)

This member function converts str into an IloIntSet.

public IloNum string2Num(const char * str)

This member function converts str into an IloNum.

public IloNumArray string2NumArray(const char * str)

This member function converts str into an IloNumArray.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 461

IloXmlWriter
IloXmlWriter

Category Class

InheritancePath

Definition File ilconcert/ilowriter.h

Constructor Summary
public IloXmlWriter(IloEnv env,const char *

rootTag,const char * fileName=0)

public IloXmlWriter(IloXmlWriterI * impl)

Method Summary
public void addAttribute(IloXmlElement * element,const char

* attribute,const char * value)

public void addCData(IloXmlElement * element,const char *
CData)

public void addComment(IloXmlElement * element,const char *
comment)

public void addElement(IloXmlElement * element)

public void addSubElement(IloXmlElement *
element,IloXmlElement * subElement)

public void addText(IloXmlElement * element,const char *
text)

public IloXmlElement * createElement(const char * element)

public void deleteAllocatedMemory(const char * pointer)

public void deleteAllocatedMemory(char * pointer)

public IloEnv getEnv()

public IloEnvI * getEnvImpl()

public const char * getfileName()

public IloXmlElement * getRoot()

public IloIntArray * getSerialized()

public IloIntArray * getSolutionSerialized()

public const char * IloXmlWriter::Int2String(const IloInt number)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 462

IloXmlWriter
Description You can use an instance of IloXmlWriter to serialize an IloModel or an
IloSolution in XML.

Constructors public IloXmlWriter(IloEnv env,
 const char * rootTag,
 const char * fileName=0)

This constructor creates an IloXmlWriter object and makes it part of the
environment env.

The fileName is set to 0 by default.

public IloXmlWriter(IloXmlWriterI * impl)

This constructor creates a XML writer object from its implementation object.

Methods public void addAttribute(IloXmlElement * element,
 const char * attribute,
 const char * value)

This member function adds an attribute of the specified value to the XML element.

public void addCData(IloXmlElement * element,
 const char * CData)

This member function adds a CDATA section to the XML element element.

public void addComment(IloXmlElement * element,
 const char * comment)

This member function adds comment to the XML element element.

public void addElement(IloXmlElement * element)

This member function adds the XML element element to the end of the XML.

public const char * IloXmlWriter::IntArray2String(const
IloIntArray intArray)

public const char * IloXmlWriter::IntSet2String(const IloIntSet
intSet)

public IloBool isSerialized(IloInt id)

public IloBool isSolutionSerialized(IloInt id)

public const char * Num2String(const IloNum number)

public const char * IloXmlWriter::NumArray2String(const
IloNumArray numArray)

public const char * IloXmlWriter::NumSet2String(const IloNumSet
numSet)

public void setfileName(const char * fileName)

public IloInt string2Int(const char * str)

public IloBool writeDocument()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 463

IloXmlWriter
public void addSubElement(IloXmlElement * element,
 IloXmlElement * subElement)

This member function adds a child element, subElement, to the XML element
element.

public void addText(IloXmlElement * element,
 const char * text)

This member function adds text to the specified element.

public IloXmlElement * createElement(const char * element)

This member function creates an empty element with the given tag, element.

public void deleteAllocatedMemory(const char * pointer)

This member function frees the memory that has been allocated by the XML reader
using, for example, the IloXmlWriter::Int2String member function.

public void deleteAllocatedMemory(char * pointer)

This member function frees the memory that has been allocated by the XML reader
using, for example, the IloXmlWriter::Int2String member function.

public IloEnv getEnv()

This member function gets the IloEnv of the object.

public IloEnvI * getEnvImpl()

 This member function gets the implementation of the IloEnv of the object.

public const char * getfileName()

This member function returns the name of the XML file

public IloXmlElement * getRoot()

This member function gets the root XML element of the XML document.

public IloIntArray * getSerialized()

This member function gets the IDs of the serialized objects of an IloModel.

public IloIntArray * getSolutionSerialized()

This member function gets the IDs of the serialized objects of an IloSolution.

public const char * Int2String(const IloInt number)

This member function converts the IloInt object number into a string, const
char*.

public const char * IntArray2String(const IloIntArray intArray)

This member function converts the IloIntArray object intArray into a string,
const char*.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 464

IloXmlWriter
public const char * IntSet2String(const IloIntSet intSet)

This member function converts the IloIntSet object intSet into a string, const
char*.

public IloBool isSerialized(IloInt id)

This member function checks whether an object has been serialized.

public IloBool isSolutionSerialized(IloInt id)

This member function checks whether a solution object has already been serialized.

public const char * Num2String(const IloNum number)

This member function converts the IloNum object number into a string, const
char*.

public const char * NumArray2String(const IloNumArray numArray)

This member function converts the IloNumArray object numArray into a string,
const char*.

public const char * NumSet2String(const IloNumSet numSet)

This member function converts the IloNumSet object numSet into a string, const
char*.

public void setfileName(const char * fileName)

This member function specifies fileName as the name of the XML file.

public IloInt string2Int(const char * str)

This member function converts str into an IloInt.

public IloBool writeDocument()

This member function outputs the XML to the file specified in the constructor or using
the setFileName method. If null, this member function outputs on the cout io.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 465

IloXmlWriter
Group optim.cplex.cpp
 The API of ILOG CPLEX for users of C++.

Classes Summary
ControlCallbackI::PresolvedV
ariableException

IloBound

IloCplex

IloCplex::Aborter

IloCplex::BarrierCallbackI

IloCplex::BranchCallbackI

IloCplex::Callback

IloCplex::CallbackI

IloCplex::ContinuousCallback
I

IloCplex::ControlCallbackI

IloCplex::CrossoverCallbackI

IloCplex::CutCallbackI

IloCplex::DisjunctiveCutCall
backI

IloCplex::DisjunctiveCutInfo
CallbackI

IloCplex::Exception

IloCplex::FlowMIRCutCallback
I

IloCplex::FlowMIRCutInfoCall
backI

IloCplex::FractionalCutCallb
ackI

IloCplex::FractionalCutInfoC
allbackI

IloCplex::Goal

IloCplex::GoalI

IloCplex::HeuristicCallbackI

IloCplex::IncumbentCallbackI

IloCplex::InvalidCutExceptio
n

IloCplex::LazyConstraintCall
backI

IloCplex::MIPCallbackI

IloCplex::MIPInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 466

IloXmlWriter
IloCplex::MultipleConversion
Exception

IloCplex::MultipleObjExcepti
on

IloCplex::NetworkCallbackI

IloCplex::NodeCallbackI

IloCplex::NodeEvaluator

IloCplex::NodeEvaluatorI

IloCplex::OptimizationCallba
ckI

IloCplex::ParameterSet

IloCplex::PresolveCallbackI

IloCplex::ProbingCallbackI

IloCplex::ProbingInfoCallbac
kI

IloCplex::SearchLimit

IloCplex::SearchLimitI

IloCplex::SimplexCallbackI

IloCplex::SolveCallbackI

IloCplex::TuningCallbackI

IloCplex::UnknownExtractable
Exception

IloCplex::UserCutCallbackI

MIPCallbackI::NodeData

ParameterSet::Iterator

Macros Summary
ILOBARRIERCALLBACK0

ILOBRANCHCALLBACK0

ILOCONTINUOUSCALLBACK0

ILOCPLEXGOAL0

ILOCROSSOVERCALLBACK0

ILOCUTCALLBACK0

ILODISJUNCTIVECUTCALLBACK0

ILODISJUNCTIVECUTINFOCALLBAC
K0

ILOFLOWMIRCUTCALLBACK0

ILOFLOWMIRCUTINFOCALLBACK0

ILOFRACTIONALCUTCALLBACK0
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 467

IloXmlWriter
ILOFRACTIONALCUTINFOCALLBACK
0

ILOHEURISTICCALLBACK0

ILOINCUMBENTCALLBACK0

ILOLAZYCONSTRAINTCALLBACK0

ILOMIPCALLBACK0

ILOMIPINFOCALLBACK0

ILONETWORKCALLBACK0

ILONODECALLBACK0

ILOPRESOLVECALLBACK0

ILOPROBINGCALLBACK0

ILOPROBINGINFOCALLBACK0

ILOSIMPLEXCALLBACK0

ILOSOLVECALLBACK0

ILOTUNINGCALLBACK0

ILOUSERCUTCALLBACK0

Enumerations Summary
BranchCallbackI::BranchType

Callback::Type

ControlCallbackI::IntegerFea
sibility

GoalI::BranchType

GoalI::IntegerFeasibility

IloBound::Type

IloCplex::Algorithm

IloCplex::BasisStatus

IloCplex::BoolParam

IloCplex::BranchDirection

IloCplex::ConflictStatus

IloCplex::CplexStatus

IloCplex::CutType

IloCplex::DeleteMode

IloCplex::DualPricing

IloCplex::IntParam

IloCplex::MIPEmphasisType

IloCplex::MIPsearch

IloCplex::NodeSelect

IloCplex::NumParam
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 468

IloXmlWriter
Description What is IloCplex?

IloCplex is a Concert Technology class derived from IloAlgorithm. Instances of
this class are capable of solving optimization problems of the following types:

◆ Linear Programs (LPs),

◆ Mixed Integer Linear Programs (MILPs),

◆ Mixed Integer Programs (MIPs),

◆ Quadratic Programs (QPs),

◆ Mixed Integer Quadratic Programs (MIQPs),

◆ Quadratically Constrained Programs (QCPs);

◆ Mixed Integer Quadratically Constrained Programs (MIQCPs).

 An instance of IloCplex can extract and solve models consisting of the following
Concert Technology extractables:

IloCplex::Parallel_Mode

IloCplex::PrimalPricing

IloCplex::Quality

IloCplex::Relaxation

IloCplex::StringParam

IloCplex::TuningStatus

IloCplex::VariableSelect

Type Definitions Summary
ControlCallbackI::IntegerFea
sibilityArray

GoalI::IntegerFeasibilityArr
ay

IloCplex::BasisStatusArray

IloCplex::BranchDirectionArr
ay

IloCplex::ConflictStatusArra
y

 Extractable Class Used to Model
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 469

IloXmlWriter
 What is special about this set of extractable classes recognized by IloCplex is that
models consisting of these objects can be transformed into mathematical programming
problems of the form:

 When all variables are continuous and Q is zero, problems of this form are known as
Linear Programs (LPs). If Q is not zero, such problems are known as Quadratic
Programs (QPs). If any variables are integer, semi-continuous, or Boolean, such
problems are called Mixed Integer Programs (MIPs). A MIP with a zero Q matrix is
called a Mixed Integer Linear Program (MILP), and a MIP with a non-zero Q is called
a Mixed Integer Quadratic Program (MIQP). If there are quadratic constraints in the
problem, and its variables are continuous, it is known as a Quadratically Constrained
Program (QCP). If in addition to the quadratic constraints, there are discrete variables in
the problem (such as integer, Boolean, or semi-continuous variables), then it is known as
MIQCP.

◆ Objects of the class IloNumVar represent modeling variables. They are defined
by the lower and upper bounds of the variable, and the type of the variable. The type
of the variable can be one of these:

IloNumVar numeric variables

IloSemiContVar semi-continuous or semi-integer
variables

IloObjective at most one objective function with
linear, piecewise linear, or quadratic
expressions

IloRange range constraints with linear or
piecewise linear expressions

IloConstraint ranged constraints of the form
expr1relationexpr, where expr1
indicates a linear, logical, or
quadratic expression and the relation
less than or equal to or the relation
greater than or equal to; constraints
can be combined by logical operators

IloConversion variable type conversions

IloModel submodels

IloSOS1 special ordered sets of type 1

IloSOS2 special ordered sets of type 2

IloAnd constraint clauses
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 470

IloXmlWriter
◆ ILOFLOAT, for continuous,

◆ ILOINT, for integer,

◆ ILOBOOL, for Boolean variables.

◆ Objects of the class IloSemiContVar represent semi-continuous variables. A
semi-continous variable may be 0 (zero) or may take a value within an interval
defined by its semi-continuous lower and upper bounds. Semi-continuous variables
are usually defined as continuous variables, but you can designate an instance of
IloSemiContVar as integer by using the type indicator it inherits from
IloNumVar.

◆ Objects of the class IloObjective represent objective functions of optimization
models. IloCplex deals with models containing at most one objective function,
and the objective function must be linear, piecewise linear, or quadratic.

◆ Objects of the class IloRange represent constraints of the form: lower bound
<= expression <= upper bound. Any floating-point value or +/-
IloInfinity can be used for the bounds.

◆ Objects of the class IloConversion change the type of a variable in a model.
This class allows you to use the same variable with different types in different
models.

◆ Objects of the class IloModel represent models which consist of extractable
objects. They can be used to create submodels or additional models in a given
environment.

◆ Objects of the class IloSOS1 represent type 1 Special Ordered Sets (SOSs). A
type 1 SOS specifies that at most one variable from a set of variables may take a
nonzero value. Similarly, objects of the class IloSOS2 represent type 2 SOSs. A
type 2 SOS specifies that at most two variables from a set of variables may take
nonzero values and that these two variables must be neighbors with respect to a
specified order of the variables. SOS1 are rarely used and SOS2 are mostly used to
model piecewise linear functions, for which Concert Technology provides direct
support (with the class IloPiecewiseLinear).

◆ Objects of the class IloAnd are used in conjunction with objects of the class
IloSolution.

IloCplex Optimizer Options

An instance of the class IloCplex is not really only one algorithm, but, in fact,
consists of a set of highly configurable algorithms, also known as optimizer options.
They include primal and dual simplex algorithms, barrier algorithm, a sifting algorithm,
a network simplex algorithm, and a branch & cut algorithm for MIPs. Though in most
cases IloCplex can be used like a black box, the optimizer options can be selected
individually to provide a wealth of parameters that allow you to fine tune the algorithm
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 471

IloXmlWriter
to your particular model. In the case of the mixed integer optimizer, you can use your
own goals or callbacks and directly control the branch & cut search carried out by
IloCplex.

 The most general kind of problem is a MIP. You might think of the LPs as a subset of
MIPs: an LP is a problem in which the model is:

◆ without integer variables,

◆ without Boolean variables,

◆ without semi-continuous variables,

◆ without piecewise linear functions,

◆ without a quadratic component in the objective function,

◆ without quadratic constraints,

◆ and without a special ordered set (SOS).

For linear programming problems (LPs), a variety of additional solution information can
be queried. These queries include dual information or, with the appropriate optimizer
option, basis information. Sensitivity analysis allows you to analyze how you can
modify your model while preserving the same solution. Or, if your model is infeasible,
the infeasibility finder enables you to analyze the source of the infeasibility.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 472

ILOBARRIERCALLBACK0
ILOBARRIERCALLBACK0

Category Macro

Synopsis ILOBARRIERCALLBACK0(name)
ILOBARRIERCALLBACK1(name, type1, x1)
ILOBARRIERCALLBACK2(name, type1, x1, type2, x2)
ILOBARRIERCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOBARRIERCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOBARRIERCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOBARRIERCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOBARRIERCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of method
duplicateCallback as required for callbacks. The implementation of the main
method must be provided in curly brackets {} by the user and must follow the macro
invocation, like this:

 ILOBARRIERCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::BarrierCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::BarrierCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 473

ILOBRANCHCALLBACK0
ILOBRANCHCALLBACK0

Category Macro

Synopsis ILOBRANCHCALLBACK0(name)
ILOBRANCHCALLBACK1(name, type1, x1)
ILOBRANCHCALLBACK2(name, type1, x1, type2, x2)
ILOBRANCHCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOBRANCHCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOBRANCHCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOBRANCHCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOBRANCHCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOBRANCHCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::BranchCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::BranchCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 474

ILOCONTINUOUSCALLBACK0
ILOCONTINUOUSCALLBACK0

Category Macro

Synopsis ILOCONTINUOUSCALLBACK0(name)
ILOCONTINUOUSCALLBACK1(name, type1, x1)
ILOCONTINUOUSCALLBACK2(name, type1, x1, type2, x2)
ILOCONTINUOUSCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOCONTINUOUSCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOCONTINUOUSCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5)

ILOCONTINUOUSCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6)

ILOCONTINUOUSCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of method
duplicateCallback as required for callbacks. The implementation of the main
method must be provided in curly brackets {} by the user and must follow the macro
invocation, like this:

 ILOCONTINUOUSCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::ContinuousCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::ContinuousCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 475

ILOCPLEXGOAL0
ILOCPLEXGOAL0

Category Macro

Synopsis ILOCPLEXGOAL0(name)
ILOCPLEXGOAL1(name, type0, var0)
ILOCPLEXGOAL2(name, type0, var0, type1, var1)
ILOCPLEXGOAL3(name, type0, var0, type1, var1, type2, var2)
ILOCPLEXGOAL4(name, t0, v0, t1, v1, t2, v2, t3, v3)
ILOCPLEXGOAL5(name, t0, v0, t1, v1, t2, v2, t3, v3, t4, v4)
ILOCPLEXGOAL6(name, t0, v0, t1, v1, t2, v2, t3, v3, t4, v4, t5, v5)

Description This macro defines a user goal class named nameI and a constructor named name with
n data members, where n is the number following ILOCPLEXGOAL. The first
parameter of this macro is always the name of the constructor to be created. What
follows are n pairs of parameters, each parameter specifying a data member of the goal.
The first parameter of such a pair specifies the type of the data member and is denoted as
Ti in the macro definition above. The second parameter of such a pair, denoted by
datai, specifies the data member's name.

The constructor name created by this function will have IloEnvenv as its first
argument, followed by n additional arguments. The constructor creates a new instance
of the user-written goal class nameI and populates its data members with the arguments
following IloEnvenv in the function argument list. The constructor name is what
you should use to create new goal objects.

The call to the macro must be followed immediately by the execute method of the
goal class. This method must be enclosed in curly brackets, as shown in the examples
that follow. The macro will also generate an implementation of the method
duplicateGoal that simply calls the default constructor for the new class nameI.

You are not obliged to use this macro to define goals. In particular, if your data members
do not permit the use of the default constructor as an implementation of the method
duplicateGoal or the default destructor, you must subclass IloCplex::GoalI
directly and implement those methods appropriately.

Since the argument name is used to construct the name of the goal's implementation
class, it is not possible to use the same name for several goal definitions.

Example

Here's how to define a goal with one data member:

 ILOCPLEXGOAL1(PrintX, IloInt, x) {
 IloEnv env = getEnv();
 env.out() << "PrintX: a goal with one data member" <<
 endl;
 env.out() << x << endl;
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 476

ILOCPLEXGOAL0
 return 0;
 }

This macro generates code similar to the following lines:

 class PrintXI : public IloCplex::GoalI {
 public:
 IloInt x;
 PrintXI(IloEnv env, IloInt arg1)
 IloCplex::Goal execute();
 IloCplex::Goal duplicateGoal();
 };

 PrintXI::PrintXI(IloEnv env, IloInt arg1) :
 IloCplex::GoalI(env),
 x(arg1) {
 }

 IloCplex::Goal PrintX(IloEnv env, IloInt x) {
 return new PrintXI(env, x);
 }

 IloCplex::Goal PrintXI::execute() {
 IloEnv env = getEnv();
 env.out() << "PrintX: a goal with one data member" <<
 endl;
 env.out() << x << endl;
 return 0;
 }

 IloCplex::Goal PrintXI::duplicateGoal() {
 return new PrintXI(getEnv(), x);
 }
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 477

ILOCROSSOVERCALLBACK0
ILOCROSSOVERCALLBACK0

Category Macro

Synopsis ILOCROSSOVERCALLBACK0(name)
ILOCROSSOVERCALLBACK1(name, type1, x1)
ILOCROSSOVERCALLBACK2(name, type1, x1, type2, x2)
ILOCROSSOVERCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOCROSSOVERCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOCROSSOVERCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5)

ILOCROSSOVERCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6)

ILOCROSSOVERCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOCROSSOVERCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::CrossoverCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::CallbackI, IloCplex::CrossoverCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 478

ILOCUTCALLBACK0
ILOCUTCALLBACK0

Category Macro

Synopsis ILOCUTCALLBACK0(name)
ILOCUTCALLBACK1(name, type1, x1)
ILOCUTCALLBACK2(name, type1, x1, type2, x2)
ILOCUTCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOCUTCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOCUTCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5)
ILOCUTCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5,
type6, x6)

ILOCUTCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5,
type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle to it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOCUTCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::CutCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::CutCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 479

ILODISJUNCTIVECUTCALLBACK0
ILODISJUNCTIVECUTCALLBACK0

Category Macro

Synopsis ILODISJUNCTIVECUTCALLBACK0(name)
ILODISJUNCTIVECUTCALLBACK1(name, type1, x1)
ILODISJUNCTIVECUTCALLBACK2(name, type1, x1, type2, x2)
ILODISJUNCTIVECUTCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILODISJUNCTIVECUTCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4,
x4)

ILODISJUNCTIVECUTCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5)

ILODISJUNCTIVECUTCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5, type6, x6)

ILODISJUNCTIVECUTCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle to it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILODISJUNCTIVECUTCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::DisjunctiveCutCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::DisjunctiveCutCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 480

ILODISJUNCTIVECUTINFOCALLBACK0
ILODISJUNCTIVECUTINFOCALLBACK0

Category Macro

Synopsis ILODISJUNCTIVECUTINFOCALLBACK0(name)
ILODISJUNCTIVECUTINFOCALLBACK1(name, type1, x1)
ILODISJUNCTIVECUTINFOCALLBACK2(name, type1, x1, type2, x2)
ILODISJUNCTIVECUTINFOCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILODISJUNCTIVECUTINFOCALLBACK4(name, type1, x1, type2, x2, type3, x3,
type4, x4)

ILODISJUNCTIVECUTINFOCALLBACK5(name, type1, x1, type2, x2, type3, x3,
type4, x4, type5, x5)

ILODISJUNCTIVECUTINFOCALLBACK6(name, type1, x1, type2, x2, type3, x3,
type4, x4, type5, x5, type6, x6)

ILODISJUNCTIVECUTINFOCALLBACK7(name, type1, x1, type2, x2, type3, x3,
type4, x4, type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle to it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILODISJUNCTIVECUTINFOCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::DisjunctiveCutInfoCallbackI and its parent classes can be
used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::DisjunctiveCutInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 481

ILOFLOWMIRCUTCALLBACK0
ILOFLOWMIRCUTCALLBACK0

Category Macro

Synopsis ILOFLOWMIRCUTCALLBACK0(name)
ILOFLOWMIRCUTCALLBACK1(name, type1, x1)
ILOFLOWMIRCUTCALLBACK2(name, type1, x1, type2, x2)
ILOFLOWMIRCUTCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOFLOWMIRCUTCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOFLOWMIRCUTCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5)

ILOFLOWMIRCUTCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6)

ILOFLOWMIRCUTCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first argument, followed by the n
arguments specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOFLOWMIRCUTCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::FlowMIRCutCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, ILOG recommends that you define a callback class
directly. Since the argument name is used to name the callback class, it is not possible to
use the same name for several callback definitions.

See Also IloCplex::FlowMIRCutCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 482

ILOFLOWMIRCUTINFOCALLBACK0
ILOFLOWMIRCUTINFOCALLBACK0

Category Macro

Synopsis ILOFLOWMIRCUTINFOCALLBACK0(name)
ILOFLOWMIRCUTINFOCALLBACK1(name, type1, x1)
ILOFLOWMIRCUTINFOCALLBACK2(name, type1, x1, type2, x2)
ILOFLOWMIRCUTINFOCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOFLOWMIRCUTINFOCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4,
x4)

ILOFLOWMIRCUTINFOCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5)

ILOFLOWMIRCUTINFOCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5, type6, x6)

ILOFLOWMIRCUTINFOCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first argument, followed by the n
arguments specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOFLOWMIRINFOCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::FlowMIRCutInfoCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, ILOG recommends that you define a callback class
directly. Since the argument name is used to name the callback class, it is not possible to
use the same name for several callback definitions.

See Also IloCplex::FlowMIRCutInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 483

ILOFRACTIONALCUTCALLBACK0
ILOFRACTIONALCUTCALLBACK0

Category Macro

Synopsis ILOFRACTIONALCUTCALLBACK0(name)
ILOFRACTIONALCUTCALLBACK1(name, type1, x1)
ILOFRACTIONALCUTCALLBACK2(name, type1, x1, type2, x2)
ILOFRACTIONALCUTCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOFRACTIONALCUTCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOFRACTIONALCUTCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5)

ILOFRACTIONALCUTCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6)

ILOFRACTIONALCUTCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOFRACTIONALCUTCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::FractionalCutCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::FractionalCutCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 484

ILOFRACTIONALCUTINFOCALLBACK0
ILOFRACTIONALCUTINFOCALLBACK0

Category Macro

Synopsis ILOFRACTIONALCUTINFOCALLBACK0(name)
ILOFRACTIONALCUTINFOCALLBACK1(name, type1, x1)
ILOFRACTIONALCUTINFOCALLBACK2(name, type1, x1, type2, x2)
ILOFRACTIONALCUTINFOCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOFRACTIONALCUTINFOCALLBACK4(name, type1, x1, type2, x2, type3, x3,
type4, x4)

ILOFRACTIONALCUTINFOCALLBACK5(name, type1, x1, type2, x2, type3, x3,
type4, x4, type5, x5)

ILOFRACTIONALCUTINFOCALLBACK6(name, type1, x1, type2, x2, type3, x3,
type4, x4, type5, x5, type6, x6)

ILOFRACTIONALCUTINFOCALLBACK7(name, type1, x1, type2, x2, type3, x3,
type4, x4, type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOFRACTIONALCUTINFOCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::FractionalCutInfoCallbackI and its parent classes can be
used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::FractionalCutInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 485

ILOHEURISTICCALLBACK0
ILOHEURISTICCALLBACK0

Category Macro

Synopsis ILOHEURISTICCALLBACK0(name)
ILOHEURISTICCALLBACK1(name, type1, x1)
ILOHEURISTICCALLBACK2(name, type1, x1, type2, x2)
ILOHEURISTICCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOHEURISTICCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOHEURISTICCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5)

ILOHEURISTICCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6)

ILOHEURISTICCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOHEURISTICCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::HeuristicCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::HeuristicCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 486

ILOINCUMBENTCALLBACK0
ILOINCUMBENTCALLBACK0

Category Macro

Synopsis ILOINCUMBENTCALLBACK0(name)
ILOINCUMBENTCALLBACK1(name, type1, x1)
ILOINCUMBENTCALLBACK2(name, type1, x1, type2, x2)
ILOINCUMBENTCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOINCUMBENTCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOINCUMBENTCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5)

ILOINCUMBENTCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6)

ILOINCUMBENTCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOINCUMBENTCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::IncumbentCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::IncumbentCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 487

ILOLAZYCONSTRAINTCALLBACK0
ILOLAZYCONSTRAINTCALLBACK0

Category Macro

Synopsis ILOLAZYCONSTRAINTCALLBACK0(name)
ILOLAZYCONSTRAINTCALLBACK1(name, type1, x1)
ILOLAZYCONSTRAINTCALLBACK2(name, type1, x1, type2, x2)
ILOLAZYCONSTRAINTCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOLAZYCONSTRAINTCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4,
x4)

ILOLAZYCONSTRAINTCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5)

ILOLAZYCONSTRAINTCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5, type6, x6)

ILOLAZYCONSTRAINTCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4,
x4, type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined lazy
constraint callback named nameI and a function named name that creates an instance
of this class and returns an IloCplex::Callback handle for it. This function needs
to be called with an environment as first parameter followed by the n parameters
specified at the macro execution in order to create a callback. You can then use the
callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of method
makeClone as required for callbacks. The implementation of the main method must
be provided in curly brackets {} by the user and must follow the macro invocation, like
this:

 ILOLAZYCONSTRAINTCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::LazyConstraintCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::LazyConstraintCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 488

ILOMIPCALLBACK0
ILOMIPCALLBACK0

Category Macro

Synopsis ILOMIPCALLBACK0(name)
ILOMIPCALLBACK1(name, type1, x1)
ILOMIPCALLBACK2(name, type1, x1, type2, x2)
ILOMIPCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOMIPCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOMIPCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5)
ILOMIPCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5,
type6, x6)

ILOMIPCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5,
type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOMIPCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::MIPCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::MIPCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 489

ILOMIPINFOCALLBACK0
ILOMIPINFOCALLBACK0

Category Macro

Synopsis ILOMIPINFOCALLBACK0(name)
ILOMIPINFOCALLBACK1(name, type1, x1)
ILOMIPINFOCALLBACK2(name, type1, x1, type2, x2)
ILOMIPINFOCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOMIPINFOCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOMIPINFOCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOMIPINFOCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOMIPINFOCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOMIPINFOCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::MIPInfoCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::MIPInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 490

ILONETWORKCALLBACK0
ILONETWORKCALLBACK0

Category Macro

Synopsis ILONETWORKCALLBACK0(name)
ILONETWORKCALLBACK1(name, type1, x1)
ILONETWORKCALLBACK2(name, type1, x1, type2, x2)
ILONETWORKCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILONETWORKCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILONETWORKCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILONETWORKCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILONETWORKCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILONETWORKCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::NetworkCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::NetworkCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 491

ILONODECALLBACK0
ILONODECALLBACK0

Category Macro

Synopsis ILONODECALLBACK0(name)
ILONODECALLBACK1(name, type1, x1)
ILONODECALLBACK2(name, type1, x1, type2, x2)
ILONODECALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILONODECALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILONODECALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5)
ILONODECALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5,
type6, x6)

ILONODECALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5, x5,
type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILONODECALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::NodeCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::NodeCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 492

ILOPRESOLVECALLBACK0
ILOPRESOLVECALLBACK0

Category Macro

Synopsis ILOPRESOLVECALLBACK0(name)
ILOPRESOLVECALLBACK1(name, type1, x1)
ILOPRESOLVECALLBACK2(name, type1, x1, type2, x2)
ILOPRESOLVECALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOPRESOLVECALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOPRESOLVECALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOPRESOLVECALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOPRESOLVECALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOPRESOLVECALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::PresolveCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::PresolveCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 493

ILOPROBINGCALLBACK0
ILOPROBINGCALLBACK0

Category Macro

Synopsis ILOPROBINGCALLBACK0(name)
ILOPROBINGCALLBACK1(name, type1, x1)
ILOPROBINGCALLBACK2(name, type1, x1, type2, x2)
ILOPROBINGCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOPROBINGCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOPROBINGCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOPROBINGCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOPROBINGCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOPROBINGCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::ProbingCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::ProbingCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 494

ILOPROBINGINFOCALLBACK0
ILOPROBINGINFOCALLBACK0

Category Macro

Synopsis ILOPROBINGINFOCALLBACK0(name)
ILOPROBINGINFOCALLBACK1(name, type1, x1)
ILOPROBINGINFOCALLBACK2(name, type1, x1, type2, x2)
ILOPROBINGINFOCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOPROBINGINFOCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOPROBINGINFOCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5)

ILOPROBINGINFOCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6)

ILOPROBINGINFOCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4,
type5, x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOPROBINGINFOCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::ProbingInfoCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::ProbingInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 495

ILOSIMPLEXCALLBACK0
ILOSIMPLEXCALLBACK0

Category Macro

Synopsis ILOSIMPLEXCALLBACK0(name)
ILOSIMPLEXCALLBACK1(name, type1, x1)
ILOSIMPLEXCALLBACK2(name, type1, x1, type2, x2)
ILOSIMPLEXCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOSIMPLEXCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOSIMPLEXCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOSIMPLEXCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOSIMPLEXCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOSIMPLEXCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::SimplexCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::SimplexCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 496

ILOSOLVECALLBACK0
ILOSOLVECALLBACK0

Category Macro

Synopsis ILOSOLVECALLBACK0(name)
ILOSOLVECALLBACK1(name, type1, x1)
ILOSOLVECALLBACK2(name, type1, x1, type2, x2)
ILOSOLVECALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOSOLVECALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOSOLVECALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOSOLVECALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOSOLVECALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first parameter, followed by the n
parameters specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOSOLVECALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::SolveCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::SolveCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 497

ILOTUNINGCALLBACK0
ILOTUNINGCALLBACK0

Category Macro

Synopsis ILOTUNINGCALLBACK0(name)
ILOTUNINGCALLBACK1(name, type1, x1)
ILOTUNINGCALLBACK2(name, type1, x1, type2, x2)
ILOTUNINGCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOTUNINGCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOTUNINGCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOTUNINGCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOTUNINGCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined callback
named nameI and a function named name that creates an instance of this class and
returns a handle for it, that is, an instance of IloCplex::Callback. This function
needs to be called with an environment as its first argument, followed by the n
arguments specified at the macro execution in order to create a callback. You can then
use the callback by passing it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method duplicateCallback as required for callbacks. The implementation of the
main method must be provided in curly brackets {} by the user and must follow the
macro invocation, like this:

 ILOTUNINGCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::TuningCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, ILOG recommends that you define a callback class
directly. Since the argument name is used to name the callback class, it is not possible to
use the same name for several callback definitions.

See Also IloCplex::TuningCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 498

ILOUSERCUTCALLBACK0
ILOUSERCUTCALLBACK0

Category Macro

Synopsis ILOUSERCUTCALLBACK0(name)
ILOUSERCUTCALLBACK1(name, type1, x1)
ILOUSERCUTCALLBACK2(name, type1, x1, type2, x2)
ILOUSERCUTCALLBACK3(name, type1, x1, type2, x2, type3, x3)
ILOUSERCUTCALLBACK4(name, type1, x1, type2, x2, type3, x3, type4, x4)
ILOUSERCUTCALLBACK5(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5)

ILOUSERCUTCALLBACK6(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6)

ILOUSERCUTCALLBACK7(name, type1, x1, type2, x2, type3, x3, type4, x4, type5,
x5, type6, x6, type7, x7)

Description This macro creates two things: an implementation class for a user-defined user cut
callback named nameI and a function named name that creates an instance of this class
and returns an IloCplex::Callback handle for it. This function needs to be called
with an environment as first parameter followed by the n parameters specified at the
macro execution in order to create a callback. You can then use the callback by passing
it to the use method of an IloCplex object.

The class nameI that is created by the macro includes the implementation of the
method makeClone as required for callbacks. The implementation of the main
method must be provided in curly brackets {} by the user and must follow the macro
invocation, like this:

 ILOUSERCUTCALLBACKn(name, ...) {

 // implementation of the callback

 }

For the implementation of the callback, methods from the class
IloCplex::UserCutCallbackI and its parent classes can be used.

You are not obliged to use this macro to define callbacks. When the macro seems too
restrictive for your purposes, we recommend that you define a callback class directly.
Since the argument name is used to name the callback class, it is not possible to use the
same name for several callback definitions.

See Also IloCplex::UserCutCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 499

IloBound
IloBound

Category Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
public IloBound()

public IloBound(IloBoundI * impl)

public IloBound(IloNumVar var,IloBound::Type type)

Method Summary
public IloBoundI * getImpl() const

public IloBound::Type getType()

public IloNumVar getVar()

Inherited methods from IloConstraint
IloConstraint::getImpl
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 500

IloBound
Description This class represents a bound as a constraint in a conflict.

Constructors public IloBound()

 This constructor creates an empty handle. You must initialize it before you use it.

public IloBound(IloBoundI * impl)

 This constructor creates a handle object from a pointer to an implementation object.

public IloBound(IloNumVar var,
IloBound::Type type)

This constructor creates a bound for use in conflicts.

Inherited methods from IloIntExprArg
IloIntExprArg::getImpl

Inherited methods from IloNumExprArg
IloNumExprArg::getImpl

Inherited methods from IloExtractable
IloExtractable::asConstraint, IloExtractable::asIntExpr,
IloExtractable::asModel, IloExtractable::asNumExpr,
IloExtractable::asObjective, IloExtractable::asVariable,
IloExtractable::end, IloExtractable::getEnv, IloExtractable::getId,
IloExtractable::getImpl, IloExtractable::getName,
IloExtractable::getObject, IloExtractable::isConstraint,
IloExtractable::isIntExpr, IloExtractable::isModel,
IloExtractable::isNumExpr, IloExtractable::isObjective,
IloExtractable::isVariable, IloExtractable::setName,
IloExtractable::setObject

Inner Enumeration
IloBound::Type
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 501

IloBound
Methods public IloBoundI * getImpl() const

 This member function returns a pointer to the implementation object of the invoking
handle.

public IloBound::Type getType()

Accesses the bound specified by the invoking object.

public IloNumVar getVar()

Accesses the variable for which the invoking object specifies a bound.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 502

IloBound::Type
IloBound::Type

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis Type{
 Lower,
 Upper
};

Description This enumeration lists the types of bounds that may appear in a conflict.

Fields Lower
Upper
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 503

IloCplex
IloCplex

Category Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
public IloCplex(IloEnv env)

public IloCplex(const IloModel model)

Method Summary
public IloConstraint addCut(IloConstraint con)

public const
IloConstraintArray

addCuts(const IloConstraintArray con)

public FilterIndex addDiversityFilter(IloNum lower_cutoff,IloNum
upper_cutoff,const IloIntVarArray vars,const
IloNumArray weights,const IloNumArray
refval,const char * fname=0)

public FilterIndex addDiversityFilter(IloNum lower_cutoff,IloNum
upper_cutoff,const IloNumVarArray vars,const
IloNumArray weights,const IloNumArray
refval,const char * fname=0)

public IloConstraint addLazyConstraint(IloConstraint con)

public const
IloConstraintArray

addLazyConstraints(const IloConstraintArray
con)

public FilterIndex addRangeFilter(IloNum,IloNum,const
IloIntVarArray,const IloNumArray,const char
*=0)

public FilterIndex addRangeFilter(IloNum,IloNum,const
IloNumVarArray,const IloNumArray,const char
*=0)

public IloConstraint addUserCut(IloConstraint con)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 504

IloCplex
public const
IloConstraintArray

addUserCuts(const IloConstraintArray con)

public static IloCplex::Goal Apply(IloCplex cplex,IloCplex::Goal
goal,IloCplex::NodeEvaluator eval)

public void basicPresolve(const IloNumVarArray
vars,IloNumArray redlb=0,IloNumArray
redub=0,const IloRangeArray
rngs=0,IloBoolArray redundant=0) const

public void clearCuts()

public void clearLazyConstraints()

public void clearModel()

public void clearUserCuts()

public void delDirection(IloNumVar var)

public void delDirections(const IloNumVarArray var)

public void delFilter(FilterIndex filter)

public void delPriorities(const IloNumVarArray var)

public void delPriority(IloNumVar var)

public void delSolnPoolSoln(IloInt which)

public void delSolnPoolSolns(IloInt begin,IloInt end)

public IloNum dualFarkas(IloConstraintArray
rng,IloNumArray y)

public void exportModel(const char * filename) const

public IloBool feasOpt(const IloConstraintArray cts,const
IloNumArray prefs)

public IloBool feasOpt(const IloRangeArray rngs,const
IloNumArray rnglb,const IloNumArray rngub)

public IloBool feasOpt(const IloNumVarArray vars,const
IloNumArray varlb,const IloNumArray varub)

public IloBool feasOpt(const IloRangeArray rngs,const
IloNumArray rnglb,const IloNumArray
rngub,const IloNumVarArray vars,const
IloNumArray varlb,const IloNumArray varub)

public void freePresolve()

public IloCplex::Aborter getAborter()

public IloCplex::Algorithm getAlgorithm() const

public void getAX(IloNumArray val,const IloRangeArray
con) const

public IloNum getAX(const IloRange range) const

public IloCplex::BasisStatus getBasisStatus(const IloConstraint con) const

public IloCplex::BasisStatus getBasisStatus(const IloIntVar var) const

public IloCplex::BasisStatus getBasisStatus(const IloNumVar var) const

public void getBasisStatuses(IloCplex::BasisStatusArray
cstat,const IloNumVarArray
var,IloCplex::BasisStatusArray rstat,const
IloConstraintArray con) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 505

IloCplex
public void getBasisStatuses(IloCplex::BasisStatusArray
stat,const IloConstraintArray con) const

public void getBasisStatuses(IloCplex::BasisStatusArray
stat,const IloNumVarArray var) const

public IloNum getBestObjValue() const

public void getBoundSA(IloNumArray lblower,IloNumArray
lbupper,IloNumArray ublower,IloNumArray
ubupper,const IloNumVarArray vars) const

public
IloCplex::ConflictStatus

getConflict(IloConstraint con) const

public
IloCplex::ConflictStatusArra
y

getConflict(IloConstraintArray cons) const

public IloCplex::CplexStatus getCplexStatus() const

public IloCplex::CplexStatus getCplexSubStatus() const

public IloNum getCutoff() const

public IloBool getDefault(IloCplex::BoolParam parameter)
const

public IloCplex::DeleteMode getDeleteMode() const

public
IloCplex::BranchDirection

getDirection(IloNumVar var) const

public void getDirections(IloCplex::BranchDirectionArra
y dir,const IloNumVarArray var) const

public IloExtractable getDiverging() const

public IloNum getDiversityFilterLowerCutoff(FilterIndex
filter) const

public void getDiversityFilterRefVals(FilterIndex
filter,IloNumArray) const

public IloNum getDiversityFilterUpperCutoff(FilterIndex
filter) const

public void getDiversityFilterWeights(FilterIndex
filter,IloNumArray) const

public IloNum getDual(const IloRange range) const

public void getDuals(IloNumArray val,const IloRangeArray
con) const

public FilterIndex getFilterIndex(const char * lname_str) const

public FilterType getFilterType(FilterIndex filter) const

public void getFilterVars(FilterIndex
filter,IloNumVarArray) const

public IloInt getIncumbentNode() const

public IloNum getInfeasibilities(IloNumArray infeas,const
IloIntVarArray var) const

public IloNum getInfeasibilities(IloNumArray infeas,const
IloNumVarArray var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 506

IloCplex
public IloNum getInfeasibilities(IloNumArray infeas,const
IloConstraintArray con) const

public IloNum getInfeasibility(const IloIntVar var) const

public IloNum getInfeasibility(const IloNumVar var) const

public IloNum getInfeasibility(const IloConstraint con)
const

public IloInt getMax(IloCplex::IntParam parameter) const

public IloInt getMin(IloCplex::IntParam parameter) const

public IloInt getNbarrierIterations() const

public IloInt getNbinVars() const

public IloInt getNcols() const

public IloInt getNcrossDExch() const

public IloInt getNcrossDPush() const

public IloInt getNcrossPExch() const

public IloInt getNcrossPPush() const

public IloInt getNcuts(IloCplex::CutType which) const

public IloInt getNdualSuperbasics() const

public IloInt getNfilters() const

public IloInt getNintVars() const

public IloInt getNiterations() const

public IloInt getNnodes() const

public IloInt getNnodesLeft() const

public IloInt getNNZs() const

public IloInt getNphaseOneIterations() const

public IloInt getNprimalSuperbasics() const

public IloInt getNQCs() const

public IloInt getNrows() const

public IloInt getNsemiContVars() const

public IloInt getNsemiIntVars() const

public IloInt getNsiftingIterations() const

public IloInt getNsiftingPhaseOneIterations() const

public IloInt getNSOSs() const

public IloObjective getObjective() const

public void getObjSA(IloNumArray lower,IloNumArray
upper,const IloNumVarArray vars) const

public IloNum getObjValue(IloInt soln) const

public IloBool getParam(IloCplex::BoolParam parameter) const

public
IloCplex::ParameterSet

getParameterSet()

public void getPriorities(IloNumArray pri,const
IloNumVarArray var) const

public IloNum getPriority(IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 507

IloCplex
public IloNum getQuality(IloCplex::Quality q,IloInt
soln,IloConstraint * rng,IloNumVar * var=0)
const

public IloNum getQuality(IloCplex::Quality q,IloNumVar *
var=0,IloConstraint * rng=0) const

public void getRangeFilterCoefs(FilterIndex
filter,IloNumArray) const

public IloNum getRangeFilterLowerBound(FilterIndex filter)
const

public IloNum getRangeFilterUpperBound(FilterIndex filter)
const

public void getRangeSA(IloNumArray lblower,IloNumArray
lbupper,IloNumArray ublower,IloNumArray
ubupper,const IloRangeArray con) const

public void getRay(IloNumArray vals,IloNumVarArray vars)
const

public IloNum getReducedCost(const IloIntVar var) const

public IloNum getReducedCost(const IloNumVar var) const

public void getReducedCosts(IloNumArray val,const
IloIntVarArray var) const

public void getReducedCosts(IloNumArray val,const
IloNumVarArray var) const

public void getRHSSA(IloNumArray lower,IloNumArray
upper,const IloRangeArray cons) const

public IloNum getSlack(const IloRange range,IloInt soln=-1)
const

public void getSlacks(IloNumArray val,const
IloRangeArray con,IloInt soln=-1) const

public IloNum getSolnPoolMeanObjValue() const

public IloInt getSolnPoolNreplaced() const

public IloInt getSolnPoolNsolns() const

public IloAlgorithm::Status getStatus() const

public IloCplex::Algorithm getSubAlgorithm() const

public IloNum getValue(const IloObjective ob,IloInt soln)
const

public IloNum getValue(const IloNumExprArg expr,IloInt
soln) const

public IloNum getValue(const IloIntVar var,IloInt soln)
const

public IloNum getValue(const IloNumVar var,IloInt soln)
const

public void getValues(const IloIntVarArray
var,IloNumArray val,IloInt soln) const

public void getValues(IloNumArray val,const
IloIntVarArray var,IloInt soln) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 508

IloCplex
public void getValues(IloNumArray val,const
IloNumVarArray var,IloInt soln) const

public void getValues(const IloIntVarArray
var,IloNumArray val) const

public void getValues(IloNumArray val,const
IloIntVarArray var) const

public void getValues(const IloNumVarArray
var,IloNumArray val) const

public void getValues(IloNumArray val,const
IloNumVarArray var) const

public const char * getVersion() const

public void importModel(IloModel & m,const char *
filename) const

public void importModel(IloModel & m,const char *
filename,IloObjective & obj,IloNumVarArray
vars,IloRangeArray rngs,IloRangeArray
lazy=0,IloRangeArray cuts=0) const

public void importModel(IloModel & model,const char *
filename,IloObjective & obj,IloNumVarArray
vars,IloRangeArray rngs,IloSOS1Array
sos1,IloSOS2Array sos2,IloRangeArray
lazy=0,IloRangeArray cuts=0) const

public IloBool isDualFeasible() const

public IloBool isMIP() const

public IloBool isPrimalFeasible() const

public IloBool isQC() const

public IloBool isQO() const

public static IloCplex::Goal LimitSearch(IloCplex cplex,IloCplex::Goal
goal,IloCplex::SearchLimit limit)

public IloBool populate()

public void presolve(IloCplex::Algorithm alg)

public void protectVariables(const IloIntVarArray var)

public void protectVariables(const IloNumVarArray var)

public void qpIndefCertificate(IloNumVarArray
var,IloNumArray x)

public void readBasis(const char * name) const

public FilterIndexArray readFilters(const char * name)

public void readMIPStart(const char * name) const

public void readOrder(const char * filename) const

public void readParam(const char * name) const

public void readSolution(const char * name) const

public IloBool refineConflict(IloConstraintArray
cons,IloNumArray prefs)

public void remove(IloCplex::Aborter abort)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 509

IloCplex
public void setBasisStatuses(const
IloCplex::BasisStatusArray cstat,const
IloNumVarArray var,const
IloCplex::BasisStatusArray rstat,const
IloConstraintArray con)

public void setDefaults()

public void setDeleteMode(IloCplex::DeleteMode mode)

public void setDirection(IloNumVar
var,IloCplex::BranchDirection dir)

public void setDirections(const IloNumVarArray var,const
IloCplex::BranchDirectionArray dir)

public void setParam(IloCplex::BoolParam
parameter,IloBool value)

public void setParameterSet(IloCplex::ParameterSet set)

public void setPriorities(const IloNumVarArray var,const
IloNumArray pri)

public void setPriority(IloNumVar var,IloNum pri)

public void setVectors(const IloNumArray x,const
IloNumArray dj,const IloNumVarArray var,const
IloNumArray slack,const IloNumArray pi,const
IloRangeArray rng)

public IloBool solve(IloCplex::Goal goal)

public IloBool solve()

public IloBool solveFixed(IloInt soln=-1)

public IloInt tuneParam(IloArray< const char *>
filename,IloCplex::ParameterSet fixedset)

public IloCplex::Callback use(IloCplex::Callback cb)

public IloCplex::Aborter use(IloCplex::Aborter abort)

public void writeBasis(const char * name) const

public void writeConflict(const char * filename) const

public void writeFilters(const char * name)

public void writeMIPStart(const char * name,IloInt soln=-
1) const

public void writeMIPStarts(const char * name) const

public void writeOrder(const char * filename) const

public void writeParam(const char * name) const

public void writeSolution(const char * name,IloInt soln=-
1) const

public void writeSolutions(const char * name) const

Inherited methods from IloAlgorithm
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 510

IloCplex
clear, end, error, extract, getEnv, getIntValue, getIntValues, getModel,
getObjValue, getStatus, getTime, getValue, getValue, getValue, getValue,
getValues, getValues, isExtracted, out, printTime, resetTime, setError,
setOut, setWarning, solve, warning

Inner Enumeration
IloCplex::Algorithm

IloCplex::BasisStatus

IloCplex::BoolParam

IloCplex::BranchDirection

IloCplex::ConflictStatus

IloCplex::CplexStatus

IloCplex::CutType

IloCplex::DeleteMode

IloCplex::DualPricing

IloCplex::IntParam

IloCplex::MIPEmphasisType

IloCplex::MIPsearch

IloCplex::NodeSelect

IloCplex::NumParam

IloCplex::Parallel_Mode

IloCplex::PrimalPricing

IloCplex::Quality

IloCplex::Relaxation

IloCplex::StringParam

IloCplex::TuningStatus

IloCplex::VariableSelect

Inner Class
IloCplex::IloCplex::GoalI

IloCplex::IloCplex::Goal

IloCplex::IloCplex::CutCallb
ackI

IloCplex::IloCplex::Heuristi
cCallbackI

IloCplex::IloCplex::BranchCa
llbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 511

IloCplex
IloCplex::IloCplex::ControlC
allbackI

IloCplex::IloCplex::Disjunct
iveCutCallbackI

IloCplex::IloCplex::FlowMIRC
utCallbackI

IloCplex::IloCplex::Fraction
alCutCallbackI

IloCplex::IloCplex::Disjunct
iveCutInfoCallbackI

IloCplex::IloCplex::FlowMIRC
utInfoCallbackI

IloCplex::IloCplex::Fraction
alCutInfoCallbackI

IloCplex::IloCplex::Crossove
rCallbackI

IloCplex::IloCplex::BarrierC
allbackI

IloCplex::IloCplex::Continuo
usCallbackI

IloCplex::IloCplex::Callback
I

IloCplex::IloCplex::Callback

IloCplex::IloCplex::Aborter

IloCplex::IloCplex::Exceptio
n

IloCplex::IloCplex::Paramete
rSet

IloCplex::IloCplex::Multiple
ObjException

IloCplex::IloCplex::Multiple
ConversionException

IloCplex::IloCplex::UnknownE
xtractableException

IloCplex::IloCplex::InvalidC
utException

IloCplex::IloCplex::TuningCa
llbackI

IloCplex::IloCplex::Optimiza
tionCallbackI

IloCplex::IloCplex::Presolve
CallbackI

IloCplex::IloCplex::SimplexC
allbackI

IloCplex::IloCplex::NetworkC
allbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 512

IloCplex
Description IloCplex derives from the class IloAlgorithm. Use it to solve Mathematical
Programming models, such as:

◆ LP (linear programming) problems,

◆ QP (programs with quadratic terms in the objective function),

IloCplex::IloCplex::MIPInfoC
allbackI

IloCplex::IloCplex::ProbingI
nfoCallbackI

IloCplex::IloCplex::MIPCallb
ackI

IloCplex::IloCplex::ProbingC
allbackI

IloCplex::IloCplex::Incumben
tCallbackI

IloCplex::IloCplex::NodeCall
backI

IloCplex::IloCplex::SolveCal
lbackI

IloCplex::IloCplex::UserCutC
allbackI

IloCplex::IloCplex::LazyCons
traintCallbackI

IloCplex::IloCplex::NodeEval
uatorI

IloCplex::IloCplex::NodeEval
uator

IloCplex::IloCplex::SearchLi
mitI

IloCplex::IloCplex::SearchLi
mit

Inner Type Def
IloCplex::IloCplex::BasisSta
tusArray

IloCplex::IloCplex::BranchDi
rectionArray

IloCplex::IloCplex::Conflict
StatusArray

IloCplex::IloCplex::Status An enumeration for the class IloAlgorithm.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 513

IloCplex
◆ QCP (quadratically constrained programming), including the special case of SOCP
(second order cone programming) problems, and

◆ MIP (mixed integer programming) problems.

 An algorithm (that is, an instance of IloAlgorithm) extracts a model in an
environment. The model extracted by an algorithm is known as the active model.

 More precisely, models to be solved by IloCplex should contain only
IloExtractable objects from the following list:

◆ variables: objects of type IloNumVar and its extensions IloIntVar and
IloSemiContVar

◆ range constraints: objects of type IloRange

◆ other relational constraints: objects of type IloConstraint of the form
expr1 relation expr2, where the relation is one of ==, >=, <=, or !=

◆ objective function: one object of type IloObjective

◆ variable type conversions: objects of type IloConversion

◆ special ordered sets: objects of type IloSOS1 or IloSOS2

The expressions used in the constraints and objective function handled by IloCplex
are built from variables of those listed types and can be linear or quadratic. In addition,
expressions may contain the following constructs:

◆ minimum:IloMin

◆ maximum:IloMax

◆ absolute value:IloAbs

◆ piecewise linear functions:IloPiecewiseLinear

 Expressions that evaluate only to 0 (zero) and 1 (one) are referred to as Boolean
expressions. Such expressions also support:

◆ negation:operator !

◆ conjunction:operator && or, equivalently, IloAnd

◆ disjunction:operator || or, equivalently, IloOr

 Moreover, Boolean expressions can be constucted not only from variables, but also
from constraints.

IloCplex will automatically transform all of these constructs into an equivalent
representation amenable to IloCplex. Such models can be represented in the
following way:
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 514

IloCplex
 Minimize (or Maximize) c'x + x'Qx
 subject to L <= Ax <= U
 a_i'x + x'Q_i x <= r_i, for i = 1, ..., q
 l <= x <= u.

That is, in fact, the standard math programming matrix representation that IloCplex
uses internally. A is the matrix of linear constraint coefficients, and L and U are the
vectors of lower and upper bounds on the vector of variables in the array x. The Q
matrix must be positive semi-definite (or negative semi-definite in the maximization
case) and represents the quadratic terms of the objective function. The matrices Q_i
must be positive semi-definite and represent the quadratic terms of the i-th quadratic
constraint. The a_i are vectors containing the correponding linear terms. For details
about the Q_i, see the chapter about quadratically constrained programs (QCP) in the
ILOG CPLEX User's Manual.

 Special ordered sets (SOS) fall outside the conventional representation in terms of A
and Q matrices and are stored separately.

 If the model contains integer, Boolean, or semi-continuous variables, or if the model
has special ordered sets (SOSs), the model is referred to as a mixed integer program
(MIP). You can query whether the active model is a MIP with the method isMIP.

 A model with quadratic terms in the objective is referred to as a mixed integer
quadratic program (MIQP) if it is also a MIP, and a quadratic program (QP) otherwise.
You can query whether the active model has a quadratic objective by calling method
isQO.

 A model with quadratic constraints is referred to as a mixed integer quadratically
constrained program (MIQCP) if it is also a MIP, and as a quadratically constrained
program (QCP) otherwise. You can query whether the active model is quadratically
constrained by calling the method isQC. A QCP may or may not have a quadratic
objective; that is, a given problem may be both QP and QCP. Likewise, a MIQCP may
or may not have a quadratic objective; that is, a given problem may be both MIQP and
MIQCP.

If there are no quadratic terms in the objective, no integer constraints, and the problem
is not quadratically constrained, and all variables are continuous it is called a linear
program (LP).

 Information related to the matrix representation of the model can be queried through
these methods:

◆ getNcols for querying the number of columns of A,

◆ getNrows for querying the number of rows of A; that is, the number of linear
constraints,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 515

IloCplex
◆ getNQCs for querying the number of quadratic constraints,

◆ getNNZs for querying the number of nonzero elements in A, and

◆ getNSOSs for querying the number of special ordered sets (SOSs).

Additional information about the active model can be obtained through iterators defined
on the different types of modeling objects in the extracted or active model.

IloCplex effectively treats all models as MIQCP models. That is, it allows the most
general case, although the solution algorithms make efficient use of special cases, such
as taking advantage of the absence of quadratic terms in the formulation. The method
solve begins by solving the root relaxation of the MIQCP model, where all
integrality constraints and SOSs are ignored. If the model has no integrality constraints
or SOSs, then the optimization is complete once the root relaxation is solved. Otherwise,
IloCplex uses a branch and cut procedure to reintroduce the integrality constraints or
SOSs. See the ILOG CPLEX User's Manual for more information about branch & cut.

Most users can simply call solve to solve their models. However, several parameters
are available for users who require more control. These parameters are documented in
the ILOG CPLEX Parameter Reference Manual. Perhaps the most important
parameter is IloCplex::RootAlg, which determines the algorithm used to solve
the root relaxation. Possible settings, as defined in the class
IloCplex::Algorithm, are:

◆ IloCplex::Auto IloCplex automatically selects an algorithm. This is the default
setting.

◆ IloCplex::Primal Use the primal simplex algorithm. This option is not available for
quadratically constrained problems (QCPs).

◆ IloCplex::Dual Use the dual simplex algorithm. This option is not available for
quadratically constrained problems (QCPs).

◆ IloCplex::Network Use network simplex on the embedded network part of the
model, followed by dual simplex on the entire model. This option is not available
for quadratically constrained problems.

◆ IloCplex::Barrier Use the barrier algorithm.

◆ IloCplex::Sifting Use the sifting algorithm. This option is not available for
quadratic problems. If selected nonetheless, IloCplex defaults to the
IloCplex::Auto setting.

◆ IloCplex::Concurrent Use the several algorithms concurrently. This option is not
available for quadratic problems. If selected nonetheless, IloCplex defaults to the
IloCplex::Auto setting.

Numerous other parameters allow you to control algorithmic aspects of the optimizer.
See the nested enumerations IloCplex::IntParam,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 516

IloCplex
IloCplex::DoubleParam, and IloCplex#StringParam for further
information. Parameters are set with the method setParam.

Even higher levels of control can be achieved through goals (see IloCplex::Goal)
or through callbacks (see IloCplex::Callback and its extensions).

Information about a Solution

The solve method returns an IloBool value specifying whether (IloTrue) or not
(IloFalse) a solution (not necessarily the optimal one) has been found. Further
information about the solution can be queried with the method getStatus. The return
code of type IloAlgorithm::Status specifies whether the solution is feasible,
bounded, or optimal, or if the model has been proven to be infeasible or unbounded.

The method getCplexStatus provides more detailed information about the status
of the optimizer after solve returns. For example, it can provide information on why
the optimizer terminated prematurely (time limit, iteration limit, or other similar limits).
The methods isPrimalFeasible and isDualFeasible can determine whether
a primal or dual feasible solution has been found and can be queried.

 The most important solution information computed by IloCplex are usually the
solution vector and the objective function value. The method
IloCplex::getValue queries the solution vector. The method
IloCplex::getObjValue queries the objective function value. Most optimizers
also compute additional solution information, such as dual values, reduced costs,
simplex bases, and others. This additional information can also be queried through
various methods of IloCplex. If you attempt to retrieve solution information that is
not available from a particular optimizer, IloCplex will throw an exception.

If you are solving an LP and a basis is available, the solution can be further analyzed by
performing sensitivity analysis. This information tells you how sensitive the solution is
with respect to changes in variable bounds, constraint bounds, or objective coefficients.
The information is computed and accessed with the methods getBoundSA,
getRangeSA, getRHSSA, and getObjSA.

 An important consideration when you access solution information is the numeric
quality of the solution. Since IloCplex performs arithmetic operations using finite
precision, solutions are always subject to numeric errors. For most problems, numeric
errors are well within reasonable tolerances. However, for numerically difficult models,
you are advised to verify the quality of the solution using the method getQuality,
which offers a variety of quality measures.

More about Solving Problems

By default when the method solve is called, IloCplex first presolves the model;
that is, it transforms the model into a smaller, yet equivalent model. This operation can
be controlled with the following parameters:

◆ IloCplex::PreInd,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 517

IloCplex
◆ IloCplex::PreDual,

◆ IloCplex::AggInd, and

◆ IloCplex::AggFill.

For the rare occasion when a user wants to monitor progress during presolve, the
callback class IloCplex::PresolveCallbackI is provided.

After the presolve is completed, IloCplex solves the first node relaxation and (in
cases of a true MIP) enters the branch & cut process. IloCplex provides callback
classes that allow the user to monitor solution progress at each level. Callbacks derived
from IloCplex::ContinuousCallbackI or one of its derived classes are called
regularly during the solution of a node relaxation (including the root), and callbacks
derived from IloCplex::MIPCallbackI or one of its derived callbacks are called
regularly during branch & cut search. All callbacks provide the option to abort the
current optimization.

Branch Priorities and Directions

When a branch occurs at a node in the branch & cut tree, usually there is a set of
fractional-valued variables available to pick from for branching. IloCplex has several
built-in rules for making such a choice, and they can be controlled by the parameter
IloCplex::VarSel. Also, the method setPriority allows the user to specify
a priority order. An instance of IloCplex branches on variables with an assigned
priority before variables without a priority. It also branches on variables with higher
priority before variables with lower priority, when the variables have fractional values.

Frequently, when two new nodes have been created (controlled by the parameter
IloCplex::BtTol), one of the two nodes is processed next. This activity is known
as diving. The branch direction determines which of the branches, the up or the down
branch, is used when diving. By default, IloCplex automatically selects the branch
direction. The user can control the branch direction by the method setDirection.

As mentioned before, the greatest flexibility for controlling the branching during branch
& cut search is provided through goals (see IloCplex::Goal) or through the
callbacks (see IloCplex::BranchCallbackI). With these concepts, you can
control the branching decision based on runtime information during the search, instead
of statically through branch priorities and directions, but the default strategies work well
on many problems.

Cuts

An instance of IloCplex can also generate certain cuts in order to strengthen the
relaxation, that is, in order to make the relaxation a better approximation of the original
MIP. Cuts are constraints added to a model to restrict (cut away) noninteger solutions
that would otherwise be solutions of the relaxation. The addition of cuts usually reduces
the number of branches needed to solve a MIP.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 518

IloCplex
When solving a MIP, IloCplex tries to generate violated cuts to add to the problem
after solving a node. After IloCplex adds cuts, the subproblem is re-optimized.
IloCplex then repeats the process of adding cuts at a node and reoptimizing until it
finds no further effective cuts.

An instance of IloCplex generates its cuts in such a way that they are valid for all
subproblems, even when they are discovered during analysis of a particular node. After
a cut has been added to the problem, it will remain in the problem to the end of the
optimization. However, cuts are added only internally; that is, they will not be part of
the model extracted to the IloCplex object after the optimization. Cuts are most
frequently seen at the root node, but they may be added by an instance of IloCplex at
other nodes as conditions warrant.

IloCplex looks for various kinds of cuts that can be controlled by the following
parameters:

◆ IloCplex::Cliques,

◆ IloCplex::Covers,

◆ IloCplex::FlowCovers,

◆ IloCplex::GUBCovers,

◆ IloCplex::FracCuts,

◆ IloCplex::MIRCuts,

◆ IloCplex::FlowPaths,

◆ IloCplex::ImplBd, and

◆ IloCplex::DisjCuts.

During the search, you can query information about those cuts with a callback (see
IloCplex::MIPCallbackI and its subclasses). For types of cuts that may take a
long time to generate, callbacks are provided to monitor the progress and potentially
abort the cut generation progress. In particular, those callback classes are
IloCplex::FractionalCutCallbackI and
IloCplex::DisjunctiveCutCallbackI. The callback class
IloCplex::CutCallbackI allows you to add your own problem-specific cuts
during search. This callback also allows you to generate and add local cuts, that is cuts
that are only valid within the subtree where they have been added.

Instead of using callbacks, you can use goals to add your own cuts during the
optimization.

Heuristics

After a node has been processed, that is, the LP has been solved and no more cuts were
generated, IloCplex may try to construct an integer feasible solution from the LP
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 519

IloCplex
solution at that node. The parameter IloCplex::HeurFreq and other parameters
provide some control over this activity. In addition, goals or the callback class
IloCplex::HeuristicCallbackI make it possible to call user-written
heuristics to find an integer feasible solution.

Again, instead of using callbacks, you can use goals to add inject your own heuristically
constructed solution into the running optimization.

Node Selection

When IloCplex is not diving but picking an unexplored node from the tree, several
options are available that can be controlled with the parameter
IloCplex::NodeSel. Again, IloCplex offers a callback class,
IloCplex::NodeCallbackI, to give the user full control over this selection. With
goals, objects of type IloCplex::NodeEvaluatorI can be used to define your
own selection strategy.

See also IloAlgorithm in the ILOG Concert Reference Manual.

See also Goals among the Concepts in this manual. See also goals in the ILOG CPLEX
User's Manual.

See Also IloCplex::Algorithm, IloCplex::BasisStatus,
IloCplex::BasisStatusArray, IloCplex::BranchDirection,
IloCplex::BranchDirectionArray, IloCplex::CallbackI,
IloCplex::DeleteMode, IloCplex::DualPricing,
IloCplex::Exception, IloCplex::IntParam,
IloCplex::MIPEmphasisType, IloCplex::NodeSelect,
IloCplex::NumParam, IloCplex::PrimalPricing,
IloCplex::Quality, IloCplex::CplexStatus,
IloCplex::StringParam, IloCplex::VariableSelect,
IloCplex::GoalI

Constructors public IloCplex(IloEnv env)

This constructor creates an ILOG CPLEX algorithm. The new IloCplex object has no
IloModel loaded (or extracted) to it.

public IloCplex(const IloModel model)

This constructor creates an ILOG CPLEX algorithm and extracts model for that
algorithm.

When you create an algorithm (an instance of IloCplex, for example) and extract a
model for it, you can write either this line:

 IloCplex cplex(model);
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 520

IloCplex
or these two lines:

 IloCplex cplex(env);
 cplex.extract(model);

Methods public IloConstraint addCut(IloConstraint con)

This method adds con as a cut to the invoking IloCplex object. The cut is not
extracted as the regular constraints in a model, but is only copied when invoking the
method addCut. Thus, con may be deleted or modified after addCut has been called
and the change will not be notified to the invoking IloCplex object.

When columns are deleted from the extracted model, all cuts are deleted as well and
need to be reextracted if they should be considered. Cuts are not part of the root
problem, but are considered on an as-needed basis. A solution computed by IloCplex
is guaranteed to satisfy all cuts added with this method.

public const IloConstraintArray addCuts(const IloConstraintArray con)

This method adds the constraints in con as cuts to the invoking IloCplex object.
Everything said for addCut applies equally to each of the cuts given in array con.

public FilterIndex addDiversityFilter(IloNum lower_cutoff,
IloNum upper_cutoff,

 const IloIntVarArray vars,
 const IloNumArray weights,
 const IloNumArray refval,
 const char * fname=0)

Creates and installs a named diversity filter for the designated integer variables with the
specified lower and upper cutoff values, reference values, and weights.

public FilterIndex addDiversityFilter(IloNum lower_cutoff,
IloNum upper_cutoff,

 const IloNumVarArray vars,
 const IloNumArray weights,
 const IloNumArray refval,
 const char * fname=0)

Creates and installs a named diversity filter for the designated numeric variables with
the specified lower and upper cutoff values, reference values, and weights.

public IloConstraint addLazyConstraint(IloConstraint con)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 521

IloCplex
This method adds con as a lazy constraint to the invoking IloCplex object. The
constraint con is copied into the lazy constraint pool; the con itself is not part of the
pool, so changes to con after it has been copied into the lazy constraint pool will not
affect the lazy constraint pool.

Lazy constraints added with addLazyConstraint are typically constraints of the
model that are not expected to be violated when left out. The idea behind this is that the
LPs that are solved when solving the MIP can be kept smaller when these constraints are
not included. IloCplex will, however, include a lazy constraint in the LP as soon as it
becomes violated. In other words, the solution computed by IloCplex makes sure that
all the lazy constraints that have been added are satisfied.

By contrast, if the constraint does not change the feasible region of the extracted model
but only strengthens the formulation, it is referred to as a user cut. While user cuts can
be added to IloCplex with addLazyConstraint, it is generally preferable to do
so with addUserCuts. It is an error, however, to add lazy constraints by means of the
method addUserCuts.

When columns are deleted from the extracted model, all lazy constraints are deleted as
well and need to be recopied into the lazy constraint pool. Use of this method in place of
addCuts allows for further presolve reductions

 This method is equivalent to addCut.

public const IloConstraintArray addLazyConstraints(const
IloConstraintArray con)

This method adds a set of lazy constraints to the invoking IloCplex object.
Everything said for addLazyConstraint applies to each of the lazy constraints
given in array con.

Note:This is an advanced method. Advanced methods typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.

Note:This is an advanced method. Advanced methods typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 522

IloCplex
This method is equivalent to addCuts.

public FilterIndex addRangeFilter(IloNum,
IloNum,

 const IloIntVarArray,
 const IloNumArray,
 const char *=0)

Creates a named range filter, using the specified lower cutoff, upper cutoff, integer
variables, and weights, adds the filter to the solution pool of the invoking model, and
returns the index of the filter.

public FilterIndex addRangeFilter(IloNum,
IloNum,

 const IloNumVarArray,
 const IloNumArray,
 const char *=0)

Creates a named range filter, using the specified lower cutoff, upper cutoff, numeric
variables, and weights, adds the filter to the solution pool of the invoking model, and
returns its index.

public IloConstraint addUserCut(IloConstraint con)

This method adds con as a user cut to the invoking IloCplex object. The constraint
con is copied into the user cut pool; the con itself is not part of the pool, so changes
to con after it has been copied into the user cut pool will not affect the user cut pool.

Cuts added with addUserCut must be real cuts, in that the solution of a MIP does not
depend on whether the cuts are added or not. Instead, they are there only to strengthen
the formulation.

When columns are deleted from the extracted model, all user cuts are deleted as well
and need to be recopied into the user cut pool.

Note:This is an advanced method. Advanced methods typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.

Note: It is an error to use addUserCut for lazy constraints, that is, constraints
whose absence may potentially change the solution of the problem. Use
addLazyConstraints or, equivalently, addCut when you add such a
constraint.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 523

IloCplex
public const IloConstraintArray addUserCuts(const IloConstraintArray con)

This method adds a set of user cuts to the invoking IloCplex object. Everything said
for addUserCut applies to each of the user cuts given in array con.

public static IloCplex::Goal Apply(IloCplex cplex,
IloCplex::Goal goal,
IloCplex::NodeEvaluator eval)

This method is used to create and return a goal that applies the node selection strategy
defined by eval to the search strategy defined by goal. The resulting goal will use the
node strategy defined by eval for the subtree generated by goal.

public void basicPresolve(const IloNumVarArray vars,
IloNumArray redlb=0,
IloNumArray redub=0,

 const IloRangeArray rngs=0,
IloBoolArray redundant=0) const

This method can be used to compute tighter bounds for the variables of a model and to
detect redundant constraints in the model extracted to the invoking IloCplex object.
For every variable specified in parameter vars, it will return possibly tightened bounds
in the corresponding elements of arrays redlb and redub. Similarly, for every
constraint specified in parameter rngs, this method will return a Boolean value
reporting whether or not it is redundant in the model in the corresponding element of
array redundant.

public void clearCuts()

This method deletes all cuts that have previously been added to the invoking
IloCplex object with the methods addCut and addCuts.

public void clearLazyConstraints()

Note:This is an advanced method. Advanced methods typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.

Note:This is an advanced method. Advanced methods typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 524

IloCplex
This method deletes all lazy constraints added to the invoking IloCplex object with
the methods addLazyConstraint and addLazyConstraints.

 This method is equivalent to clearCuts.

public void clearModel()

This method can be used to unextract the model that is currently extracted to the
invoking IloCplex object.

public void clearUserCuts()

This method deletes all user cuts that have previously been added to the invoking
IloCplex object with the methods addUserCut and addUserCuts.

public void delDirection(IloNumVar var)

This method removes any existing branching direction assignment from variable var.

public void delDirections(const IloNumVarArray var)

This method removes any existing branching direction assignments from all variables in
the array var.

public void delFilter(FilterIndex filter)

Deletes the speficied filter from the solution pool.

public void delPriorities(const IloNumVarArray var)

This method removes any existing priority order assignments from all variables in the
array var.

public void delPriority(IloNumVar var)

This method removes any existing priority order assignment from variable var.

public void delSolnPoolSoln(IloInt which)

Deletes the specified solution from the solution pool and renumbers the indices of the
remaining solutions in the pool.

public void delSolnPoolSolns(IloInt begin,
IloInt end)

Note:This is an advanced method. Advanced methods typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 525

IloCplex
Deletes a range of solutions from the solution pool and renumbers the indices of the
remaining solutions in the pool.

public IloNum dualFarkas(IloConstraintArray rng,
IloNumArray y)

This method returns a Farkas proof of infeasibility for the active LP model after it has
been proven to be infeasible by one of the simplex optimizers. For every constraint i of
the active LP this method computes a value y[i] such that y'A >= y'b, where A
denotes the constraint matrix. For more detailed information about the Farkas proof of
infeasibility, see the C routine CPXdualfarkas, documented in the reference manual
of the Callable Library.

Parameters : rng

An array of length getNrows where constraints corresponding to the values in y are
returned.

y

An array of length getNrows.

Returns : The value of y'b - y'A z for the vector z defined such that z[j] = ub[j] if
y'A[j] > 0 and z[j] = lb[j] if y'A[j] < 0 for all variables j.

public void exportModel(const char * filename) const

This method writes the active model (that is, the model that has been extracted by the
invoking algorithm) to the file filename. The file format is determined by the
extension of the file name. The following extensions are recognized on most platforms:

◆ .sav

◆ .mps

◆ .lp

◆ .sav.gz (if gzip is properly installed)

◆ .mps.gz (if gzip is properly installed)

◆ .lp.gz (if gzip is properly installed)

Note: This is an advanced method. Advanced methods typically demand a
profound understanding of the algorithms used by ILOG CPLEX. Thus they incur
a higher risk of incorrect behavior in your application, behavior that can be difficult
to debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 526

IloCplex
Microsoft Windows does not support gzipped files for this API.

 If no name has been assigned to a variable or range (that is, the method getName
returns null for that variable or range), IloCplex uses a default name when writing
the model to the file (or to the optimization log). Default names are of the form IloXj
for variables and IloCi, where i and j are internal indices of IloCplex.

 See the reference manual ILOG CPLEX File Formats for more detail and the ILOG
CPLEX User's Manual for additional information about file formats.

public IloBool feasOpt(const IloConstraintArray cts,
 const IloNumArray prefs)

The method feasOpt computes a minimal relaxation of constraints in the active
model in order to make the model feasible. On successful completion, the method
installs a solution vector that is feasible for the minimum-cost relaxation. This solution
can be queried with query methods, such as getValues or getInfeasibility.

The method feasOpt provides several different metrics for determining what
constitutes a minimum relaxation. The metric is specified by the parameter
FeasOptMode. The method feasOpt can also optionally perform a second
optimization phase where the original objective is optimized, subject to the constraint
that the associated relaxation metric must not exceed the relaxation value computed in
the first phase.

The user may specify values (known as preferences) to express relative preferences for
relaxing constraints. A larger preference specifies a greater willingness to relax the
corresponding constraint. Internally, feasOpt uses the reciprocal of the preference to
weight the relaxations of the associated bounds in the phase one cost function. A
negative or 0 (zero) value as a preference specifies that the corresponding constraint
must not be relaxed. If a preference is specified for a ranged constraint, that preference
is used for both, its upper and lower bound. The preference for relaxing constraint
cts[i] should be provided in prefs[i].

The array cts need not contain all constraints in the model. Only constraints directly
added to the model can be specified. If a constraint is not present, it will not be relaxed.

IloAnd can be used to group constraints to be treated as one. Thus, according to the
various Inf relaxation penalty metrics, all constraints in a group can be relaxed for a
penalty of one unit. Similarly, according to the various Quad metrics, the penalty for
relaxing a group grows as the square of the sum of the individual member relaxations,
rather than as the sum of the squares of the individual relaxations.

 If enough variables or constraints were allowed to be relaxed, the function will return
IloTrue; otherwise, it returns IloFalse.

The active model is not changed by this method.

See Also IloCplex::Relaxation
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 527

IloCplex
public IloBool feasOpt(const IloRangeArray rngs,
 const IloNumArray rnglb,
 const IloNumArray rngub)

Attempts to find a minimum feasible relaxation of the active model by relaxing the
bounds of the constraints specified in rngs. Preferences are specified in rnglb and
rngub on input.

 The method returns IloTrue if it finds a feasible relaxation.

public IloBool feasOpt(const IloNumVarArray vars,
 const IloNumArray varlb,
 const IloNumArray varub)

Attempts to find a minimum feasible relaxation of the active model by relaxing the
bounds of the variables specified in vars as specified in varlb and varub.

 The method returns IloTrue if it finds a feasible relaxation.

public IloBool feasOpt(const IloRangeArray rngs,
 const IloNumArray rnglb,
 const IloNumArray rngub,
 const IloNumVarArray vars,
 const IloNumArray varlb,
 const IloNumArray varub)

The method feasOpt computes a minimal relaxation of the range and variable bounds
of the active model in order to make the model feasible. On successful completion, the
method installs a solution vector that is feasible for the minimum-cost relaxation. This
solution can be queried with query methods, such as getValues or
getInfeasibility or

The method feasOpt provides several different metrics for determining what
constitutes a minimum relaxation. The metric is specified by the parameter
FeasOptMode. The method feasOpt can also optionally perform a second
optimization phase where the original objective is optimized, subject to the constraint
that the associated relaxation metric must not exceed the relaxation value computed in
the first phase.

The user may specify values (known as preferences) to express relative preferences for
relaxing bounds. A larger preference specifies a greater willingness to relax the
corresponding bound. Internally, feasOpt uses the reciprocal of the preference to
weight the relaxations of the associated bounds in the phase one cost function. A
negative or 0 (zero) value as a preference specifies that the corresponding bound must
not be relaxed. The preference for relaxing the lower bound of constraint rngs[i]
should be provided in rnglb[i]; and likewise the preference for relaxing the upper
bound of constraint rngs[i] in rngub[i]. Similarly, the preference for relaxing
the lower bound of variable vars[i] should be provided in varlb[i], and the
preference for relaxing its upper bound in varub[i].
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 528

IloCplex
 Arrays rngs and vars need not contain all ranges and variables in the model. If a
range or variable is not present, its bounds are not relaxed. Only constraints directly
added to the model can be specified.

 If enough variables or constraints were allowed to be relaxed, the function will return
IloTrue; otherwise, it returns IloFalse.

The active model is not changed by this method.

See Also IloCplex::Relaxation

public void freePresolve()

This method frees the presolved problem. Under the default setting of parameter
Reduce, the presolved problem is freed when an optimal solution is found; however, it
is not freed if Reduce has been set to 1 (primal reductions) or to 2 (dual reductions). In
these instances, the function freePresolve can be used when necessary to free it
manually.

public IloCplex::Aborter getAborter()

Returns a handle to the aborter being used by the invoking IloCplex object.

public IloCplex::Algorithm getAlgorithm() const

This method returns the algorithm type that was used to solve the most recent model in
cases where it was not a MIP.

public void getAX(IloNumArray val,
 const IloRangeArray con) const

Computes A times X, where A is the corresponding LP constraint matrix.

 For the constraints in con, this method places the values of the expressions, or,
equivalently, the activity levels of the constraints for the current solution of the invoking
IloCplex object into the array val. Array val is resized to the same size as array
con, and val[i] will contain the slack value for constraint con[i]. All ranges in
con must be part of the extracted model.

public IloNum getAX(const IloRange range) const

Computes A times X, where A is the corresponding LP constraint matrix.

This method returns the value of the expression of the constraint range, or,
equivalently, its activity level, for the current solution of the invoking IloCplex
object. The range must be part of the extracted model.

public IloCplex::BasisStatus getBasisStatus(const IloConstraint con) const

This method returns the basis status of the implicit slack or artificial variable created for
the constraint con.

public IloCplex::BasisStatus getBasisStatus(const IloIntVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 529

IloCplex
This method returns the basis status for the variable var.

public IloCplex::BasisStatus getBasisStatus(const IloNumVar var) const

This method returns the basis status for the variable var.

public void getBasisStatuses(IloCplex::BasisStatusArray cstat,
 const IloNumVarArray var,

IloCplex::BasisStatusArray rstat,
 const IloConstraintArray con) const

This method puts the basis status of each variable in var into the corresponding element
of the array cstat, and it puts the status of each row in con (an array of ranges or
constraints) into the corresponding element of the array rstat. Arrays rstat and
cstat are resized accordingly.

public void getBasisStatuses(IloCplex::BasisStatusArray stat,
 const IloConstraintArray con) const

This method puts the basis status of each constraint in con into the corresponding
element of the array stat. Array stat is resized accordingly.

public void getBasisStatuses(IloCplex::BasisStatusArray stat,
 const IloNumVarArray var) const

This method puts the basis status of each variable in var into the corresponding element
of the array stat. Array stat is resized accordingly.

public IloNum getBestObjValue() const

 This method returns a bound on the optimal solution value of the problem. When a
model has been solved to optimality, this value matches the optimal solution value. If a
MIP optimization is terminated before optimality has been proven, this value is
computed for a minimization (maximization) problem as the minimum (maximum)
objective function value of all remaining unexplored nodes.

public void getBoundSA(IloNumArray lblower,
IloNumArray lbupper,
IloNumArray ublower,
IloNumArray ubupper,

 const IloNumVarArray vars) const

For the given set of variables vars, bound sensitivity information is computed. When
the method returns, the element lblower[j] and lbupper[j] will contain the
lowest and highest value the lower bound of variable vars[j] can assume without
affecting the optimality of the solution. Likewise, ublower[j] and ubupper[j]
will contain the lowest and highest value the upper bound of variable vars[j] can
assume without affecting the optimality of the solution. The arrays lblower,
lbupper, ublower, and ubupper will be resized to the size of array vars. The
value 0 (zero) can be passed for any of the return arrays if the information is not desired.

public IloCplex::ConflictStatus getConflict(IloConstraint con) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 530

IloCplex
 Returns the conflict status for the constraint con.

Possible return values are:

IloCplex::ConflictMember the constraint has been proven to participate in the
conflict.

IloCplex::ConflictPossibleMember the constraint has not been proven not
to participate in the conflict; in other words, it might participate, though it might not.

The constraint conmust be one that has previously been passed to refineConflict
including IloAnd constraints.

public IloCplex::ConflictStatusArray getConflict(IloConstraintArray cons)
const

 Returns the conflict status for each of the constraints specified in cons.

The element i is the conflict status for the constraint cons[i] and can take the
following values:

IloCplex::ConflictMember the constraint has been proven to participate in the
conflict.

IloCplex::ConflictPossibleMember the constraint has not been proven not
to participate in the conflict; in other words, it might participate, though it might not.

The constraints passed in cons must be among the same ones that have previously been
passed to refineConflict, including IloAnd constraints.

public IloCplex::CplexStatus getCplexStatus() const

This method returns the ILOG CPLEX status of the invoking algorithm. For possible
ILOG CPLEX values, see the enumeration type IloCplex::CplexStatus.

See also the topic Interpreting Solution Quality in the ILOG CPLEX User's Manual for
more information about a status associated with infeasibility or unboundedness.

public IloCplex::CplexStatus getCplexSubStatus() const

This method accesses the solution status of the last node problem that was solved in the
event of an error termination in the previous invocation of solve. The method
IloCplex::getCplexSubStatus returns 0 in the event of a normal termination.
If the invoking IloCplex object is continuous, this is equivalent to the status returned
by the method getCplexStatus.

public IloNum getCutoff() const

This method returns the MIP cutoff value being used during the MIP optimization. In a
minimization problem, all nodes are pruned that have an optimal solution value of the
continuous relaxation that is larger than the current cutoff value. The cutoff is updated
with the incumbent. If the invoking IloCplex object is an LP or QP,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 531

IloCplex
+IloInfinity or -IloInfinity is returned, depending on the optimization
sense.

public IloBool getDefault(IloCplex::BoolParam parameter) const

These method return the default setting for the parameter parameter.

public IloCplex::DeleteMode getDeleteMode() const

This method returns the current delete mode of the invoking IloCplex object.

public IloCplex::BranchDirection getDirection(IloNumVar var) const

This method returns the branch direction previously assigned to variable var with
method setDirection or setDirections. If no direction has been assigned,
IloCplex::BranchGlobal will be returned.

public void getDirections(IloCplex::BranchDirectionArray dir,
 const IloNumVarArray var) const

This method returns the branch directions previously assigned to variables listed in var
with the method setDirection or setDirections. When the function returns,
dir[i] will contain the branch direction assigned for variables var[i]. If no branch
direction has been assigned to var[i], dir[i] will be set to
IloCplex::BranchGlobal.

public IloExtractable getDiverging() const

This method returns the diverging variable or constraint, in a case where the primal
Simplex algorithm has determined the problem to be infeasible. The returned extractable
is either an IloNumVar or an IloConstraint object extracted to the invoking
IloCplex optimizer; it is of type IloNumVar if the diverging column corresponds to
a variable, or of type IloConstraint if the diverging column corresponds to the
slack variable of a constraint.

public IloNum getDiversityFilterLowerCutoff(FilterIndex filter) const

Given the index of a diversity filter associated with the solution pool, this method returns
the lower cutoff value of that filter.

public void getDiversityFilterRefVals(FilterIndex filter,
IloNumArray) const

Accesses the reference values declared in a diversity filter specified by its index in the
solution pool.

public IloNum getDiversityFilterUpperCutoff(FilterIndex filter) const

Given the index of a diversity filter associated with the solution pool, this method returns
the lower cutoff value of that filter.

public void getDiversityFilterWeights(FilterIndex filter,
IloNumArray) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 532

IloCplex
Accesses the weights declared in a diversity filter specified by its index in the solution
pool.

public IloNum getDual(const IloRange range) const

This method returns the dual value associated with the constraint range in the current
solution of the invoking algorithm.

public void getDuals(IloNumArray val,
 const IloRangeArray con) const

This method puts the dual values associated with the ranges in the array con into the
array val. Array val is resized to the same size as array con, and val[i] will
contain the dual value for constraint con[i].

public FilterIndex getFilterIndex(const char * lname_str) const

Accesses the index of a filter specified by its name.

public FilterType getFilterType(FilterIndex filter) const

Given the index of a filter associated with the solution pool, this method returns the type
of that filter.

public void getFilterVars(FilterIndex filter,
IloNumVarArray) const

Accesses the variables of a diversity filter specified by its index.

public IloInt getIncumbentNode() const

This method returns the node number where the current incumbent was found. If the
invoking IloCplex object is an LP or a QP, 0 (zero) is returned.

public IloNum getInfeasibilities(IloNumArray infeas,
 const IloIntVarArray var) const

This method puts the infeasibility values of the integer variables in array var for the
current solution into the array infeas. The infeasibility value is 0 (zero) if the variable
bounds are satisfied. If the infeasibility value is negative, it specifies the amount by
which the lower bound of the variable must be changed; if the value is positive, it
specifies the amount by which the upper bound of the variable must be changed. This
method does not check for integer infeasibility. The array infeas is automatically
resized to the same length as array var, and infeas[i] will contain the infeasibility
value for variable var[i]. This method returns the maximum absolute infeasibility
value over all integer variables in var.

public IloNum getInfeasibilities(IloNumArray infeas,
 const IloNumVarArray var) const

This method puts the infeasibility values of the numeric variables in array var for the
current solution into the array infeas. The infeasibility value is 0 (zero) if the variable
bounds are satisfied. If the infeasibility value is negative, it specifies the amount by
which the lower bound of the variable must be changed; if the value is positive, it
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 533

IloCplex
specifies the amount by which the upper bound of the variable must be changed. The
array infeas is automatically resized to the same length as array var, and
infeas[i] will contain the infeasibility value for variable var[i]. This method
returns the maximum absolute infeasibility value over all numeric variables in var.

public IloNum getInfeasibilities(IloNumArray infeas,
 const IloConstraintArray con) const

This method puts the infeasibility values of the current solution for the constraints
specified by the array con into the array infeas. The infeasibility value is 0 (zero) if
the constraint is satisfied. More specifically, for a range with finite lower bound and
upper bound, if the infeasibility value is negative, it specifies the amount by which the
lower bound of the range must be changed; if the value is positive, it specifies the
amount by which the upper bound of the range must be changed. For a more general
constraint such as IloOr, IloAnd, IloSOS1, or IloSOS2, the infeasibility value
returned is the maximal absolute infeasibility value over all range constraints and
variables created by the extraction of the queried constraint. Array infeas is resized to
the same size as array range, and infeas[i] will contain the infeasibility value for
constraint range[i]. This method returns the maximum absolute infeasibility value
over all constraints in con.

public IloNum getInfeasibility(const IloIntVar var) const

This method returns the infeasibility of the integer variable var in the current solution.
The infeasibility value returned is 0 (zero) if the variable bounds are satisfied. If the
infeasibility value is negative, it specifies the amount by which the lower bound of the
variable must be changed; if the value is positive, it specifies the amount by which the
upper bound of the variable must be changed. This method does not check for integer
infeasibility.

public IloNum getInfeasibility(const IloNumVar var) const

This method returns the infeasibility of the numeric variable var in the current solution.
The infeasibility value returned is 0 (zero) if the variable bounds are satisfied. If the
infeasibility value is negative, it specifies the amount by which the lower bound of the
variable must be changed; if the value is positive, it specifies the amount by which the
upper bound of the variable must be changed.

public IloNum getInfeasibility(const IloConstraint con) const

This method returns the infeasibility of the current solution for the constraint code. The
infeasibility value is 0 (zero) if the constraint is satisfied. More specifically, for a range
with finite lower bound and upper bound, if the infeasibility value is negative, it specifies
the amount by which the lower bound of the range must be changed; if the value is
positive, it specifies the amount by which the upper bound of the range must be
changed. For a more general constraint such as IloOr, IloAnd, IloSOS1, or
IloSOS2, the infeasibility value returned is the maximal absolute infeasibility value
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 534

IloCplex
over all range constraints and variables created by the extraction of the queried
constraint.

public IloInt getMax(IloCplex::IntParam parameter) const

These method return the maximum allowed value for the parameter parameter.

public IloInt getMin(IloCplex::IntParam parameter) const

These method return the minimum allowed value for the parameter parameter.

public IloInt getNbarrierIterations() const

This method returns the number of barrier iterations from the last solve.

public IloInt getNbinVars() const

This method returns the number of binary variables in the matrix representation of the
active model in the invoking IloCplex object.

public IloInt getNcols() const

This method returns the number of columns extracted for the invoking algorithm. There
may be differences in the number returned by this function and the number of object of
type IloNumVar and its subclasses in the model that is extracted. This is because
automatic transformation of nonlinear constraints and expressions may introduce new
variables.

public IloInt getNcrossDExch() const

This method returns the number of dual exchange operations in the crossover of the last
call to method solve or solveFixed, if barrier with crossover has been used for
solving an LP or QP.

public IloInt getNcrossDPush() const

This method returns the number of dual push operations in the crossover of the last call
to solve or solveFixed, if barrier with crossover was used for solving an LP or
QP.

public IloInt getNcrossPExch() const

This method returns the number of primal exchange operations in the crossover of the
last call of method solve or solveFixed, if barrier with crossover was used for
solving an LP of QP.

public IloInt getNcrossPPush() const

This method returns the number of primal push operations in the crossover of the last
call of method solve or solveFixed, if barrier with crossover was used for solving
an LP or QP.

public IloInt getNcuts(IloCplex::CutType which) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 535

IloCplex
This method returns the number of cuts of the specified type in use at the end of the
previous mixed integer optimization. If the invoking IloCplex object is not a MIP, it
returns 0.

public IloInt getNdualSuperbasics() const

This method returns the number of dual superbasic variables in the current solution of
the invoking IloCplex object.

public IloInt getNfilters() const

Returns the number of filters currently associated with the solution pool.

public IloInt getNintVars() const

This method returns the number of integer variables in the matrix representation of the
active model in the invoking IloCplex object.

public IloInt getNiterations() const

This method returns the number of iterations that occurred during the last call to the
method solve in the invoking algorithm.

public IloInt getNnodes() const

This method returns the number of branch-and-cut nodes that were processed in the
current solution. If the invoking IloCplex object is not a MIP, it returns 0.

public IloInt getNnodesLeft() const

This method returns the number of branch-and-cut nodes that remain to be processed in
the current solution. If the invoking IloCplex object is not a MIP, it returns 0.

public IloInt getNNZs() const

This method returns the number of nonzeros extracted to the constraint matrix A of the
invoking algorithm.

public IloInt getNphaseOneIterations() const

If a simplex method was used for solving continuous model, this method returns the
number of iterations in phase 1 of the last call to solve or solveFixed.

public IloInt getNprimalSuperbasics() const

This method returns the number of primal superbasic variables in the current solution of
the invoking IloCplex object.

public IloInt getNQCs() const

This method returns the number of quadratic constraints extracted from the active model
for the invoking algorithm. This number may be different from the total number of
constraints in the active model because linear constraints are not accounted for in this
function.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 536

IloCplex
See Also getNrows

public IloInt getNrows() const

This method returns the number of rows extracted for the invoking algorithm. There
may be differences in the number returned by this function and the number of
IloRanges and IloConstraints in the model that is extracted. This is because
quadratic constraints are not accounted for by method getNrows and automatic
transformation of nonlinear constraints and expressions may introduce new constraints.

See Also getNQCs

public IloInt getNsemiContVars() const

This method returns the number of semi-continuous variables in the matrix
representation of the active model in the invoking IloCplex object.

public IloInt getNsemiIntVars() const

This method returns the number of semi-integer variables in the matrix representation of
the active model in the invoking IloCplex object.

public IloInt getNsiftingIterations() const

This method returns the number of sifting iterations performed for solving the last LP
with algorithm type IloCplex::Sifting, or, equivalently, the number of work LPs
that have been solved for it.

public IloInt getNsiftingPhaseOneIterations() const

This method returns the number of sifting iterations performed for solving the last LP
with algorithm type IloCplex::Sifting in order to achieve primal feasibility.

public IloInt getNSOSs() const

This method returns the number of SOSs extracted for the invoking algorithm. There
may be differences in the number returned by this function and the number of numeric
variables (that is, instances of the class IloNumVar, and so forth) in the model that is
extracted because piecewise linear functions are extracted as a set of SOSs.

public IloObjective getObjective() const

This method returns the instance of IloObjective that has been extracted to the
invoking instance of IloCplex. If no objective has been extracted, an empty handle is
returned.

 If you need only the current value of the objective, for example to use in a callback,
consider one of these methods instead:

◆ ContinuousCallbackI::getObjValue

◆ ControlCallbackI::getObjValue

◆ GoalI::getObjValue
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 537

IloCplex
◆ IncumbentCallbackI::getObjValue

◆ NetworkCallbackI::getObjValue

◆ NodeCallbackI::getObjValue

◆ NodeEvaluatorI::getObjValue

public void getObjSA(IloNumArray lower,
IloNumArray upper,

 const IloNumVarArray vars) const

This method performs objecitve sensitivity analysis for the variables specified in array
vars. When this method returns lower[i] and upper[i] will contain the lowest
and highest value the objective function coefficient for variable vars[i] can assume
without affecting the optimality of the solution. The arrays lower and upper will be
resized to the size of array vars. If any of the information is not requested, 0 (zero) can
be passed for the corresponding array parameter.

public IloNum getObjValue(IloInt soln) const

This member function returns the numeric value of the objective function for the
solution pool member indexed by soln. The soln argument may be omitted or given
a value of -1 in order to access the current solution.

public IloBool getParam(IloCplex::BoolParam parameter) const

This method returns the current setting of parameter in the invoking algorithm.

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

public IloCplex::ParameterSet getParameterSet()

Returns a parameter set corresponding to the present parameter state.

 If the method fails, an exception of type IloException, or one of its derived
classes, is thrown.

Returns : The parameter set.

public void getPriorities(IloNumArray pri,
 const IloNumVarArray var) const

This method returns query branch priorities previously assigned to variables listed in
var with the method setPriority or setPriorities. When the function
returns, pri[i] will contain the priority value assigned for variables var[i]. If no
priority has been assigned to var[i], pri[i] will contain 0 (zero).

public IloNum getPriority(IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 538

IloCplex
This method returns the priority previously assigned to the variable var with the
method setPriority or setPriorities. It returns 0 (zero) if no priority has
been assigned.

public IloNum getQuality(IloCplex::Quality q,
IloInt soln,
IloConstraint * rng,
IloNumVar * var=0) const

These methods return the requested quality measure for a member of the solution pool.
The soln argument may be given a value of -1 to return the quality meausre for the
current solution.

Some quality measures are related to a variable or a constraint. For example,
IloCplex::MaxPrimalInfeas is related to the variable or constraint where the
maximum infeasibility (bound violation) occurs. If this information is also requested,
pointers to instances of IloNumVar or IloConstraint may be passed as optional
arguments specifying where the relevant variable or range will be written. However, if
the constraint has been implicitly created (for example, because of automatic
linearization), a null handle will be returned for these arguments.

public IloNum getQuality(IloCplex::Quality q,
IloNumVar * var=0,
IloConstraint * rng=0) const

These methods return the requested quality measure.

Some quality measures are related to a variable or a constraint. For example,
IloCplex::MaxPrimalInfeas is related to the variable or constraint where the
maximum infeasibility (bound violation) occurs. If this information is also requested,
pointers to instances of IloNumVar or IloConstraint may be passed as optional
arguments specifying where the relevant variable or range will be written. However, if
the constraint has been implicitly created (for example, because of automatic
linearization), a null handle will be returned for these arguments.

public void getRangeFilterCoefs(FilterIndex filter,
IloNumArray) const

Accesses the coefficients (that is, the weights) declared in the range filter specified by its
index.

public IloNum getRangeFilterLowerBound(FilterIndex filter) const

Given the index of a range filter associated with the solution pool, this method returns
the lower bound of that filter.

public IloNum getRangeFilterUpperBound(FilterIndex filter) const

Given the index of a range filter associated with the solution pool, this method returns
the upper bound of that filter.

public void getRangeSA(IloNumArray lblower,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 539

IloCplex
IloNumArray lbupper,
IloNumArray ublower,
IloNumArray ubupper,

 const IloRangeArray con) const

This method performs sensistivity analysis for the upper and lower bounds of the
ranged constraints passed in the array con. When the method returns, lblower[i]
and lbupper[i] will contain, respecitively, the lowest and the highest value that the
lower bound of constraint con[i] can assume without affecting the optimality of the
solution. Similarly, ublower[i] and ubupper[i] will contain, respectively, the
lowest and the highest value that the upper bound of the constraint con[i] can assume
without affecting the optimality of the solution. The arrays lblower, lbupper,
ublower, and ubupper will be resized to the size of array con. If any of the
information is not requested, 0 can be passed for the corresponding array parameter.

public void getRay(IloNumArray vals,
IloNumVarArray vars) const

This method returns an unbounded direction (also known as a ray) corresponding to the
present basis for an LP that has been determined to be an unbounded problem. CPLEX
puts the the variables of the extracted model into the array vars and it puts the
corresponding values of the unbounded direction into the array vals.

public IloNum getReducedCost(const IloIntVar var) const

This method returns the reduced cost associated with var in the invoking algorithm.

public IloNum getReducedCost(const IloNumVar var) const

This method returns the reduced cost associated with var in the invoking algorithm.

public void getReducedCosts(IloNumArray val,
 const IloIntVarArray var) const

This method puts the reduced costs associated with the numeric variables of the array
var into the array val. The array val is automatically resized to the same length as
array var, and val[i] will contain the reduced cost for variable var[i].

public void getReducedCosts(IloNumArray val,
 const IloNumVarArray var) const

This method puts the reduced costs associated with the variables in the array var into
the array val. Array val is resized to the same size as array var, and val[i] will
contain the reduced cost for variable var[i].

public void getRHSSA(IloNumArray lower,
IloNumArray upper,

Note:CPLEX resizes these arrays for you.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 540

IloCplex
 const IloRangeArray cons) const

This method performs righthand side sensitivity analysis for the constraints specified in
array cons. The constraints must be of the form cons[i]: expr[i] rel rhs[i].
When this method returns lower[i] and upper[i] will contain the lowest and
highest value rhs[i] can assume without affecting the optimality of the solution. The
arrays lower and upper will be resized to the size of array cons. If any of the
information is not requested, 0 (zero) can be passed for the corresponding array
parameter.

public IloNum getSlack(const IloRange range,
IloInt soln=-1) const

This method returns the slack value associated with the constraint range for a solution
of the invoking algorithm. For a range with finite lower and upper bounds, the slack
value consists of the difference between the expression of the range and its lower
bound. The current solution is used if the soln argument is omitted or given the value
-1; otherwise, the solution pool member indexed by soln is used.

public void getSlacks(IloNumArray val,
 const IloRangeArray con,

IloInt soln=-1) const

This method puts the slack values associated with the constraints specified by the array
con into the array val. For a ranged constraint with finite lower and upper bounds, the
slack value consists of the difference between the expression in the range and its lower
bound. The current solution is used if the soln argument is omitted or given the value
-1; otherwise, the solution pool member indexed by soln is used. Array val is resized
to the same size as array con, and val[i] will contain the slack value for constraint
con[i].

public IloNum getSolnPoolMeanObjValue() const

Computes the mean of the objective values of the solutions currently in the solution
pool.

public IloInt getSolnPoolNreplaced() const

Accesses the number of solutions that have been replaced according to the solution pool
replacement strategy.

public IloInt getSolnPoolNsolns() const

Accesses the number of solutions currently in the solution pool.

public IloAlgorithm::Status getStatus() const

This method returns the status of the invoking algorithm.

For its ILOG CPLEX status, see the method IloCplex::getCplexStatus.

See also the topic Interpreting Solution Quality in the ILOG CPLEX User's Manual for
more information about a status associated with infeasibility or unboundedness.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 541

IloCplex
public IloCplex::Algorithm getSubAlgorithm() const

This method returns the type of the algorithm type that was used to solve most recent
node of a MIP in the case of termination because of an error during mixed integer
optimization.

public IloNum getValue(const IloObjective ob,
IloInt soln) const

This method returns the value of the objective using the solution pool member indexed
by soln. The soln argument may be omitted or given a value of -1 in order to access
the current solution.

public IloNum getValue(const IloNumExprArg expr,
IloInt soln) const

This method returns the value of the expression using the solution pool member indexed
by soln. The soln argument may be omitted or given a value of -1 in order to access
the current solution.

public IloNum getValue(const IloIntVar var,
IloInt soln) const

This method returns the value from the solution pool member indexed by soln for the
integer variable specified by var. The soln argument may be omitted or given a value
of -1 in order to access the current solution.

public IloNum getValue(const IloNumVar var,
IloInt soln) const

This method returns the value from the solution pool member indexed by soln for the
numeric variable specified by var. The soln argument may be omitted or given a
value of -1 in order to access the current solution.

public void getValues(const IloIntVarArray var,
IloNumArray val,
IloInt soln) const

This method puts the values from the solution pool member indexed by soln for the
integer variables specified by the array var into the array val. The soln argument
may be omitted or given a value of -1 in order to access the current solution. Array val
is resized to the same size as array var, and val[i] will contain the solution value for
variable var[i].

public void getValues(IloNumArray val,
 const IloIntVarArray var,

IloInt soln) const

This method puts the values from the solution pool member indexed by soln for the
numeric variables specified by the array var into the array val. The soln argument
may be omitted or given a value of -1 in order to access the current solution. Array val
is resized to the same size as array var, and val[i] will contain the solution value for
variable var[i].
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 542

IloCplex
public void getValues(IloNumArray val,
 const IloNumVarArray var,

IloInt soln) const

This method puts the values from the solution pool member indexed by soln for the
numeric variables specified by the array var into the array val. The soln argument
may be omitted or given a value of -1 in order to access the current solution. Array val
is resized to the same size as array var, and val[i] will contain the solution value for
variable var[i].

public void getValues(const IloIntVarArray var,
IloNumArray val) const

This method puts the solution values of the integer variables specified by the array var
into the array val. Array val is resized to the same size as array var, and val[i]
will contain the solution value for variable var[i].

public void getValues(IloNumArray val,
 const IloIntVarArray var) const

This method puts the solution values of the integer variables specified by the array var
into the array val. Array val is resized to the same size as array var, and val[i]
will contain the solution value for variable var[i].

public void getValues(const IloNumVarArray var,
IloNumArray val) const

This member function accepts an array of variables vars and puts the corresponding
values into the array vals; the corresponding values come from the current solution of
the invoking algorithm. The array vals must be a clean, empty array when you pass it
to this member function.

If there are no values to return for vars, this member function raises an error. On
platforms that support C++ exceptions, when exceptions are enabled, this member
function throws the exception NotExtractedException in such a case.

public void getValues(IloNumArray val,
 const IloNumVarArray var) const

This method puts the solution values of the numeric variables specified by the array var
into the array val. Array val is resized to the same size as array var, and val[i]
will contain the solution value for variable var[i].

public const char * getVersion() const

This method returns a string specifying the version of IloCplex.

public void importModel(IloModel & m,
 const char * filename) const

This method reads a model from the file specified by filename into model. Typically
model will be an empty, unextracted model on entry to this method. The invoking
IloCplex object is not affected when you call this method unless model is its
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 543

IloCplex
extracted model; follow this method with a call to IloCplex::extract in order to
extract the imported model to the invoking IloCplex object.

When this methods reads a file, new modeling objects, as required by the input file, are
created and added to any existing modeling objects in the model passed as an
argument. Note that any previous modeling objects in model are not removed; precede
the call to importModel with explicit calls to IloModel::remove if you need to
remove them.

public void importModel(IloModel & m,
 const char * filename,

IloObjective & obj,
IloNumVarArray vars,
IloRangeArray rngs,
IloRangeArray lazy=0,
IloRangeArray cuts=0) const

This method is a simplification of the method importModel that does not provide
arrays to return SOSs. This method is easier to use in the case where you are dealing
with continuous models because in such a case you already know that no SOS will be
present.

public void importModel(IloModel & model,
 const char * filename,

IloObjective & obj,
IloNumVarArray vars,
IloRangeArray rngs,
IloSOS1Array sos1,
IloSOS2Array sos2,
IloRangeArray lazy=0,
IloRangeArray cuts=0) const

This method reads a model from the file specified by filename into model. Typically
model will be an empty, unextracted model on entry to this method. The invoking
IloCplex object is not affected when you call this method unless model is its
extracted model; follow this method with a call to IloCplex::extract in order to
extract the imported model to the invoking IloCplex object.

When this methods reads a file, new modeling objects, as required by the input file, are
created and added to any existing modeling objects in the model passed as an
argument. Note that any previous modeling objects in model are not removed; precede
the call to importModel with explicit calls to IloModel::remove if you need to
remove them.

As this method reads a model from a file, it places the objective it has read in obj, the
variables it has read in the array vars, * the ranges it has read in the array rngs; and
the Special Ordered Sets (SOS) it has read in the arrays sos1 and sos2.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 544

IloCplex
The format of the file is determined by the extension of the file name. The following
extensions are recognized on most platforms:

◆ .sav

◆ .mps

◆ .lp

◆ .sav.gz (if gzip is properly installed)

◆ .mps.gz (if gzip is properly installed)

◆ .lp.gz (if gzip is properly installed)

Microsoft Windows does not support gzipped files for this API.

public IloBool isDualFeasible() const

This method returns IloTrue if a dual feasible solution is recorded in the invoking
IloCplex object and can be queried.

public IloBool isMIP() const

This method returns IloTrue if the invoking algorithm has extracted a model that is a
MIP (mixed-integer programming problem) and IloFalse otherwise. Member
functions for accessing duals and reduced cost basis work only if the model is not a
MIP.

public IloBool isPrimalFeasible() const

This method returns IloTrue if a primal feasible solution is recorded in the invoking
IloCplex object and can be queried.

public IloBool isQC() const

This method returns IloTrue if the invoking algorithm has extracted a model that is
quadratically constrained. Otherwise, it returns IloFalse. For an explanation of
quadratically constrained see the topic QCP in the ILOG CPLEX User's Manual.

public IloBool isQO() const

Note:CPLEX resizes these arrays for you to accomodate the returned objects.

Note: This note is for advanced users only. The two arrays lazy and cuts are
filled with the lazy constraints and user cuts that may be included in the model in
the file filename.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 545

IloCplex
This method returns IloTrue if the invoking algorithm has extracted a model that has
quadratic objective function terms. Otherwise, it returns IloFalse.

public static IloCplex::Goal LimitSearch(IloCplex cplex,
IloCplex::Goal goal,
IloCplex::SearchLimit limit)

This method creates and returns a goal that puts the search specified by goal under the
limit defined by limit. Only the subtree controlled by goal will be subjected to limit
limit.

public IloBool populate()

The method populate generates multiple solutions to a mixed integer programming
(MIP) model. In other words, it populates the solution pool of the model currently
extracted by the invoking IloCplex object. Like the method solve, this method
returns IloTrue if it finds a solution (not necessarily an optimal solution).

The algorithm that populates the solution pool works in two phases:

In the first phase, it solves the model to optimality (or some stopping criterion set by
the user) while it sets up a branch and cut tree for the second phase.

In the second phase, it generates multiple solutions by using the information computed
and stored in the first phase and by continuing to explore the tree.

The amount of preparation in the first phase and the intensity of exploration in the
second phase are controlled by the solution pool intensity parameter
SolnPoolIntensity.

Optimality is not a stopping criterion for the populate method. Even if the
optimality gap is zero, this method will still try to find alternative solutions. The
stopping criteria for populate are these:

◆ Popoulate limit PopulateLim. This parameter controls how many solutions are
generated before the method stops. Its default value is 20.

◆ Time limit TiLim, as in standard MIP optimization.

◆ Node limit NodeLim, as in standard MIP optimization.

◆ In the absence of other stopping criteria, populate stops when it cannot enumerate
any more solutions. In particular, if the user specifies an objective tolerance with the
relative or absolute solution pool gap parameters, populate stops if it cannot
enumerate any more solutions within the specified objective tolerance. There may
exist additional solutions that satisfy the specified objective tolerance; depending on
the solution pool intensity parameter, populate may or may not enumerate all of
them; according to certain settings of the solution pool intensity parameter,
populate may stop when it has enumerated a subset of additional solutions
satisfying the specified objective tolerance.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 546

IloCplex
Successive calls to populate create solutions that are stored in the solution pool.
However, each call to populate applies only to the subset of solutions created in the
current call; the call does not affect the solutions already in the pool. In other words,
solutions in the pool are persistent.

The user may call this routine independently of any MIP optimization of a model. In that
case, it carries out the first and second phase itself.

The user may also call populate after standard MIP optimization. In the general
case, the user reads the model, calls MIP optimization, then calls populate. The
activity of MIP optimization constitutes the first phase of the populate algorithm;
populate then re-uses the information computed and stored by MIP optimization and
thus carries out only the second phase.

The method populate does not try to generate multiple solutions for unbounded MIP
models. As soon as the proof of unboundedness is obtained, populate stops.

public void presolve(IloCplex::Algorithm alg)

This method performs Presolve on the model. The enumeration alg tells Presolve
which algorithm is intended to be used on the reduced model; NoAlg should be
specified for MIP models.

public void protectVariables(const IloIntVarArray var)

This method specifies a set of integer variables that should not be substituted out of the
problem. If presolve can fix a variable to a value, it is removed, even if it is specified in
the protected list.

public void protectVariables(const IloNumVarArray var)

Note:This is an advanced method. Advanced methods typically demand a
profound understanding of the algorithms used by ILOG CPLEX. Thus they incur
a higher risk of incorrect behavior in your application, behavior that can be difficult
to debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.

Note:This is an advanced method. Advanced methods typically demand a
profound understanding of the algorithms used by ILOG CPLEX. Thus they incur
a higher risk of incorrect behavior in your application, behavior that can be difficult
to debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other methods instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 547

IloCplex
This method specifies a set of numeric variables that should not be substituted out of the
problem. If presolve can fix a variable to a value, it is removed, even if it is specified in
the protected list.

public void qpIndefCertificate(IloNumVarArray var,
IloNumArray x)

The quadratic objective terms in a QP model must form a positive semi-definite Q
matrix (negative semi-definite for maximization). If IloCplex finds that this is not
true, it will discontinue the optimization. In such cases, the qpIndefCertificate
method can be used to compute assignments (returned in array x) to all variables
(returned in array var) such that the quadratic term of the objective function evaluates
to a negative value (x'Q x < 0 in matrix terms) to prove the indefiniteness.

public void readBasis(const char * name) const

Reads a simplex basis from the BAS file specified by name, and copies that basis into
the invoking IloCplex object. The parameter AdvInd must be set to a nonzero value
(e.g. its default setting) for the simplex basis to be used to start a subsequent
optimization with one of the Simplex algorithms.

 By convention, the file extension is .bas. The BAS file format is documented in the
reference manual ILOG CPLEX File Formats.

public FilterIndexArray readFilters(const char * name)

Reads solution pool filters from a file in FLT format and copies the filters into an
instance of IloCplex. This format is documented in the reference manual ILOG
CPLEX File Formats.

public void readMIPStart(const char * name) const

Reads the SOL file denoted by name and copies the MIP start information into the
invoking IloCplex object. The parameter AdvInd must be turned on (its default: 1
(one)) in order for the MIP start information to be used to with a subsequent MIP
optimization.

By convention, the file extension is .sol. The SOL file format is documented in the
ILOG CPLEX File Formats Reference Manual and in the stylesheet solution.xsl
and schema solution.xsd in the include directory of the product. Examples of
its use appear in the examples distributed with the product and in the ILOG CPLEX
User's Manual.

public void readOrder(const char * filename) const

Note: CPLEX resizes these arrays for you.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 548

IloCplex
This method reads a priority order from a file in ORD format into the invoking
IloCplex object. The names in the ORD file must match the names in the active
model. The priority order will be associated with the model. The parameter
MipOrdInd must be nonzero for the next invocation of the method
IloCplex::solve to take the order into account.

 By convention, the file extension is .ord. The ORD file format is documented in the
reference manual ILOG CPLEX File Formats.

public void readParam(const char * name) const

Reads parameters and their settings from the file specified by name and applies them to
the invoking IloCplex object. Parameters not listed in the parameter file will be reset
to their default setting.

By convention, the file extension is .prm. The PRM file format is documented in the
reference manual ILOG CPLEX File Formats.

public void readSolution(const char * name) const

Reads a solution from the SOL file denoted by name and copies this information into a
CPLEX problem object. This routine is able to initiate a crossover from the barrier
solution, to restart the simplex method with an advanced basis or to specify variable
values for a MIP start. The parameter AdvInd must set to a nonzero value (such as its
default setting: 1 (one)) in order for the solution file to take effect with the method
solve.

 By convention, the file extension is .sol. The SOL file format is documented in the
ILOG CPLEX File Format Reference Manual and in the stylesheet solution.xsl
and schema solution.xsd in the include directory of the product. Examples of
its use appear in the examples distributed with the product and in the ILOG CPLEX
User's Manual.

public IloBool refineConflict(IloConstraintArray cons,
IloNumArray prefs)

The method refineConflict identifies a minimal conflict for the infeasibility of the
current model or for a subset of the constraints of the current model. Since the conflict
is minimal, removal of any one of these constraints will remove that particular cause for
infeasibility. There may be other conflicts in the model; consequently, repair of a given
conflict does not guarantee feasibility of the remaining model.

The constraints among which to look for a conflict are passed to this method through the
argument cons. Only constraints directly added to the model can be specified.

Constraints may also be grouped by IloAnd. If any constraint in a group participates
in the conflict, the entire group is determined to do so. No further detail about the
constraints within that group is returned.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 549

IloCplex
Groups or constraints may be assigned preference. A group or constraint with a higher
preference is more likely to be included in the conflict. However, no guarantee is made
when a minimal conflict is returned that other conflicts containing groups or constraints
with higher preference do not exist.

When this method returns, the conflict can be queried with the methods
getConflict. The method writeConflict can write a file in LP format
containing the conflict.

Parameters : cons

An array of constraints among which to look for a conflict. The constraints may be any
constraint in the active model, or a group of constraints organized by IloAnd. If a
constraint does not appear in this array, the constraint is assigned a preference of 0
(zero). Thus such constraints are included in the conflict without any analysis. Only
constraints directly added to the model can be specified.

prefs

An array of integers containing the preferences for the groups or constraints. prefs[i]
specifies the preference for group or constraint cons[i]. A negative value specifies
that the corresponding group or constraint should not be considered in the computation
of a conflict. In other words, such groups are not considered part of the model. Groups
with a preference of 0 (zero) are always considered to be part of the conflict. No further
checking is performed on such groups.

Returns : Boolean value reporting whether or not a conflict has been found.

public void remove(IloCplex::Aborter abort)

This method removes the aborter object abort from the invoking IloCplex object.

public void setBasisStatuses(const IloCplex::BasisStatusArray cstat,
 const IloNumVarArray var,
 const IloCplex::BasisStatusArray rstat,
 const IloConstraintArray con)

This method uses the array cstats to set the basis status of the variables in the array
var; it uses the array rstats to set the basis status of the ranges in the array con.

public void setDefaults()

This method resets all CPLEX parameters to their default values.

public void setDeleteMode(IloCplex::DeleteMode mode)

This method sets the delete mode in the invoking IloCplex object to mode.

public void setDirection(IloNumVar var,
IloCplex::BranchDirection dir)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 550

IloCplex
This method sets the preferred branching direction for variable var to dir. This setting
will cause CPLEX first to explore the branch specified by dir after branching on
variable var.

public void setDirections(const IloNumVarArray var,
 const IloCplex::BranchDirectionArray dir)

This method sets the preferred branching direction for each variable in the array var to
the corresponding value in the array dir. This will cause CPLEX first to explore the
branch specified by dir[i] after branching on variable var[i].

public void setParam(IloCplex::BoolParam parameter,
IloBool value)

This method sets parameter to value in the invoking algorithm. See the ILOG
CPLEX User's Manual for more detailed information about parameters and for
examples of their use.

public void setParameterSet(IloCplex::ParameterSet set)

Sets the parameter state using a parameter set.

 If the method fails, an exception of type IloException, or one of its derived
classes, is thrown.

Parameters : set

 The parameter set.

public void setPriorities(const IloNumVarArray var,
 const IloNumArray pri)

This method sets the priority order for all variables in the array var to the
corresponding value in the array pri. During branching, integer variables with higher
priorities are given preference over integer variables with lower priorities. Further,
variables that have priority assigned to them are given preference over variables that do
not. Priorities must be nonnegative integers. By default, the priority of a variable
without a user-assigned priority is 0 (zero). The parameter MIPOrdInd by default
specifies that user-assigned priority orders should be taken into account. When
MIPOrdInd is reset to its nondefault value 0 (zero), CPLEX ignores user-assigned
priorities. To remove user-assigned priority from a variable, see the method
delPriorities. For more detail about how priorities are applied, see the topic
Issuing Priority Orders in the ILOG CPLEX User's Manual.

public void setPriority(IloNumVar var,
IloNum pri)

This method sets the priority order for the variable var to pri. During branching,
integer variables with higher priorities are given preference over integer variables with
lower priorities. Further, variables that have priority assigned to them are given
preference over variables that do not. Priorities must be nonnegative integers. By
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 551

IloCplex
default, the priority of a variable without a user-assigned priority is 0 (zero). The
parameter MIPOrdInd by default specifies that user-assigned priority orders should be
taken into account. When MIPOrdInd is reset to its nondefault value 0 (zero), CPLEX
ignores user-assigned priorities. To remove user-assigned priority from a variable, see
the method delPriority. For more detail about how priorities are applied, see the
topic Issuing Priority Orders in the ILOG CPLEX User's Manual.

public void setVectors(const IloNumArray x,
 const IloNumArray dj,
 const IloNumVarArray var,
 const IloNumArray slack,
 const IloNumArray pi,
 const IloRangeArray rng)

This method allows a user to specify a starting point for the following invocation of the
method solve.

For all variables in var, x[i] specifies the starting value for the variable var[i].
Similarly, dj[i] specifies the starting reduced cost for variable var[i]. For all
ranged constraints specified in rng, slack[i] specifies the starting slack value for
rng[i]. Similarly, pi[i] specifies the starting dual value for rng[i].

Zero can be passed for any individual parameter. However, the arrays x and var must
be the same length. Likewise, pi and rng must be the same length.

In other words, you must provide starting values for either the primal or dual variables
x and pi. If you provide values for dj, then you must provide the corresponding values
for x. If you provide values for slack, then you must provide the corresponding
values for pi.

This information is exploited at the next call to solve, to construct a starting point for
the algorithm, provided that the AdvInd parameter is set to a value greater than or
equal to one. In particular, if the extracted model is an LP, and the root algorithm is dual
or primal, the information is used to construct a starting basis for the simplex method for
the original model, if AdvInd is set to 1 (one). If AdvInd is set to 2, the information
is used to construct a starting basis for the presolved model.

If the extracted model is a MIP, only x values can be used. Values may be specified for
any subset of the integer and continuous variables in the model, either through a single
invocation of setVectors, or incrementally through multiple calls. When
optimization commences or resumes, CPLEX will attempt to find a feasible MIP
solution that is compatible with the set of specified x values. When start values are not
provided for all integer variables, CPLEX tries to extend the partial solution to a
complete solution by solving a MIP on the unspecified variables. The parameter
SubMIPNodeLim controls the amount of effort CPLEX expends in trying to solve this
secondary MIP. If CPLEX finds a complete feasible solution, that solution becomes the
incumbent. If the specified values are infeasible, they are retained for use in a
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 552

IloCplex
subsequent solution repair heuristic. The amount of effort spent in this heuristic can be
controlled by the parameter RepairTries.

public IloBool solve(IloCplex::Goal goal)

This method initializes the goal stack of the root node with goal before starting the
branch & cut search. The search tree will be defined by the execute method of goal and
its subgoals. See the concept Goals and the nested class IloCplex::GoalI for
more information.

public IloBool solve()

This method solves the model currently extracted to the invoking IloCplex object.
The method returns IloTrue if it finds a solution (not necessarily an optimal one).

public IloBool solveFixed(IloInt soln=-1)

After the invoking algorithm has solved the extracted MIP model to a feasible (but not
necessarily optimal) solution as a MIP, this member function solves the relaxation of the
model obtained by fixing all the integer variables of the extracted MIP to the values of a
solution. The current solution is used if the soln argument is omitted or given the
value -1; otherwise, the solution pool member indexed by soln is used.

public IloInt tuneParam(IloArray< const char *> filename,
IloCplex::ParameterSet fixedset)

 The method tuneParam tunes the parameters of an instance of IloCplex for
improved optimizer performance on the current model, or a set of models if the
filename argument is used. Tuning is carried out by CPLEX making a number of
trial runs with a variety parameter settings. Parameters and associated values which
should not be changed by the tuning process are specified in the parameter set
fixedset.

After tuneParam has finished, the IloCplex parameters will be set to the tuned and
fixed settings which can be queried or written to a file. There will not be a solution to
the current model.

The parameter TuningRepeat specifies how many problem variations for CPLEX to
try while tuning when tuning the current model. Using a number of variations can give
more robust results when tuning is applied to a single model.

Note that the tuning evaluation measure is meaningful only when TuningRepeat is
larger than one or when a set of models is being tuned.

A few of the parameter settings control the tuning process. They are specified in the
table below; other parameter settings are ignored.

Parameter Use
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 553

IloCplex
 All callbacks, except the tuning callback, will be ignored. Tuning will monitor the
method abort and terminate when an abort has been issued.

Returns : IloInt value specifying the completion status of the tuning. The values returned are
from the enumeration TuningStatus.

public IloCplex::Callback use(IloCplex::Callback cb)

This method instructs the invoking IloCplex object to use cb as a callback. If a
callback of the same type as cb is already being used by the invoking IloCplex
object, the previously used callback will be overridden. If the callback object cb is
already being used by another IloCplex object, a copy of cb will be used instead. A
handle to the callback that is installed in the invoking IloCplex object is returned. See
IloCplex::CallbackI for a discussion of how to implement callbacks.

public IloCplex::Aborter use(IloCplex::Aborter abort)

This method instructs the invoking IloCplex object to use the aborter object abort
to control termination of its solving and tuning methods. If an aborter is already being
used by the invoking IloCplex object, the previously used aborter will be overridden.
A handle to the aborter that is installed in the invoking IloCplex object is returned.

See Also IloCplex::Aborter

public void writeBasis(const char * name) const

Writes the current simplex basis to the file specified by name.

 By convention, the file extension is .bas. The BAS file format is documented in the
reference manual ILOG CPLEX File Formats.

public void writeConflict(const char * filename) const

Writes a conflict file named filename.

public void writeFilters(const char * name)

Writes filters from the invoking model to a file in FLT format. This format is
documented in the reference manual ILOG CPLEX File Formats.

public void writeMIPStart(const char * name,
IloInt soln=-1) const

TiLim Limits the total time spent tuning

TuningTiLim Limits the time of each trial run

TuningMeasure Controls the tuning evaluation measure

TuningRepeat Sets the number of repeated problem
variations

TuningDisplay Controls the level of the tuning display
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 554

IloCplex
Writes MIP start information to the file denoted by name. The MIP start written
corresponds to the current solution if the soln parameter is omitted; otherwise, it
corresponds to the solution pool member indexed by soln.

By convention, the file extension is .mst. The MST file format is documented in the
reference manual ILOG CPLEX File Formats as well as the stylesheet
solution.xsl and schema solution.xsd found in the include directory of
the product.

public void writeMIPStarts(const char * name) const

Writes MIP start information with all members of the solution pool to the file denoted
by name.

By convention, the file extension is .mst. The MST file format is documented in the
reference manual ILOG CPLEX File Formats as well as the stylesheet
solution.xsl and schema solution.xsd found in the include directory of
the product.

public void writeOrder(const char * filename) const

Writes a priority order to the file filename.

 If a priority order has been associated with the CPLEX problem object, or the
parameter MipOrdType is nonzero, this method writes the priority order into the
specified file.

 By convention, the file extension is .ord. The ORD file format is documented in the
reference manual ILOG CPLEX File Formats.

public void writeParam(const char * name) const

Writes the parameter name and its current setting into the file specified by name for all
the CPLEX parameters that are not currently set at their default.

By convention, the file extension is .prm. The PRM file format is documented in the
reference manual ILOG CPLEX File Formats.

public void writeSolution(const char * name,
IloInt soln=-1) const

Writes a solution file for the current problem into the file specified by name. The
solution written is the current solution if the soln parameter is omitted; otherwise, it is
the solution pool member indexed by soln.

 By convention, the file extension is .sol. The SOL file format is documented in the
reference manual ILOG CPLEX File Formats as well as the stylesheet
solution.xsl and schema solution.xsd found in the include directory of the
product.

public void writeSolutions(const char * name) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 555

IloCplex
Writes a solution file with all members of the solution pool for the current problem into
the file specified by name.

 By convention, the file extension is .sol. The SOL file format is documented in the
reference manual ILOG CPLEX File Formats as well as the stylesheet
solution.xsl and schema solution.xsd found in the include directory of the
product.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 556

IloCplex::Aborter
IloCplex::Aborter

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description An instance of this class gracefully terminates the solving and tuning methods of
IloCplex. You can pass an instance of this class to one or more IloCplex objects.
Calling the method abort will then terminate the solve or tuning method of the
IloCplex object.

 In particular, if you install an instance of this class in an instance of IloCplex, call
the method IloCplex::solve, and later call the method
IloCplex::Aborter::abort, then the solve will gracefully terminate, even if
the methods are in separate threads. This convention makes it possible, for example, in
a GUI application to terminate ILOG CPLEX when an end user presses a stop button.

Constructors public Aborter(IloEnv env)

Constructs an instance of the Aborter class. It requires an instance of the same IloEnv
as the IloCplex object with which to use the aborter.

Methods public void abort()

Constructor Summary
public Aborter(IloEnv env)

Method Summary
public void abort()

public void clear()

public void end()

public IloBool isAborted() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 557

IloCplex::Aborter
Aborts the solving and tuning methods.

public void clear()

Clears the aborter.

public void end()

Ends the aborter.

public IloBool isAborted() const

Returns IloTrue if abort has been called.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 558

IloCplex::Algorithm
IloCplex::Algorithm

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis Algorithm{
 NoAlg,
 AutoAlg,
 Primal,
 Dual,
 Barrier,
 Sifting,
 Concurrent,
 Network,
 FeasOpt,
 MIP
};

Description The enumeration IloCplex::Algorithm lists the algorithms available in CPLEX
to solve continuous models as controlled by the parameters IloCplex::RootAlg
and IloCplex::NodeAlg.

 These values are also returned by IloCplex::getAlgorithm to specify the
algorithm used to generate the current solution. The values FeasOpt and MIP are
returned by IloCplex::getAlgorithm but should not be used with
IloCplex::RootAlg nor with IloCplex::NodeAlg.

See Also IloCplex, getAlgorithm, getSubAlgorithm, IloCplex::IntParam,
RootAlg, NodeAlg

Fields NoAlg

 = CPX_ALG_NONE

AutoAlg

 = CPX_ALG_AUTOMATIC

Primal

 = CPX_ALG_PRIMAL

Dual

 = CPX_ALG_DUAL

Barrier

 = CPX_ALG_BARRIER

Sifting
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 559

IloCplex::Algorithm
 = CPX_ALG_SIFTING

Concurrent

 = CPX_ALG_CONCURRENT

Network

 = CPX_ALG_NET

FeasOpt

 = CPX_ALG_FEASOPT

MIP

 = CPX_ALG_MIP
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 560

IloCplex::BarrierCallbackI
IloCplex::BarrierCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected BarrierCallbackI(IloEnv env)

Method Summary
protected IloNum getDualObjValue() const

Inherited methods from IloCplex::ContinuousCallbackI
ContinuousCallbackI::getDualInfeasibility,
ContinuousCallbackI::getInfeasibility,
ContinuousCallbackI::getNiterations, ContinuousCallbackI::getObjValue,
ContinuousCallbackI::isDualFeasible, ContinuousCallbackI::isFeasible

Inherited methods from
IloCplex::OptimizationCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 561

IloCplex::BarrierCallbackI
Description An instance of the class IloCplex::BarrierCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a problem by
means of the barrier optimizer. IloCplex calls the user-written callback after each
iteration during optimization with the barrier method. If an attempt is made to access
information not available to an instance of this class, an exception is thrown.

The constructor and methods of this class are for use in deriving a user-written callback
class and in implementing the main method there.

For more information about the barrier optimizer, see the ILOG CPLEX User's Manual.

See Also ILOBARRIERCALLBACK0, IloCplex, IloCplex::Callback,
IloCplex::CallbackI, IloCplex::ContinuousCallbackI,
IloCplex::OptimizationCallbackI

Constructors protected BarrierCallbackI(IloEnv env)

This constructor creates a callback for use in an application of the barrier optimizer.

Methods protected IloNum getDualObjValue() const

This method returns the current dual objective value of the solution in the instance of
IloCplex at the time the invoking callback is executed.

OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 562

IloCplex::BasisStatus
IloCplex::BasisStatus

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis BasisStatus{
 NotABasicStatus,
 Basic,
 AtLower,
 AtUpper,
 FreeOrSuperbasic
};

Description The enumeration IloCplex::BasisStatus lists values that the status of variables
or range constraints may assume in a basis. NotABasicStatus is not a valid status
for a variable. A basis containing such a status does not constitute a valid basis. The
basis status of a ranged constraint corresponds to the basis status of the corresponding
slack or artificial variable that IloCplex manages for it. FreeOrSuperbasic
specifies that the variable is nonbasic, but not at a bound.

See Also IloCplex, IloCplex::BasisStatusArray

Fields NotABasicStatus
Basic
AtLower
AtUpper
FreeOrSuperbasic
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 563

IloCplex::BasisStatusArray
IloCplex::BasisStatusArray

Category Inner Type Definition

Definition File ilcplex/ilocplexi.h

Synopsis IloArray< BasisStatus > BasisStatusArray

Description This type defines an array-type for IloCplex::BasisStatus. The fully qualified
name of a basis status array is IloCplex::BasisStatusArray.

See Also IloCplex, IloCplex::BasisStatus
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 564

IloCplex::BoolParam
IloCplex::BoolParam

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis BoolParam{
 PreInd,
 ReverseInd,
 XXXInd,
 MIPOrdInd,
 MPSLongNum,
 LBHeur,
 PerInd,
 PreLinear,
 DataCheck,
 QPmakePSDInd,
 MemoryEmphasis,
 NumericalEmphasis
};

Description The enumeration IloCplex::BoolParam lists the parameters of CPLEX that
require Boolean values. Boolean values are also known in certain contexts as binary
values or as zero-one (0-1) values. Use these values with the methods that accept
Boolean parameters: IloCplex::getParam and IloCplex::setParam.

See the reference manual ILOG CPLEX Parameters for more information about these
parameters. Also see the user's manual for examples of their use.

See Also IloCplex

Fields PreInd

 = CPX_PARAM_PREIND

ReverseInd

 = deprecated

XXXInd

 = deprecated

MIPOrdInd

 = CPX_PARAM_MIPORDIND

MPSLongNum

 = CPX_PARAM_MPSLONGNUM

LBHeur
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 565

IloCplex::BoolParam
 = CPX_PARAM_LBHEUR

PerInd

 = CPX_PARAM_PERIND

PreLinear

 = CPX_PARAM_PRELINEAR

DataCheck

 = CPX_PARAM_DATACHECK

QPmakePSDInd

 = CPX_PARAM_QPMAKEPSDIND

MemoryEmphasis

 = CPX_PARAM_MEMORYEMPHASIS

NumericalEmphasis

 = CPX_PARAM_NUMERICALEMPHASIS
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 566

IloCplex::BranchCallbackI
IloCplex::BranchCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected BranchCallbackI(IloEnv env)

Method Summary
protected IloNum getBranch(IloNumVarArray vars,IloNumArray

bounds,IloCplex::BranchDirectionArray
dirs,IloInt i) const

protected
BranchCallbackI::BranchType

getBranchType() const

protected IloInt getNbranches() const

protected NodeId getNodeId() const

protected IloBool isIntegerFeasible() const

protected NodeId makeBranch(const IloConstraintArray
cons,const IloIntVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloConstraintArray
cons,const IloNumVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloConstraint con,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloConstraintArray
cons,IloNum objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloIntVar var,IloNum
bound,IloCplex::BranchDirection dir,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloNumVar var,IloNum
bound,IloCplex::BranchDirection dir,IloNum
objestimate,NodeData * data=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 567

IloCplex::BranchCallbackI
protected NodeId makeBranch(const IloIntVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloNumVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)

protected void prune()

Inherited methods from IloCplex::ControlCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 568

IloCplex::BranchCallbackI
Description

An instance of the class IloCplex::BranchCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer

MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Inner Enumeration
BranchCallbackI::BranchType

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 569

IloCplex::BranchCallbackI
program (MIP). The user-written callback is called prior to branching at a node in the
branch & cut tree during the optimization of a MIP. It allows you to query how the
invoking instance of IloCplex is about to create subnodes at the current node and
gives you the option to override the selection made by the invoking instance of
IloCplex. You can create zero, one, or two branches.

◆ The method prune removes the current node from the search tree. No subnodes
from the current node will be added to the search tree.

◆ The method makeBranch tells an instance of IloCplex how to create a
subproblem. You may call this method zero, one, or two times in every invocation of
the branch callback. If you call it once, it creates one node; it you call it twice, it
creates two nodes (one node at each call).

◆ If you call neither IloCplex::BranchCallBackI::prune nor
IloCplex::BranchCallBackI::makeBranch, the instance of IloCplex
proceeds with its own selection.

◆ Calling both IloCplex::BranchCallBackI::prune and
IloCplex::BranchCallBackI::makeBranch in one invocation of a
branch callback is an error and results in unspecified behavior.

The methods of this class are for use in deriving a user-written callback class and in
implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also ILOBRANCHCALLBACK0, IloCplex::BranchDirection,
IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::ControlCallbackI,
IloCplex::OptimizationCallbackI

Constructors protected BranchCallbackI(IloEnv env)

This constructor creates a branch callback, that is, a control callback for splitting a node
into two branches.

Methods protected IloNum getBranch(IloNumVarArray vars,
IloNumArray bounds,
IloCplex::BranchDirectionArray dirs,
IloInt i) const

This method accesses branching information for the i-th branch that the invoking
instance of IloCplex is about to create. The parameter i must be between 0 (zero)
and (getNbranches - 1); that is, it must be a valid index of a branch; normally, it
will be zero or one.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 570

IloCplex::BranchCallbackI
A branch is normally defined by a set of variables and the bounds for these variables.
Branches that are more complex cannot be queried. The return value is the node estimate
for that branch.

◆ The parameter vars contains the variables for which new bounds will be set in the
i-th branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown

means that bounds[j] specifies an upper bound for vars[j].

protected BranchCallbackI::BranchType getBranchType() const

This method returns the type of branching IloCplex is going to do for the current
node.

protected IloInt getNbranches() const

This method returns the number of branches IloCplex is going to create at the current
node.

protected NodeId getNodeId() const

Returns the NodeId of the current node.

protected IloBool isIntegerFeasible() const

This method returns IloTrue if the solution of the current node is integer feasible.

protected NodeId makeBranch(const IloConstraintArray cons,
 const IloIntVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)

This method offers the same facilities as the other methods
IloCplex::BranchCallbackI::makeBranch, but for a branch specified by a
set of constraints and a set of variables.

protected NodeId makeBranch(const IloConstraintArray cons,
 const IloNumVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 571

IloCplex::BranchCallbackI
This method offers the same facilities as the other methods
IloCplex::BranchCallbackI::makeBranch, but for a branch specified by a
set of constraints and a set of variables.

protected NodeId makeBranch(const IloConstraint con,
IloNum objestimate,

 NodeData * data=0)

This method offers the same facilities for a branch specified by only one constraint as
IloCplex::BranchCallbackI::makeBranch does for a branch specified by a
set of constraints.

protected NodeId makeBranch(const IloConstraintArray cons,
IloNum objestimate,

 NodeData * data=0)

This method overrides the branch chosen by an instance of IloCplex, by specifying a
branch on constraints. A method named makeBranch can be called zero, one, or two
times in every invocation of the branch callback. If you call it once, it creates one node;
it you call it twice, it creates two nodes (one node at each call). If you call it more than
twice, it throws an exception.

◆ The parameter cons specifies an array of constraints that are to be added for the
subnode being created.

◆ The parameter objestimate provides an estimate of the resulting optimal
objective value for the subnode specified by this branch. The invoking instance of
IloCplex may use this estimate to select nodes to process. Providing a wrong
estimate will not influence the correctness of the solution, but it may influence
performance. Using the objective value of the current node is usually a safe choice.

◆ The parameter data allows you to add an object of type
IloCplex::MIPCallbackI::NodeData to the node representing the branch
created by the makeBranch call. Such data objects must be instances of a user-
written subclass of IloCplex::MIPCallbackI::NodeData.

protected NodeId makeBranch(const IloIntVar var,
IloNum bound,
IloCplex::BranchDirection dir,
IloNum objestimate,

 NodeData * data=0)

For a branch specified by only one variable, this method offers the same facilities as
IloCplex::BranchCallbackI::makeBranch for a branch specified by a set
of variables.

protected NodeId makeBranch(const IloNumVar var,
IloNum bound,
IloCplex::BranchDirection dir,
IloNum objestimate,

 NodeData * data=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 572

IloCplex::BranchCallbackI
For a branch specified by only one variable, this method offers the same facilities as
IloCplex::BranchCallbackI::makeBranch for a branch specified by a set
of variables.

protected NodeId makeBranch(const IloIntVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)

This method overrides the branch chosen by an instance of IloCplex. A method
named makeBranch can be called zero, one, or two times in every invocation of the
branch callback. If you call it once, it creates one node; it you call it twice, it creates two
nodes (one node at each call). If you call it more than twice, it throws an exception.

Each call specifies a branch; in other words, it instructs the invoking IloCplex object
how to create a subnode from the current node by specifying new, tighter bounds for a
set of variables.

◆ The parameter vars contains the variables for which new bounds will be set in the
branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound to be set for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown

means that bounds[j] specifies an upper bound for vars[j].

◆ The parameter objestimate provides an estimate of the resulting optimal
objective value for the subnode specified by this branch. The invoking instance of
IloCplex may use this estimate to select nodes to process. Providing a wrong
estimate will not influence the correctness of the solution, but it may influence
performance. Using the objective value of the current node is usually a safe choice.

◆ The parameter data allows you to add an object of type
IloCplex::MIPCallbackI::NodeData to the node representing the branch
created by the makeBranch call. Such data objects must be instances of a user-
written subclass of IloCplex::MIPCallbackI::NodeData.

protected NodeId makeBranch(const IloNumVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 573

IloCplex::BranchCallbackI
This method overrides the branch chosen by an instance of IloCplex. A method
named makeBranch can be called zero, one, or two times in every invocation of the
branch callback. If you call it once, it creates one node; it you call it twice, it creates two
nodes (one node at each call). If you call it more than twice, it throws an exception.

Each call specifies a branch; in other words, it instructs the invoking IloCplex object
how to create a subnode from the current node by specifying new, tighter bounds for a
set of variables.

◆ The parameter vars contains the variables for which new bounds will be set in the
branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound to be set for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown

means that bounds[j] specifies an upper bound for vars[j].

◆ The parameter objestimate provides an estimate of the resulting optimal
objective value for the subnode specified by this branch. The invoking instance of
IloCplex may use this estimate to select nodes to process. Providing a wrong
estimate will not influence the correctness of the solution, but it may influence
performance. Using the objective value of the current node is usually a safe choice.

◆ The parameter data allows you to add an object of type
IloCplex::MIPCallbackI::NodeData to the node representing the branch
created by the makeBranch call. Such data objects must be instances of a user-
written subclass of IloCplex::MIPCallbackI::NodeData.

protected void prune()

By calling this method, you instruct the CPLEX branch & cut search not to create any
child nodes from the current node, or, in other words, to discard nodes below the current
node; it does not revisit the discarded nodes below the current node. In short, it creates
no branches. It is an error to call both prune and makeBranch in one invocation of a
callback.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 574

BranchCallbackI::BranchType
BranchCallbackI::BranchType

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis BranchType{
 BranchOnVariable,
 BranchOnSOS1,
 BranchOnSOS2,
 BranchOnAny,
 UserBranch
};

Description IloCplex::BranchCallbackI::BranchType is an enumeration limited in
scope to the class IloCplex::BranchCallbackI. This enumeration is used by
the method IloCplex::BranchCallbackI::getBranchType to tell what
kind of branch IloCplex is about to do:

◆ BranchOnVariable specifies branching on a single variable.

◆ BranchOnAny specifies multiple bound changes and constraints will be used for
branching.

◆ BranchOnSOS1 specifies branching on an SOS of type 1.

◆ BranchOnSOS2 specifies branching on an SOS of type 2.

See Also IloCplex::BranchCallbackI

Fields BranchOnVariable

 = CPX_TYPE_VAR

BranchOnSOS1

 = CPX_TYPE_SOS1

BranchOnSOS2

 = CPX_TYPE_SOS2

BranchOnAny

 = CPX_TYPE_ANY

UserBranch
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 575

IloCplex::BranchDirection
IloCplex::BranchDirection

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis BranchDirection{
 BranchGlobal,
 BranchDown,
 BranchUp
};

Description The enumeration IloCplex::BranchDirection lists values that can be used for
specifying branch directions either with the branch direction parameter
IloCplex::BrDir or with the methods IloCplex::setDirection and
IloCplex::setDirections. The branch direction specifies which direction to
explore first after branching on one variable.

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex, IloCplex::BranchDirectionArray

Fields BranchGlobal

 = CPX_BRANCH_GLOBAL

BranchDown

 = CPX_BRANCH_DOWN

BranchUp

 = CPX_BRANCH_UP
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 576

IloCplex::BranchDirectionArray
IloCplex::BranchDirectionArray

Category Inner Type Definition

Definition File ilcplex/ilocplexi.h

Synopsis IloArray< BranchDirection > BranchDirectionArray

Description This type defines an array-type for IloCplex::BranchDirection. The fully
qualified name of a branch direction array is
IloCplex::BranchDirectionArray.

See Also IloCplex, IloCplex::BranchDirection
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 577

IloCplex::Callback
IloCplex::Callback

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description This class is the handle class for all callback implementation classes available for
IloCplex. Callback implementation classes are user-defined classes derived from a
subclass of IloCplex::CallbackI.

See Also IloCplex, IloCplex::CallbackI

Constructors public Callback(IloCplex::CallbackI * impl=0)

This constructor creates a callback handle object and initializes it to the implementation
object passed as the argument.

Methods public void end()

Constructor Summary
public Callback(IloCplex::CallbackI * impl=0)

Method Summary
public void end()

public IloCplex::CallbackI * getImpl() const

public Callback::Type getType() const

Inner Enumeration
Callback::Type
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 578

IloCplex::Callback
This method deletes the implementation object pointed to by the invoking handle and
sets the pointer to 0 (zero).

public IloCplex::CallbackI * getImpl() const

This method returns a pointer to the implementation object of the invoking handle.

public Callback::Type getType() const

This method returns the type of the callback implementation object referenced by the
invoking handle.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 579

IloCplex::CallbackI
IloCplex::CallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description This is the abstract base class for user-written callback classes. It provides their
common application programming interface (API). Callbacks may be called repeatedly
at various points during an optimization; for each place a callback is called, ILOG
CPLEX provides a separate callback class (derived from this class). Such a callback
class provides the specific API as a protected method to use for the particular
implementation.

You do not create instances of this class; rather, you use one of its child classes to
implement your own callback. In order to implement your user-written callbacks with an
instance of IloCplex, you should follow these steps:

◆ Determine which kind of callback you want to write, and choose the appropriate
class for it. The class hierarchy in Tree may give you some ideas here.

◆ Derive your own subclass, MyCallbackI, say, from the appropriate predefined
callback class.

◆ In your subclass of the callback class, use the protected API defined in the base
class to implement the main routine of your user-written callback. (All constructors
of predefined callback classes are protected; they can be called only from user-
written derived subclasses.)

Method Summary
protected void CallbackI::abort()

protected virtual CallbackI
*

CallbackI::duplicateCallback() const

protected IloEnv CallbackI::getEnv() const

protected virtual void CallbackI::main()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 580

IloCplex::CallbackI
◆ In your subclass, implement the method duplicateCallback.

◆ Write a function myCallback, say, that creates an instance of your
implementation class in the Concert Technology environment and returns it as a
handle of IloCplex::Callback.

◆ Create an instance of your callback class and pass it to the member function use.

You can use one instance of a callback with only one instance of IloCplex. When you
use a callback with a second instance of IloCplex, a copy will be automatically
created using the method duplicateCallback, and that copy will be used instead.

 Also, an instance of IloCplex takes account of only one instance of a particular
callback at any given time. That is, if you call use more than once with the same class
of callback, the last call overrides any previous one. For example, you can use only one
primal simplex callback at a time, or you can use only one network callback at a time;
and so forth.

There are two varieties of callbacks:

◆ Query callbacks enable your application to retrieve information about the current
solution in an instance of IloCplex. The information available depends on the
algorithm (primal simplex, dual simplex, barrier, mixed integer, or network) that you
are using. For example, a query callback can return the current objective value, the
number of simplex iterations that have been completed, and other details. Query
callbacks can also be called from presolve, probing, fractional cuts, and disjunctive
cuts.

◆ Control callbacks enable you to direct the search when you are solving a MIP in an
instance of IloCplex. For example, control callbacks enable you to select the next
node to process or to control the creation of subnodes (among other possibilities).

Existing extractables should never be modified within a callback. Temporary
extractables, such as arrays, expressions, and range constraints, can be created and
modified. Temporary extractables are often useful, for example, for computing cuts.

See Also ILOBARRIERCALLBACK0, ILOBRANCHCALLBACK0, IloCplex,
IloCplex::BarrierCallbackI, IloCplex::BranchCallbackI,
IloCplex::Callback, IloCplex::ControlCallbackI,
IloCplex::CrossoverCallbackI, IloCplex::CutCallbackI,

Note: Macros ILOXXXCALLBACKn (for n from 0 to 7) are available to facilitate
steps 2 through 5, where XXX stands for the particular callback under construction
and n stands for the number of parameters that the function written in step 5 is to
receive in addition to the environment parameter.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 581

IloCplex::CallbackI
IloCplex::DisjunctiveCutCallbackI,
IloCplex::FlowMIRCutCallbackI,
IloCplex::FractionalCutCallbackI,
IloCplex::HeuristicCallbackI, IloCplex::IncumbentCallbackI,
IloCplex::ContinuousCallbackI, IloCplex::MIPCallbackI,
IloCplex::NetworkCallbackI, IloCplex::NodeCallbackI,
IloCplex::OptimizationCallbackI,
IloCplex::PresolveCallbackI, IloCplex::ProbingCallbackI,
IloCplex::SimplexCallbackI, IloCplex::SolveCallbackI,
IloCplex::TuningCallbackI, ILOCROSSOVERCALLBACK0,
ILOCUTCALLBACK0, ILOBRANCHCALLBACK0,
ILODISJUNCTIVECUTCALLBACK0, ILOFLOWMIRCUTCALLBACK0,
ILOFRACTIONALCUTCALLBACK0, ILOHEURISTICCALLBACK0,
ILOINCUMBENTCALLBACK0, ILOCONTINUOUSCALLBACK0,
ILOMIPCALLBACK0, ILONETWORKCALLBACK0, ILONODECALLBACK0,
ILOPRESOLVECALLBACK0, ILOPROBINGCALLBACK0,
ILOSIMPLEXCALLBACK0, ILOSOLVECALLBACK0, ILOTUNINGCALLBACK0

Methods protected void abort()

 This method instructs CPLEX to stop the current optimization after the user callback
finishes. Note that executing additional IloCplex callback methods in the callback
can lead to unpredictable behavior. For example, callback methods such as
IloCplex::SolveCallbackI::solve or
IloCplex::BranchCallbackI::makeBranch can overwrite the callback
status and thus enable the optimization to continue. Therefore, to abort an optimization
effectively, a user should exit the callback by one of the following ways:

◆ Call return immediately after the call of abort.

◆ Structure the callback so that it calls no additional methods of
IloCplex::CallbackI and its subclasses after abort.

protected virtual CallbackI * duplicateCallback() const

This virtual method must be implemented to create a copy of the invoking callback
object on the same environment. Typically the following implementation will work for a
callback class called MyCallbackI:

 IloCplex::CallbackI* MyCallbackI::duplicateCallback() const {
 return (new (getEnv()) MyCallbackI(*this));
 }

This method is called by an IloCplex object in two cases:

◆ When cplex.use(cb) is called for a callback object cb that is already used by
another instance of IloCplex, a copy of the implementation object of cb is
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 582

IloCplex::CallbackI
created by calling duplicateCallback and used in its place. The method use
will return a handle to that copy.

◆ When a parallel optimizer is used, IloCplex creates copies of every callback that
it uses by calling duplicateCallback. One copy of a callback is created for
each additional thread being used in the parallel optimizer. During the optimization,
each thread will invoke the copy corresponding to the thread number. The methods
provided by the callback APIs are guaranteed to be threadsafe. However, when
accessing parameters passed to callbacks or members stored in a callback, it is up to
the user to make sure of thread safety by synchronizing access or creating distinct
copies of the data in the implementation of duplicateCallback.

protected IloEnv getEnv() const

This method returns the environment belonging to the IloCplex object that invoked
the method main.

protected virtual void main()

This virtual method is to be implemented by the user in a derived callback class to define
the functionality of the callback. When an instance of IloCplex uses a callback (an
instance of IloCplex::CallbackI or one of its derived subclasses), IloCplex
calls this virtual method main at the point during the optimization at which the callback
is executed.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 583

Callback::Type
Callback::Type

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis Type{
 Presolve,
 Simplex,
 Barrier,
 Crossover,
 Network,
 MIP,
 Probing,
 FractionalCut,
 DisjunctiveCut,
 Branch,
 Cut,
 Node,
 Heuristic,
 Incumbent,
 Solve,
 FlowMIRCut,
 Continuous,
 MIPInfo,
 ProbingInfo,
 FractionalCutInfo,
 DisjunctiveCutInfo,
 FlowMIRCutInfo,
 Tuning,
 _Number
};

Description This enumeration type is used to identify the type of a callback implementation object
referred to by an IloCplex::Callback handle.

See Also IloCplex::Callback

Fields Presolve
Simplex
Barrier
Crossover
Network
MIP
Probing
FractionalCut
DisjunctiveCut
Branch
Cut
Node
Heuristic
Incumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 584

Callback::Type
Solve
FlowMIRCut
Continuous
MIPInfo
ProbingInfo
FractionalCutInfo
DisjunctiveCutInfo
FlowMIRCutInfo
Tuning
_Number
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 585

IloCplex::ConflictStatus
IloCplex::ConflictStatus

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis ConflictStatus{
 ConflictExcluded,
 ConflictPossibleMember,
 ConflictMember
};

Description This enumeration lists the values that tell the status of a constraint or bound with
respect to a conflict.

◆ ConflictPossibleMember

◆ ConflictMember

The value ConflictExcluded is internal, undocumented, not available to users.

Fields ConflictExcluded
ConflictPossibleMember
ConflictMember
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 586

IloCplex::ConflictStatusArray
IloCplex::ConflictStatusArray

Category Inner Type Definition

Definition File ilcplex/ilocplexi.h

Synopsis IloArray< ConflictStatus > ConflictStatusArray

Description This type defines an array-type for IloCplex::ConflictStatus.

See Also IloCplex, IloCplex::ConflictStatus
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 587

IloCplex::ContinuousCallbackI
IloCplex::ContinuousCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected ContinuousCallbackI(IloEnv env)

Method Summary
protected IloNum ContinuousCallbackI::getDualInfeasibility()

const

protected IloNum ContinuousCallbackI::getInfeasibility()
const

protected IloInt ContinuousCallbackI::getNiterations() const

protected IloNum ContinuousCallbackI::getObjValue() const

protected IloBool ContinuousCallbackI::isDualFeasible() const

protected IloBool ContinuousCallbackI::isFeasible() const

Inherited methods from
IloCplex::OptimizationCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 588

IloCplex::ContinuousCallbackI
Description An instance of a class derived from IloCplex::ContinuousCallbackI
represents a user-written callback in an ILOG CPLEX application that uses an instance
of IloCplex with the primal simplex, dual simplex, or barrier optimizer. IloCplex
calls the user-written callback after each iteration during an optimization of a problem
solved at a node. This class offers methods for use within the callbacks you write. In
particular, there are methods in this class to access primal and dual feasibility, number of
iterations, and objective value.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::OptimizationCallbackI, ILOCONTINUOUSCALLBACK0

Constructors protected ContinuousCallbackI(IloEnv env)

This constructor creates a callback for use in an application that solves continuous
models.

Methods protected IloNum getDualInfeasibility() const

OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note: There are special callbacks for simplex and barrier, that is,
IloCplex::SimplexCallbackI and
IloCplex::BarrierCallbackI, respectively. Using a continous callback
sets this callback in both of these algorithms. If a special callback was already set
for one of these algorithms, (for example, simplex) it is replaced by the general
continuous callback.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 589

IloCplex::ContinuousCallbackI
This method returns the current dual infeasibility measure of the solution in the instance
of IloCplex at the time the invoking callback is executed.

protected IloNum getInfeasibility() const

This method returns the current primal infeasibility measure of the solution in the
instance of IloCplex at the time the invoking callback is executed.

protected IloInt getNiterations() const

This method returns the number of iterations completed so far by an instance of
IloCplex at the invoking callback is executed.

protected IloNum getObjValue() const

This method returns the current objective value of the solution in the instance of
IloCplex at the time the invoking callback is executed.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloBool isDualFeasible() const

This method returns IloTrue if the current solution is dual feasible.

protected IloBool isFeasible() const

This method returns IloTrue if the current solution is primal feasible.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 590

IloCplex::ControlCallbackI
IloCplex::ControlCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Method Summary
protected IloNum ControlCallbackI::getDownPseudoCost(const

IloIntVar var) const

protected IloNum ControlCallbackI::getDownPseudoCost(const
IloNumVar var) const

protected void ControlCallbackI::getFeasibilities(ControlC
allbackI::IntegerFeasibilityArray stat,const
IloIntVarArray var) const

protected void ControlCallbackI::getFeasibilities(ControlC
allbackI::IntegerFeasibilityArray stat,const
IloNumVarArray var) const

protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloIntVar var) const

protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloNumVar var) const

protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloSOS2 sos) const

protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloSOS1 sos) const

protected IloNum ControlCallbackI::getLB(const IloIntVar var)
const

protected IloNum ControlCallbackI::getLB(const IloNumVar var)
const

protected void ControlCallbackI::getLBs(IloNumArray
val,const IloIntVarArray vars) const

protected void ControlCallbackI::getLBs(IloNumArray
val,const IloNumVarArray vars) const

protected NodeData * ControlCallbackI::getNodeData() const

protected IloNum ControlCallbackI::getObjValue() const

protected IloNum ControlCallbackI::getSlack(const IloRange
rng) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 591

IloCplex::ControlCallbackI
protected void ControlCallbackI::getSlacks(IloNumArray
val,const IloRangeArray con) const

protected IloNum ControlCallbackI::getUB(const IloIntVar var)
const

protected IloNum ControlCallbackI::getUB(const IloNumVar var)
const

protected void ControlCallbackI::getUBs(IloNumArray
val,const IloIntVarArray vars) const

protected void ControlCallbackI::getUBs(IloNumArray
val,const IloNumVarArray vars) const

protected IloNum ControlCallbackI::getUpPseudoCost(const
IloIntVar var) const

protected IloNum ControlCallbackI::getUpPseudoCost(const
IloNumVar var) const

protected IloNum ControlCallbackI::getValue(const IloIntVar
var) const

protected IloNum ControlCallbackI::getValue(const IloNumVar
var) const

protected IloNum ControlCallbackI::getValue(const IloExprArg
expr) const

protected void ControlCallbackI::getValues(IloNumArray
val,const IloIntVarArray vars) const

protected void ControlCallbackI::getValues(IloNumArray
val,const IloNumVarArray vars) const

protected IloBool ControlCallbackI::isSOSFeasible(const
IloSOS2 sos2) const

protected IloBool ControlCallbackI::isSOSFeasible(const
IloSOS1 sos1) const

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 592

IloCplex::ControlCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Inner Enumeration
ControlCallbackI::IntegerFea
sibility

Inner Class
ControlCallbackI::ControlCal
lbackI::PresolvedVariableExc
eption
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 593

IloCplex::ControlCallbackI
Description

This class defines the common application programming interface (API) for the
following classes that allow you to control the MIP search:

◆ IloCplex::SolveCallbackI

◆ IloCplex::CutCallbackI

◆ IloCplex::HeuristicCallbackI

◆ IloCplex::BranchCallbackI

An instance of one of these classes represents a user-written callback that intervenes in
the search for a solution at a given node in an application that uses an instance of
IloCplex to solve a mixed integer program (MIP). Control callbacks are tied to a
node. They are called at each node during IloCplex branch & cut search. The user
never subclasses the IloCplex::ControlCallbackI class directly; it only
defines the common interface of thosee listed callbacks.

In particular, SolveCallbackI is called before solving the node relaxation and
optionally allows substitution of its solution. IloCplex does this by default. After the
node relaxation has been solved, either by an instance of SolveCallbackI or by
IloCplex, the other control callbacks are called in the following order:

◆ IloCplex::CutCallbackI

◆ IloCplex::HeuristicCallbackI

◆ IloCplex::BranchCallbackI

If the cut callback added new cuts to the node relaxation, the node relaxation will be
solved again using the solve callback, if used. The same is true if IloCplex generated
its own cuts.

Inner Type Def
ControlCallbackI::ControlCal
lbackI::IntegerFeasibilityAr
ray

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 594

IloCplex::ControlCallbackI
The methods of this class are protected and its constructor is private; you cannot directly
subclass this class; you must derive from its subclasses.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
ControlCallbackI::IntegerFeasibility,
ControlCallbackI::IntegerFeasibilityArray,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI

Methods protected IloNum getDownPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

protected IloNum getDownPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

protected void getFeasibilities(ControlCallbackI::IntegerFeasibilityArray
stat,
 const IloIntVarArray var) const

This method specifies whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible by putting the status in the
corresponding element of the array stats.

protected void getFeasibilities(ControlCallbackI::IntegerFeasibilityArray
stat,
 const IloNumVarArray var) const

This method specifies whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible by putting the status in the
corresponding element of the array stats.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloIntVar var) const

This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloNumVar var) const

This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloSOS2 sos) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 595

IloCplex::ControlCallbackI
This method specifies whether the Special Ordered Set sos is integer feasible, integer
infeasible, or implied integer feasible in the current node solution.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloSOS1 sos) const

This method specifies whether the Special Ordered Set sos is integer feasible, integer
infeasible, or implied integer feasible in the current node solution.

protected IloNum getLB(const IloIntVar var) const

This method returns the lower bound of var at the current node. This bound is likely to
be different from the bound in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution value from getValue may violate this bound at a node where a new
incumbent has been found because the bound is tightened when an incumbent is found.

Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.

protected IloNum getLB(const IloNumVar var) const

This method returns the lower bound of var at the current node. This bound is likely to
be different from the bound in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution value from getValue may violate this bound at a node where a new
incumbent has been found because the bound is tightened when an incumbent is found.

Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.

protected void getLBs(IloNumArray val,
 const IloIntVarArray vars) const

For each element of the array vars, this method puts the lower bound at the current
node into the corresponding element of the array vals. These bounds are likely to be
different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution values from getValues may violate these bounds at a node where a new
incumbent has been found because the bounds are tightened when an incumbent is
found.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

protected void getLBs(IloNumArray val,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 596

IloCplex::ControlCallbackI
 const IloNumVarArray vars) const

This method puts the lower bound at the current node of each element of the array vars
into the corresponding element of the array vals. These bounds are likely to be
different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution values from getValues may violate these bounds at a node where a new
incumbent has been found because the bounds are tightened when an incumbent is
found.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

protected NodeData * getNodeData() const

This method retrieves the NodeData object that may have previously been assigned to
the current node by the user with the method
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the current node, 0 (zero) will be returned.

protected IloNum getObjValue() const

This method returns the objective value of the solution of the relaxation at the current
node.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloNum getSlack(const IloRange rng) const

This method returns the slack value for the constraint specified by rng in the solution
of the relaxation at the current node.

protected void getSlacks(IloNumArray val,
 const IloRangeArray con) const

For each of the constraints in the array of ranges rngs, this method puts the slack value
in the solution of the relaxation at the current node into the corresponding element of
the array vals.

protected IloNum getUB(const IloIntVar var) const

This method returns the upper bound of the variable var at the current node. This
bound is likely to be different from the bound in the original model because an instance
of IloCplex tightens bounds when it branches from a node to its subnodes. The
corresponding solution value from getValue may violate this bound at a node where a
new incumbent has been found because the bound is tightened when an incumbent is
found.

Unbounded Variables
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 597

IloCplex::ControlCallbackI
If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected IloNum getUB(const IloNumVar var) const

This method returns the upper bound of the variable var at the current node. This
bound is likely to be different from the bound in the original model because an instance
of IloCplex tightens bounds when it branches from a node to its subnodes. The
corresponding solution value from getValue may violate this bound at a node where a
new incumbent has been found because the bound is tightened when an incumbent is
found.

Unbounded Variables

If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected void getUBs(IloNumArray val,
 const IloIntVarArray vars) const

For each element in the array vars, this method puts the upper bound at the current
node into the corresponding element of the array vals. The bounds are those in the
relaxation at the current node. These bounds are likely to be different from the bounds
in the original model because an instance of IloCplex tightens bounds when it
branches from a node to its subnodes. The corresponding solution values from
getValues may violate these bounds at a node where a new incumbent has been
found because the bounds are tightened when an incumbent is found.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected void getUBs(IloNumArray val,
 const IloNumVarArray vars) const

For each element in the array vars, this method puts the upper bound at the current
node into the corresponding element of the array vals. The bounds are those in the
relaxation at the current node. These bounds are likely to be different from the bounds
in the original model because an instance of IloCplex tightens bounds when it
branches from a node to its subnodes. The corresponding solution values from
getValues may violate these bounds at a node where a new incumbent has been
found because the bounds are tightened when an incumbent is found.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected IloNum getUpPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching upward on the variable var.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 598

IloCplex::ControlCallbackI
protected IloNum getUpPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching upward on the variable var.

protected IloNum getValue(const IloIntVar var) const

This method returns the value of the variable var in the solution of the relaxation at the
current node.

protected IloNum getValue(const IloNumVar var) const

This method returns the value of the variable var in the solution of the relaxation at the
current node.

protected IloNum getValue(const IloExprArg expr) const

This method returns the value of the expression expr in the solution of the relaxation
at the current node.

protected void getValues(IloNumArray val,
 const IloIntVarArray vars) const

For each variable in the array vars, this method puts the value in the solution of the
relaxation at the current node into the corresponding element of the array vals.

protected void getValues(IloNumArray val,
 const IloNumVarArray vars) const

For each variable in the array vars, this method puts the value in the solution of the
relaxation at the current node into the corresponding element of the array vals.

protected IloBool isSOSFeasible(const IloSOS2 sos2) const

This method returns IloTrue if the solution of the LP at the current node is SOS
feasible for the special ordered set specified in its argument. The SOS set passed as a
parameter to this method may be of type 2. See the ILOG CPLEX User's Manual for
more explanation of types of special ordered sets.

protected IloBool isSOSFeasible(const IloSOS1 sos1) const

This method returns IloTrue if the solution of the LP at the current node is SOS
feasible for the special ordered set specified in its argument. The SOS set passed as a
parameter to this method may be of type 1. See the ILOG CPLEX User's Manual for
more explanation about these types of special ordered sets.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 599

ControlCallbackI::IntegerFeasibility
ControlCallbackI::IntegerFeasibility

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis IntegerFeasibility{
 ImpliedInfeasible,
 Feasible,
 Infeasible,
 ImpliedFeasible
};

Description The enumeration IloCplex::ControlCallbackI::IntegerFeasibility
is an enumeration limited in scope to the class IloCplex::ControlCallbackI.
This enumeration is used by
IloCplex::ControlCallbackI::getFeasibility to represent the integer
feasibility of a variable or SOS in the current node solution:

◆ Feasible specifies the variable or SOS is integer feasible.

◆ ImpliedFeasible specifies the variable or SOS has been presolved out. It will
be feasible when all other integer variables or SOS are integer feasible.

◆ Infeasible specifies the variable or SOS is integer infeasible.

See Also IloCplex, ControlCallbackI::IntegerFeasibilityArray

Fields ImpliedInfeasible
Feasible

 = CPX_INTEGER_FEASIBLE

Infeasible

 = CPX_INTEGER_INFEASIBLE

ImpliedFeasible

 = CPX_IMPLIED_INTEGER_FEASIBLE
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 600

ControlCallbackI::IntegerFeasibilityArray
ControlCallbackI::IntegerFeasibilityArray

Category Inner Type Definition

Definition File ilcplex/ilocplexi.h

Synopsis IloArray< IntegerFeasibility > IntegerFeasibilityArray

Description This type defines an array-type for
IloCplex::ControlCallbackI::IntegerFeasibility. The fully
qualified name of an integer feasibility array is
IloCplex::ControlCallbackI::IntegerFeasibility::Array.

See Also IloCplex, IloCplex::ControlCallbackI,
ControlCallbackI::IntegerFeasibility
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 601

ControlCallbackI::PresolvedVariableException
ControlCallbackI::PresolvedVariableException

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description Some operations within a control callback, in particular setting bounds in a heuristic
callback, are not possible to do on variables that have been taken out by presolve. An
exception of this type is thrown, if such an operation is attempted. Possible ways to
avoid this exception are to avoid the operation on presolved variables, to use the
method IloCplex::protectVariables to protect the variables from being
taken out by presolve, or to turn off presolve.

Method Summary
public void end()

public void getPresolvedVariables(IloNumVarArray vars)
const

Inherited methods from IloCplex::Exception
Exception::getStatus

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 602

ControlCallbackI::PresolvedVariableException
Methods public void end()

 This method must be called to free up the memory used by the exception when the
invoking exception object is no longer needed.

public void getPresolvedVariables(IloNumVarArray vars) const

 This methods copies the variables that caused the invoking exception into the array
vars.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 603

IloCplex::CplexStatus
IloCplex::CplexStatus

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis CplexStatus{
 Unknown,
 Optimal,
 Unbounded,
 Infeasible,
 InfOrUnbd,
 OptimalInfeas,
 NumBest,
 FeasibleRelaxedSum,
 OptimalRelaxedSum,
 FeasibleRelaxedInf,
 OptimalRelaxedInf,
 FeasibleRelaxedQuad,
 OptimalRelaxedQuad,
 AbortRelaxed,
 AbortObjLim,
 AbortPrimObjLim,
 AbortDualObjLim,
 AbortItLim,
 AbortTimeLim,
 AbortUser,
 OptimalFaceUnbounded,
 OptimalTol,
 SolLim,
 PopulateSolLim,
 NodeLimFeas,
 NodeLimInfeas,
 FailFeas,
 FailInfeas,
 MemLimFeas,
 MemLimInfeas,
 FailFeasNoTree,
 FailInfeasNoTree,
 ConflictFeasible,
 ConflictMinimal,
 ConflictAbortContradiction,
 ConflictAbortTimeLim,
 ConflictAbortItLim,
 ConflictAbortNodeLim,
 ConflictAbortObjLim,
 ConflictAbortMemLim,
 ConflictAbortUser,
 Feasible,
 OptimalPopulated,
 OptimalPopulatedTol
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 604

IloCplex::CplexStatus
};

Description The enumeration IloCplex::CplexStatus lists values that the status of an
IloCplex algorithm can assume. The methods getCplexStatus and
getCplexSubStatus access the status values, providing information about what
the algorithm learned about the active model in the most recent invocation of the method
solve or feasOpt. The status may also tell why the algorithm terminated.

See the group optim.cplex.solutionstatus in the Callable Library Reference Manual,
where they are listed in alphabetic order, or the topic Interpreting Solution Status
Codes in the Overview of the APIs, where they are listed in numeric order, for more
information about these values. Also see the ILOG CPLEX User's Manual for
examples of their use.

See also the enumeration IloAlgorithm::Status in the ILOG CPLEX Reference
Manual.

See Also IloCplex

Fields Unknown
Optimal

 = CPX_STAT_OPTIMAL

Unbounded

 = CPX_STAT_UNBOUNDED

Infeasible

 = CPX_STAT_INFEASIBLE

InfOrUnbd

 = CPX_STAT_INForUNBD

OptimalInfeas

 = CPX_STAT_OPTIMAL_INFEAS

NumBest

 = CPX_STAT_NUM_BEST

FeasibleRelaxedSum

 = CPX_STAT_FEASIBLE_RELAXED_SUM

OptimalRelaxedSum

 = CPX_STAT_OPTIMAL_RELAXED_SUM

FeasibleRelaxedInf

 = CPX_STAT_FEASIBLE_RELAXED_INF

OptimalRelaxedInf
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 605

IloCplex::CplexStatus
 = CPX_STAT_OPTIMAL_RELAXED_INF

FeasibleRelaxedQuad

 = CPX_STAT_FEASIBLE_RELAXED_QUAD

OptimalRelaxedQuad

 = CPX_STAT_OPTIMAL_RELAXED_QUAD

AbortRelaxed

 = CPXMIP_ABORT_RELAXED

AbortObjLim

 = CPX_STAT_ABORT_OBJ_LIM

AbortPrimObjLim

 = CPX_STAT_ABORT_PRIM_OBJ_LIM

AbortDualObjLim

 = CPX_STAT_ABORT_DUAL_OBJ_LIM

AbortItLim

 = CPX_STAT_ABORT_IT_LIM

AbortTimeLim

 = CPX_STAT_ABORT_TIME_LIM

AbortUser

 = CPX_STAT_ABORT_USER

OptimalFaceUnbounded

 = CPX_STAT_OPTIMAL_FACE_UNBOUNDED

OptimalTol

 = CPXMIP_OPTIMAL_TOL

SolLim

 = CPXMIP_SOL_LIM

PopulateSolLim

 = CPXMIP_POPULATESOL_LIM

NodeLimFeas

 = CPXMIP_NODE_LIM_FEAS

NodeLimInfeas

 = CPXMIP_NODE_LIM_INFEAS

FailFeas

 = CPXMIP_FAIL_FEAS
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 606

IloCplex::CplexStatus
FailInfeas

 = CPXMIP_FAIL_INFEAS

MemLimFeas

 = CPXMIP_MEM_LIM_FEAS

MemLimInfeas

 = CPXMIP_MEM_LIM_INFEAS

FailFeasNoTree

 = CPXMIP_FAIL_FEAS_NO_TREE

FailInfeasNoTree

 = CPXMIP_FAIL_INFEAS_NO_TREE

ConflictFeasible

 = CPX_STAT_CONFLICT_FEASIBLE

ConflictMinimal

 = CPX_STAT_CONFLICT_MINIMAL

ConflictAbortContradiction

 = CPX_STAT_CONFLICT_ABORT_CONTRADICTION

ConflictAbortTimeLim

 = CPX_STAT_CONFLICT_ABORT_TIME_LIM

ConflictAbortItLim

 = CPX_STAT_CONFLICT_ABORT_IT_LIM

ConflictAbortNodeLim

 = CPX_STAT_CONFLICT_ABORT_NODE_LIM

ConflictAbortObjLim

 = CPX_STAT_CONFLICT_ABORT_OBJ_LIM

ConflictAbortMemLim

 = CPX_STAT_CONFLICT_ABORT_MEM_LIM

ConflictAbortUser

 = CPX_STAT_CONFLICT_ABORT_USER

Feasible

 = CPX_STAT_FEASIBLE

OptimalPopulated

 = CPXMIP_OPTIMAL_POPULATED

OptimalPopulatedTol
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 607

IloCplex::CplexStatus
 = CPXMIP_OPTIMAL_POPULATED_TOL
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 608

IloCplex::CrossoverCallbackI
IloCplex::CrossoverCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected CrossoverCallbackI(IloEnv env)

Method Summary
protected IloInt getNdualExchanges() const

protected IloInt getNdualPushes() const

protected IloInt getNprimalExchanges() const

protected IloInt getNprimalPushes() const

protected IloInt getNsuperbasics() const

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 609

IloCplex::CrossoverCallbackI
Description An instance of the class IloCplex::CrossoverCallbackI represents a user-
written callback in an application that uses an instance of IloCplex to solve a problem
by means of the barrier optimizer with the crossover option. An instance of IloCplex
calls this callback regularly during crossover. For details about the crossover option, see
the ILOG CPLEX User's Manual.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::OptimizationCallbackI, ILOCROSSOVERCALLBACK0

Constructors protected CrossoverCallbackI(IloEnv env)

This constructor creates a callback for use in an application with the crossover option of
the barrier optimizer.

Methods protected IloInt getNdualExchanges() const

This method returns the number of dual exchange operations executed so far during
crossover by the instance of IloCplex that executes the invoking callback.

protected IloInt getNdualPushes() const

This method returns the number of dual push operations executed so far during
crossover by the instance of IloCplex that executes the invoking callback.

protected IloInt getNprimalExchanges() const

This method returns the number of primal exchange operations executed so far during
crossover by the instance of IloCplex that executes the invoking callback.

protected IloInt getNprimalPushes() const

This method returns the number of primal push operations executed so far during
crossover by the instance of IloCplex that executes the invoking callback.

protected IloInt getNsuperbasics() const

This method returns the number of super basics currently present in the basis being
generated with crossover by the instance of IloCplex that executes the invoking
callback.

CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 610

IloCplex::CutCallbackI
IloCplex::CutCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected CutCallbackI(IloEnv env)

Method Summary
protected IloConstraint add(IloConstraint con)

protected IloConstraint addLocal(IloConstraint con)

Inherited methods from IloCplex::ControlCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 611

IloCplex::CutCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 612

IloCplex::CutCallbackI
Description

An instance of the class IloCplex::CutCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
programming problem (a MIP). This class offers a method to add a local or global cut to
the current node LP subproblem from a user-written callback. More than one cut can be
added in this callback by calling the method add or addLocal multiple times. All
added cuts must be linear.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::ControlCallbackI,
IloCplex::OptimizationCallbackI, ILOCUTCALLBACK0

Constructors protected CutCallbackI(IloEnv env)

This constructor creates a callback for use in an application with a user-defined cut to
solve a MIP.

Methods protected IloConstraint add(IloConstraint con)

This method adds a cut to the current node LP subproblem for the constraint specified by
con. This cut must be globally valid; it will not be removed by backtracking or any
other means during the search. The added cut must be linear.

protected IloConstraint addLocal(IloConstraint con)

This method adds a local cut to the current node LP subproblem for the constraint
specified by con. IloCplex will manage the local cut in such a way that it will be
active only when processing nodes of this subtree. The added cut must be linear.

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 613

IloCplex::CutType
IloCplex::CutType

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis CutType{
 CutCover,
 CutGubCover,
 CutFlowCover,
 CutClique,
 CutFrac,
 CutMir,
 CutFlowPath,
 CutDisj,
 CutImplBd,
 CutZeroHalf,
 CutLocalCover,
 CutTighten,
 CutObjDisj,
 CutUser,
 CutTable,
 CutSolnPool
};

Description The enumeration IloCplex::CutType lists the values that may be used in querying
the number of cuts used in a mixed integer optimization with getNcuts().

Fields CutCover
CutGubCover
CutFlowCover
CutClique
CutFrac
CutMir
CutFlowPath
CutDisj
CutImplBd
CutZeroHalf
CutLocalCover
CutTighten
CutObjDisj
CutUser
CutTable
CutSolnPool
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 614

IloCplex::DeleteMode
IloCplex::DeleteMode

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis DeleteMode{
 LeaveBasis,
 FixBasis
};

Description This enumeration lists the possible settings for the delete mode of IloCplex as
controlled by the method setDeleteMode and queried by the method
getDeleteMode.

◆ IloCplex::LeaveBasis

With the default setting IloCplex::LeaveBasis, an existing basis will remain
unchanged if variables or constraints are removed from the loaded LP model. This
choice generally renders the basis unusable for a restart when CPLEX is solving the
modified LP and the advanced indicator (parameter IloCplex::AdvInd) is set to
IloTrue.

◆ IloCplex::FixBasis

In contrast, with delete mode set to IloCplex::FixBasis, the invoking object will
do basis pivots in order to maintain a valid basis when variables or constraints are
removed. This choice makes the delete operation more computation-intensive, but may
give a better starting point for reoptimization after modification of the extracted model.

If no basis is present in the invoking object, the setting of the delete mode has no effect.

See Also IloCplex

Fields LeaveBasis
FixBasis
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 615

IloCplex::DisjunctiveCutCallbackI
IloCplex::DisjunctiveCutCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected DisjunctiveCutCallbackI(IloEnv env)

Method Summary
protected IloNum getProgress() const

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 616

IloCplex::DisjunctiveCutCallbackI
Description An instance of the class IloCplex::DisjunctiveCutCallbackI represents a
user-written callback in an application that uses an instance of IloCplex to solve a
mixed integer programming problem (a MIP). This class offers a method to check on
the progress of the generation of disjunctive cuts.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILODISJUNCTIVECUTCALLBACK0

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 617

IloCplex::DisjunctiveCutCallbackI
Constructors protected DisjunctiveCutCallbackI(IloEnv env)

This constructor creates a callback for use in an application where disjunctive cuts are
generated.

Methods protected IloNum getProgress() const

This method returns the fraction of completion of the disjunctive cut generation pass.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 618

IloCplex::DisjunctiveCutInfoCallbackI
IloCplex::DisjunctiveCutInfoCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected DisjunctiveCutInfoCallbackI(IloEnv env)

Method Summary
protected IloNum getProgress() const

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 619

IloCplex::DisjunctiveCutInfoCallbackI
Description An instance of the class IloCplex::DisjunctiveCutInfoCallbackI
represents a user-written callback in an application that uses an instance of IloCplex
to solve a mixed integer programming problem (a MIP). This class offers a method to
check on the progress of the generation of disjunctive cuts.

 User-written callbacks of this class are compatible with MIP dynamic search.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPInfoCallbackI, IloCplex::OptimizationCallbackI,
ILODISJUNCTIVECUTINFOCALLBACK0

Constructors protected DisjunctiveCutInfoCallbackI(IloEnv env)

This constructor creates a callback for use in an application where disjunctive cuts are
generated.

Methods protected IloNum getProgress() const

This method returns the fraction of completion of the disjunctive cut generation pass.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 620

IloCplex::DualPricing
IloCplex::DualPricing

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis DualPricing{
 DPriIndAuto,
 DPriIndFull,
 DPriIndSteep,
 DPriIndFullSteep,
 DPriIndSteepQStart,
 DPriIndDevex
};

Description The enumeration IloCplex::DualPricing lists values that the dual pricing
parameter IloCplex:DPriInd can assume in IloCplex for use with the dual
simplex algorithm. Use these values with the method
IloCplex::setParam(IloCplex::DPriInd, value)when you set the dual
pricing indicator.

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields DPriIndAuto

 = CPX_DPRIIND_AUTO

DPriIndFull

 = CPX_DPRIIND_FULL

DPriIndSteep

 = CPX_DPRIIND_STEEP

DPriIndFullSteep

 = CPX_DPRIIND_FULLSTEEP

DPriIndSteepQStart

 = CPX_DPRIIND_STEEPQSTART

DPriIndDevex

 = CPX_DPRIIND_DEVEX
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 621

IloCplex::Exception
IloCplex::Exception

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description The class IloCplex::Exception, derived from the nested class
IloAlgorithm::Exception, is the base class of exceptions thrown by classes
derived from IloCplex.

Methods public IloInt getStatus() const

This method returns the ILOG CPLEX error code of an exception thrown by a member
of IloCplex. These error codes are detailed in the reference manual as the group
optim.cplex.errorcodes.

This method may also return negative values for subclasses of
IloCplex::Exception, which are not listed in the reference manual. The

Method Summary
public IloInt Exception::getStatus() const

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 622

IloCplex::Exception
exceptions listed in the reference manual are always thrown as instances of
IloCplex::Exception and not as an instance of one of its derived classes.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 623

IloCplex::FlowMIRCutCallbackI
IloCplex::FlowMIRCutCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected FlowMIRCutCallbackI(IloEnv env)

Method Summary
protected IloNum getProgress() const

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 624

IloCplex::FlowMIRCutCallbackI
Description An instance of the class IloCplex::FlowMIRCutCallbackI represents a user-
written callback in an application that uses an instance of IloCplex to solve a mixed
integer programming problem (a MIP). This class offers a member function to check on
the progress of the generation of Flow MIR cuts.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILOFLOWMIRCUTCALLBACK0

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 625

IloCplex::FlowMIRCutCallbackI
Constructors protected FlowMIRCutCallbackI(IloEnv env)

 This constructor creates a callback for use in an application where flow MIR cuts are
generated.

Methods protected IloNum getProgress() const

This method returns the fraction of completion of the cut generation pass for FlowMIR
cuts.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 626

IloCplex::FlowMIRCutInfoCallbackI
IloCplex::FlowMIRCutInfoCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected FlowMIRCutInfoCallbackI(IloEnv env)

Method Summary
protected IloNum getProgress() const

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 627

IloCplex::FlowMIRCutInfoCallbackI
Description An instance of the class IloCplex::FlowMIRCutInfoCallbackI represents a
user-written callback in an application that uses an instance of IloCplex to solve a
mixed integer programming problem (a MIP). This class offers a member function to
check on the progress of the generation of Flow MIR cuts.

 User-written callbacks of this class are compatible with MIP dynamic search.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPInfoCallbackI, IloCplex::OptimizationCallbackI,
ILOFLOWMIRCUTINFOCALLBACK0

Constructors protected FlowMIRCutInfoCallbackI(IloEnv env)

 This constructor creates a callback for use in an application where flow MIR cuts are
generated.

Methods protected IloNum getProgress() const

This method returns the fraction of completion of the cut generation pass for FlowMIR
cuts.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 628

IloCplex::FractionalCutCallbackI
IloCplex::FractionalCutCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected FractionalCutCallbackI(IloEnv env)

Method Summary
protected IloNum getProgress() const

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 629

IloCplex::FractionalCutCallbackI
Description An instance of the class IloCplex::FractionalCutCallbackI represents a
user-written callback in an application that uses an instance of IloCplex to solve a
mixed integer programming problem (a MIP). This class offers a method to check on
the progress of the generation of fractional cuts.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILOFRACTIONALCUTCALLBACK0

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 630

IloCplex::FractionalCutCallbackI
Constructors protected FractionalCutCallbackI(IloEnv env)

This constructor creates a callback for use in an application where fractional cuts are
generated.

Methods protected IloNum getProgress() const

This method returns the fraction of completion of the fractional cut generation pass.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 631

IloCplex::FractionalCutInfoCallbackI
IloCplex::FractionalCutInfoCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected FractionalCutInfoCallbackI(IloEnv env)

Method Summary
protected IloNum getProgress() const

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 632

IloCplex::FractionalCutInfoCallbackI
Description An instance of the class IloCplex::FractionalCutInfoCallbackI
represents a user-written callback in an application that uses an instance of IloCplex
to solve a mixed integer programming problem (a MIP). This class offers a method to
check on the progress of the generation of fractional cuts.

 User-written callbacks of this class are compatible with MIP dynamic search.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPInfoCallbackI, IloCplex::OptimizationCallbackI,
ILOFRACTIONALCUTINFOCALLBACK0

Constructors protected FractionalCutInfoCallbackI(IloEnv env)

This constructor creates a callback for use in an application where fractional cuts are
generated.

Methods protected IloNum getProgress() const

This method returns the fraction of completion of the fractional cut generation pass.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 633

IloCplex::Goal
IloCplex::Goal

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description

Goals can be used to control the branch & cut search in IloCplex. Goals are
implemented in the class IloCplex::GoalI. This is the handle class for CPLEX
goals.

Goal objects are reference-counted. This means every instance of IloCplex::GoalI
keeps track about how many handle objects refer to it. If this number drops to 0 (zero)
the IloCplex::GoalI object is automatically deleted. As a consequence, whenever
you deal with a goal, you must keep a handle object around, rather than only a pointer to
the implementation object. Otherwise, you risk ending up with a pointer to an
implementation object that has already been deleted.

Constructor Summary
public Goal(GoalBaseI * goalI)

public Goal(const Goal & goal)

public Goal()

public Goal(IloConstraint cut)

public Goal(IloConstraintArray cut)

Method Summary
public Goal operator=(const Goal & goal)

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 634

IloCplex::Goal
See Goals among the Concepts in this manual. See also goals in the ILOG CPLEX
User's Manual.

Constructors public Goal(GoalBaseI * goalI)

Creates a new goal from a pointer to the implementation object.

public Goal(const Goal & goal)

This is the copy constructor of the goal.

public Goal()

Creates a 0 goal handle, that is, a goal with a 0 implementation object pointer. This is
also referred to as an empty goal.

public Goal(IloConstraint cut)

Creates a new goal that will add the constraint cut as a local cut to the node where the
goal is executed. As a local cut, the constraint will be active only in the subtree rooted
at the node where the goal was executed. The lifetime of the constraint passed to a goal
is tied to the lifetime of the Goal. That is, the constraint's method end is called when
the goal's implementation object is deleted. As a consequence, the method end must not
be called for constraints passed to this constructor explicitly.

public Goal(IloConstraintArray cut)

Creates a new goal that adds the constraints given in the array cut as local cuts to the
node where the goal is executed. As local cuts, the constraints will be active only in the
subtree rooted at the node where the goal was executed. The lifetime of the constraints
and the array passed to a goal is tied to the lifetime of the Goal. That is, the constraint's
method end is called when the goal's implementation object is deleted. As a
consequence, method end must not be called for the constraints and the array passed to
this constructor explicitly.

Methods public Goal operator=(const Goal & goal)

This is the assignment operator. It increases the reference count of the implementation
object of goal. If the invoking handle referred to an implementation object before the
assignment operation, its reference count is decreased. If thereby the reference count
becomes 0, the implementation object is deleted.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 635

IloCplex::GoalI
IloCplex::GoalI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
public GoalI(IloEnv env)

Method Summary
public void abort()

public static IloCplex::Goal AndGoal(IloCplex::Goal goal1,IloCplex::Goal
goal2)

public static IloCplex::Goal BranchAsCplexGoal(IloEnv env)

public virtual
IloCplex::Goal

duplicateGoal()

public virtual
IloCplex::Goal

execute()

public static IloCplex::Goal FailGoal(IloEnv env)

public IloNum getBestObjValue() const

public IloNum getBranch(IloNumVarArray vars,IloNumArray
bounds,IloCplex::BranchDirectionArray
dirs,IloInt i) const

public GoalI::BranchType getBranchType() const

public IloNum getCutoff() const

public
IloCplex::BranchDirection

getDirection(const IloIntVar var)

public
IloCplex::BranchDirection

getDirection(const IloNumVar var)

public IloNum getDownPseudoCost(const IloIntVar var) const

public IloNum getDownPseudoCost(const IloNumVar var) const

public IloEnv getEnv() const

public void getFeasibilities(GoalI::IntegerFeasibilityA
rray stats,const IloIntVarArray vars) const

public void getFeasibilities(GoalI::IntegerFeasibilityA
rray stats,const IloNumVarArray vars) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 636

IloCplex::GoalI
public
GoalI::IntegerFeasibility

getFeasibility(const IloSOS2 sos) const

public
GoalI::IntegerFeasibility

getFeasibility(const IloSOS1 sos) const

public
GoalI::IntegerFeasibility

getFeasibility(const IloIntVar var) const

public
GoalI::IntegerFeasibility

getFeasibility(const IloNumVar var) const

public IloNum getIncumbentObjValue() const

public IloNum getIncumbentValue(const IloIntVar var) const

public IloNum getIncumbentValue(const IloNumVar var) const

public void getIncumbentValues(IloNumArray val,const
IloIntVarArray vars) const

public void getIncumbentValues(IloNumArray val,const
IloNumVarArray vars) const

public IloNum getLB(const IloIntVar var) const

public IloNum getLB(const IloNumVar var) const

public void getLBs(IloNumArray vals,const IloIntVarArray
vars) const

public void getLBs(IloNumArray vals,const IloNumVarArray
vars) const

public IloModel getModel() const

public IloInt getMyThreadNum() const

public IloInt getNbranches() const

public IloInt getNcliques() const

public IloInt getNcols() const

public IloInt getNcovers() const

public IloInt getNdisjunctiveCuts() const

public IloInt getNflowCovers() const

public IloInt getNflowPaths() const

public IloInt getNfractionalCuts() const

public IloInt getNGUBcovers() const

public IloInt getNimpliedBounds() const

public IloInt getNiterations() const

public IloInt getNMIRs() const

public IloInt getNnodes() const

public IloInt getNremainingNodes() const

public IloInt getNrows() const

public IloNum getObjCoef(const IloIntVar var) const

public IloNum getObjCoef(const IloNumVar var) const

public void getObjCoefs(IloNumArray vals,const
IloIntVarArray vars) const

public void getObjCoefs(IloNumArray vals,const
IloNumVarArray vars) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 637

IloCplex::GoalI
public IloNum GoalI::getObjValue() const

public IloNum getPriority(const IloIntVar var) const

public IloNum getPriority(const IloNumVar var) const

public IloNum getSlack(const IloRange rng) const

public void getSlacks(IloNumArray vals,const
IloRangeArray rngs) const

public IloNum getUB(const IloIntVar var) const

public IloNum getUB(const IloNumVar var) const

public void getUBs(IloNumArray vals,const IloIntVarArray
vars) const

public void getUBs(IloNumArray vals,const IloNumVarArray
vars) const

public IloNum getUpPseudoCost(const IloIntVar var) const

public IloNum getUpPseudoCost(const IloNumVar var) const

public IloInt getUserThreads() const

public IloNum getValue(const IloIntVar var) const

public IloNum getValue(const IloNumVar var) const

public IloNum getValue(const IloExpr expr) const

public void getValues(IloNumArray vals,const
IloIntVarArray vars) const

public void getValues(IloNumArray vals,const
IloNumVarArray vars) const

public static IloCplex::Goal GlobalCutGoal(IloConstraintArray con)

public static IloCplex::Goal GlobalCutGoal(IloConstraint con)

public IloBool hasIncumbent() const

public IloBool isIntegerFeasible() const

public IloBool isSOSFeasible(const IloSOS2 sos2) const

public IloBool isSOSFeasible(const IloSOS1 sos1) const

public static IloCplex::Goal OrGoal(IloCplex::Goal goal1,IloCplex::Goal
goal2)

public static IloCplex::Goal SolutionGoal(const IloIntVarArray vars,const
IloNumArray vals)

public static IloCplex::Goal SolutionGoal(const IloNumVarArray vars,const
IloNumArray vals)

Inner Enumeration
GoalI::BranchType

GoalI::IntegerFeasibility
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 638

IloCplex::GoalI
Description

Goals can be used to control the branch & cut search in IloCplex. Goals are
implemented in subclasses of the class IloCplex::GoalI. This is the base class for
user-written implementation classes of CPLEX goals.

To implement your own goal you need to create a subclass of IloCplex::GoalI and
implement its pure virtual methods execute and duplicateGoal. You may use
one of the ILOCPLEXGOAL0 macros to assist you in doing so. After implementing
your goal class, you use an instance of the class by passing it to the solve method
when solving the model.

The method duplicateGoal may be called by IloCplex to create copies of a goal
when needed for parallel branch & cut search. Thus the implementation of this method
must create and return an exact copy of the invoked object itself.

The method execute controls the branch & cut search of IloCplex by the goal it
returns. When IloCplex processes a node, it pops the top goal from the node's goal
stack and calls method execute of that goal. It continues executing the top goal from
the stack until the node is deactivated or the goal stack is empty. If the goal stack is
empty, IloCplex proceeds with the built-in search strategy for the subtree rooted at
the current node.

The class IloCplex::GoalI provides several methods for querying information
about the current node. The method execute controls how to proceed with the branch
& cut search via the goal it returns. The returned goal, unless it is the 0 goal, is pushed
on the goal stack and will thus be executed next.

 See also the chapter about goals in the ILOG CPLEX User's Manual.

Constructors public GoalI(IloEnv env)

Inner Type Def
GoalI::GoalI::IntegerFeasibi
lityArray

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 639

IloCplex::GoalI
The goal constructor. It requires an instance of the same IloEnv as the IloCplex
object with which to use the goal. The environment can later be queried by calling
method getEnv.

Methods public void abort()

Abort the optimization, that is, the execution of method solve currently in process.

public static IloCplex::Goal AndGoal(IloCplex::Goal goal1,
IloCplex::Goal goal2)

The static methods AndGoal all return a goal that pushes the goals passed as
parameters onto the goal stack in reverse order. As a consequence, the goals will be
executed in the order they are passed as parameters to the AndGoal function.

public static IloCplex::Goal BranchAsCplexGoal(IloEnv env)

This static function returns a goal that creates the same branches as the currently
selected built-in branch strategy of IloCplex would choose at the current node. This
goal allows you to proceed with the IloCplex search strategy, but keeps the search
under goal control, thereby giving you the option to intervene at any point.

This goal is also important when you use node evaluators while you use a built-in
branching strategy.

For example, consider the execute method of a goal starting like this:

 if (!isIntegerFeasible())
 return AndGoal(BranchAsCplexGoal(getEnv()), this);
 // do something

It would do something only when IloCplex found a solution it considers to be a
candidate for a new incumbent. Note there is a test of integer feasibility before returning
BranchAsCplexGoal. Without the test, BranchAsCplex would be executed for a
solution IloCplex considers to be feasible, but IloCplex would not know how to
branch on it. An endless loop would result.

public virtual IloCplex::Goal duplicateGoal()

This virtual method must be implemented by the user. It must return a copy of the
invoking goal object. This method may be called by IloCplex when doing parallel
branch & cut search.

public virtual IloCplex::Goal execute()

This virtual method must be implemented by the user to specify the logic of the goal.
The instance of IloCplex::Goal returned by this method will be added to the goal
stack of the node where the invoking goal is being executed for further execution.

public static IloCplex::Goal FailGoal(IloEnv env)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 640

IloCplex::GoalI
This static method creates a goal that fails. That means that the branch where the goal is
executed will be pruned or, equivalently, the search is discontinued at that node and the
node is discarded.

public IloNum getBestObjValue() const

This method returns the currently best known bound on the optimal solution value of the
problem at the time the invoking goal is executed by an instance of IloCplex while
solving a MIP. When a model has been solved to optimality, this value matches the
optimal solution value. Otherwise, this value is computed for a minimization
(maximization) problem as the minimum (maximum) objective function value of all
remaining unexplored nodes.

public IloNum getBranch(IloNumVarArray vars,
IloNumArray bounds,
IloCplex::BranchDirectionArray dirs,
IloInt i) const

This method accesses branching information for the i-th branch that the invoking
instance of IloCplex is about to create. The parameter i must be between 0 (zero)
and getNbranches - 1; that is, it must be a valid index of a branch; normally, it
will be zero or one.

A branch is normally defined by a set of variables and the bounds for these variables.
Branches that are more complex cannot be queried. The return value is the node estimate
for that branch.

◆ The parameter vars contains the variables for which new bounds will be set in the
i-th branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown

means that bounds[j] specifies an upper bound for vars[j].

public GoalI::BranchType getBranchType() const

This method returns the type of branching IloCplex is going to do for the current
node.

public IloNum getCutoff() const

The method returns the current cutoff value. An instance of IloCplex uses the cutoff
value (the value of the objective function of the subproblem at a node in the search tree)
to decide when to prune nodes from the search tree (that is, when to cut off that node
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 641

IloCplex::GoalI
and discard the nodes beyond it). The cutoff value is updated whenever a new incumbent
is found.

public IloCplex::BranchDirection getDirection(const IloIntVar var)

This method returns the branch direction previously assigned to variable var with
method IloCplex::setDirection or IloCplex::setDirections. If no
direction has been assigned, IloCplex::BranchGlobal will be returned.

public IloCplex::BranchDirection getDirection(const IloNumVar var)

This method returns the branch direction previously assigned to variable var with
method IloCplex::setDirection or IloCplex::setDirections. If no
direction has been assigned, IloCplex::BranchGlobal will be returned.

public IloNum getDownPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

public IloNum getDownPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

public IloEnv getEnv() const

Returns the instance of IloEnv passed to the constructor of the goal.

public void getFeasibilities(GoalI::IntegerFeasibilityArray stats,
 const IloIntVarArray vars) const

This method considers whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible and puts the status in the
corresponding element of the array stats.

public void getFeasibilities(GoalI::IntegerFeasibilityArray stats,
 const IloNumVarArray vars) const

This method considers whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible and puts the status in the
corresponding element of the array stats.

public GoalI::IntegerFeasibility getFeasibility(const IloSOS2 sos) const

This method specifies whether the SOS sos is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public GoalI::IntegerFeasibility getFeasibility(const IloSOS1 sos) const

This method specifies whether the SOS sos is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public GoalI::IntegerFeasibility getFeasibility(const IloIntVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 642

IloCplex::GoalI
This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public GoalI::IntegerFeasibility getFeasibility(const IloNumVar var) const

This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public IloNum getIncumbentObjValue() const

This method returns the value of the objective function of the incumbent solution (that
is, the best integer solution found so far). If there is no incumbent, this method throws an
exception.

public IloNum getIncumbentValue(const IloIntVar var) const

This method returns the value of var in the incumbent solution. If there is no
incumbent, this method throws an exception.

public IloNum getIncumbentValue(const IloNumVar var) const

This method returns the value of var in the incumbent solution. If there is no
incumbent, this method throws an exception.

public void getIncumbentValues(IloNumArray val,
 const IloIntVarArray vars) const

Returns the value of each variable in the array vars with respect to the current
incumbent solution, and it puts those values into the corresponding array vals. If
there is no incumbent, this method throws an exception.

public void getIncumbentValues(IloNumArray val,
 const IloNumVarArray vars) const

Returns the value of each variable in the array vars with respect to the current
incumbent solution, and it puts those values into the corresponding array vals. If
there is no incumbent, this method throws an exception.

public IloNum getLB(const IloIntVar var) const

This method returns the lower bound of var in the current node relaxation. This bound
is likely to be different from the bound in the original model because an instance of
IloCplex tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.

public IloNum getLB(const IloNumVar var) const

This method returns the lower bound of var in the current node relaxation. This bound
is likely to be different from the bound in the original model because an instance of
IloCplex tightens bounds when it branches from a node to its subnodes.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 643

IloCplex::GoalI
Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.

public void getLBs(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the lower bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

public void getLBs(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the lower bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

public IloModel getModel() const

This method returns the model currently extracted for the instance of IloCplex where
the invoking goal applies.

public IloInt getMyThreadNum() const

Returns the identifier of the parallel thread being currently executed. This number is
between 0 (zero) and the value returned by the method getUserThreads()-1.

public IloInt getNbranches() const

This method returns the number of branches IloCplex is going to create at the current
node.

public IloInt getNcliques() const

Returns the total number of clique cuts that have been added to the model so far during
the current optimization.

public IloInt getNcols() const

This method returns the number of columns in the current optimization model.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 644

IloCplex::GoalI
public IloInt getNcovers() const

Returns the total number of cover cuts that have been added to the model so far during
the current optimization.

public IloInt getNdisjunctiveCuts() const

Returns the total number of disjunctive cuts that have been added to the model so far
during the current optimization.

public IloInt getNflowCovers() const

Returns the total number of flow cover cuts that have been added to the model so far
during the current optimization.

public IloInt getNflowPaths() const

Returns the total number of flow path cuts that have been added to the model so far
during the current optimization.

public IloInt getNfractionalCuts() const

Returns the total number of fractional cuts that have been added to the model so far
during the current optimization.

public IloInt getNGUBcovers() const

Returns the total number of GUB cover cuts that have been added to the model so far
during the current optimization.

public IloInt getNimpliedBounds() const

Returns the total number of implied bound cuts that have been added to the model so far
during the current optimization.

public IloInt getNiterations() const

Returns the total number of iterations executed so far during the current optimization to
solve the node relaxations.

public IloInt getNMIRs() const

Returns the total number of MIR cuts that have been added to the model so far during
the current optimization.

public IloInt getNnodes() const

This method returns the number of nodes already processed in the current optimization.

public IloInt getNremainingNodes() const

This method returns the number of nodes left to explore in the current optimization.

public IloInt getNrows() const

This method returns the number of rows in the current optimization model.

public IloNum getObjCoef(const IloIntVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 645

IloCplex::GoalI
Returns the linear objective coefficient for var in the model currently being solved.

public IloNum getObjCoef(const IloNumVar var) const

Returns the linear objective coefficient for var in the model currently being solved.

public void getObjCoefs(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the linear objective coefficient of each of the variables in the array
vars into the corresponding element of the array vals.

public void getObjCoefs(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the linear objective coefficient of each of the variables in the array
vars into the corresponding element of the array vals.

public IloNum getObjValue() const

This method returns the objective value of the solution of the current node.

If you need the object representing the objective itself, consider the method
getObjective instead.

public IloNum getPriority(const IloIntVar var) const

Returns the branch priority used for variable var in the current optimization.

public IloNum getPriority(const IloNumVar var) const

Returns the branch priority used for variable var in the current optimization.

public IloNum getSlack(const IloRange rng) const

This method returns the slack value for the constraint specified by rng in the solution
of the current node relaxation.

public void getSlacks(IloNumArray vals,
 const IloRangeArray rngs) const

This method puts the slack value in the solution of the current node relaxation of each
of the constraints in the array of ranges rngs into the corresponding element of the
array vals.

public IloNum getUB(const IloIntVar var) const

This method returns the upper bound of the variable var in the current node relaxation.
This bound is likely to be different from the bound in the original model because an
instance of IloCplex tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public IloNum getUB(const IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 646

IloCplex::GoalI
This method returns the upper bound of the variable var in the current node relaxation.
This bound is likely to be different from the bound in the original model because an
instance of IloCplex tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public void getUBs(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the upper bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public void getUBs(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the upper bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public IloNum getUpPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching upward on the variable var.

public IloNum getUpPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching upward on the variable var.

public IloInt getUserThreads() const

This method returns the total number of parallel threads currently running.

public IloNum getValue(const IloIntVar var) const

This method returns the value of the variable var in the solution of the current node
relaxation.

public IloNum getValue(const IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 647

IloCplex::GoalI
This method returns the value of the variable var in the solution of the current node
relaxation.

public IloNum getValue(const IloExpr expr) const

This method returns the value of the expression expr in the solution of the current node
relaxation.

public void getValues(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the current node relaxation solution value of each variable in the array
vars into the corresponding element of the array vals.

public void getValues(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the current node relaxation solution value of each variable in the array
vars into the corresponding element of the array vals.

public static IloCplex::Goal GlobalCutGoal(IloConstraintArray con)

This method creates a goal that when executed adds the constraints (provided in the
paramter array con) as global cuts to the model. These global cuts must be valid for the
entire model, not only for the current subtree. In other words, these global cuts will be
respected at every node.

IloCplex takes over memory managment for the cuts passed to the method
GlobalCutGoal. Thus IloCplex will call the method end as soon as it can be
discarded after the goal executes. Calling end yourself or the constraints in the array
con passed to method GlobalCutGoal or the array itself is an error and must be
avoided.

public static IloCplex::Goal GlobalCutGoal(IloConstraint con)

This method creates a goal that when executed adds the constraint con (provided as a
parameter) as global cuts to the model. These global cuts must be valid for the entire
model, not only for the current subtree. In other words, these global cuts will be
respected at every node.

IloCplex takes over memory managment for the cut passed to the method
GlobalCutGoal. Thus IloCplex will call the method end as soon as it can be
discarded after the goal executes. Calling end yourself for the constraint passed to
method GlobalCutGoal is an error and must be avoided.

public IloBool hasIncumbent() const

This method returns IloTrue if an integer feasible solution has been found.

public IloBool isIntegerFeasible() const

This method returns IloTrue if the solution of the current node is integer feasible.

public IloBool isSOSFeasible(const IloSOS2 sos2) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 648

IloCplex::GoalI
This method returns IloTrue if the solution of the current node is SOS feasible for the
special ordered set specified in its argument. The SOS passed as a parameter to this
method must be of type 2; the equivalent method for an SOS of type 1 is also available.
See the User's Manual for more about these types of special ordered sets.

public IloBool isSOSFeasible(const IloSOS1 sos1) const

This method returns IloTrue if the solution of the current node is SOS feasible for the
special ordered set specified in its argument. The SOS passed as a parameter to this
method must be of type 1; the equivalent method for an SOS of type 2 is also available.
See the User's Manual for more about these types of special ordered sets.

public static IloCplex::Goal OrGoal(IloCplex::Goal goal1,
IloCplex::Goal goal2)

The static methods OrGoal all return a goal that creates as many branches (or,
equivalently, subproblems) as there are parameters. Each of the subnodes will be
initialized with the remaining goal stack of the current node. In addition, the goal
parameter will be pushed on the goal stack of the corresponding subgoal. If more than
six branches need to be created, instances of OrGoal can be combined.

public static IloCplex::Goal SolutionGoal(const IloIntVarArray vars,
 const IloNumArray vals)

This static method creates and returns a goal that attempts to inject a solution specified
by setting the variables listed in array vars to the corresponding values listed in the
array vals.

IloCplex will not blindly accept such a solution as a new incumbent. Instead, it will
make sure that this solution is compatible with both the model and the goals. When
checking feasibility with goals, it checks feasibility with both the goals that have already
been executed and the goals that are still on the goal stack. Thus, in particular,
IloCplex will reject any solution that is not compatible with the branching that has
been done so far.

IloCplex takes over memory managment for arrays vars and vals passed to
SolutionGoal. Thus IloCplex will call method end for these arrays as soon as
they can be discarded. Calling end for the arrays passed to SolutionGoal is an
error and must be avoided.

public static IloCplex::Goal SolutionGoal(const IloNumVarArray vars,
 const IloNumArray vals)

This static method creates and returns a goal that attempts to inject a solution specified
by setting the variables listed in array vars to the corresponding values listed in the
array vals.

IloCplex will not blindly accept such a solution as a new incumbent. Instead, it will
make sure that this solution is compatible with both the model and the goals. When
checking feasibility with goals, it checks feasibility with both the goals that have already
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 649

IloCplex::GoalI
been executed and the goals that are still on the goal stack. Thus, in particular,
IloCplex will reject any solution that is not compatible with the branching that has
been done so far.

IloCplex takes over memory managment for arrays vars and vals passed to
SolutionGoal. Thus IloCplex will call method end for these arrays as soon as
they can be discarded. Calling end for the arrays passed to SolutionGoal is an
error and must be avoided.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 650

GoalI::BranchType
GoalI::BranchType

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis BranchType{
 BranchOnVariable,
 BranchOnSOS1,
 BranchOnSOS2,
 BranchOnAny,
 UserBranch
};

Description IloCplex::GoalI::BranchType is an enumeration limited in scope to the class
IloCplex::GoalI. This enumeration is used by the method
IloCplex::GoalI::getBranchType to tell what kind of branch IloCplex is
about to make:

◆ BranchOnVariable specifies branching on a single variable.

◆ BranchOnAny specifies multiple bound changes and constraints will be used for
branching.

◆ BranchOnSOS1 specifies branching on an SOS of type 1.

◆ BranchOnSOS2 specifies branching on an SOS of type 2.

See Also IloCplex::GoalI

Fields BranchOnVariable

 = CPX_TYPE_VAR

BranchOnSOS1

 = CPX_TYPE_SOS1

BranchOnSOS2

 = CPX_TYPE_SOS2

BranchOnAny

 = CPX_TYPE_ANY

UserBranch
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 651

GoalI::IntegerFeasibility
GoalI::IntegerFeasibility

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis IntegerFeasibility{
 ImpliedInfeasible,
 Feasible,
 Infeasible,
 ImpliedFeasible
};

Description The enumeration IloCplex::GoalI::IntegerFeasibility is an
enumeration limited in scope to the class IloCplex::GoalI. This enumeration is
used by IloCplex::GoalI::getFeasibility to access the integer feasibility
of a variable or SOS in the current node solution:

◆ Feasible specifies the variable or SOS is integer feasible.

◆ ImpliedFeasible specifies the variable or SOS has been presolved out. It will
be feasible when all other integer variables or SOS are integer feasible.

◆ Infeasible specifies the variable or SOS is integer infeasible.

See Also IloCplex, GoalI::IntegerFeasibilityArray,
ControlCallbackI::IntegerFeasibility

Fields ImpliedInfeasible
Feasible

 = CPX_INTEGER_FEASIBLE

Infeasible

 = CPX_INTEGER_INFEASIBLE

ImpliedFeasible

 = CPX_IMPLIED_INTEGER_FEASIBLE
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 652

GoalI::IntegerFeasibilityArray
GoalI::IntegerFeasibilityArray

Category Inner Type Definition

Definition File ilcplex/ilocplexi.h

Synopsis IloArray< IntegerFeasibility > IntegerFeasibilityArray

Description This type defines an array type for IloCplex::GoalI::IntegerFeasibility.
The fully qualified name of an integer feasibility array is
IloCplex::GoalI::IntegerFeasibilityArray.

See Also IloCplex, GoalI::IntegerFeasibility
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 653

IloCplex::HeuristicCallbackI
IloCplex::HeuristicCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Method Summary
protected
IloCplex::CplexStatus

getCplexStatus() const

protected
IloAlgorithm::Status

getStatus() const

protected IloBool isDualFeasible() const

protected IloBool isPrimalFeasible() const

protected void setBounds(const IloIntVarArray var,const
IloNumArray lb,const IloNumArray ub)

protected void setBounds(const IloNumVarArray var,const
IloNumArray lb,const IloNumArray ub)

protected void setBounds(const IloIntVar var,IloNum
lb,IloNum ub)

protected void setBounds(const IloNumVar var,IloNum
lb,IloNum ub)

protected void setSolution(const IloIntVarArray vars,const
IloNumArray vals,IloNum obj)

protected void setSolution(const IloIntVarArray vars,const
IloNumArray vals)

protected void setSolution(const IloNumVarArray vars,const
IloNumArray vals,IloNum obj)

protected void setSolution(const IloNumVarArray vars,const
IloNumArray vals)

protected IloBool solve(IloCplex::Algorithm alg=Dual)

Inherited methods from IloCplex::ControlCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 654

IloCplex::HeuristicCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 655

IloCplex::HeuristicCallbackI
Description

An instance of the class IloCplex::HeuristicCallbackI represents a user-
written callback in an application that uses an instance of IloCplex to solve a mixed
integer programming problem (MIP). When you derive a user-defined class of
callbacks, this class offers protected methods for you to:

◆ give the instance of IloCplex a potential new incumbent solution;

◆ query the instance of IloCplex about the solution status for the current node;

◆ query the instance of IloCplex about the variable bounds at the current node;

◆ change bounds temporarily on a variable or group of variables at the current node;

◆ re-solve the problem at the node with the changed bounds;

◆ use all the query functions inherited from parent classes.

During branching, the heuristic callback is called after each node subproblem has been
solved, including any cuts that may have been newly generated. Before branching, at the
root node, the heuristic callback is also called before each round of cuts is added to the
problem and re-solved.

In short, this callback allows you to attempt to construct an integer feasible solution at a
node and pass it to the invoking instance of IloCplex to use as its new incumbent.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 656

IloCplex::HeuristicCallbackI
The API supports you in finding such a solution by allowing you iteratively to change
bounds of the variables and re-solve the node relaxation. Changing the bounds in the
heuristic callback has no effect on the search beyond the termination of the callback.

If an attempt is made to access information not available at the node for the invoking
instance of IloCplex, an exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::ControlCallbackI, IloCplex::MIPCallbackI,
IloCplex::OptimizationCallbackI, ILOHEURISTICCALLBACK0

Methods protected IloCplex::CplexStatus getCplexStatus() const

This method returns the ILOG CPLEX status of the instance of IloCplex at the
current node (that is, the state of the optimizer at the node) during the last call to
solve (which may have been called directly in the callback or by IloCplex when
processing the node).

The enumeration IloCplex::CplexStatus lists the possible status values.

protected IloAlgorithm::Status getStatus() const

This method returns the status of the solution found by the instance of IloCplex at the
current node during the last call to solve (which may have been called directly in the
callback or by IloCplex when processing the node).

The enumeration IloAlgorithm::Status lists the possible status values.

protected IloBool isDualFeasible() const

This method returns IloTrue if the solution provided by the last solve call is dual
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not dual feasible. It simply means that the relevant algorithm was not able to
conclude it was dual feasible when it terminated.

protected IloBool isPrimalFeasible() const

This method returns IloTrue if the solution provided by the last solve call is primal
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not primal feasible. It simply means that the relevant algorithm was not able
to conclude it was primal feasible when it terminated.

protected void setBounds(const IloIntVarArray var,
 const IloNumArray lb,
 const IloNumArray ub)

For each variable in the array var, this method sets its upper bound to the
corresponding value in the array ub and its lower bound to the corresponding value in
the array lb, provided var has not been removed by presolve. Setting bounds has no
effect beyond the scope of the current invocation of the callback.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 657

IloCplex::HeuristicCallbackI
 When using this method, you must avoid changing the bounds of a variable that has
been removed by presolve. To check whether presolve is off, consider the parameter
IloCplex::PreInd. Alternatively, you can check whether a particular variable has
been removed by presolve by checking the status of the variable. To do so, call
IloCplex::ControlCallback::getFeasibilities. A variable that has
been removed by presolve will have the status ImpliedFeasible.

protected void setBounds(const IloNumVarArray var,
 const IloNumArray lb,
 const IloNumArray ub)

For each variable in the array var, this method sets its upper bound to the
corresponding value in the array ub and its lower bound to the corresponding value in
the array lb, provided the variable has not been removed by presolve. Setting bounds
has no effect beyond the scope of the current invocation of the callback.

protected void setBounds(const IloIntVar var,
IloNum lb,
IloNum ub)

This method sets the lower bound to lb and the upper bound to ub for the variable var
at the current node, provided var has not been removed by presolve. Setting bounds
has no effect beyond the scope of the current invocation of the callback.

 When using this method, you must avoid changing the bounds of a variable that has
been removed by presolve. To check whether presolve is off, consider the parameter
IloCplex::PreInd. Alternatively, you can check whether a particular variable has
been removed by presolve by checking the status of the variable. To do so, call
IloCplex::ControlCallback::getFeasibilities. A variable that has
been removed by presolve will have the status ImpliedFeasible.

protected void setBounds(const IloNumVar var,
IloNum lb,
IloNum ub)

This method sets the lower bound to lb and the upper bound to ub for the variable var
at the current node, provided var has not been removed by presolve. Setting bounds
has no effect beyond the scope of the current invocation of the callback.

 When using this method, you must avoid changing the bounds of a variable that has
been removed by presolve. To check whether presolve is off, consider the parameter
IloCplex::PreInd. Alternatively, you can check whether a particular variable has
been removed by presolve by checking the status of the variable. To do so, call
IloCplex::ControlCallback::getFeasibilities. A variable that has
been removed by presolve will have the status ImpliedFeasible.

protected void setSolution(const IloIntVarArray vars,
 const IloNumArray vals,

IloNum obj)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 658

IloCplex::HeuristicCallbackI
For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent, uses it as
the new incumbent. A solution is specified using arrays vars and vals, where
vals[i] specifies the solution value for vars[i].

The parameter obj is used to tell IloCplex the objective value of the injected
solution. This allows IloCplex to skip the computation of that value, but care must
be taken not to provide an incorrect value.

Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected void setSolution(const IloIntVarArray vars,
 const IloNumArray vals)

For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent, uses it as
the new incumbent. A solution is specified using arrays vars and vals, where
vals[i] specifies the solution value for vars[i].

Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected void setSolution(const IloNumVarArray vars,
 const IloNumArray vals,

IloNum obj)

For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent, uses it as
the new incumbent. A solution is specified using arrays vars and vals, where
vals[i] specifies the solution value for vars[i].

The parameter obj is used to tell IloCplex the objective value of the injected
solution. This allows IloCplex to skip the computation of that value, but care must
be taken not to provide an incorrect value.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 659

IloCplex::HeuristicCallbackI
Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected void setSolution(const IloNumVarArray vars,
 const IloNumArray vals)

For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent,
IloCplex uses it as the new incumbent. A solution is specified using arrays vars
and vals, where vals[i] specifies the solution value for vars[i].

Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected IloBool solve(IloCplex::Algorithm alg=Dual)

This method can be used to solve the current node relaxation, usually after some bounds
have been changed by setBounds. By default it uses the dual simplex algorithm,
but this behavior can be overridden by the optional parameter alg. See the
enumeration IloCplex::Algorithm for a list of the available optimizers.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 660

IloCplex::IncumbentCallbackI
IloCplex::IncumbentCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Method Summary
protected NodeData * getNodeData() const

protected NodeId getNodeId() const

protected IloNum IncumbentCallbackI::getObjValue() const

protected IloNum getSlack(const IloRange rng) const

protected void getSlacks(IloNumArray val,const
IloRangeArray con) const

protected IloNum getValue(const IloIntVar var) const

protected IloNum getValue(const IloNumVar var) const

protected IloNum getValue(const IloExprArg expr) const

protected void getValues(IloNumArray val,const
IloIntVarArray vars) const

protected void getValues(IloNumArray val,const
IloNumVarArray vars) const

protected void reject()

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 661

IloCplex::IncumbentCallbackI
Description

This callback is called whenever a new potential incumbent is found during branch &
cut searches. It allows you to analyze the proposed incumbent and optionally reject it. In
this case, CPLEX will continue the branch & cut search. This callback is thus typically
combined with a branch callback that instructs CPLEX how to branch on a node after it
has found a potential incumbent and thus considered the node solution to be integer
feasible.

MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 662

IloCplex::IncumbentCallbackI
See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILOINCUMBENTCALLBACK0

Methods protected NodeData * getNodeData() const

This method retrieves the NodeData object that may have previously been assigned to
the current node by the user with method
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the current node, 0 will be returned.

protected NodeId getNodeId() const

This method returns the NodeId of the current node.

protected IloNum getObjValue() const

This method returns the query objective value of the potential incumbent.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloNum getSlack(const IloRange rng) const

This method returns the slack value for the range specified by rng for the potential
incumbent.

protected void getSlacks(IloNumArray val,
 const IloRangeArray con) const

This method puts the slack value for each range in the array of ranges con into the
corresponding element of the array val for the potential incumbent. For this CPLEX
resizes array val to match the size of array con.

protected IloNum getValue(const IloIntVar var) const

This method returns the query value of the variable var in the potential incumbent
solution.

protected IloNum getValue(const IloNumVar var) const

This method returns the value of the variable var in the potential incumbent solution.

protected IloNum getValue(const IloExprArg expr) const

This method returns the value of the expr for the potential incumbent solution.

protected void getValues(IloNumArray val,
 const IloIntVarArray vars) const

This method returns the query values of the variables in the array vars in the potential
incumbent solution and copies them to val. CPLEX automatically resizes the array
val to match the size of the array vars.

protected void getValues(IloNumArray val,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 663

IloCplex::IncumbentCallbackI
 const IloNumVarArray vars) const

This method returns the query values of the variables in the array vars in the potential
incumbent solution and copies them to val. CPLEX automatically resizes the array
val to match the length of the array vars.

protected void reject()

This method rejects the proposed incumbent.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 664

IloCplex::IntParam
IloCplex::IntParam

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis IntParam{
 AdvInd,
 RootAlg,
 NodeAlg,
 MIPEmphasis,
 AggFill,
 AggInd,
 BasInterval,
 ClockType,
 CraInd,
 DepInd,
 PreDual,
 PrePass,
 RelaxPreInd,
 RepeatPresolve,
 Symmetry,
 DPriInd,
 PriceLim,
 SimDisplay,
 ItLim,
 NetFind,
 PerLim,
 PPriInd,
 ReInv,
 ScaInd,
 Threads,
 ParallelMode,
 SingLim,
 Reduce,
 NzReadLim,
 ColReadLim,
 RowReadLim,
 QPNzReadLim,
 SiftDisplay,
 SiftAlg,
 SiftItLim,
 BrDir,
 Cliques,
 CoeRedInd,
 Covers,
 MIPDisplay,
 MIPInterval,
 IntSolLim,
 NodeFileInd,
 NodeLim,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 665

IloCplex::IntParam
 NodeSel,
 VarSel,
 BndStrenInd,
 HeurFreq,
 RINSHeur,
 FPHeur,
 RepairTries,
 SubMIPNodeLim,
 MIPOrdType,
 BBInterval,
 FlowCovers,
 ImplBd,
 Probe,
 GUBCovers,
 StrongCandLim,
 StrongItLim,
 FracCand,
 FracCuts,
 FracPass,
 PreslvNd,
 FlowPaths,
 MIRCuts,
 DisjCuts,
 ZeroHalfCuts,
 AggCutLim,
 CutPass,
 EachCutLim,
 DiveType,
 MIPSearch,
 MIQCPStrat,
 SolnPoolCapacity,
 SolnPoolReplace,
 SolnPoolIntensity,
 PopulateLim,
 BarAlg,
 BarColNz,
 BarDisplay,
 BarItLim,
 BarMaxCor,
 BarOrder,
 BarCrossAlg,
 BarStartAlg,
 NetItLim,
 NetPPriInd,
 NetDisplay,
 ConflictDisplay,
 FeasOptMode,
 TuningMeasure,
 TuningRepeat,
 TuningDisplay
};
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 666

IloCplex::IntParam
Description IloCplex is the class for the CPLEX algorithms in ILOG CPLEX. The enumeration
IloCplex::IntParam lists the parameters of CPLEX that require integer values.
Use these values with the methods IloCplex::getParam and
IloCplex::setParam.

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields AdvInd

 = CPX_PARAM_ADVIND

RootAlg

 = CPX_PARAM_STARTALG, CPX_PARAM_LPMETHOD,
CPX_PARAM_QPMETHOD

NodeAlg

 = CPX_PARAM_SUBALG

MIPEmphasis

 = CPX_PARAM_MIPEMPHASIS

AggFill

 = CPX_PARAM_AGGFILL

AggInd

 = CPX_PARAM_AGGIND

BasInterval

 = CPX_PARAM_BASINTERVAL

ClockType

 = CPX_PARAM_CLOCKTYPE

CraInd

 = CPX_PARAM_CRAIND

DepInd

 = CPX_PARAM_DEPIND

PreDual

 = CPX_PARAM_PREDUAL

PrePass

 = CPX_PARAM_PREPASS
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 667

IloCplex::IntParam
RelaxPreInd

 = CPX_PARAM_RELAXPREIND

RepeatPresolve

 = CPX_PARAM_REPEATPRESOLVE

Symmetry

 = CPX_PARAM_SYMMETRY

DPriInd

 = CPX_PARAM_DPRIIND

PriceLim

 = CPX_PARAM_PRICELIM

SimDisplay

 = CPX_PARAM_SIMDISPLAY

ItLim

 = CPX_PARAM_ITLIM

NetFind

 = CPX_PARAM_NETFIND

PerLim

 = CPX_PARAM_PERLIM

PPriInd

 = CPX_PARAM_PPRIIND

ReInv

 = CPX_PARAM_REINV

ScaInd

 = CPX_PARAM_SCAIND

Threads

 = CPX_PARAM_THREADS

ParallelMode

 = CPX_PARAM_PARALLELMODE

SingLim

 = CPX_PARAM_SINGLIM

Reduce

 = CPX_PARAM_REDUCE

NzReadLim
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 668

IloCplex::IntParam
 = CPX_PARAM_NZREADLIM

ColReadLim

 = CPX_PARAM_COLREADLIM

RowReadLim

 = CPX_PARAM_ROWREADLIM

QPNzReadLim

 = CPX_PARAM_QPNZREADLIM

SiftDisplay

 = CPX_PARAM_SIFTDISPLAY

SiftAlg

 = CPX_PARAM_SIFTALG

SiftItLim

 = CPX_PARAM_SIFTITLIM

BrDir

 = CPX_PARAM_BRDIR

Cliques

 = CPX_PARAM_CLIQUES

CoeRedInd

 = CPX_PARAM_COEREDIND

Covers

 = CPX_PARAM_COVERS

MIPDisplay

 = CPX_PARAM_MIPDISPLAY

MIPInterval

 = CPX_PARAM_MIPINTERVAL

IntSolLim

 = CPX_PARAM_INTSOLLIM

NodeFileInd

 = CPX_PARAM_NODEFILEIND

NodeLim

 = CPX_PARAM_NODELIM

NodeSel

 = CPX_PARAM_NODESEL
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 669

IloCplex::IntParam
VarSel

 = CPX_PARAM_VARSEL

BndStrenInd

 = CPX_PARAM_BNDSTRENIND

HeurFreq

 = CPX_PARAM_HEURFREQ

RINSHeur

 = CPX_PARAM_RINSHEUR

FPHeur

 = CPX_PARAM_FPHEUR

RepairTries

 = CPX_PARAM_REPAIRTRIES

SubMIPNodeLim

 = CPX_PARAM_SUBMIPNODELIM

MIPOrdType

 = CPX_PARAM_MIPORDTYPE

BBInterval

 = CPX_PARAM_BBINTERVAL

FlowCovers

 = CPX_PARAM_FLOWCOVERS

ImplBd

 = CPX_PARAM_IMPLBD

Probe

 = CPX_PARAM_PROBE

GUBCovers

 = CPX_PARAM_GUBCOVERS

StrongCandLim

 = CPX_PARAM_STRONGCANDLIM

StrongItLim

 = CPX_PARAM_STRONGITLIM

FracCand

 = CPX_PARAM_FRACCAND

FracCuts
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 670

IloCplex::IntParam
 = CPX_PARAM_FRACCUTS

FracPass

 = CPX_PARAM_FRACPASS

PreslvNd

 = CPX_PARAM_PRESLVND

FlowPaths

 = CPX_PARAM_FLOWPATHS

MIRCuts

 = CPX_PARAM_MIRCUTS

DisjCuts

 = CPX_PARAM_DISJCUTS

ZeroHalfCuts

 = CPX_PARAM_ZEROHALFCUTS

AggCutLim

 = CPX_PARAM_AGGCUTLIM

CutPass

 = CPX_PARAM_CUTPASS

EachCutLim

 = CPX_PARAM_EACHCUTLIM

DiveType

 = CPX_PARAM_DIVETYPE

MIPSearch

 = CPX_PARAM_MIPSEARCH

MIQCPStrat

 = CPX_PARAM_MIQCPSTRAT

SolnPoolCapacity

 = CPX_PARAM_SOLNPOOLCAPACITY

SolnPoolReplace

 = CPX_PARAM_SOLNPOOLREPLACE

SolnPoolIntensity

 = CPX_PARAM_SOLNPOOLINTENSITY

PopulateLim

 = CPX_PARAM_POPULATELIM
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 671

IloCplex::IntParam
BarAlg

 = CPX_PARAM_BARALG

BarColNz

 = CPX_PARAM_BARCOLNZ

BarDisplay

 = CPX_PARAM_BARDISPLAY

BarItLim

 = CPX_PARAM_BARITLIM

BarMaxCor

 = CPX_PARAM_BARMAXCOR

BarOrder

 = CPX_PARAM_BARORDER

BarCrossAlg

 = CPX_PARAM_BARCROSSALG

BarStartAlg

 = CPX_PARAM_BARSTARTALG

NetItLim

 = CPX_PARAM_NETITLIM

NetPPriInd

 = CPX_PARAM_NETPPRIIND

NetDisplay

 = CPX_PARAM_NETDISPLAY

ConflictDisplay

 = CPX_PARAM_CONFLICTDISPLAY

FeasOptMode

 = CPX_PARAM_FEASOPTMODE

TuningMeasure

 = CPX_PARAM_TUNINGMEASURE

TuningRepeat

 = CPX_PARAM_TUNINGREPEAT

TuningDisplay

 = CPX_PARAM_TUNINGDISPLAY
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 672

IloCplex::InvalidCutException
IloCplex::InvalidCutException

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description An instance of this exception is thrown by IloCplex when an an attempt is made to
add a malformed cut. An example of a malformed cut is one that uses variables that have
not been extracted or a cut that is defined with an expression that is not linear.

Methods public IloConstraint getCut() const

 Returns the invalid cut that triggered the invoking exception.

Method Summary
public IloConstraint getCut() const

Inherited methods from IloCplex::Exception
Exception::getStatus

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 673

IloCplex::LazyConstraintCallbackI
IloCplex::LazyConstraintCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Inherited methods from IloCplex::CutCallbackI
add, addLocal

Inherited methods from IloCplex::ControlCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 674

IloCplex::LazyConstraintCallbackI
Description

An instance of the class IloCplex::LazyConstraintCallbackI represents a
user-written callback in an application that uses an instance of IloCplex to solve a
MIP while generating lazy constraints. IloCplex calls the user-written callback after
solving each node LP exactly like IloCplex::CutCallbackI. In fact, this

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 675

IloCplex::LazyConstraintCallbackI
callback is exactly equivalent to IloCplex::CutCallbackI but offers a name
more consistently pointing out the difference between lazy constraints and user cuts.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 676

IloCplex::MIPCallbackI
IloCplex::MIPCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected MIPCallbackI(IloEnv env)

Method Summary
protected IloInt MIPCallbackI::getNcliques() const

protected IloInt MIPCallbackI::getNcovers() const

protected IloInt MIPCallbackI::getNdisjunctiveCuts() const

protected IloInt MIPCallbackI::getNflowCovers() const

protected IloInt MIPCallbackI::getNflowPaths() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 677

IloCplex::MIPCallbackI
protected IloInt MIPCallbackI::getNfractionalCuts() const

protected IloInt MIPCallbackI::getNGUBcovers() const

protected IloInt MIPCallbackI::getNimpliedBounds() const

protected IloInt MIPCallbackI::getNMIRs() const

protected IloNum MIPCallbackI::getObjCoef(const IloIntVar
var) const

protected IloNum MIPCallbackI::getObjCoef(const IloNumVar
var) const

protected void MIPCallbackI::getObjCoefs(IloNumArray
val,const IloIntVarArray vars) const

protected void MIPCallbackI::getObjCoefs(IloNumArray
val,const IloNumVarArray vars) const

protected IloInt MIPCallbackI::getUserThreads() const

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 678

IloCplex::MIPCallbackI
Description An instance of the class IloCplex::MIPCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
program (MIP). IloCplex calls the user-written callback prior to solving each node
in branch & cut search.

User-written callbacks of this class or any of its subclasses are not compatible with
MIP dynamic search. If you are looking for support for callbacks compatible with
dynamic search, consider the class IloCplex::MIPInfoCallbackI instead.

This class offers member functions for accessing an incumbent solution and its
objective value from a user-written callback. It also offers methods for accessing
priority orders and statistical information, such as the number of cuts. Methods are also
available to query the number of generated cuts for each type of cut CPLEX generates.
See the ILOG CPLEX User's Manual for more information about cuts.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown. For example, if there is no incumbent, the methods that query about
incumbents will throw an exception.

This class also provides the common application programming interface (API) for these
callback classes:

◆ IloCplex::NodeCallbackI

◆ IloCplex::IncumbentCallbackI

◆ IloCplex::DisjunctiveCutCallbackI

◆ IloCplex::FlowMIRCutCallbackI

◆ IloCplex::FractionalCutCallbackI

◆ IloCplex::ProbingCallbackI

◆ IloCplex::CutCallbackI

◆ IloCplex::BranchCallbackI

◆ IloCplex::HeuristicCallbackI

◆ IloCplex::SolveCallbackI

Inner Class
MIPCallbackI::MIPCallbackI::
NodeData
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 679

IloCplex::MIPCallbackI
See Also IloCplex, IloCplex::BranchCallbackI, IloCplex::Callback,
IloCplex::CallbackI, IloCplex::CutCallbackI,
IloCplex::DisjunctiveCutCallbackI,
IloCplex::FlowMIRCutCallbackI,
IloCplex::FractionalCutCallbackI,
IloCplex::HeuristicCallbackI, IloCplex::IncumbentCallbackI,
IloCplex::NodeCallbackI, IloCplex::OptimizationCallbackI,
IloCplex::ProbingCallbackI, IloCplex::SolveCallbackI,
ILOMIPCALLBACK0

Constructors protected MIPCallbackI(IloEnv env)

This constructor creates a callback for use in an application that uses an instance of
IloCplex to solve a mixed integer program (MIP).

Methods protected IloInt getNcliques() const

Returns the total number of clique cuts that have been added to the model so far during
the current optimization.

protected IloInt getNcovers() const

Returns the total number of cover cuts that have been added to the model so far during
the current optimization.

protected IloInt getNdisjunctiveCuts() const

Returns the total number of disjunctive cuts that have been added to the model so far
during the current optimization.

protected IloInt getNflowCovers() const

Returns the total number of flow cover cuts that have been added to the model so far
during the current optimization.

protected IloInt getNflowPaths() const

Returns the total number of flow path cuts that have been added to the model so far
during the current optimization.

protected IloInt getNfractionalCuts() const

Returns the total number of fractional cuts that have been added to the model so far
during the current optimization.

protected IloInt getNGUBcovers() const

Returns the total number of GUB cover cuts that have been added to the model so far
during the current optimization.

protected IloInt getNimpliedBounds() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 680

IloCplex::MIPCallbackI
Returns the total number of implied bound cuts that have been added to the model so far
during the current optimization.

protected IloInt getNMIRs() const

Returns the total number of MIR cuts that have been added to the model so far during
the current optimization.

protected IloNum getObjCoef(const IloIntVar var) const

Returns the linear objective coefficient for var in the model currently being solved.

protected IloNum getObjCoef(const IloNumVar var) const

Returns the linear objective coefficient for var in the model currently being solved.

protected void getObjCoefs(IloNumArray val,
 const IloIntVarArray vars) const

Puts the linear objective coefficient of each of the variables in the array vars into the
corresponding element of the array vals.

protected void getObjCoefs(IloNumArray val,
 const IloNumVarArray vars) const

Puts the linear objective coefficient of each of the variables in the array vars into the
corresponding element of the array vals.

protected IloInt getUserThreads() const

Returns the total number of parallel threads currently running.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 681

MIPCallbackI::NodeData
MIPCallbackI::NodeData

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description Objects of (a subclass of) this class can be attached to created nodes in a branch callback
with one of the IloCplex::BranchCallbackI::makeBranch methods. This
allows the user to associate arbitrary data with the nodes. The destructor must be
implemented to delete all such data. It will typically be called by IloCplex when a
node is discarded, either because it has been processed or because it is pruned.

See Also IloCplex::MIPCallbackI, ILOBRANCHCALLBACK0

Methods public virtual IloAny getDataType() const

IloCplex does not use this method. It is provided as a convenience for the user to help
manage different types of NodeData subclasses.

Method Summary
public virtual IloAny getDataType() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 682

IloCplex::MIPEmphasisType
IloCplex::MIPEmphasisType

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis MIPEmphasisType{
 MIPEmphasisBalanced,
 MIPEmphasisOptimality,
 MIPEmphasisFeasibility,
 MIPEmphasisBestBound,
 MIPEmphasisHiddenFeas
};

Description The enumeration IloCplex::MIPEmphasisType lists the values that the MIP
emphasis parameter IloCplex::MIPEmphasis can assume in an instance of
IloCplex for use when it is solving MIP problems. Use these values with the method
IloCplex::setParam(IloCplex::MIPEmphasis, value) when you set
MIP emphasis.

With the default setting of IloCplex::MIPEmphasisBalance, IloCplex tries
to compute the branch & cut algorithm in such a way as to find a proven optimal
solution quickly. For a discussion about various settings, refer to the ILOG CPLEX
User's Manual.

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields MIPEmphasisBalanced

 = CPX_MIPEMPHASIS_BALANCED

MIPEmphasisOptimality

 = CPX_MIPEMPHASIS_OPTIMALITY

MIPEmphasisFeasibility

 = CPX_MIPEMPHASIS_FEASIBILITY

MIPEmphasisBestBound

 = CPX_MIPEMPHASIS_BESTBOUND

MIPEmphasisHiddenFeas

 = CPX_MIPEMPHASIS_HIDDENFEAS
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 683

IloCplex::MIPInfoCallbackI
IloCplex::MIPInfoCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected MIPInfoCallbackI(IloEnv env)

Method Summary
protected IloNum MIPInfoCallbackI::getBestObjValue() const

protected IloNum MIPInfoCallbackI::getCutoff() const

protected
IloCplex::BranchDirection

MIPInfoCallbackI::getDirection(const
IloIntVar var) const

protected
IloCplex::BranchDirection

MIPInfoCallbackI::getDirection(const
IloNumVar var) const

protected IloNum MIPInfoCallbackI::getIncumbentObjValue()
const

protected IloNum MIPInfoCallbackI::getIncumbentSlack(const
IloRange rng) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 684

IloCplex::MIPInfoCallbackI
Description An instance of the class IloCplex::MIPInfoCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
program (MIP). IloCplex calls the user-written callback regularly during the branch
& cut search.

 User-written callbacks of this class are compatible with MIP dynamic search.

protected void MIPInfoCallbackI::getIncumbentSlacks(IloNum
Array vals,const IloRangeArray cons) const

protected IloNum MIPInfoCallbackI::getIncumbentValue(const
IloIntVar var) const

protected IloNum MIPInfoCallbackI::getIncumbentValue(const
IloNumVar var) const

protected void MIPInfoCallbackI::getIncumbentValues(IloNum
Array val,const IloIntVarArray vars) const

protected void MIPInfoCallbackI::getIncumbentValues(IloNum
Array val,const IloNumVarArray vars) const

protected IloInt MIPInfoCallbackI::getMyThreadNum() const

protected IloInt MIPInfoCallbackI::getNiterations() const

protected IloInt MIPInfoCallbackI::getNnodes() const

protected IloInt MIPInfoCallbackI::getNremainingNodes() const

protected IloNum MIPInfoCallbackI::getPriority(const
IloIntVar sos) const

protected IloNum MIPInfoCallbackI::getPriority(const
IloNumVar sos) const

protected IloBool MIPInfoCallbackI::hasIncumbent() const

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 685

IloCplex::MIPInfoCallbackI
This class offers methods for accessing an incumbent solution and its objective value
from a user-written callback. It also offers methods for accessing priority orders and
progress information, such as the number of nodes solved.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made in a user-written callback to access information not available to an
instance of this class, an exception is raised. For example, if there is no incumbent, the
methods that query about incumbents will throw an exception.

This class also provides the common application programming interface (API) for these
callback classes:

◆ IloCplex::DisjunctiveCutInfoCallbackI

◆ IloCplex::FlowMIRCutInfoCallbackI

◆ IloCplex::FractionalCutInfoCallbackI

◆ IloCplex::ProbingInfoCallbackI

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::DisjunctiveCutInfoCallbackI,
IloCplex::FlowMIRCutInfoCallbackI,
IloCplex::FractionalCutInfoCallbackI,
IloCplex::OptimizationCallbackI,
IloCplex::ProbingInfoCallbackI, ILOMIPINFOCALLBACK0

Constructors protected MIPInfoCallbackI(IloEnv env)

This constructor creates a callback for use in an application that uses an instance of
IloCplex to solve a mixed integer program (MIP).

Methods protected IloNum getBestObjValue() const

This method returns the currently best known bound on the optimal solution value of the
problem at the time the invoking callback is called by an instance of IloCplex while
solving a MIP. When a model has been solved to optimality, this value matches the
optimal solution value. Otherwise, this value is computed for a minimization
(maximization) problem as the minimum (maximum) objective function value of all
remaining unexplored nodes.

protected IloNum getCutoff() const

 Returns the current cutoff value.

An instance of IloCplex uses the cutoff value (the value of the objective function of
the subproblem at a node in the search tree) to decide when to prune nodes from the
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 686

IloCplex::MIPInfoCallbackI
search tree (that is, when to cut off that node and discard the nodes beyond it). The
cutoff value is updated whenever a new incumbent is found.

protected IloCplex::BranchDirection getDirection(const IloIntVar var)
const

This method returns the branch direction previously assigned to variable var with
method IloCplex::setDirection or IloCplex::setDirections. If no
direction has been assigned, IloCplex::BranchGlobal will be returned.

protected IloCplex::BranchDirection getDirection(const IloNumVar var)
const

This method returns the branch direction previously assigned to variable var with
method IloCplex::setDirection or IloCplex::setDirections. If no
direction has been assigned, IloCplex::BranchGlobal will be returned.

protected IloNum getIncumbentObjValue() const

Returns the value of the objective function of the incumbent solution (that is, the best
integer solution found so far) at the time the invoking callback is called by an instance of
IloCplex while solving a MIP. If there is no incumbent, this method throws an
exception.

protected IloNum getIncumbentSlack(const IloRange rng) const

This method returns the slack value for the range specified by rng for the incumbent. If
there is no incumbent, this method throws an exception.

protected void getIncumbentSlacks(IloNumArray vals,
 const IloRangeArray cons) const

This method puts the slack value for each range in the array of ranges cons into the
corresponding element of the array vals for the incumbent. CPLEX resizes array
vals to match the size of array cons. If there is no incumbent, this method throws an
exception.

protected IloNum getIncumbentValue(const IloIntVar var) const

Returns the solution value of var in the incumbent solution at the time the invoking
callback is called by an instance of IloCplex while solving a MIP. If there is no
incumbent, this method throws an exception.

protected IloNum getIncumbentValue(const IloNumVar var) const

Returns the solution value of var in the incumbent solution at the time the invoking
callback is called by an instance of IloCplex while solving a MIP. If there is no
incumbent, this method throws an exception.

protected void getIncumbentValues(IloNumArray val,
 const IloIntVarArray vars) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 687

IloCplex::MIPInfoCallbackI
Returns the value of each variable in the array vars with respect to the current
incumbent solution, and it puts those values into the corresponding array vals. If
there is no incumbent, this method throws an exception.

protected void getIncumbentValues(IloNumArray val,
 const IloNumVarArray vars) const

Returns the value of each variable in the array vars with respect to the current
incumbent solution, and it puts those values into the corresponding array vals. If
there is no incumbent, this method throws an exception.

protected IloInt getMyThreadNum() const

Returns the identifier of the parallel thread being currently executed. This number is
between 0 (zero) and the value returned by the method getUserThreads()-1.

This method returns a nonzero value only for the class IloCplex::MIPCallbackI
and its subclasses. In other words, this method is valid only for query, diagnostic, and
control callbacks. It is not valid for informational callbacks.

protected IloInt getNiterations() const

Returns the total number of iterations executed so far during the current optimization to
solve the node relaxations.

protected IloInt getNnodes() const

Returns the number of nodes already processed in the current optimization.

protected IloInt getNremainingNodes() const

Returns the number of nodes left to explore in the current optimization.

protected IloNum getPriority(const IloIntVar sos) const

Returns the branch priority used for variable var in the current optimization.

protected IloNum getPriority(const IloNumVar sos) const

Returns the branch priority used for variable var in the current optimization.

protected IloBool hasIncumbent() const

Returns IloTrue if an integer feasible solution has been found, or, equivalenty, if an
incumbent solution is available at the time the invoking callback is called by an instance
of IloCplex while solving a MIP.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 688

IloCplex::MIPsearch
IloCplex::MIPsearch

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis MIPsearch{
 AutoSearch,
 Traditional,
 Dynamic
};

Description The enumeration IloCplex::MIPsearch lists values that the dynamic search
parameter IloCplex::MIPSearch can assume in IloCplex. Use these values
with the method IloCplex::setParam(IloCplex::MIPSearch, value).

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about this parameter. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields AutoSearch

 = CPX_MIPSEARCH_AUTO

Traditional

 = CPX_MIPSEARCH_TRADITIONAL

Dynamic

 = CPX_MIPSEARCH_DYNAMIC
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 689

IloCplex::MultipleConversionException
IloCplex::MultipleConversionException

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description An instance of this exception is thrown by IloCplex when there is an attempt to
convert the type of a variable with more than one IloConversion object at a time,
while it is being extracted by IloCplex.

Methods public IloConversion getConversion() const

 This method returns the offending IloConversion object.

public const IloNumVarArray getVariables() const

Method Summary
public IloConversion getConversion() const

public const IloNumVarArray getVariables() const

Inherited methods from IloCplex::Exception
Exception::getStatus

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 690

IloCplex::MultipleConversionException
 This method returns an array of variables to which too many type conversions have
been applied.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 691

IloCplex::MultipleObjException
IloCplex::MultipleObjException

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description An instance of this exception is thrown by IloCplex when there is an attempt to use
more than one objective function in a model extracted by IloCplex.

Inherited methods from IloCplex::Exception
Exception::getStatus

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 692

IloCplex::NetworkCallbackI
IloCplex::NetworkCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected NetworkCallbackI(IloEnv env)

Method Summary
protected IloNum getInfeasibility() const

protected IloInt getNiterations() const

protected IloNum NetworkCallbackI::getObjValue() const

protected IloBool isFeasible() const

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 693

IloCplex::NetworkCallbackI
Description An instance of the class IloCplex::NetCallbackI represents a user-written
callback in an application that uses an instance of IloCplex with the network
optimizer. The callback is executed each time the network optimizer issues a log file
message.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::OptimizationCallbackI, ILONETWORKCALLBACK0

Constructors protected NetworkCallbackI(IloEnv env)

This constructor creates a callback for use with the network optimizer.

Methods protected IloNum getInfeasibility() const

This method returns the current primal infeasibility measure of the network solution in
the instance of IloCplex at the time the invoking callback is executed.

protected IloInt getNiterations() const

This method returns the number of network simplex iterations completed so far by an
instance of IloCplex at the invoking callback is executed.

protected IloNum getObjValue() const

This method returns the current objective value of the network solution in the instance of
IloCplex at the time the invoking callback is executed.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloBool isFeasible() const

This method returns IloTrue if the current network solution is primal feasible.

CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 694

IloCplex::NodeCallbackI
IloCplex::NodeCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected NodeCallbackI(IloEnv env)

Method Summary
protected IloNumVar getBranchVar(NodeId nodeid) const

protected IloNumVar getBranchVar(int node) const

protected IloInt getDepth(NodeId nodeid) const

protected IloInt getDepth(int node) const

protected IloNum getEstimatedObjValue(NodeId nodeid) const

protected IloNum getEstimatedObjValue(int node) const

protected IloNum getInfeasibilitySum(NodeId nodeid) const

protected IloNum getInfeasibilitySum(int node) const

protected IloInt getNinfeasibilities(NodeId nodeid) const

protected IloInt getNinfeasibilities(int node) const

protected NodeData * getNodeData(NodeId nodeid) const

protected NodeData * getNodeData(int node) const

protected NodeId getNodeId(int node) const

protected IloInt getNodeNumber(NodeId nodeid) const

protected IloNum NodeCallbackI::getObjValue(NodeId nodeid)
const

protected IloNum getObjValue(int node) const

protected void selectNode(NodeId nodeid)

protected void selectNode(int node)

Inherited methods from IloCplex::MIPCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 695

IloCplex::NodeCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 696

IloCplex::NodeCallbackI
Description

An instance of the class IloCplex::NodeCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
programming problem (a MIP). The methods of this class enable you (from a user-
derived callback class) to query the instance of IloCplex about the next node that it
plans to select in the branch & cut search, and optionally to override this selection by
specifying a different node.

When an instance of this callback executes, the invoking instance of IloCplex still
has n = getNremainingNodes (inherited from
IloCplex::MIPCallbackI) nodes left to process. These remaining nodes are
numbered from 0 (zero) to (n - 1). For that reason, the same node may have a
different number each time an instance of NodeCallbackI is called. To identify a
node uniquely, an instance of IloCplex also assigns a unique NodeId to each node.
That unique identifier remains unchanged throughout the search. The method
getNodeId(int i) allows you to access the NodeId for each of the remaining
nodes (0 to n-1). Such a query allows you to associate data with individual nodes.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILONODECALLBACK0

Constructors protected NodeCallbackI(IloEnv env)

This constructor creates a callback for use in an application with user-defined node
selection inquiry during branch & cut searches.

Methods protected IloNumVar getBranchVar(NodeId nodeid) const

This method returns the variable that was branched on last when CPLEX created the
node with the identifier nodeid. If that node has been created by branching on a
constraint or on multiple variables, 0 (zero) will be returned.

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 697

IloCplex::NodeCallbackI
protected IloNumVar getBranchVar(int node) const

Returns the variable that was branched on last when creating the node specified by the
index number node. If that node has been created by branching on a constraint or on
multiple variables, 0 (zero) will be returned.

protected IloInt getDepth(NodeId nodeid) const

This method returns the depth of the node in the search tree for the node with the
identifier nodeid. The root node has depth 0 (zero). The depth of other nodes is
defined recursively as the depth of their parent node plus one. In other words, the depth
of a node is its distance in terms of the number of branches from the root.

protected IloInt getDepth(int node) const

This method returns the depth of the node in the search tree. The root node has depth 0
(zero). The depth of other nodes is defined recursively as the depth of their parent node
plus one. In other words, the depth of a node is its distance in terms of the number of
branches from the root.

protected IloNum getEstimatedObjValue(NodeId nodeid) const

This method returns the estimated objective value of the node with the identifier node.

protected IloNum getEstimatedObjValue(int node) const

This method returns the estimated objective value of the node specified by the index
number node.

protected IloNum getInfeasibilitySum(NodeId nodeid) const

This method returns the sum of infeasibility measures at the node with the identifier
nodeid.

protected IloNum getInfeasibilitySum(int node) const

This method returns the sum of infeasibility measures at the node specified by the index
number node.

protected IloInt getNinfeasibilities(NodeId nodeid) const

This method returns the number of infeasibilities at the node with the identifier
nodeid.

protected IloInt getNinfeasibilities(int node) const

This method returns the number of infeasibilities at the node specified by the index
number node.

protected NodeData * getNodeData(NodeId nodeid) const

This method retrieves the NodeData object that may have previously been assigned by
the user to the node with the identfier nodeid with one of the methods
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the that node, 0 (zero) will be returned.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 698

IloCplex::NodeCallbackI
protected NodeData * getNodeData(int node) const

This method retrieves the NodeData object that may have previously been assigned to
the node with index node by the user with the method
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the specified node, 0 (zero) will be returned.

protected NodeId getNodeId(int node) const

This method returns the node identifier of the node specified by the index number node.
During branch & cut, an instance of IloCplex assigns node identifiers sequentially
from 0 (zero) to (getNodes - 1) as it creates nodes. Within a search, these node
identifiers are unique throughout the duration of that search. However, at any point, the
remaining nodes, (that is, the nodes that have not yet been processed) are stored in an
array in an arbitrary order. This method returns the identifier of the node stored at
position node in that array.

protected IloInt getNodeNumber(NodeId nodeid) const

Returns the current index number of the node specified by the node identifier nodeid.

protected IloNum getObjValue(NodeId nodeid) const

This method returns the objective value of the node with the identifier node.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloNum getObjValue(int node) const

This method returns the objective value of the node specified by the index number
node.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected void selectNode(NodeId nodeid)

This method selects the node with the identifier nodeid and sets it as the next node to
process in the branch & cut search. The invoking instance of IloCplex uses the
specified node as the next node to process.

protected void selectNode(int node)

This method selects the node specified by its index number node and sets it as the next
node to process in the branch & cut search. The parameter node must be an integer
between 0 (zero) and (getNremainingNodes - 1).

The invoking instance of IloCplex uses the specified node as the next node to
process.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 699

IloCplex::NodeEvaluator
IloCplex::NodeEvaluator

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description This class is the handle class for objects of type IloCplex::NodeEvaluatorI.
Node evaluators can be used to control the node selection strategy during goal-
controlled search. That is, node evaluators control the order in which nodes are
processed during branch & cut search using IloCplex goals. Such objects allow you
to control the node-selection scheme.

IloCplex::NodeEvaluatorI objects are reference-counted. In other words,
every instance of IloCplex::NodeEvaluatorI keeps track of how many handle
objects refer to it. When this number drops to 0 (zero), the
IloCplex::NodeEvaluatorI object is automatically deleted. As a consequence,
whenever you deal with node evaluators, you must maintain a handle object rather than
just a pointer to the implementation object. Otherwise, you risk ending up with a
pointer to an implementation object that has already been deleted.

See Also IloCplex, IloCplex::NodeEvaluatorI

Constructor Summary
public NodeEvaluator()

public NodeEvaluator(IloCplex::NodeEvaluatorI *
impl)

public NodeEvaluator(const NodeEvaluator & eval)

Method Summary
public
IloCplex::NodeEvaluatorI *

getImpl() const

public NodeEvaluator operator=(const NodeEvaluator & eval)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 700

IloCplex::NodeEvaluator
Constructors public NodeEvaluator()

The empty constructor creates a new evaluator containing no pointers to an
implementation object.

public NodeEvaluator(IloCplex::NodeEvaluatorI * impl)

This constructor creates a new evaluator with a pointer to an implementation. It
increases the reference count of impl by one.

public NodeEvaluator(const NodeEvaluator & eval)

This copy constructor increments the reference count of the implementation object
referenced by eval by one.

Methods public IloCplex::NodeEvaluatorI * getImpl() const

Queries the implementation object.

public NodeEvaluator operator=(const NodeEvaluator & eval)

The assignment operator increases the reference count of the implementation object of
eval. If the invoking handle referred to an implementation object before the
assignment operation, its reference count is decreased. If this decrement reduces the
reference count to 0 (zero), the implementation object is deleted.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 701

IloCplex::NodeEvaluatorI
IloCplex::NodeEvaluatorI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description IloCplex::NodeEvaluatorI is the base class for implementing node evaluators.
Node evaluators allow you to control the node selection strategy for a subtree by
assigning values to the nodes. By default, IloCplex selects the node with the lowest
value when choosing the next node to process during branch & cut search. This behavior
can be altered by overwriting method subsume.

To implement your own node evaluator, you need to create a subclass of
IloCplex::NodeEvaluatorI and implement methods evaluate and
duplicateEvaluator. The method evaluate must be implemented to compute

Constructor Summary
public NodeEvaluatorI()

Method Summary
public virtual
NodeEvaluatorI *

duplicateEvaluator()

public virtual IloNum evaluate() const

protected IloNumVar getBranchVar() const

protected IloNum getDepth() const

protected IloNum getEstimatedObjValue() const

protected IloNum getInfeasibilitySum() const

protected IloInt getNinfeasibilities() const

protected NodeId getNodeId() const

protected IloNum NodeEvaluatorI::getObjValue() const

public virtual void init()

public virtual IloBool subsume(IloNum evalBest,IloNum evalCurrent)
const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 702

IloCplex::NodeEvaluatorI
and return a value for a given node. The protected methods of class
IloCplex::NodeEvaluatorI can be called to query information about the node
in order to compute this value. Each node is evaluated only once, after which the value is
attached to the node until the node is processed or pruned.

The duplicateEvaluator method is called by IloCplex when a copy of the
evaluator must be created for use in parallel branch & cut search. Thus the
implementation must simply create and return a copy of the evaluator itself—calling the
copy constructor will work in most circumstances.

Node evaluators are applied to a search defined by a goal with the method
IloCplex::Apply. The node selection strategy will be applied only to the subtree
defined by the goal passed to Apply. Using IloCplex::Apply, you can assign
different node selection strategies to different subtrees. You can also assign multiple
node selection strategies to subtrees. In this case, node selection strategies applied first
have precedence over those assigned later.

If no node evaluators are added, IloCplex uses the node selection strategy as
controlled by the NodeSel parameter.

See Also IloCplex, IloCplex::NodeEvaluator

Constructors public NodeEvaluatorI()

This constructor creates a node selector for use in an application with a user-defined
node selection strategy to solve a MIP.

Methods public virtual NodeEvaluatorI * duplicateEvaluator()

This method must be implemented by the user to return a copy of the invoking object. It
is called internally to duplicate the current node evaluator for parallel branch & cut
search. This method is not called for a particular node, so the get methods cannot be
used.

public virtual IloNum evaluate() const

This method must be implemented by the user to return a value for a given node. When
this method is called, the node evaluator is initialized to the node for which to compute
the value. Information about this node can be obtained by the get methods of
IloCplex::NodeEvaluatorI. Returning IloInfinity instructs IloCplex
to discard the node being evaluated.

protected IloNumVar getBranchVar() const

This method returns the variable that IloCplex branched on when creating the node
being evaluated from its parent. If the node has been generated with a more complex
branch, 0 (zero) will be returned instead. This method can be called only from the
methods init and evaluate.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 703

IloCplex::NodeEvaluatorI
protected IloNum getDepth() const

This method returns the depth in the search tree of the node currently being evaluated.
The root node is depth 0 (zero); the depth of the current node is its distance from the
root, or equivalently, the number of branches taken to get from the root node to the
current node. This member function can be called only from the methods init and
evaluate.

protected IloNum getEstimatedObjValue() const

This method returns the estimated objective value for the node being evaluated. It can be
called only from the methods init and evaluate.

protected IloNum getInfeasibilitySum() const

This method returns the sum of infeasibility measures at the node being evaluated. It can
be called only from the methods init and evaluate.

protected IloInt getNinfeasibilities() const

This method returns the number of infeasibilities at the node being evaluated. It can be
called only from the methods init and evaluate.

protected NodeId getNodeId() const

This method returns the node identifier of the node being evaluated. It can be called only
from the methods init and evaluate.

protected IloNum getObjValue() const

This method returns the objective value of the node being evaluated. It can be called
only from the methods init and evaluate.

If you need the object representing the objective itself, consider the method
getObjective instead.

public virtual void init()

This method is called by IloCplex immediately before the first time evaluate is
called for a node, allowing you to initialize the evaluator based on that node.
Information about the current node can be queried by calling the get methods of
IloCplex::NodeEvaluatorI.

public virtual IloBool subsume(IloNum evalBest,
IloNum evalCurrent) const

IloCplex maintains a candidate node for selection as the next node to process. When
choosing the next node, it compares the candidate to all other nodes. If a given node and
the candidate node are governed by the same evaluator, IloCplex calls subsume to
determine whether the node should become the new candidate. The arguments passed to
the subsume call are:

◆ the value previously assigned by the method evaluate to the candidate node as
parameter evalBest, and
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 704

IloCplex::NodeEvaluatorI
◆ the value previously assigned by the method evaluate to the node under
investigation as parameter evalCurrent.

By default, this method returns IloTrue if evalCurrent>evalBest.
Overwriting this function allows you to change this selection scheme.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 705

IloCplex::NodeSelect
IloCplex::NodeSelect

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis NodeSelect{
 DFS,
 BestBound,
 BestEst,
 BestEstAlt
};

Description The enumeration IloCplex::NodeSelect lists values that the parameter
IloCplex::NodeSel can assume in IloCplex. Use these values with the method
IloCplex::setParam(IloCplex::NodeSel, value).

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields DFS

 = CPX_NODESEL_DFS

BestBound

 = CPX_NODESEL_BESTBOUND

BestEst

 = CPX_NODESEL_BESTEST

BestEstAlt

 = CPX_NODESEL_BESTEST_ALT
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 706

IloCplex::NumParam
IloCplex::NumParam

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis NumParam{
 EpMrk,
 EpOpt,
 EpPer,
 EpRHS,
 NetEpOpt,
 NetEpRHS,
 TiLim,
 TuningTiLim,
 BtTol,
 CutLo,
 CutUp,
 EpGap,
 EpInt,
 EpAGap,
 EpRelax,
 ObjDif,
 ObjLLim,
 ObjULim,
 PolishTime,
 ProbeTime,
 RelObjDif,
 CutsFactor,
 TreLim,
 SolnPoolGap,
 SolnPoolAGap,
 WorkMem,
 BarEpComp,
 BarQCPEpComp,
 BarGrowth,
 BarObjRng,
 EpLin
};

Description The enumeration IloCplex::NumParam lists the parameters of CPLEX that require
numeric values. Use these values with the member functions:
IloCplex::getParam and IloCplex::setParam.

See the reference manual ILOG CPLEX Parameters information about these
parameters. Also see the ILOG CPLEX User's Manual for more examples of their use.

See Also IloCplex
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 707

IloCplex::NumParam
Fields EpMrk

 = CPX_PARAM_EPMRK

EpOpt

 = CPX_PARAM_EPOPT

EpPer

 = CPX_PARAM_EPPER

EpRHS

 = CPX_PARAM_EPRHS

NetEpOpt

 = CPX_PARAM_NETEPOPT

NetEpRHS

 = CPX_PARAM_NETEPRHS

TiLim

 = CPX_PARAM_TILIM

TuningTiLim

 = CPX_PARAM_TUNINGTILIM

BtTol

 = CPX_PARAM_BTTOL

CutLo

 = CPX_PARAM_CUTLO

CutUp

 = CPX_PARAM_CUTUP

EpGap

 = CPX_PARAM_EPGAP

EpInt

 = CPX_PARAM_EPINT

EpAGap

 = CPX_PARAM_EPAGAP

EpRelax

 = CPX_PARAM_EPRELAX

ObjDif

 = CPX_PARAM_OBJDIF

ObjLLim
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 708

IloCplex::NumParam
 = CPX_PARAM_OBJLLIM

ObjULim

 = CPX_PARAM_OBJULIM

PolishTime

 = CPX_PARAM_POLISHTIME

ProbeTime

 = CPX_PARAM_PROBETIME

RelObjDif

 = CPX_PARAM_RELOBJDIF

CutsFactor

 = CPX_PARAM_CUTSFACTOR

TreLim

 = CPX_PARAM_TRELIM

SolnPoolGap

 = CPX_PARAM_SOLNPOOLGAP

SolnPoolAGap

 = CPX_PARAM_SOLNPOOLAGAP

WorkMem

 = CPX_PARAM_WORKMEM

BarEpComp

 = CPX_PARAM_BAREPCOMP

BarQCPEpComp

 = CPX_PARAM_BARQCPEPCOMP

BarGrowth

 = CPX_PARAM_BARGROWTH

BarObjRng

 = CPX_PARAM_BAROBJRNG

EpLin

 = CPX_PARAM_EPLIN
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 709

IloCplex::OptimizationCallbackI
IloCplex::OptimizationCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description This is the abstract base class for user-written callback classes called by optimization
methods. It provides their common application programming interface (API).

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI

Methods public IloModel getModel() const

Method Summary
public IloModel OptimizationCallbackI::getModel() const

public IloInt OptimizationCallbackI::getNcols() const

public IloInt OptimizationCallbackI::getNQCs() const

public IloInt OptimizationCallbackI::getNrows() const

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 710

IloCplex::OptimizationCallbackI
This method returns the model currently extracted for the instance of IloCplex where
the invoking callback executed.

public IloInt getNcols() const

This method returns the number of columns in the model currently being optimized.

public IloInt getNQCs() const

This method returns the number of quadratic constraints in the model currently being
optimized.

public IloInt getNrows() const

This method returns the number of rows in the model currently being optimized.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 711

IloCplex::Parallel_Mode
IloCplex::Parallel_Mode

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis Parallel_Mode{
 Opportunistic,
 AutoParallel,
 Deterministic
};

Description The enumeration IloCplex::ParallelMode lists values that the parallel mode
parameter IloCplex::ParallelMode can assume in IloCplex for use on
multiprocessor or multithread platforms, if your application is licensed for parallel
optimization. Use these values with the method
IloCplex::setParam(IloCplex::ParallelMode, value).

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about this parameter. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields Opportunistic

 = CPX_PARALLEL_OPPORTUNISTIC

AutoParallel

 = CPX_PARALLEL_AUTO

Deterministic

 = CPX_PARALLEL_DETERMINISTIC
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 712

IloCplex::ParameterSet
IloCplex::ParameterSet

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description A parameter set for IloCplex, this class allows you to store and restore parameters
that are not at their default value.

You can create empty IloCplex::ParameterSet objects with the constructor and
then modify them. Alternatively, you can create such objects with the method
IloCplex::getParameterSet.

Method Summary
public void clear()

public void end()

public IloNum getParam(IloCplex::NumParam which) const

public IloBool getParam(IloCplex::BoolParam which) const

public char * getParam(IloCplex::StringParam which) const

public IloInt getParam(IloCplex::IntParam which) const

public void setParam(IloCplex::NumParam which,IloNum
val)

public void setParam(IloCplex::BoolParam which,IloBool
val)

public void setParam(IloCplex::StringParam which,char *
val)

public void setParam(IloCplex::IntParam which,IloInt
val)

Inner Class
ParameterSet::ParameterSet::
Iterator
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 713

IloCplex::ParameterSet
A parameter set can be applied to an instance of IloCplex by means of the method
IloCplex::setParameterSet(set).

See Also getParameterSet, setParameterSet

Methods public void clear()

Clears the parameter set.

public void end()

Ends the parameter set.

public IloNum getParam(IloCplex::NumParam which) const

Returns the current value of a numeric parameter.

 If the method fails, an exception of type IloException, or one of its derived
classes, is thrown.

Parameters : which

 The identifier of the num parameter to be queried.

Returns : The current value of the num parameter.

public IloBool getParam(IloCplex::BoolParam which) const

Returns the current value of a Boolean parameter.

 If the method fails, an exception of type IloException, or one of its derived
classes, is thrown.

Parameters : which

 The identifier of the Boolean parameter to be queried.

Returns : The current value of the Boolean parameter.

public char * getParam(IloCplex::StringParam which) const

Returns the current value of a string parameter.

 If the method fails, an exception of type IloException, or one of its derived
classes, is thrown.

Parameters : which

 The identifier of the string parameter to be queried.

Returns : The current value of the string parameter.

public IloInt getParam(IloCplex::IntParam which) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 714

IloCplex::ParameterSet
Returns the current value of an integer parameter.

 If the method fails, an exception of type IloException, or one of its derived
classes, is thrown.

Parameters : which

 The identifier of the integer parameter to be queried.

Returns : The current value of the integer parameter.

public void setParam(IloCplex::NumParam which,
IloNum val)

Sets a numeric parameter to the value val.

Parameters : which

 The identifier of the num parameter to be set.

val

 The new value for the num parameter

public void setParam(IloCplex::BoolParam which,
IloBool val)

Sets a Boolean parameter to the value val.

Parameters : which

 The identifier of the Boolean parameter to be set.

val

 The new value for the Boolean parameter.

public void setParam(IloCplex::StringParam which,
 char * val)

Sets a string parameter to the value val.

Parameters : which

 The identifier of the string parameter to set.

val

 The new value for the string parameter.

public void setParam(IloCplex::IntParam which,
IloInt val)

Sets an integer parameter to the value val.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 715

IloCplex::ParameterSet
Parameters : which

 The identifier of the parameter to set.

val

 The new value for the integer parameter.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 716

ParameterSet::Iterator
ParameterSet::Iterator

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description An instance of this nested class is an iterator that traverses a set of parameters.

The class includes operators to point to the current parameter in the set and to advance to
the next parameter in the set, and a method ok to verify that the iterator is still within
the set.

Constructors public Iterator(IloCplex::ParameterSet)

Constructs an iterator capable of traversing the parameters in the designated parameter
set.

Methods public bool ok() const

Returns true if the iterator points to a valid element of the the parameter set, and false
otherwise.

public Parameter operator *() const

Returns the parameter to which the iterator currently points.

Constructor Summary
public Iterator(IloCplex::ParameterSet)

Method Summary
public bool ok() const

public Parameter operator *() const

public Iterator operator++(int)

public Iterator & operator++()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 717

ParameterSet::Iterator
public Iterator operator++(int)

Advances the iterator to the next element of the parameter set.

public Iterator & operator++()

Advances the iterator to the next element of the parameter set.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 718

IloCplex::PresolveCallbackI
IloCplex::PresolveCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected PresolveCallbackI(IloEnv env)

Method Summary
protected IloInt getNaggregations() const

protected IloInt getNmodifiedCoeffs() const

protected IloInt getNremovedCols() const

protected IloInt getNremovedRows() const

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 719

IloCplex::PresolveCallbackI
Description An instance of a class derived from PresolveCallbackI represents a user-written
callback in an application that uses an instance of IloCplex. The callback is called
periodically during presolve. This class enables you to access information about the
effects of presolve on the model extracted for the instance of IloCplex. For example,
there are member functions that return the number of rows or columns removed from the
model, the number of variables that have been aggregated, and the number of
coefficients that have changed as a result of presolve.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::OptimizationCallbackI, ILOPRESOLVECALLBACK0

Constructors protected PresolveCallbackI(IloEnv env)

This constructor creates a callback for use in presolve.

Methods protected IloInt getNaggregations() const

This method returns the number of aggregations performed by presolve at the time the
callback is executeed.

protected IloInt getNmodifiedCoeffs() const

This method returns the number of coefficients modified by presolve at the time the
callback is executeed.

protected IloInt getNremovedCols() const

This method returns the number of columns removed by presolve at the time the
callback is executeed.

protected IloInt getNremovedRows() const

This method returns the number of rows removed by presolve at the time the callback is
executeed.

CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 720

IloCplex::PrimalPricing
IloCplex::PrimalPricing

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis PrimalPricing{
 PPriIndPartial,
 PPriIndAuto,
 PPriIndDevex,
 PPriIndSteep,
 PPriIndSteepQStart,
 PPriIndFull
};

Description The enumeration IloCplex::PrimalPricing lists values that the primal pricing
parameter IloCplex::PPriInd can assume in IloCplex for use with the primal
simplex algorithm. Use these values with the method
IloCplex::setParam(IloCplex::PPriInd, value) when setting the
primal pricing indicator.

See the reference manual ILGO CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields PPriIndPartial

 = CPX_PPRIIND_PARTIAL

PPriIndAuto

 = CPX_PPRIIND_AUTO

PPriIndDevex

 = CPX_PPRIIND_DEVEX

PPriIndSteep

 = CPX_PPRIIND_STEEP

PPriIndSteepQStart

 = CPX_PPRIIND_STEEPQSTART

PPriIndFull

 = CPX_PPRIIND_FULL
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 721

IloCplex::ProbingCallbackI
IloCplex::ProbingCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected ProbingCallbackI(IloEnv env)

Method Summary
protected IloInt getPhase() const

protected IloNum getProgress() const

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 722

IloCplex::ProbingCallbackI
Description An instance of the class IloCplex::ProbingCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
programming problem (a MIP). This class offers a method to check on the progress of a
probing operation.

This class is not compatible with dynamic search. If you are looking for support for a
user-written callback compatible with dynamic search, consider instead the class
IloCplex::ProbingInfoCallbackI.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 723

IloCplex::ProbingCallbackI
See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILOPROBINGCALLBACK0

Constructors protected ProbingCallbackI(IloEnv env)

This constructor creates a callback for use in an application when probing.

Methods protected IloInt getPhase() const

This method returns the current phase of probing.

protected IloNum getProgress() const

This method returns the fraction of completion of the current probing phase.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 724

IloCplex::ProbingInfoCallbackI
IloCplex::ProbingInfoCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected ProbingInfoCallbackI(IloEnv env)

Method Summary
protected IloInt getPhase() const

protected IloNum getProgress() const

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 725

IloCplex::ProbingInfoCallbackI
Description An instance of the class IloCplex::ProbingInfoCallbackI represents a user-
written callback in an application that uses an instance of IloCplex to solve a mixed
integer programming problem (a MIP). This class offers a method to check on the
progress of a probing operation.

 User-written callbacks of this class are compatible with MIP dynamic search.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPInfoCallbackI, IloCplex::OptimizationCallbackI,
ILOPROBINGINFOCALLBACK0

Constructors protected ProbingInfoCallbackI(IloEnv env)

This constructor creates a callback for use in an application when probing.

Methods protected IloInt getPhase() const

This method returns the current phase of probing.

protected IloNum getProgress() const

This method returns the fraction of completion of the current probing phase.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 726

IloCplex::Quality
IloCplex::Quality

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis Quality{
 MaxPrimalInfeas,
 MaxScaledPrimalInfeas,
 SumPrimalInfeas,
 SumScaledPrimalInfeas,
 MaxDualInfeas,
 MaxScaledDualInfeas,
 SumDualInfeas,
 SumScaledDualInfeas,
 MaxIntInfeas,
 SumIntInfeas,
 MaxPrimalResidual,
 MaxScaledPrimalResidual,
 SumPrimalResidual,
 SumScaledPrimalResidual,
 MaxDualResidual,
 MaxScaledDualResidual,
 SumDualResidual,
 SumScaledDualResidual,
 MaxCompSlack,
 SumCompSlack,
 MaxX,
 MaxScaledX,
 MaxPi,
 MaxScaledPi,
 MaxSlack,
 MaxScaledSlack,
 MaxRedCost,
 MaxScaledRedCost,
 SumX,
 SumScaledX,
 SumPi,
 SumScaledPi,
 SumSlack,
 SumScaledSlack,
 SumRedCost,
 SumScaledRedCost,
 Kappa,
 ObjGap,
 DualObj,
 PrimalObj,
 ExactKappa
};
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 727

IloCplex::Quality
Description The enumeration IloCplex::Quality lists types of quality measures that can be
queried for a solution with method IloCplex::getQuality.

See the group optim.cplex.solutionquality in the ILOG CPLEX Callable Library
Reference Manual for more information about these values. Also see the ILOG CPLEX
User's Manual for examples of their use.

See Also IloCplex

Fields MaxPrimalInfeas

 = CPX_MAX_PRIMAL_INFEAS

MaxScaledPrimalInfeas

 = CPX_MAX_SCALED_PRIMAL_INFEAS

SumPrimalInfeas

 = CPX_SUM_PRIMAL_INFEAS

SumScaledPrimalInfeas

 = CPX_SUM_SCALED_PRIMAL_INFEAS

MaxDualInfeas

 = CPX_MAX_DUAL_INFEAS

MaxScaledDualInfeas

 = CPX_MAX_SCALED_DUAL_INFEAS

SumDualInfeas

 = CPX_SUM_DUAL_INFEAS

SumScaledDualInfeas

 = CPX_SUM_SCALED_DUAL_INFEAS

MaxIntInfeas

 = CPX_MAX_INT_INFEAS

SumIntInfeas

 = CPX_SUM_INT_INFEAS

MaxPrimalResidual

 = CPX_MAX_PRIMAL_RESIDUAL

MaxScaledPrimalResidual

 = CPX_MAX_SCALED_PRIMAL_RESIDUAL

SumPrimalResidual

 = CPX_SUM_PRIMAL_RESIDUAL
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 728

IloCplex::Quality
SumScaledPrimalResidual

 = CPX_SUM_SCALED_PRIMAL_RESIDUAL

MaxDualResidual

 = CPX_MAX_DUAL_RESIDUAL

MaxScaledDualResidual

 = CPX_MAX_SCALED_DUAL_RESIDUAL

SumDualResidual

 = CPX_SUM_DUAL_RESIDUAL

SumScaledDualResidual

 = CPX_SUM_SCALED_DUAL_RESIDUAL

MaxCompSlack

 = CPX_MAX_COMP_SLACK

SumCompSlack

 = CPX_SUM_COMP_SLACK

MaxX

 = CPX_MAX_X

MaxScaledX

 = CPX_MAX_SCALED_X

MaxPi

 = CPX_MAX_PI

MaxScaledPi

 = CPX_MAX_SCALED_PI

MaxSlack

 = CPX_MAX_SLACK

MaxScaledSlack

 = CPX_MAX_SCALED_SLACK

MaxRedCost

 = CPX_MAX_RED_COST

MaxScaledRedCost

 = CPX_MAX_SCALED_RED_COST

SumX

 = CPX_SUM_X

SumScaledX
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 729

IloCplex::Quality
 = CPX_SUM_SCALED_X

SumPi

 = CPX_SUM_PI

SumScaledPi

 = CPX_SUM_SCALED_PI

SumSlack

 = CPX_SUM_SLACK

SumScaledSlack

 = CPX_SUM_SCALED_SLACK

SumRedCost

 = CPX_SUM_RED_COST

SumScaledRedCost

 = CPX_SUM_SCALED_RED_COST

Kappa

 = CPX_KAPPA

ObjGap

 = CPX_OBJ_GAP

DualObj

 = CPX_DUAL_OBJ

PrimalObj

 = CPX_PRIMAL_OBJ

ExactKappa

 = CPX_EXACT_KAPPA
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 730

IloCplex::Relaxation
IloCplex::Relaxation

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis Relaxation{
 MinSum,
 OptSum,
 MinInf,
 OptInf,
 MinQuad,
 OptQuad
};

Description The enumeration Relaxation lists the values that can be taken by the parameter
FeasOptMode. This parameter controls several aspects of how the method feasOpt
performs its relaxation.

 The method feasOpt works in two phases. In its first phase, it attempts to find a
minimum-penalty relaxation of a given infeasible model. If you want feasOpt to stop
after this first phase, choose a value with Min in its symbolic name. If you want
feasOpt to continue beyond its first phase to find a solution that is optimal with
respect to the original objective function, subject to the constraint that the penalty of the
relaxation must not exceed the value found in the first phase, then choose a value with
Opt in its symbolic name.

 In both phases, the suffixes Sum, Inf, and Quad specify the relaxation metric:

◆ Sum tells feasOpt to mimimize the weighted sum of the required relaxations of
bounds and constraints according to the formula penalty = sum (penalty_i times
relaxation_amount_i)

◆ Inf tells feasOpt to minimize the weighted number of bounds and constraints
that are relaxed according to the formula penalty = sum (penalty_i times
relaxation_indicator_i)

◆ Quad tells feasOpt to mimimize the weighted sum of the squares of required
relaxations of bounds and constraints according to the formula penalty = sum
(penalty_i times relaxation_amount_i times relaxation_amount_i)

Weights are determined by the preference values you provide as input to the method
feasOpt.

When IloAnd is used to group constraints as input to feasOpt, the relaxation
penalty is computed on groups instead of on individual constraints. For example, all
constraints in a group can be relaxed for a total penalty of one unit under the various
Inf metrics.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 731

IloCplex::Relaxation
Fields MinSum

 = CPX_FEASOPT_MIN_SUM

OptSum

 = CPX_FEASOPT_OPT_SUM

MinInf

 = CPX_FEASOPT_MIN_INF

OptInf

 = CPX_FEASOPT_OPT_INF

MinQuad

 = CPX_FEASOPT_MIN_QUAD

OptQuad

 = CPX_FEASOPT_OPT_QUAD
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 732

IloCplex::SearchLimit
IloCplex::SearchLimit

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description Search limits can be used to impose limits on the exploration of certain subtrees during
branch & cut search. Search limits are implemented in the class
IloCplex::SearchLimitI. This is the handle class for CPLEX search limits.

The search limit objects are reference-counted. This means an instance of
IloCplex::SearchLimitI keeps track of how many handle objects refer to it. If
this number drops to 0, the IloCplex::SearchLimitI object is automatically
deleted. As a consequence, whenever you deal with a search limit, you must maintain a
handle object rather then only a pointer to the implementation object. Otherwise, you
risk ending up with a pointer to an implementation object that has already been deleted.

See Also IloCplex, IloCplex::SearchLimitI

Constructors public SearchLimit()

The default constructor creates a new search limit with 0 implementation object pointer.

public SearchLimit(IloCplex::SearchLimitI * impl)

Constructor Summary
public SearchLimit()

public SearchLimit(IloCplex::SearchLimitI * impl)

public SearchLimit(const SearchLimit & limit)

Method Summary
public
IloCplex::SearchLimitI *

getImpl() const

public SearchLimit operator=(const SearchLimit & limit)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 733

IloCplex::SearchLimit
This constructor creates a new search limit with a pointer to an implementation. It
increases the reference count of impl by one.

public SearchLimit(const SearchLimit & limit)

This copy constructor increments the reference count of the implementation object
referenced by limit by one.

Methods public IloCplex::SearchLimitI * getImpl() const

Queries the implementation object of the invoking search limit.

public SearchLimit operator=(const SearchLimit & limit)

The assignment operator increases the reference count of the implementation object of
limit. If the invoking handle referred to an implementation object before the
assignment operation, its reference count is decreased. If this reduces the reference
count to 0, the implementation object is deleted.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 734

IloCplex::SearchLimitI
IloCplex::SearchLimitI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description IloCplex::SearchLimitI is the base class for implementing user-defined search
limits. To do so, you must subclass IloCplex::SearchLimitI and implement
methods check and duplicateLimit. You may optionally implement method
init. The method check must return IloTrue when the limit is reached and
IloFalse otherwise. The method duplicateLimit must return a copy of the
invoking object to be used in parallel search.

Whenever method check is called by IloCplex, the search limit object is first
initialized to a node, referred to as the current node. Information about the current node
can be queried by calling the get methods of class IloCplex::SearchLimitI.

Search limits are applied to subtrees defined by goals with method
IloCplex::LimitSearch. For example:

 IloGoal limitGoal = IloCplex::LimitSearch(cplex, goal1, limit);

creates a goal limitGoal which branches as specified by goal1 until the limit
specified by limit is reached. Only the nodes created by goal1 (or any of the goals

Constructor Summary
public SearchLimitI()

Method Summary
public virtual IloBool check()

public virtual SearchLimitI
*

duplicateLimit()

public virtual void init()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 735

IloCplex::SearchLimitI
created by it later) are subjected to the search limit. For example, if you created two
branches with the goal

 OrGoal(limitGoal, goal2);

only the subtree defined by goal1 is subject to the search limit limit; the subtree
defined by goal2 is not.

The ability to specify search limits for subtrees means that it is possible for certain
branches to be subject to more than one search limit. Nodes with multiple search limits
attached to them are processed only if none of the search limits has been reached, or, in
other words, if all the search limits return IloFalse when method check is called by
IloCplex.

Each time CPLEX uses a search limit, it is duplicated first. If you use the same instance
of your limit in different branches, it will be duplicated first, the copy will be passed to
the corresponding node, and init method will be called on the copy.

See Also IloCplex, IloCplex::SearchLimit

Constructors public SearchLimitI()

The default constructor creates a new instance of SearchLimitI.

Methods public virtual IloBool check()

This method is called for every node subjected to the invoking search limit before
evaluating the node. If it returns IloTrue, the node is pruned, or, equivalently, the
search below that node is discontinued. Thus, users implementing search limits must
implement this method to return IloTrue if the search limit has been reached and
IloFalse otherwise.

public virtual SearchLimitI * duplicateLimit()

This method is called internally to duplicate the current search limit. Users must
implement it in a subclass to return a copy of the invoking object.

public virtual void init()

This method is called by IloCplex right before the first time check is called for a
node and allows you to initialize the limit based on that node.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 736

IloCplex::SimplexCallbackI
IloCplex::SimplexCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected SimplexCallbackI(IloEnv env)

Inherited methods from IloCplex::ContinuousCallbackI
ContinuousCallbackI::getDualInfeasibility,
ContinuousCallbackI::getInfeasibility,
ContinuousCallbackI::getNiterations, ContinuousCallbackI::getObjValue,
ContinuousCallbackI::isDualFeasible, ContinuousCallbackI::isFeasible

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 737

IloCplex::SimplexCallbackI
Description An instance of the class IloCplex::SimplexCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a problem by
means of the simplex optimizer. For more information on the simplex optimizer, see the
ILOG CPLEX User's Manual. IloCplex calls the user-written callback after each
iteration during optimization with the simplex algorithm.

The constructor of this class is protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::ContinuousCallbackI,
IloCplex::OptimizationCallbackI, ILOSIMPLEXCALLBACK0

Constructors protected SimplexCallbackI(IloEnv env)

This constructor creates a callback for use in an application of the simplex optimizer.

CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 738

IloCplex::SolveCallbackI
IloCplex::SolveCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected SolveCallbackI(IloEnv env)

Method Summary
protected
IloCplex::CplexStatus

getCplexStatus() const

protected
IloAlgorithm::Status

getStatus() const

protected IloBool isDualFeasible() const

protected IloBool isPrimalFeasible() const

protected void setVectors(const IloNumArray x,const
IloIntVarArray var,const IloNumArray pi,const
IloRangeArray rng)

protected void setVectors(const IloNumArray x,const
IloNumVarArray var,const IloNumArray pi,const
IloRangeArray rng)

protected IloBool solve(IloCplex::Algorithm alg=Dual)

protected void useSolution()

Inherited methods from IloCplex::ControlCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 739

IloCplex::SolveCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 740

IloCplex::SolveCallbackI
Description

An instance of the class IloCplex::SolveCallbackI can be used to solve node
relaxations during branch & cut search. It allows you to set a starting point for the solve
or to select the algorithm on a per-node basis.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::ControlCallbackI, IloCplex::OptimizationCallbackI,
ILOSOLVECALLBACK0

Constructors protected SolveCallbackI(IloEnv env)

This constructor creates a callback for use in an application for solving the node LPs
during branch & cut searches.

Methods protected IloCplex::CplexStatus getCplexStatus() const

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 741

IloCplex::SolveCallbackI
This method returns the ILOG CPLEX status of the instance of IloCplex at the
current node (that is, the state of the optimizer at the node) during the last call to
solve (which may have been called directly in the callback or by IloCplex when
processing the node).

The enumeration IloCplex::CplexStatus lists the possible status values.

protected IloAlgorithm::Status getStatus() const

This method returns the status of the solution found by the instance of IloCplex at
the current node during the last call to solve (which may have been called directly in
the callback or by IloCplex when processing the node).

The enumeration IloAlgorithm::Status lists the possible status values.

protected IloBool isDualFeasible() const

This method returns IloTrue if the solution provided by the last solve call is dual
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not dual feasible. It simply means that the relevant algorithm was not able to
conclude it was dual feasible when it terminated.

protected IloBool isPrimalFeasible() const

This method returns IloTrue if the solution provided by the last solve call is primal
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not primal feasible. It simply means that the relevant algorithm was not able
to conclude it was primal feasible when it terminated.

protected void setVectors(const IloNumArray x,
 const IloIntVarArray var,
 const IloNumArray pi,
 const IloRangeArray rng)

This method allows a user to specify a starting point for the following invocation of the
solve method in a solve callback. Zero can be passed for any of the parameters.
However, if x is not zero, then var must not be zero either. Similarly, if pi is not zero,
then rng must not be zero either.

For all variables in var, x[i] specifies the starting value for the variable var[i].
Similarly, for all ranged constraints specified in rng, pi[i] specifies the starting dual
value for rng[i].

This information is exploited at the next call to solve, to construct a starting point for
the algorithm.

protected void setVectors(const IloNumArray x,
 const IloNumVarArray var,
 const IloNumArray pi,
 const IloRangeArray rng)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 742

IloCplex::SolveCallbackI
This method allows a user to specify a starting point for the following invocation of the
solve method in a solve callback. Zero can be passed for any of the parameters.
However, if x is not zero, then var must not be zero either. Similarly, if pi is not zero,
then rng must not be zero either.

For all variables in var, x[i] specifies the starting value for the variable var[i].
Similarly, for all ranged constraints specified in rng, pi[i] specifies the starting dual
value for rng[i].

This information is exploited at the next call to solve, to construct a starting point for
the algorithm.

protected IloBool solve(IloCplex::Algorithm alg=Dual)

This method uses the algorithm alg to solve the current node LP. See
IloCplex::Algorithm for a choice of algorithms to use.

protected void useSolution()

A call to this method instructs IloCplex to use the solution generated with this
callback.

If useSolution is not called, IloCplex uses the algorithm selected with the
parameters IloCplex::RootAlg for the solution of the root, or
IloCplex::NodeAlg to solve the node.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 743

IloCplex::StringParam
IloCplex::StringParam

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis StringParam{
 WorkDir
};

Description The enumeration IloCplex::StringParam lists the parameters of CPLEX that
require a character string as a value. Use these values with the methods
IloCplex::getParam and IloCplex::setParam.

See the reference manual ILOG CPLEX Parameter Table and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields WorkDir

 = CPX_PARAM_WORKDIR
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 744

IloCplex::TuningCallbackI
IloCplex::TuningCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description An instance of a class derived from TuningCallbackI represents a user-written
callback in an application that uses an instance of IloCplex. The callback is called
periodically during tuning. This class enables you to access information on the progress
of tuning.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
ILOTUNINGCALLBACK0

Constructors protected TuningCallbackI(IloEnv env)

This constructor creates a callback for use in an application to monitor tuning progress.

Constructor Summary
protected TuningCallbackI(IloEnv env)

Method Summary
protected IloNum getProgress() const

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 745

IloCplex::TuningCallbackI
Methods protected IloNum getProgress() const

 This method returns the fraction of completion of the tuning process.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 746

IloCplex::TuningStatus
IloCplex::TuningStatus

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis TuningStatus{
 TuningComplete,
 TuningAbort,
 TuningTimeLim
};

Description This enumeration lists the values that are returned by tuneParam.

◆ TuningComplete

◆ TuningAbort

◆ TuningTimeLim

The value ConflictExcluded is internal, undocumented, not available to users.

Fields TuningComplete
TuningAbort
TuningTimeLim
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 747

IloCplex::UnknownExtractableException
IloCplex::UnknownExtractableException

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description An instance of this exception is thrown by IloCplex when an operation is attempted
using an extractable that has not been extracted.

Methods public IloExtractable getExtractable() const

 This method returns the offending extractable object.

Method Summary
public IloExtractable getExtractable() const

Inherited methods from IloCplex::Exception
Exception::getStatus

Inherited methods from IloException
IloException::end, IloException::getMessage
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 748

IloCplex::UserCutCallbackI
IloCplex::UserCutCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Inherited methods from IloCplex::CutCallbackI
add, addLocal

Inherited methods from IloCplex::ControlCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 749

IloCplex::UserCutCallbackI
Description

An instance of the class IloCplex::UserCutCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a MIP while
generating user cuts to tighten the LP relaxation. IloCplex calls the user-written
callback after solving each node LP exactly like IloCplex::CutCallbackI. It
differs from IloCplex::CutCallbackI only in that constraints added in a

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 750

IloCplex::UserCutCallbackI
UserCutCallbackI must be real cuts in the sense that omitting them does not affect
the feasible region of the model under consideration.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 751

IloCplex::VariableSelect
IloCplex::VariableSelect

Category Inner Enumeration

Definition File ilcplex/ilocplexi.h

Synopsis VariableSelect{
 MinInfeas,
 DefaultVarSel,
 MaxInfeas,
 Pseudo,
 Strong,
 PseudoReduced
};

Description The enumeration IloCplex::VariableSelect lists values that the parameter
IloCplex::VarSel can assume in IloCplex. Use these values with the method
IloCplex::setParam(IloCplex::VarSel, value).

See the reference manual ILOG CPLEX Parameters and the ILOG CPLEX User's
Manual for more information about these parameters. Also see the user's manual for
examples of their use.

See Also IloCplex

Fields MinInfeas

 = CPX_VARSEL_MININFEAS

DefaultVarSel

 = CPX_VARSEL_DEFAULT

MaxInfeas

 = CPX_VARSEL_MAXINFEAS

Pseudo

 = CPX_VARSEL_PSEUDO

Strong

 = CPX_VARSEL_STRONG

PseudoReduced

 = CPX_VARSEL_PSEUDOREDUCED
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 752

IloCplex::VariableSelect
Group optim.cplex.cpp.advanced
 The advanced methods of the API of ILOG CPLEX for users of C++.

Description These are advanced methods. Advanced methods typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher risk of
incorrect behavior in your application, behavior that can be difficult to debug. Therefore,
ILOG encourages you to consider carefully whether you can accomplish the same task
by means of other methods instead.

Classes Summary
IloCplex::BranchCallbackI

IloCplex::ControlCallbackI

IloCplex::CutCallbackI

IloCplex::Goal

IloCplex::GoalI

IloCplex::HeuristicCallbackI

IloCplex::IncumbentCallbackI

IloCplex::LazyConstraintCall
backI

IloCplex::NodeCallbackI

IloCplex::SolveCallbackI

IloCplex::UserCutCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 753

IloCplex::BranchCallbackI
IloCplex::BranchCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected BranchCallbackI(IloEnv env)

Method Summary
protected IloNum getBranch(IloNumVarArray vars,IloNumArray

bounds,IloCplex::BranchDirectionArray
dirs,IloInt i) const

protected
BranchCallbackI::BranchType

getBranchType() const

protected IloInt getNbranches() const

protected NodeId getNodeId() const

protected IloBool isIntegerFeasible() const

protected NodeId makeBranch(const IloConstraintArray
cons,const IloIntVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 754

IloCplex::BranchCallbackI
protected NodeId makeBranch(const IloConstraintArray
cons,const IloNumVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloConstraint con,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloConstraintArray
cons,IloNum objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloIntVar var,IloNum
bound,IloCplex::BranchDirection dir,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloNumVar var,IloNum
bound,IloCplex::BranchDirection dir,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloIntVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)

protected NodeId makeBranch(const IloNumVarArray vars,const
IloNumArray bounds,const
IloCplex::BranchDirectionArray dirs,IloNum
objestimate,NodeData * data=0)

protected void prune()

Inherited methods from IloCplex::ControlCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 755

IloCplex::BranchCallbackI
Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 756

IloCplex::BranchCallbackI
Description

An instance of the class IloCplex::BranchCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
program (MIP). The user-written callback is called prior to branching at a node in the
branch & cut tree during the optimization of a MIP. It allows you to query how the
invoking instance of IloCplex is about to create subnodes at the current node and
gives you the option to override the selection made by the invoking instance of
IloCplex. You can create zero, one, or two branches.

◆ The method prune removes the current node from the search tree. No subnodes
from the current node will be added to the search tree.

◆ The method makeBranch tells an instance of IloCplex how to create a
subproblem. You may call this method zero, one, or two times in every invocation of
the branch callback. If you call it once, it creates one node; it you call it twice, it
creates two nodes (one node at each call).

◆ If you call neither IloCplex::BranchCallBackI::prune nor
IloCplex::BranchCallBackI::makeBranch, the instance of IloCplex
proceeds with its own selection.

◆ Calling both IloCplex::BranchCallBackI::prune and
IloCplex::BranchCallBackI::makeBranch in one invocation of a
branch callback is an error and results in unspecified behavior.

The methods of this class are for use in deriving a user-written callback class and in
implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also ILOBRANCHCALLBACK0, IloCplex::BranchDirection,
IloCplex::Callback, IloCplex::CallbackI,

Inner Enumeration
BranchCallbackI::BranchType

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 757

IloCplex::BranchCallbackI
IloCplex::MIPCallbackI, IloCplex::ControlCallbackI,
IloCplex::OptimizationCallbackI

Constructors protected BranchCallbackI(IloEnv env)

This constructor creates a branch callback, that is, a control callback for splitting a node
into two branches.

Methods protected IloNum getBranch(IloNumVarArray vars,
IloNumArray bounds,
IloCplex::BranchDirectionArray dirs,
IloInt i) const

This method accesses branching information for the i-th branch that the invoking
instance of IloCplex is about to create. The parameter i must be between 0 (zero)
and (getNbranches - 1); that is, it must be a valid index of a branch; normally, it
will be zero or one.

A branch is normally defined by a set of variables and the bounds for these variables.
Branches that are more complex cannot be queried. The return value is the node estimate
for that branch.

◆ The parameter vars contains the variables for which new bounds will be set in the
i-th branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown

means that bounds[j] specifies an upper bound for vars[j].

protected BranchCallbackI::BranchType getBranchType() const

This method returns the type of branching IloCplex is going to do for the current
node.

protected IloInt getNbranches() const

This method returns the number of branches IloCplex is going to create at the current
node.

protected NodeId getNodeId() const

Returns the NodeId of the current node.

protected IloBool isIntegerFeasible() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 758

IloCplex::BranchCallbackI
This method returns IloTrue if the solution of the current node is integer feasible.

protected NodeId makeBranch(const IloConstraintArray cons,
 const IloIntVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)

This method offers the same facilities as the other methods
IloCplex::BranchCallbackI::makeBranch, but for a branch specified by a
set of constraints and a set of variables.

protected NodeId makeBranch(const IloConstraintArray cons,
 const IloNumVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)

This method offers the same facilities as the other methods
IloCplex::BranchCallbackI::makeBranch, but for a branch specified by a
set of constraints and a set of variables.

protected NodeId makeBranch(const IloConstraint con,
IloNum objestimate,

 NodeData * data=0)

This method offers the same facilities for a branch specified by only one constraint as
IloCplex::BranchCallbackI::makeBranch does for a branch specified by a
set of constraints.

protected NodeId makeBranch(const IloConstraintArray cons,
IloNum objestimate,

 NodeData * data=0)

This method overrides the branch chosen by an instance of IloCplex, by specifying a
branch on constraints. A method named makeBranch can be called zero, one, or two
times in every invocation of the branch callback. If you call it once, it creates one node;
it you call it twice, it creates two nodes (one node at each call). If you call it more than
twice, it throws an exception.

◆ The parameter cons specifies an array of constraints that are to be added for the
subnode being created.

◆ The parameter objestimate provides an estimate of the resulting optimal
objective value for the subnode specified by this branch. The invoking instance of
IloCplex may use this estimate to select nodes to process. Providing a wrong
estimate will not influence the correctness of the solution, but it may influence
performance. Using the objective value of the current node is usually a safe choice.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 759

IloCplex::BranchCallbackI
◆ The parameter data allows you to add an object of type
IloCplex::MIPCallbackI::NodeData to the node representing the branch
created by the makeBranch call. Such data objects must be instances of a user-
written subclass of IloCplex::MIPCallbackI::NodeData.

protected NodeId makeBranch(const IloIntVar var,
IloNum bound,
IloCplex::BranchDirection dir,
IloNum objestimate,

 NodeData * data=0)

For a branch specified by only one variable, this method offers the same facilities as
IloCplex::BranchCallbackI::makeBranch for a branch specified by a set
of variables.

protected NodeId makeBranch(const IloNumVar var,
IloNum bound,
IloCplex::BranchDirection dir,
IloNum objestimate,

 NodeData * data=0)

For a branch specified by only one variable, this method offers the same facilities as
IloCplex::BranchCallbackI::makeBranch for a branch specified by a set
of variables.

protected NodeId makeBranch(const IloIntVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)

This method overrides the branch chosen by an instance of IloCplex. A method
named makeBranch can be called zero, one, or two times in every invocation of the
branch callback. If you call it once, it creates one node; it you call it twice, it creates two
nodes (one node at each call). If you call it more than twice, it throws an exception.

Each call specifies a branch; in other words, it instructs the invoking IloCplex object
how to create a subnode from the current node by specifying new, tighter bounds for a
set of variables.

◆ The parameter vars contains the variables for which new bounds will be set in the
branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound to be set for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 760

IloCplex::BranchCallbackI
means that bounds[j] specifies an upper bound for vars[j].

◆ The parameter objestimate provides an estimate of the resulting optimal
objective value for the subnode specified by this branch. The invoking instance of
IloCplex may use this estimate to select nodes to process. Providing a wrong
estimate will not influence the correctness of the solution, but it may influence
performance. Using the objective value of the current node is usually a safe choice.

◆ The parameter data allows you to add an object of type
IloCplex::MIPCallbackI::NodeData to the node representing the branch
created by the makeBranch call. Such data objects must be instances of a user-
written subclass of IloCplex::MIPCallbackI::NodeData.

protected NodeId makeBranch(const IloNumVarArray vars,
 const IloNumArray bounds,
 const IloCplex::BranchDirectionArray dirs,

IloNum objestimate,
 NodeData * data=0)

This method overrides the branch chosen by an instance of IloCplex. A method
named makeBranch can be called zero, one, or two times in every invocation of the
branch callback. If you call it once, it creates one node; it you call it twice, it creates two
nodes (one node at each call). If you call it more than twice, it throws an exception.

Each call specifies a branch; in other words, it instructs the invoking IloCplex object
how to create a subnode from the current node by specifying new, tighter bounds for a
set of variables.

◆ The parameter vars contains the variables for which new bounds will be set in the
branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound to be set for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown

means that bounds[j] specifies an upper bound for vars[j].

◆ The parameter objestimate provides an estimate of the resulting optimal
objective value for the subnode specified by this branch. The invoking instance of
IloCplex may use this estimate to select nodes to process. Providing a wrong
estimate will not influence the correctness of the solution, but it may influence
performance. Using the objective value of the current node is usually a safe choice.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 761

IloCplex::BranchCallbackI
◆ The parameter data allows you to add an object of type
IloCplex::MIPCallbackI::NodeData to the node representing the branch
created by the makeBranch call. Such data objects must be instances of a user-
written subclass of IloCplex::MIPCallbackI::NodeData.

protected void prune()

By calling this method, you instruct the CPLEX branch & cut search not to create any
child nodes from the current node, or, in other words, to discard nodes below the current
node; it does not revisit the discarded nodes below the current node. In short, it creates
no branches. It is an error to call both prune and makeBranch in one invocation of a
callback.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 762

IloCplex::ControlCallbackI
IloCplex::ControlCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Method Summary
protected IloNum ControlCallbackI::getDownPseudoCost(const

IloIntVar var) const

protected IloNum ControlCallbackI::getDownPseudoCost(const
IloNumVar var) const

protected void ControlCallbackI::getFeasibilities(ControlC
allbackI::IntegerFeasibilityArray stat,const
IloIntVarArray var) const

protected void ControlCallbackI::getFeasibilities(ControlC
allbackI::IntegerFeasibilityArray stat,const
IloNumVarArray var) const

protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloIntVar var) const

protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 763

IloCplex::ControlCallbackI
protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloSOS2 sos) const

protected
ControlCallbackI::IntegerFea
sibility

ControlCallbackI::getFeasibility(const
IloSOS1 sos) const

protected IloNum ControlCallbackI::getLB(const IloIntVar var)
const

protected IloNum ControlCallbackI::getLB(const IloNumVar var)
const

protected void ControlCallbackI::getLBs(IloNumArray
val,const IloIntVarArray vars) const

protected void ControlCallbackI::getLBs(IloNumArray
val,const IloNumVarArray vars) const

protected NodeData * ControlCallbackI::getNodeData() const

protected IloNum ControlCallbackI::getObjValue() const

protected IloNum ControlCallbackI::getSlack(const IloRange
rng) const

protected void ControlCallbackI::getSlacks(IloNumArray
val,const IloRangeArray con) const

protected IloNum ControlCallbackI::getUB(const IloIntVar var)
const

protected IloNum ControlCallbackI::getUB(const IloNumVar var)
const

protected void ControlCallbackI::getUBs(IloNumArray
val,const IloIntVarArray vars) const

protected void ControlCallbackI::getUBs(IloNumArray
val,const IloNumVarArray vars) const

protected IloNum ControlCallbackI::getUpPseudoCost(const
IloIntVar var) const

protected IloNum ControlCallbackI::getUpPseudoCost(const
IloNumVar var) const

protected IloNum ControlCallbackI::getValue(const IloIntVar
var) const

protected IloNum ControlCallbackI::getValue(const IloNumVar
var) const

protected IloNum ControlCallbackI::getValue(const IloExprArg
expr) const

protected void ControlCallbackI::getValues(IloNumArray
val,const IloIntVarArray vars) const

protected void ControlCallbackI::getValues(IloNumArray
val,const IloNumVarArray vars) const

protected IloBool ControlCallbackI::isSOSFeasible(const
IloSOS2 sos2) const

protected IloBool ControlCallbackI::isSOSFeasible(const
IloSOS1 sos1) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 764

IloCplex::ControlCallbackI
Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 765

IloCplex::ControlCallbackI
Description

This class defines the common application programming interface (API) for the
following classes that allow you to control the MIP search:

◆ IloCplex::SolveCallbackI

◆ IloCplex::CutCallbackI

◆ IloCplex::HeuristicCallbackI

◆ IloCplex::BranchCallbackI

An instance of one of these classes represents a user-written callback that intervenes in
the search for a solution at a given node in an application that uses an instance of
IloCplex to solve a mixed integer program (MIP). Control callbacks are tied to a
node. They are called at each node during IloCplex branch & cut search. The user

Inner Enumeration
ControlCallbackI::IntegerFea
sibility

Inner Class
ControlCallbackI::ControlCal
lbackI::PresolvedVariableExc
eption

Inner Type Def
ControlCallbackI::ControlCal
lbackI::IntegerFeasibilityAr
ray

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 766

IloCplex::ControlCallbackI
never subclasses the IloCplex::ControlCallbackI class directly; it only
defines the common interface of thosee listed callbacks.

In particular, SolveCallbackI is called before solving the node relaxation and
optionally allows substitution of its solution. IloCplex does this by default. After the
node relaxation has been solved, either by an instance of SolveCallbackI or by
IloCplex, the other control callbacks are called in the following order:

◆ IloCplex::CutCallbackI

◆ IloCplex::HeuristicCallbackI

◆ IloCplex::BranchCallbackI

If the cut callback added new cuts to the node relaxation, the node relaxation will be
solved again using the solve callback, if used. The same is true if IloCplex generated
its own cuts.

The methods of this class are protected and its constructor is private; you cannot directly
subclass this class; you must derive from its subclasses.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
ControlCallbackI::IntegerFeasibility,
ControlCallbackI::IntegerFeasibilityArray,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI

Methods protected IloNum getDownPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

protected IloNum getDownPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

protected void getFeasibilities(ControlCallbackI::IntegerFeasibilityArray
stat,
 const IloIntVarArray var) const

This method specifies whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible by putting the status in the
corresponding element of the array stats.

protected void getFeasibilities(ControlCallbackI::IntegerFeasibilityArray
stat,
 const IloNumVarArray var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 767

IloCplex::ControlCallbackI
This method specifies whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible by putting the status in the
corresponding element of the array stats.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloIntVar var) const

This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloNumVar var) const

This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloSOS2 sos) const

This method specifies whether the Special Ordered Set sos is integer feasible, integer
infeasible, or implied integer feasible in the current node solution.

protected ControlCallbackI::IntegerFeasibility getFeasibility(const
IloSOS1 sos) const

This method specifies whether the Special Ordered Set sos is integer feasible, integer
infeasible, or implied integer feasible in the current node solution.

protected IloNum getLB(const IloIntVar var) const

This method returns the lower bound of var at the current node. This bound is likely to
be different from the bound in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution value from getValue may violate this bound at a node where a new
incumbent has been found because the bound is tightened when an incumbent is found.

Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.

protected IloNum getLB(const IloNumVar var) const

This method returns the lower bound of var at the current node. This bound is likely to
be different from the bound in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution value from getValue may violate this bound at a node where a new
incumbent has been found because the bound is tightened when an incumbent is found.

Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 768

IloCplex::ControlCallbackI
protected void getLBs(IloNumArray val,
 const IloIntVarArray vars) const

For each element of the array vars, this method puts the lower bound at the current
node into the corresponding element of the array vals. These bounds are likely to be
different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution values from getValues may violate these bounds at a node where a new
incumbent has been found because the bounds are tightened when an incumbent is
found.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

protected void getLBs(IloNumArray val,
 const IloNumVarArray vars) const

This method puts the lower bound at the current node of each element of the array vars
into the corresponding element of the array vals. These bounds are likely to be
different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes. The corresponding
solution values from getValues may violate these bounds at a node where a new
incumbent has been found because the bounds are tightened when an incumbent is
found.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

protected NodeData * getNodeData() const

This method retrieves the NodeData object that may have previously been assigned to
the current node by the user with the method
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the current node, 0 (zero) will be returned.

protected IloNum getObjValue() const

This method returns the objective value of the solution of the relaxation at the current
node.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloNum getSlack(const IloRange rng) const

This method returns the slack value for the constraint specified by rng in the solution
of the relaxation at the current node.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 769

IloCplex::ControlCallbackI
protected void getSlacks(IloNumArray val,
 const IloRangeArray con) const

For each of the constraints in the array of ranges rngs, this method puts the slack value
in the solution of the relaxation at the current node into the corresponding element of
the array vals.

protected IloNum getUB(const IloIntVar var) const

This method returns the upper bound of the variable var at the current node. This
bound is likely to be different from the bound in the original model because an instance
of IloCplex tightens bounds when it branches from a node to its subnodes. The
corresponding solution value from getValue may violate this bound at a node where a
new incumbent has been found because the bound is tightened when an incumbent is
found.

Unbounded Variables

If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected IloNum getUB(const IloNumVar var) const

This method returns the upper bound of the variable var at the current node. This
bound is likely to be different from the bound in the original model because an instance
of IloCplex tightens bounds when it branches from a node to its subnodes. The
corresponding solution value from getValue may violate this bound at a node where a
new incumbent has been found because the bound is tightened when an incumbent is
found.

Unbounded Variables

If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected void getUBs(IloNumArray val,
 const IloIntVarArray vars) const

For each element in the array vars, this method puts the upper bound at the current
node into the corresponding element of the array vals. The bounds are those in the
relaxation at the current node. These bounds are likely to be different from the bounds
in the original model because an instance of IloCplex tightens bounds when it
branches from a node to its subnodes. The corresponding solution values from
getValues may violate these bounds at a node where a new incumbent has been
found because the bounds are tightened when an incumbent is found.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected void getUBs(IloNumArray val,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 770

IloCplex::ControlCallbackI
 const IloNumVarArray vars) const

For each element in the array vars, this method puts the upper bound at the current
node into the corresponding element of the array vals. The bounds are those in the
relaxation at the current node. These bounds are likely to be different from the bounds
in the original model because an instance of IloCplex tightens bounds when it
branches from a node to its subnodes. The corresponding solution values from
getValues may violate these bounds at a node where a new incumbent has been
found because the bounds are tightened when an incumbent is found.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

protected IloNum getUpPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching upward on the variable var.

protected IloNum getUpPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching upward on the variable var.

protected IloNum getValue(const IloIntVar var) const

This method returns the value of the variable var in the solution of the relaxation at the
current node.

protected IloNum getValue(const IloNumVar var) const

This method returns the value of the variable var in the solution of the relaxation at the
current node.

protected IloNum getValue(const IloExprArg expr) const

This method returns the value of the expression expr in the solution of the relaxation
at the current node.

protected void getValues(IloNumArray val,
 const IloIntVarArray vars) const

For each variable in the array vars, this method puts the value in the solution of the
relaxation at the current node into the corresponding element of the array vals.

protected void getValues(IloNumArray val,
 const IloNumVarArray vars) const

For each variable in the array vars, this method puts the value in the solution of the
relaxation at the current node into the corresponding element of the array vals.

protected IloBool isSOSFeasible(const IloSOS2 sos2) const

This method returns IloTrue if the solution of the LP at the current node is SOS
feasible for the special ordered set specified in its argument. The SOS set passed as a
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 771

IloCplex::ControlCallbackI
parameter to this method may be of type 2. See the ILOG CPLEX User's Manual for
more explanation of types of special ordered sets.

protected IloBool isSOSFeasible(const IloSOS1 sos1) const

This method returns IloTrue if the solution of the LP at the current node is SOS
feasible for the special ordered set specified in its argument. The SOS set passed as a
parameter to this method may be of type 1. See the ILOG CPLEX User's Manual for
more explanation about these types of special ordered sets.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 772

IloCplex::CutCallbackI
IloCplex::CutCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected CutCallbackI(IloEnv env)

Method Summary
protected IloConstraint add(IloConstraint con)

protected IloConstraint addLocal(IloConstraint con)

Inherited methods from IloCplex::ControlCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 773

IloCplex::CutCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 774

IloCplex::CutCallbackI
Description

An instance of the class IloCplex::CutCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
programming problem (a MIP). This class offers a method to add a local or global cut to
the current node LP subproblem from a user-written callback. More than one cut can be
added in this callback by calling the method add or addLocal multiple times. All
added cuts must be linear.

The constructor and methods of this class are protected for use in deriving a user-written
callback class and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::ControlCallbackI,
IloCplex::OptimizationCallbackI, ILOCUTCALLBACK0

Constructors protected CutCallbackI(IloEnv env)

This constructor creates a callback for use in an application with a user-defined cut to
solve a MIP.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 775

IloCplex::CutCallbackI
Methods protected IloConstraint add(IloConstraint con)

This method adds a cut to the current node LP subproblem for the constraint specified by
con. This cut must be globally valid; it will not be removed by backtracking or any
other means during the search. The added cut must be linear.

protected IloConstraint addLocal(IloConstraint con)

This method adds a local cut to the current node LP subproblem for the constraint
specified by con. IloCplex will manage the local cut in such a way that it will be
active only when processing nodes of this subtree. The added cut must be linear.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 776

IloCplex::Goal
IloCplex::Goal

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Description

Goals can be used to control the branch & cut search in IloCplex. Goals are
implemented in the class IloCplex::GoalI. This is the handle class for CPLEX
goals.

Goal objects are reference-counted. This means every instance of IloCplex::GoalI
keeps track about how many handle objects refer to it. If this number drops to 0 (zero)
the IloCplex::GoalI object is automatically deleted. As a consequence, whenever
you deal with a goal, you must keep a handle object around, rather than only a pointer to

Constructor Summary
public Goal(GoalBaseI * goalI)

public Goal(const Goal & goal)

public Goal()

public Goal(IloConstraint cut)

public Goal(IloConstraintArray cut)

Method Summary
public Goal operator=(const Goal & goal)

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 777

IloCplex::Goal
the implementation object. Otherwise, you risk ending up with a pointer to an
implementation object that has already been deleted.

See Goals among the Concepts in this manual. See also goals in the ILOG CPLEX
User's Manual.

Constructors public Goal(GoalBaseI * goalI)

Creates a new goal from a pointer to the implementation object.

public Goal(const Goal & goal)

This is the copy constructor of the goal.

public Goal()

Creates a 0 goal handle, that is, a goal with a 0 implementation object pointer. This is
also referred to as an empty goal.

public Goal(IloConstraint cut)

Creates a new goal that will add the constraint cut as a local cut to the node where the
goal is executed. As a local cut, the constraint will be active only in the subtree rooted
at the node where the goal was executed. The lifetime of the constraint passed to a goal
is tied to the lifetime of the Goal. That is, the constraint's method end is called when
the goal's implementation object is deleted. As a consequence, the method end must not
be called for constraints passed to this constructor explicitly.

public Goal(IloConstraintArray cut)

Creates a new goal that adds the constraints given in the array cut as local cuts to the
node where the goal is executed. As local cuts, the constraints will be active only in the
subtree rooted at the node where the goal was executed. The lifetime of the constraints
and the array passed to a goal is tied to the lifetime of the Goal. That is, the constraint's
method end is called when the goal's implementation object is deleted. As a
consequence, method end must not be called for the constraints and the array passed to
this constructor explicitly.

Methods public Goal operator=(const Goal & goal)

This is the assignment operator. It increases the reference count of the implementation
object of goal. If the invoking handle referred to an implementation object before the
assignment operation, its reference count is decreased. If thereby the reference count
becomes 0, the implementation object is deleted.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 778

IloCplex::GoalI
IloCplex::GoalI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
public GoalI(IloEnv env)

Method Summary
public void abort()

public static IloCplex::Goal AndGoal(IloCplex::Goal goal1,IloCplex::Goal
goal2)

public static IloCplex::Goal BranchAsCplexGoal(IloEnv env)

public virtual
IloCplex::Goal

duplicateGoal()

public virtual
IloCplex::Goal

execute()

public static IloCplex::Goal FailGoal(IloEnv env)

public IloNum getBestObjValue() const

public IloNum getBranch(IloNumVarArray vars,IloNumArray
bounds,IloCplex::BranchDirectionArray
dirs,IloInt i) const

public GoalI::BranchType getBranchType() const

public IloNum getCutoff() const

public
IloCplex::BranchDirection

getDirection(const IloIntVar var)

public
IloCplex::BranchDirection

getDirection(const IloNumVar var)

public IloNum getDownPseudoCost(const IloIntVar var) const

public IloNum getDownPseudoCost(const IloNumVar var) const

public IloEnv getEnv() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 779

IloCplex::GoalI
public void getFeasibilities(GoalI::IntegerFeasibilityA
rray stats,const IloIntVarArray vars) const

public void getFeasibilities(GoalI::IntegerFeasibilityA
rray stats,const IloNumVarArray vars) const

public
GoalI::IntegerFeasibility

getFeasibility(const IloSOS2 sos) const

public
GoalI::IntegerFeasibility

getFeasibility(const IloSOS1 sos) const

public
GoalI::IntegerFeasibility

getFeasibility(const IloIntVar var) const

public
GoalI::IntegerFeasibility

getFeasibility(const IloNumVar var) const

public IloNum getIncumbentObjValue() const

public IloNum getIncumbentValue(const IloIntVar var) const

public IloNum getIncumbentValue(const IloNumVar var) const

public void getIncumbentValues(IloNumArray val,const
IloIntVarArray vars) const

public void getIncumbentValues(IloNumArray val,const
IloNumVarArray vars) const

public IloNum getLB(const IloIntVar var) const

public IloNum getLB(const IloNumVar var) const

public void getLBs(IloNumArray vals,const IloIntVarArray
vars) const

public void getLBs(IloNumArray vals,const IloNumVarArray
vars) const

public IloModel getModel() const

public IloInt getMyThreadNum() const

public IloInt getNbranches() const

public IloInt getNcliques() const

public IloInt getNcols() const

public IloInt getNcovers() const

public IloInt getNdisjunctiveCuts() const

public IloInt getNflowCovers() const

public IloInt getNflowPaths() const

public IloInt getNfractionalCuts() const

public IloInt getNGUBcovers() const

public IloInt getNimpliedBounds() const

public IloInt getNiterations() const

public IloInt getNMIRs() const

public IloInt getNnodes() const

public IloInt getNremainingNodes() const

public IloInt getNrows() const

public IloNum getObjCoef(const IloIntVar var) const

public IloNum getObjCoef(const IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 780

IloCplex::GoalI
public void getObjCoefs(IloNumArray vals,const
IloIntVarArray vars) const

public void getObjCoefs(IloNumArray vals,const
IloNumVarArray vars) const

public IloNum GoalI::getObjValue() const

public IloNum getPriority(const IloIntVar var) const

public IloNum getPriority(const IloNumVar var) const

public IloNum getSlack(const IloRange rng) const

public void getSlacks(IloNumArray vals,const
IloRangeArray rngs) const

public IloNum getUB(const IloIntVar var) const

public IloNum getUB(const IloNumVar var) const

public void getUBs(IloNumArray vals,const IloIntVarArray
vars) const

public void getUBs(IloNumArray vals,const IloNumVarArray
vars) const

public IloNum getUpPseudoCost(const IloIntVar var) const

public IloNum getUpPseudoCost(const IloNumVar var) const

public IloInt getUserThreads() const

public IloNum getValue(const IloIntVar var) const

public IloNum getValue(const IloNumVar var) const

public IloNum getValue(const IloExpr expr) const

public void getValues(IloNumArray vals,const
IloIntVarArray vars) const

public void getValues(IloNumArray vals,const
IloNumVarArray vars) const

public static IloCplex::Goal GlobalCutGoal(IloConstraintArray con)

public static IloCplex::Goal GlobalCutGoal(IloConstraint con)

public IloBool hasIncumbent() const

public IloBool isIntegerFeasible() const

public IloBool isSOSFeasible(const IloSOS2 sos2) const

public IloBool isSOSFeasible(const IloSOS1 sos1) const

public static IloCplex::Goal OrGoal(IloCplex::Goal goal1,IloCplex::Goal
goal2)

public static IloCplex::Goal SolutionGoal(const IloIntVarArray vars,const
IloNumArray vals)

public static IloCplex::Goal SolutionGoal(const IloNumVarArray vars,const
IloNumArray vals)

Inner Enumeration
GoalI::BranchType
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 781

IloCplex::GoalI
Description

Goals can be used to control the branch & cut search in IloCplex. Goals are
implemented in subclasses of the class IloCplex::GoalI. This is the base class for
user-written implementation classes of CPLEX goals.

To implement your own goal you need to create a subclass of IloCplex::GoalI and
implement its pure virtual methods execute and duplicateGoal. You may use
one of the ILOCPLEXGOAL0 macros to assist you in doing so. After implementing
your goal class, you use an instance of the class by passing it to the solve method
when solving the model.

The method duplicateGoal may be called by IloCplex to create copies of a goal
when needed for parallel branch & cut search. Thus the implementation of this method
must create and return an exact copy of the invoked object itself.

The method execute controls the branch & cut search of IloCplex by the goal it
returns. When IloCplex processes a node, it pops the top goal from the node's goal
stack and calls method execute of that goal. It continues executing the top goal from
the stack until the node is deactivated or the goal stack is empty. If the goal stack is
empty, IloCplex proceeds with the built-in search strategy for the subtree rooted at
the current node.

The class IloCplex::GoalI provides several methods for querying information
about the current node. The method execute controls how to proceed with the branch
& cut search via the goal it returns. The returned goal, unless it is the 0 goal, is pushed
on the goal stack and will thus be executed next.

 See also the chapter about goals in the ILOG CPLEX User's Manual.

GoalI::IntegerFeasibility

Inner Type Def
GoalI::GoalI::IntegerFeasibi
lityArray

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 782

IloCplex::GoalI
Constructors public GoalI(IloEnv env)

The goal constructor. It requires an instance of the same IloEnv as the IloCplex
object with which to use the goal. The environment can later be queried by calling
method getEnv.

Methods public void abort()

Abort the optimization, that is, the execution of method solve currently in process.

public static IloCplex::Goal AndGoal(IloCplex::Goal goal1,
IloCplex::Goal goal2)

The static methods AndGoal all return a goal that pushes the goals passed as
parameters onto the goal stack in reverse order. As a consequence, the goals will be
executed in the order they are passed as parameters to the AndGoal function.

public static IloCplex::Goal BranchAsCplexGoal(IloEnv env)

This static function returns a goal that creates the same branches as the currently
selected built-in branch strategy of IloCplex would choose at the current node. This
goal allows you to proceed with the IloCplex search strategy, but keeps the search
under goal control, thereby giving you the option to intervene at any point.

This goal is also important when you use node evaluators while you use a built-in
branching strategy.

For example, consider the execute method of a goal starting like this:

 if (!isIntegerFeasible())
 return AndGoal(BranchAsCplexGoal(getEnv()), this);
 // do something

It would do something only when IloCplex found a solution it considers to be a
candidate for a new incumbent. Note there is a test of integer feasibility before returning
BranchAsCplexGoal. Without the test, BranchAsCplex would be executed for a
solution IloCplex considers to be feasible, but IloCplex would not know how to
branch on it. An endless loop would result.

public virtual IloCplex::Goal duplicateGoal()

This virtual method must be implemented by the user. It must return a copy of the
invoking goal object. This method may be called by IloCplex when doing parallel
branch & cut search.

public virtual IloCplex::Goal execute()

This virtual method must be implemented by the user to specify the logic of the goal.
The instance of IloCplex::Goal returned by this method will be added to the goal
stack of the node where the invoking goal is being executed for further execution.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 783

IloCplex::GoalI
public static IloCplex::Goal FailGoal(IloEnv env)

This static method creates a goal that fails. That means that the branch where the goal is
executed will be pruned or, equivalently, the search is discontinued at that node and the
node is discarded.

public IloNum getBestObjValue() const

This method returns the currently best known bound on the optimal solution value of the
problem at the time the invoking goal is executed by an instance of IloCplex while
solving a MIP. When a model has been solved to optimality, this value matches the
optimal solution value. Otherwise, this value is computed for a minimization
(maximization) problem as the minimum (maximum) objective function value of all
remaining unexplored nodes.

public IloNum getBranch(IloNumVarArray vars,
IloNumArray bounds,
IloCplex::BranchDirectionArray dirs,
IloInt i) const

This method accesses branching information for the i-th branch that the invoking
instance of IloCplex is about to create. The parameter i must be between 0 (zero)
and getNbranches - 1; that is, it must be a valid index of a branch; normally, it
will be zero or one.

A branch is normally defined by a set of variables and the bounds for these variables.
Branches that are more complex cannot be queried. The return value is the node estimate
for that branch.

◆ The parameter vars contains the variables for which new bounds will be set in the
i-th branch.

◆ The parameter bounds contains the new bounds for the variables listed in vars;
that is, bounds[j] is the new bound for vars[j].

◆ The parameter dirs specifies the branching direction for the variables in vars.

dir[j] == IloCplex::BranchUp

means that bounds[j] specifies a lower bound for vars[j].

dirs[j] == IloCplex::BranchDown

means that bounds[j] specifies an upper bound for vars[j].

public GoalI::BranchType getBranchType() const

This method returns the type of branching IloCplex is going to do for the current
node.

public IloNum getCutoff() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 784

IloCplex::GoalI
The method returns the current cutoff value. An instance of IloCplex uses the cutoff
value (the value of the objective function of the subproblem at a node in the search tree)
to decide when to prune nodes from the search tree (that is, when to cut off that node
and discard the nodes beyond it). The cutoff value is updated whenever a new incumbent
is found.

public IloCplex::BranchDirection getDirection(const IloIntVar var)

This method returns the branch direction previously assigned to variable var with
method IloCplex::setDirection or IloCplex::setDirections. If no
direction has been assigned, IloCplex::BranchGlobal will be returned.

public IloCplex::BranchDirection getDirection(const IloNumVar var)

This method returns the branch direction previously assigned to variable var with
method IloCplex::setDirection or IloCplex::setDirections. If no
direction has been assigned, IloCplex::BranchGlobal will be returned.

public IloNum getDownPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

public IloNum getDownPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching downward on the variable
var.

public IloEnv getEnv() const

Returns the instance of IloEnv passed to the constructor of the goal.

public void getFeasibilities(GoalI::IntegerFeasibilityArray stats,
 const IloIntVarArray vars) const

This method considers whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible and puts the status in the
corresponding element of the array stats.

public void getFeasibilities(GoalI::IntegerFeasibilityArray stats,
 const IloNumVarArray vars) const

This method considers whether each of the variables in the array vars is integer
feasible, integer infeasible, or implied integer feasible and puts the status in the
corresponding element of the array stats.

public GoalI::IntegerFeasibility getFeasibility(const IloSOS2 sos) const

This method specifies whether the SOS sos is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public GoalI::IntegerFeasibility getFeasibility(const IloSOS1 sos) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 785

IloCplex::GoalI
This method specifies whether the SOS sos is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public GoalI::IntegerFeasibility getFeasibility(const IloIntVar var) const

This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public GoalI::IntegerFeasibility getFeasibility(const IloNumVar var) const

This method specifies whether the variable var is integer feasible, integer infeasible, or
implied integer feasible in the current node solution.

public IloNum getIncumbentObjValue() const

This method returns the value of the objective function of the incumbent solution (that
is, the best integer solution found so far). If there is no incumbent, this method throws an
exception.

public IloNum getIncumbentValue(const IloIntVar var) const

This method returns the value of var in the incumbent solution. If there is no
incumbent, this method throws an exception.

public IloNum getIncumbentValue(const IloNumVar var) const

This method returns the value of var in the incumbent solution. If there is no
incumbent, this method throws an exception.

public void getIncumbentValues(IloNumArray val,
 const IloIntVarArray vars) const

Returns the value of each variable in the array vars with respect to the current
incumbent solution, and it puts those values into the corresponding array vals. If
there is no incumbent, this method throws an exception.

public void getIncumbentValues(IloNumArray val,
 const IloNumVarArray vars) const

Returns the value of each variable in the array vars with respect to the current
incumbent solution, and it puts those values into the corresponding array vals. If
there is no incumbent, this method throws an exception.

public IloNum getLB(const IloIntVar var) const

This method returns the lower bound of var in the current node relaxation. This bound
is likely to be different from the bound in the original model because an instance of
IloCplex tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.

public IloNum getLB(const IloNumVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 786

IloCplex::GoalI
This method returns the lower bound of var in the current node relaxation. This bound
is likely to be different from the bound in the original model because an instance of
IloCplex tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks a lower bound, then getLB returns a value greater than or equal to -
IloInfinity for greater than or equal to constraints with no lower bound.

public void getLBs(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the lower bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

public void getLBs(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the lower bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks a lower bound, then getLBs returns a value greater than or equal to
-IloInfinity for greater than or equal to constraints with no lower bound.

public IloModel getModel() const

This method returns the model currently extracted for the instance of IloCplex where
the invoking goal applies.

public IloInt getMyThreadNum() const

Returns the identifier of the parallel thread being currently executed. This number is
between 0 (zero) and the value returned by the method getUserThreads()-1.

public IloInt getNbranches() const

This method returns the number of branches IloCplex is going to create at the current
node.

public IloInt getNcliques() const

Returns the total number of clique cuts that have been added to the model so far during
the current optimization.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 787

IloCplex::GoalI
public IloInt getNcols() const

This method returns the number of columns in the current optimization model.

public IloInt getNcovers() const

Returns the total number of cover cuts that have been added to the model so far during
the current optimization.

public IloInt getNdisjunctiveCuts() const

Returns the total number of disjunctive cuts that have been added to the model so far
during the current optimization.

public IloInt getNflowCovers() const

Returns the total number of flow cover cuts that have been added to the model so far
during the current optimization.

public IloInt getNflowPaths() const

Returns the total number of flow path cuts that have been added to the model so far
during the current optimization.

public IloInt getNfractionalCuts() const

Returns the total number of fractional cuts that have been added to the model so far
during the current optimization.

public IloInt getNGUBcovers() const

Returns the total number of GUB cover cuts that have been added to the model so far
during the current optimization.

public IloInt getNimpliedBounds() const

Returns the total number of implied bound cuts that have been added to the model so far
during the current optimization.

public IloInt getNiterations() const

Returns the total number of iterations executed so far during the current optimization to
solve the node relaxations.

public IloInt getNMIRs() const

Returns the total number of MIR cuts that have been added to the model so far during
the current optimization.

public IloInt getNnodes() const

This method returns the number of nodes already processed in the current optimization.

public IloInt getNremainingNodes() const

This method returns the number of nodes left to explore in the current optimization.

public IloInt getNrows() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 788

IloCplex::GoalI
This method returns the number of rows in the current optimization model.

public IloNum getObjCoef(const IloIntVar var) const

Returns the linear objective coefficient for var in the model currently being solved.

public IloNum getObjCoef(const IloNumVar var) const

Returns the linear objective coefficient for var in the model currently being solved.

public void getObjCoefs(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the linear objective coefficient of each of the variables in the array
vars into the corresponding element of the array vals.

public void getObjCoefs(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the linear objective coefficient of each of the variables in the array
vars into the corresponding element of the array vals.

public IloNum getObjValue() const

This method returns the objective value of the solution of the current node.

If you need the object representing the objective itself, consider the method
getObjective instead.

public IloNum getPriority(const IloIntVar var) const

Returns the branch priority used for variable var in the current optimization.

public IloNum getPriority(const IloNumVar var) const

Returns the branch priority used for variable var in the current optimization.

public IloNum getSlack(const IloRange rng) const

This method returns the slack value for the constraint specified by rng in the solution
of the current node relaxation.

public void getSlacks(IloNumArray vals,
 const IloRangeArray rngs) const

This method puts the slack value in the solution of the current node relaxation of each
of the constraints in the array of ranges rngs into the corresponding element of the
array vals.

public IloNum getUB(const IloIntVar var) const

This method returns the upper bound of the variable var in the current node relaxation.
This bound is likely to be different from the bound in the original model because an
instance of IloCplex tightens bounds when it branches from a node to its subnodes.

Unbounded Variables
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 789

IloCplex::GoalI
If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public IloNum getUB(const IloNumVar var) const

This method returns the upper bound of the variable var in the current node relaxation.
This bound is likely to be different from the bound in the original model because an
instance of IloCplex tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks an upper bound, then getUB returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public void getUBs(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the upper bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public void getUBs(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the upper bound in the current node relaxation of each element of the
array vars into the corresponding element of the array vals. These bounds are likely
to be different from the bounds in the original model because an instance of IloCplex
tightens bounds when it branches from a node to its subnodes.

Unbounded Variables

If a variable lacks an upper bound, then getUBs returns a value less than or equal to
IloInfinity for less than or equal to constraints with no lower bound.

public IloNum getUpPseudoCost(const IloIntVar var) const

This method returns the current pseudo cost for branching upward on the variable var.

public IloNum getUpPseudoCost(const IloNumVar var) const

This method returns the current pseudo cost for branching upward on the variable var.

public IloInt getUserThreads() const

This method returns the total number of parallel threads currently running.

public IloNum getValue(const IloIntVar var) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 790

IloCplex::GoalI
This method returns the value of the variable var in the solution of the current node
relaxation.

public IloNum getValue(const IloNumVar var) const

This method returns the value of the variable var in the solution of the current node
relaxation.

public IloNum getValue(const IloExpr expr) const

This method returns the value of the expression expr in the solution of the current node
relaxation.

public void getValues(IloNumArray vals,
 const IloIntVarArray vars) const

This method puts the current node relaxation solution value of each variable in the array
vars into the corresponding element of the array vals.

public void getValues(IloNumArray vals,
 const IloNumVarArray vars) const

This method puts the current node relaxation solution value of each variable in the array
vars into the corresponding element of the array vals.

public static IloCplex::Goal GlobalCutGoal(IloConstraintArray con)

This method creates a goal that when executed adds the constraints (provided in the
paramter array con) as global cuts to the model. These global cuts must be valid for the
entire model, not only for the current subtree. In other words, these global cuts will be
respected at every node.

IloCplex takes over memory managment for the cuts passed to the method
GlobalCutGoal. Thus IloCplex will call the method end as soon as it can be
discarded after the goal executes. Calling end yourself or the constraints in the array
con passed to method GlobalCutGoal or the array itself is an error and must be
avoided.

public static IloCplex::Goal GlobalCutGoal(IloConstraint con)

This method creates a goal that when executed adds the constraint con (provided as a
parameter) as global cuts to the model. These global cuts must be valid for the entire
model, not only for the current subtree. In other words, these global cuts will be
respected at every node.

IloCplex takes over memory managment for the cut passed to the method
GlobalCutGoal. Thus IloCplex will call the method end as soon as it can be
discarded after the goal executes. Calling end yourself for the constraint passed to
method GlobalCutGoal is an error and must be avoided.

public IloBool hasIncumbent() const

This method returns IloTrue if an integer feasible solution has been found.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 791

IloCplex::GoalI
public IloBool isIntegerFeasible() const

This method returns IloTrue if the solution of the current node is integer feasible.

public IloBool isSOSFeasible(const IloSOS2 sos2) const

This method returns IloTrue if the solution of the current node is SOS feasible for the
special ordered set specified in its argument. The SOS passed as a parameter to this
method must be of type 2; the equivalent method for an SOS of type 1 is also available.
See the User's Manual for more about these types of special ordered sets.

public IloBool isSOSFeasible(const IloSOS1 sos1) const

This method returns IloTrue if the solution of the current node is SOS feasible for the
special ordered set specified in its argument. The SOS passed as a parameter to this
method must be of type 1; the equivalent method for an SOS of type 2 is also available.
See the User's Manual for more about these types of special ordered sets.

public static IloCplex::Goal OrGoal(IloCplex::Goal goal1,
IloCplex::Goal goal2)

The static methods OrGoal all return a goal that creates as many branches (or,
equivalently, subproblems) as there are parameters. Each of the subnodes will be
initialized with the remaining goal stack of the current node. In addition, the goal
parameter will be pushed on the goal stack of the corresponding subgoal. If more than
six branches need to be created, instances of OrGoal can be combined.

public static IloCplex::Goal SolutionGoal(const IloIntVarArray vars,
 const IloNumArray vals)

This static method creates and returns a goal that attempts to inject a solution specified
by setting the variables listed in array vars to the corresponding values listed in the
array vals.

IloCplex will not blindly accept such a solution as a new incumbent. Instead, it will
make sure that this solution is compatible with both the model and the goals. When
checking feasibility with goals, it checks feasibility with both the goals that have already
been executed and the goals that are still on the goal stack. Thus, in particular,
IloCplex will reject any solution that is not compatible with the branching that has
been done so far.

IloCplex takes over memory managment for arrays vars and vals passed to
SolutionGoal. Thus IloCplex will call method end for these arrays as soon as
they can be discarded. Calling end for the arrays passed to SolutionGoal is an
error and must be avoided.

public static IloCplex::Goal SolutionGoal(const IloNumVarArray vars,
 const IloNumArray vals)

This static method creates and returns a goal that attempts to inject a solution specified
by setting the variables listed in array vars to the corresponding values listed in the
array vals.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 792

IloCplex::GoalI
IloCplex will not blindly accept such a solution as a new incumbent. Instead, it will
make sure that this solution is compatible with both the model and the goals. When
checking feasibility with goals, it checks feasibility with both the goals that have already
been executed and the goals that are still on the goal stack. Thus, in particular,
IloCplex will reject any solution that is not compatible with the branching that has
been done so far.

IloCplex takes over memory managment for arrays vars and vals passed to
SolutionGoal. Thus IloCplex will call method end for these arrays as soon as
they can be discarded. Calling end for the arrays passed to SolutionGoal is an
error and must be avoided.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 793

IloCplex::HeuristicCallbackI
IloCplex::HeuristicCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Method Summary
protected
IloCplex::CplexStatus

getCplexStatus() const

protected
IloAlgorithm::Status

getStatus() const

protected IloBool isDualFeasible() const

protected IloBool isPrimalFeasible() const

protected void setBounds(const IloIntVarArray var,const
IloNumArray lb,const IloNumArray ub)

protected void setBounds(const IloNumVarArray var,const
IloNumArray lb,const IloNumArray ub)

protected void setBounds(const IloIntVar var,IloNum
lb,IloNum ub)

protected void setBounds(const IloNumVar var,IloNum
lb,IloNum ub)

protected void setSolution(const IloIntVarArray vars,const
IloNumArray vals,IloNum obj)

protected void setSolution(const IloIntVarArray vars,const
IloNumArray vals)

protected void setSolution(const IloNumVarArray vars,const
IloNumArray vals,IloNum obj)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 794

IloCplex::HeuristicCallbackI
protected void setSolution(const IloNumVarArray vars,const
IloNumArray vals)

protected IloBool solve(IloCplex::Algorithm alg=Dual)

Inherited methods from IloCplex::ControlCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 795

IloCplex::HeuristicCallbackI
Description

An instance of the class IloCplex::HeuristicCallbackI represents a user-
written callback in an application that uses an instance of IloCplex to solve a mixed
integer programming problem (MIP). When you derive a user-defined class of
callbacks, this class offers protected methods for you to:

◆ give the instance of IloCplex a potential new incumbent solution;

◆ query the instance of IloCplex about the solution status for the current node;

◆ query the instance of IloCplex about the variable bounds at the current node;

MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 796

IloCplex::HeuristicCallbackI
◆ change bounds temporarily on a variable or group of variables at the current node;

◆ re-solve the problem at the node with the changed bounds;

◆ use all the query functions inherited from parent classes.

During branching, the heuristic callback is called after each node subproblem has been
solved, including any cuts that may have been newly generated. Before branching, at the
root node, the heuristic callback is also called before each round of cuts is added to the
problem and re-solved.

In short, this callback allows you to attempt to construct an integer feasible solution at a
node and pass it to the invoking instance of IloCplex to use as its new incumbent.
The API supports you in finding such a solution by allowing you iteratively to change
bounds of the variables and re-solve the node relaxation. Changing the bounds in the
heuristic callback has no effect on the search beyond the termination of the callback.

If an attempt is made to access information not available at the node for the invoking
instance of IloCplex, an exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::ControlCallbackI, IloCplex::MIPCallbackI,
IloCplex::OptimizationCallbackI, ILOHEURISTICCALLBACK0

Methods protected IloCplex::CplexStatus getCplexStatus() const

This method returns the ILOG CPLEX status of the instance of IloCplex at the
current node (that is, the state of the optimizer at the node) during the last call to
solve (which may have been called directly in the callback or by IloCplex when
processing the node).

The enumeration IloCplex::CplexStatus lists the possible status values.

protected IloAlgorithm::Status getStatus() const

This method returns the status of the solution found by the instance of IloCplex at the
current node during the last call to solve (which may have been called directly in the
callback or by IloCplex when processing the node).

The enumeration IloAlgorithm::Status lists the possible status values.

protected IloBool isDualFeasible() const

This method returns IloTrue if the solution provided by the last solve call is dual
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not dual feasible. It simply means that the relevant algorithm was not able to
conclude it was dual feasible when it terminated.

protected IloBool isPrimalFeasible() const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 797

IloCplex::HeuristicCallbackI
This method returns IloTrue if the solution provided by the last solve call is primal
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not primal feasible. It simply means that the relevant algorithm was not able
to conclude it was primal feasible when it terminated.

protected void setBounds(const IloIntVarArray var,
 const IloNumArray lb,
 const IloNumArray ub)

For each variable in the array var, this method sets its upper bound to the
corresponding value in the array ub and its lower bound to the corresponding value in
the array lb, provided var has not been removed by presolve. Setting bounds has no
effect beyond the scope of the current invocation of the callback.

 When using this method, you must avoid changing the bounds of a variable that has
been removed by presolve. To check whether presolve is off, consider the parameter
IloCplex::PreInd. Alternatively, you can check whether a particular variable has
been removed by presolve by checking the status of the variable. To do so, call
IloCplex::ControlCallback::getFeasibilities. A variable that has
been removed by presolve will have the status ImpliedFeasible.

protected void setBounds(const IloNumVarArray var,
 const IloNumArray lb,
 const IloNumArray ub)

For each variable in the array var, this method sets its upper bound to the
corresponding value in the array ub and its lower bound to the corresponding value in
the array lb, provided the variable has not been removed by presolve. Setting bounds
has no effect beyond the scope of the current invocation of the callback.

protected void setBounds(const IloIntVar var,
IloNum lb,
IloNum ub)

This method sets the lower bound to lb and the upper bound to ub for the variable var
at the current node, provided var has not been removed by presolve. Setting bounds
has no effect beyond the scope of the current invocation of the callback.

 When using this method, you must avoid changing the bounds of a variable that has
been removed by presolve. To check whether presolve is off, consider the parameter
IloCplex::PreInd. Alternatively, you can check whether a particular variable has
been removed by presolve by checking the status of the variable. To do so, call
IloCplex::ControlCallback::getFeasibilities. A variable that has
been removed by presolve will have the status ImpliedFeasible.

protected void setBounds(const IloNumVar var,
IloNum lb,
IloNum ub)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 798

IloCplex::HeuristicCallbackI
This method sets the lower bound to lb and the upper bound to ub for the variable var
at the current node, provided var has not been removed by presolve. Setting bounds
has no effect beyond the scope of the current invocation of the callback.

 When using this method, you must avoid changing the bounds of a variable that has
been removed by presolve. To check whether presolve is off, consider the parameter
IloCplex::PreInd. Alternatively, you can check whether a particular variable has
been removed by presolve by checking the status of the variable. To do so, call
IloCplex::ControlCallback::getFeasibilities. A variable that has
been removed by presolve will have the status ImpliedFeasible.

protected void setSolution(const IloIntVarArray vars,
 const IloNumArray vals,

IloNum obj)

For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent, uses it as
the new incumbent. A solution is specified using arrays vars and vals, where
vals[i] specifies the solution value for vars[i].

The parameter obj is used to tell IloCplex the objective value of the injected
solution. This allows IloCplex to skip the computation of that value, but care must
be taken not to provide an incorrect value.

Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected void setSolution(const IloIntVarArray vars,
 const IloNumArray vals)

For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent, uses it as
the new incumbent. A solution is specified using arrays vars and vals, where
vals[i] specifies the solution value for vars[i].

Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected void setSolution(const IloNumVarArray vars,
 const IloNumArray vals,
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 799

IloCplex::HeuristicCallbackI
IloNum obj)

For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent, uses it as
the new incumbent. A solution is specified using arrays vars and vals, where
vals[i] specifies the solution value for vars[i].

The parameter obj is used to tell IloCplex the objective value of the injected
solution. This allows IloCplex to skip the computation of that value, but care must
be taken not to provide an incorrect value.

Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected void setSolution(const IloNumVarArray vars,
 const IloNumArray vals)

For each variable in the array vars, this method uses the value in the corresponding
element of the array vals to define a heuristic solution to be considered as a new
incumbent.

If the user heuristic was successful in finding a new candidate for an incumbent,
setSolution can be used to pass it over to IloCplex. IloCplex then analyses
the solution and, if it is both feasible and better than the current incumbent,
IloCplex uses it as the new incumbent. A solution is specified using arrays vars
and vals, where vals[i] specifies the solution value for vars[i].

Do not call this method multiple times. Calling it again will overwrite any previously
specified solution.

protected IloBool solve(IloCplex::Algorithm alg=Dual)

This method can be used to solve the current node relaxation, usually after some bounds
have been changed by setBounds. By default it uses the dual simplex algorithm,
but this behavior can be overridden by the optional parameter alg. See the
enumeration IloCplex::Algorithm for a list of the available optimizers.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 800

IloCplex::IncumbentCallbackI
IloCplex::IncumbentCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Method Summary
protected NodeData * getNodeData() const

protected NodeId getNodeId() const

protected IloNum IncumbentCallbackI::getObjValue() const

protected IloNum getSlack(const IloRange rng) const

protected void getSlacks(IloNumArray val,const
IloRangeArray con) const

protected IloNum getValue(const IloIntVar var) const

protected IloNum getValue(const IloNumVar var) const

protected IloNum getValue(const IloExprArg expr) const

protected void getValues(IloNumArray val,const
IloIntVarArray vars) const

protected void getValues(IloNumArray val,const
IloNumVarArray vars) const

protected void reject()

Inherited methods from IloCplex::MIPCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 801

IloCplex::IncumbentCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 802

IloCplex::IncumbentCallbackI
Description

This callback is called whenever a new potential incumbent is found during branch &
cut searches. It allows you to analyze the proposed incumbent and optionally reject it. In
this case, CPLEX will continue the branch & cut search. This callback is thus typically
combined with a branch callback that instructs CPLEX how to branch on a node after it
has found a potential incumbent and thus considered the node solution to be integer
feasible.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILOINCUMBENTCALLBACK0

Methods protected NodeData * getNodeData() const

This method retrieves the NodeData object that may have previously been assigned to
the current node by the user with method
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the current node, 0 will be returned.

protected NodeId getNodeId() const

This method returns the NodeId of the current node.

protected IloNum getObjValue() const

This method returns the query objective value of the potential incumbent.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloNum getSlack(const IloRange rng) const

This method returns the slack value for the range specified by rng for the potential
incumbent.

protected void getSlacks(IloNumArray val,
 const IloRangeArray con) const

This method puts the slack value for each range in the array of ranges con into the
corresponding element of the array val for the potential incumbent. For this CPLEX
resizes array val to match the size of array con.

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 803

IloCplex::IncumbentCallbackI
protected IloNum getValue(const IloIntVar var) const

This method returns the query value of the variable var in the potential incumbent
solution.

protected IloNum getValue(const IloNumVar var) const

This method returns the value of the variable var in the potential incumbent solution.

protected IloNum getValue(const IloExprArg expr) const

This method returns the value of the expr for the potential incumbent solution.

protected void getValues(IloNumArray val,
 const IloIntVarArray vars) const

This method returns the query values of the variables in the array vars in the potential
incumbent solution and copies them to val. CPLEX automatically resizes the array
val to match the size of the array vars.

protected void getValues(IloNumArray val,
 const IloNumVarArray vars) const

This method returns the query values of the variables in the array vars in the potential
incumbent solution and copies them to val. CPLEX automatically resizes the array
val to match the length of the array vars.

protected void reject()

This method rejects the proposed incumbent.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 804

IloCplex::LazyConstraintCallbackI
IloCplex::LazyConstraintCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Inherited methods from IloCplex::CutCallbackI
add, addLocal

Inherited methods from IloCplex::ControlCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 805

IloCplex::LazyConstraintCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 806

IloCplex::LazyConstraintCallbackI
Description

An instance of the class IloCplex::LazyConstraintCallbackI represents a
user-written callback in an application that uses an instance of IloCplex to solve a
MIP while generating lazy constraints. IloCplex calls the user-written callback after
solving each node LP exactly like IloCplex::CutCallbackI. In fact, this
callback is exactly equivalent to IloCplex::CutCallbackI but offers a name
more consistently pointing out the difference between lazy constraints and user cuts.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 807

IloCplex::NodeCallbackI
IloCplex::NodeCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected NodeCallbackI(IloEnv env)

Method Summary
protected IloNumVar getBranchVar(NodeId nodeid) const

protected IloNumVar getBranchVar(int node) const

protected IloInt getDepth(NodeId nodeid) const

protected IloInt getDepth(int node) const

protected IloNum getEstimatedObjValue(NodeId nodeid) const

protected IloNum getEstimatedObjValue(int node) const

protected IloNum getInfeasibilitySum(NodeId nodeid) const

protected IloNum getInfeasibilitySum(int node) const

protected IloInt getNinfeasibilities(NodeId nodeid) const

protected IloInt getNinfeasibilities(int node) const

protected NodeData * getNodeData(NodeId nodeid) const

protected NodeData * getNodeData(int node) const

protected NodeId getNodeId(int node) const

protected IloInt getNodeNumber(NodeId nodeid) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 808

IloCplex::NodeCallbackI
protected IloNum NodeCallbackI::getObjValue(NodeId nodeid)
const

protected IloNum getObjValue(int node) const

protected void selectNode(NodeId nodeid)

protected void selectNode(int node)

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 809

IloCplex::NodeCallbackI
Description

An instance of the class IloCplex::NodeCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a mixed integer
programming problem (a MIP). The methods of this class enable you (from a user-
derived callback class) to query the instance of IloCplex about the next node that it
plans to select in the branch & cut search, and optionally to override this selection by
specifying a different node.

When an instance of this callback executes, the invoking instance of IloCplex still
has n = getNremainingNodes (inherited from
IloCplex::MIPCallbackI) nodes left to process. These remaining nodes are
numbered from 0 (zero) to (n - 1). For that reason, the same node may have a
different number each time an instance of NodeCallbackI is called. To identify a
node uniquely, an instance of IloCplex also assigns a unique NodeId to each node.
That unique identifier remains unchanged throughout the search. The method
getNodeId(int i) allows you to access the NodeId for each of the remaining
nodes (0 to n-1). Such a query allows you to associate data with individual nodes.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::MIPCallbackI, IloCplex::OptimizationCallbackI,
ILONODECALLBACK0

Constructors protected NodeCallbackI(IloEnv env)

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 810

IloCplex::NodeCallbackI
This constructor creates a callback for use in an application with user-defined node
selection inquiry during branch & cut searches.

Methods protected IloNumVar getBranchVar(NodeId nodeid) const

This method returns the variable that was branched on last when CPLEX created the
node with the identifier nodeid. If that node has been created by branching on a
constraint or on multiple variables, 0 (zero) will be returned.

protected IloNumVar getBranchVar(int node) const

Returns the variable that was branched on last when creating the node specified by the
index number node. If that node has been created by branching on a constraint or on
multiple variables, 0 (zero) will be returned.

protected IloInt getDepth(NodeId nodeid) const

This method returns the depth of the node in the search tree for the node with the
identifier nodeid. The root node has depth 0 (zero). The depth of other nodes is
defined recursively as the depth of their parent node plus one. In other words, the depth
of a node is its distance in terms of the number of branches from the root.

protected IloInt getDepth(int node) const

This method returns the depth of the node in the search tree. The root node has depth 0
(zero). The depth of other nodes is defined recursively as the depth of their parent node
plus one. In other words, the depth of a node is its distance in terms of the number of
branches from the root.

protected IloNum getEstimatedObjValue(NodeId nodeid) const

This method returns the estimated objective value of the node with the identifier node.

protected IloNum getEstimatedObjValue(int node) const

This method returns the estimated objective value of the node specified by the index
number node.

protected IloNum getInfeasibilitySum(NodeId nodeid) const

This method returns the sum of infeasibility measures at the node with the identifier
nodeid.

protected IloNum getInfeasibilitySum(int node) const

This method returns the sum of infeasibility measures at the node specified by the index
number node.

protected IloInt getNinfeasibilities(NodeId nodeid) const

This method returns the number of infeasibilities at the node with the identifier
nodeid.

protected IloInt getNinfeasibilities(int node) const
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 811

IloCplex::NodeCallbackI
This method returns the number of infeasibilities at the node specified by the index
number node.

protected NodeData * getNodeData(NodeId nodeid) const

This method retrieves the NodeData object that may have previously been assigned by
the user to the node with the identfier nodeid with one of the methods
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the that node, 0 (zero) will be returned.

protected NodeData * getNodeData(int node) const

This method retrieves the NodeData object that may have previously been assigned to
the node with index node by the user with the method
IloCplex::BranchCallbackI::makeBranch. If no data object has been
assigned to the specified node, 0 (zero) will be returned.

protected NodeId getNodeId(int node) const

This method returns the node identifier of the node specified by the index number node.
During branch & cut, an instance of IloCplex assigns node identifiers sequentially
from 0 (zero) to (getNodes - 1) as it creates nodes. Within a search, these node
identifiers are unique throughout the duration of that search. However, at any point, the
remaining nodes, (that is, the nodes that have not yet been processed) are stored in an
array in an arbitrary order. This method returns the identifier of the node stored at
position node in that array.

protected IloInt getNodeNumber(NodeId nodeid) const

Returns the current index number of the node specified by the node identifier nodeid.

protected IloNum getObjValue(NodeId nodeid) const

This method returns the objective value of the node with the identifier node.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected IloNum getObjValue(int node) const

This method returns the objective value of the node specified by the index number
node.

If you need the object representing the objective itself, consider the method
getObjective instead.

protected void selectNode(NodeId nodeid)

This method selects the node with the identifier nodeid and sets it as the next node to
process in the branch & cut search. The invoking instance of IloCplex uses the
specified node as the next node to process.

protected void selectNode(int node)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 812

IloCplex::NodeCallbackI
This method selects the node specified by its index number node and sets it as the next
node to process in the branch & cut search. The parameter node must be an integer
between 0 (zero) and (getNremainingNodes - 1).

The invoking instance of IloCplex uses the specified node as the next node to
process.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 813

IloCplex::SolveCallbackI
IloCplex::SolveCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Constructor Summary
protected SolveCallbackI(IloEnv env)

Method Summary
protected
IloCplex::CplexStatus

getCplexStatus() const

protected
IloAlgorithm::Status

getStatus() const

protected IloBool isDualFeasible() const

protected IloBool isPrimalFeasible() const

protected void setVectors(const IloNumArray x,const
IloIntVarArray var,const IloNumArray pi,const
IloRangeArray rng)

protected void setVectors(const IloNumArray x,const
IloNumVarArray var,const IloNumArray pi,const
IloRangeArray rng)

protected IloBool solve(IloCplex::Algorithm alg=Dual)

protected void useSolution()
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 814

IloCplex::SolveCallbackI
Inherited methods from IloCplex::ControlCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 815

IloCplex::SolveCallbackI
Description

An instance of the class IloCplex::SolveCallbackI can be used to solve node
relaxations during branch & cut search. It allows you to set a starting point for the solve
or to select the algorithm on a per-node basis.

The methods of this class are protected for use in deriving a user-written callback class
and in implementing the main method there.

If an attempt is made to access information not available to an instance of this class, an
exception is thrown.

See Also IloCplex, IloCplex::Callback, IloCplex::CallbackI,
IloCplex::ControlCallbackI, IloCplex::OptimizationCallbackI,
ILOSOLVECALLBACK0

Constructors protected SolveCallbackI(IloEnv env)

This constructor creates a callback for use in an application for solving the node LPs
during branch & cut searches.

Methods protected IloCplex::CplexStatus getCplexStatus() const

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 816

IloCplex::SolveCallbackI
This method returns the ILOG CPLEX status of the instance of IloCplex at the
current node (that is, the state of the optimizer at the node) during the last call to
solve (which may have been called directly in the callback or by IloCplex when
processing the node).

The enumeration IloCplex::CplexStatus lists the possible status values.

protected IloAlgorithm::Status getStatus() const

This method returns the status of the solution found by the instance of IloCplex at
the current node during the last call to solve (which may have been called directly in
the callback or by IloCplex when processing the node).

The enumeration IloAlgorithm::Status lists the possible status values.

protected IloBool isDualFeasible() const

This method returns IloTrue if the solution provided by the last solve call is dual
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not dual feasible. It simply means that the relevant algorithm was not able to
conclude it was dual feasible when it terminated.

protected IloBool isPrimalFeasible() const

This method returns IloTrue if the solution provided by the last solve call is primal
feasible. Note that an IloFalse return value does not necessarily mean that the
solution is not primal feasible. It simply means that the relevant algorithm was not able
to conclude it was primal feasible when it terminated.

protected void setVectors(const IloNumArray x,
 const IloIntVarArray var,
 const IloNumArray pi,
 const IloRangeArray rng)

This method allows a user to specify a starting point for the following invocation of the
solve method in a solve callback. Zero can be passed for any of the parameters.
However, if x is not zero, then var must not be zero either. Similarly, if pi is not zero,
then rng must not be zero either.

For all variables in var, x[i] specifies the starting value for the variable var[i].
Similarly, for all ranged constraints specified in rng, pi[i] specifies the starting dual
value for rng[i].

This information is exploited at the next call to solve, to construct a starting point for
the algorithm.

protected void setVectors(const IloNumArray x,
 const IloNumVarArray var,
 const IloNumArray pi,
 const IloRangeArray rng)
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 817

IloCplex::SolveCallbackI
This method allows a user to specify a starting point for the following invocation of the
solve method in a solve callback. Zero can be passed for any of the parameters.
However, if x is not zero, then var must not be zero either. Similarly, if pi is not zero,
then rng must not be zero either.

For all variables in var, x[i] specifies the starting value for the variable var[i].
Similarly, for all ranged constraints specified in rng, pi[i] specifies the starting dual
value for rng[i].

This information is exploited at the next call to solve, to construct a starting point for
the algorithm.

protected IloBool solve(IloCplex::Algorithm alg=Dual)

This method uses the algorithm alg to solve the current node LP. See
IloCplex::Algorithm for a choice of algorithms to use.

protected void useSolution()

A call to this method instructs IloCplex to use the solution generated with this
callback.

If useSolution is not called, IloCplex uses the algorithm selected with the
parameters IloCplex::RootAlg for the solution of the root, or
IloCplex::NodeAlg to solve the node.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 818

IloCplex::UserCutCallbackI
IloCplex::UserCutCallbackI

Category Inner Class

InheritancePath

Definition File ilcplex/ilocplexi.h

Inherited methods from IloCplex::CutCallbackI
add, addLocal

Inherited methods from IloCplex::ControlCallbackI
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 819

IloCplex::UserCutCallbackI
ControlCallbackI::getDownPseudoCost, ControlCallbackI::getDownPseudoCost,
ControlCallbackI::getFeasibilities, ControlCallbackI::getFeasibilities,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getFeasibility, ControlCallbackI::getFeasibility,
ControlCallbackI::getLB, ControlCallbackI::getLB,
ControlCallbackI::getLBs, ControlCallbackI::getLBs,
ControlCallbackI::getNodeData, ControlCallbackI::getObjValue,
ControlCallbackI::getSlack, ControlCallbackI::getSlacks,
ControlCallbackI::getUB, ControlCallbackI::getUB,
ControlCallbackI::getUBs, ControlCallbackI::getUBs,
ControlCallbackI::getUpPseudoCost, ControlCallbackI::getUpPseudoCost,
ControlCallbackI::getValue, ControlCallbackI::getValue,
ControlCallbackI::getValue, ControlCallbackI::getValues,
ControlCallbackI::getValues, ControlCallbackI::isSOSFeasible,
ControlCallbackI::isSOSFeasible

Inherited methods from IloCplex::MIPCallbackI
MIPCallbackI::getNcliques, MIPCallbackI::getNcovers,
MIPCallbackI::getNdisjunctiveCuts, MIPCallbackI::getNflowCovers,
MIPCallbackI::getNflowPaths, MIPCallbackI::getNfractionalCuts,
MIPCallbackI::getNGUBcovers, MIPCallbackI::getNimpliedBounds,
MIPCallbackI::getNMIRs, MIPCallbackI::getObjCoef,
MIPCallbackI::getObjCoef, MIPCallbackI::getObjCoefs,
MIPCallbackI::getObjCoefs, MIPCallbackI::getUserThreads

Inherited methods from IloCplex::MIPInfoCallbackI
MIPInfoCallbackI::getBestObjValue, MIPInfoCallbackI::getCutoff,
MIPInfoCallbackI::getDirection, MIPInfoCallbackI::getDirection,
MIPInfoCallbackI::getIncumbentObjValue,
MIPInfoCallbackI::getIncumbentSlack,
MIPInfoCallbackI::getIncumbentSlacks,
MIPInfoCallbackI::getIncumbentValue, MIPInfoCallbackI::getIncumbentValue,
MIPInfoCallbackI::getIncumbentValues,
MIPInfoCallbackI::getIncumbentValues, MIPInfoCallbackI::getMyThreadNum,
MIPInfoCallbackI::getNiterations, MIPInfoCallbackI::getNnodes,
MIPInfoCallbackI::getNremainingNodes, MIPInfoCallbackI::getPriority,
MIPInfoCallbackI::getPriority, MIPInfoCallbackI::hasIncumbent
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 820

IloCplex::UserCutCallbackI
Description

An instance of the class IloCplex::UserCutCallbackI represents a user-written
callback in an application that uses an instance of IloCplex to solve a MIP while
generating user cuts to tighten the LP relaxation. IloCplex calls the user-written
callback after solving each node LP exactly like IloCplex::CutCallbackI. It
differs from IloCplex::CutCallbackI only in that constraints added in a
UserCutCallbackI must be real cuts in the sense that omitting them does not affect
the feasible region of the model under consideration.

Inherited methods from
IloCplex::OptimizationCallbackI
OptimizationCallbackI::getModel, OptimizationCallbackI::getNcols,
OptimizationCallbackI::getNQCs, OptimizationCallbackI::getNrows

Inherited methods from IloCplex::CallbackI
CallbackI::abort, CallbackI::duplicateCallback, CallbackI::getEnv,
CallbackI::main

Note:This is an advanced class. Advanced classes typically demand a profound
understanding of the algorithms used by ILOG CPLEX. Thus they incur a higher
risk of incorrect behavior in your application, behavior that can be difficult to
debug. Therefore, ILOG encourages you to consider carefully whether you can
accomplish the same task by means of other classes instead.
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 821

I N D E X

Index
A

Aborter 557
Algorithm 559

B

BarrierCallbackI 561
BasisStatus 563
BasisStatusArray 564
BoolParam 565
BranchCallbackI 567, 754
BranchDirection 576
BranchDirectionArray 577
BranchType 575, 651

C

Callback 578
CallbackI 580
CannotExtractException 57
CannotRemoveException 59
ConflictStatus 586
ConflictStatusArray 587
ContinuousCallbackI 588
ControlCallbackI 591, 763
CplexStatus 604
CrossoverCallbackI 609
CutCallbackI 611, 773
CutType 614

D

DeleteMode 615
DisjunctiveCutCallbackI 616
DisjunctiveCutInfoCallbackI 619
DualPricing 621

E

Exception 61, 622

F

FlowMIRCutCallbackI 624
FlowMIRCutInfoCallbackI 627
FractionalCutCallbackI 629
FractionalCutInfoCallbackI 632

G

Goal 634, 777
GoalI 636, 779

H

HeuristicCallbackI 654, 794

I

ILO_NO_MEMORY_MANAGER 47
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 822

I N D E X
IloAbs 48
IloAdd 49
IloAlgorithm 50
IloAnd 66
IloArcCos 70
IloArray 71
IloBarrier 75
ILOBARRIERCALLBACK0 473
IloBaseEnvMutex 78
IloBool 79
IloBoolArray 80
IloBoolVar 83
IloBoolVarArray 86
IloBound 500
ILOBRANCHCALLBACK0 474
IloCeil 89
IloColumnHeaderNotFoundException 369
IloCondition 90
IloConstraint 93
IloConstraintArray 96
ILOCONTINUOUSCALLBACK0 475
IloConversion 325
IloCplex 504
ILOCPLEXGOAL0 476
ILOCROSSOVERCALLBACK0 478
IloCsvLine 356
IloCsvReader 360
IloCsvReaderParameterException 370
IloCsvTableReader 381
ILOCUTCALLBACK0 479
IloDeleterMode 100
IloDiff 101
IloDifference 387, 388
IloDisableNANDetection 104
ILODISJUNCTIVECUTCALLBACK0 480
ILODISJUNCTIVECUTINFOCALLBACK0 481
IloDiv 105
IloDuplicatedTableException 371
IloEmptyHandleException 106
IloEnableNANDetection 107
IloEndMT 108
IloEnv 109
IloEnvironmentMismatch 115
IloException 116
IloExponent 118

IloExpr 119
IloExprArray 126
IloExtractable 130
IloExtractableArray 135
IloExtractableVisitor 138
IloFastMutex 140
IloFieldNotFoundException 372
IloFileNotFoundException 373
IloFloatVar 144
IloFloatVarArray 145
IloFloor 146
ILOFLOWMIRCUTCALLBACK0 482
ILOFLOWMIRCUTINFOCALLBACK0 483
ILOFRACTIONALCUTCALLBACK0 484
ILOFRACTIONALCUTINFOCALLBACK0 485
IloGetClone 147
IloHalfPi 148
ILOHEURISTICCALLBACK0 486
IloIfThen 149
IloIncorrectCsvReaderUseException 374
ILOINCUMBENTCALLBACK0 487
IloInitMT 152
IloInt 153
IloIntArray 154
IloIntersection 389
IloIntervalList 390
IloIntervalListCursor 395
IloIntExpr 158
IloIntExprArg 161
IloIntExprArray 163
IloIntSet 166
IloIntSetVar 174
IloIntSetVarArray 179
IloIntTupleSet 181
IloIntTupleSetIterator 184
IloIntVar 185
IloIntVarArray 191
IloIsNAN 195
IloIterator 196
ILOLAZYCONSTRAINTCALLBACK0 488
IloLexicographic 198
IloLineNotFoundException 375
IloLog 199
IloMax 200, 398
IloMaximize 201
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 823

I N D E X
IloMin 202, 399
IloMinimize 203
ILOMIPCALLBACK0 489
ILOMIPINFOCALLBACK0 490
IloModel 204
IloMutexDeadlock 210
IloMutexNotOwner 211
IloMutexProblem 212
ILONETWORKCALLBACK0 491
ILONODECALLBACK0 492
IloNot 214
IloNum 216
IloNumArray 217
IloNumColumn 329
IloNumColumnArray 332
IloNumExpr 220
IloNumExprArg 223
IloNumExprArray 225
IloNumToAnySetStepFunction 400
IloNumToAnySetStepFunctionCursor 409
IloNumToNumSegmentFunction 412
IloNumToNumSegmentFunctionCursor 419
IloNumToNumStepFunction 422
IloNumToNumStepFunctionCursor 428
IloNumVar 229
IloNumVarArray 235
IloObjective 241
IloOr 248
IloPi 252
IloPiecewiseLinear 253
IloPower 254
ILOPRESOLVECALLBACK0 493
ILOPROBINGCALLBACK0 494
ILOPROBINGINFOCALLBACK0 495
IloQuarterPi 255
IloRandom 256
IloRange 259
IloRangeArray 266
IloRound 273
IloScalProd 274, 275, 276, 277
IloSemaphore 278
IloSemiContVar 347
IloSemiContVarArray 351
ILOSIMPLEXCALLBACK0 496
IloSolution 281

IloSolutionArray 293
IloSolutionIterator 294
IloSolutionManip 298
ILOSOLVECALLBACK0 497
IloSOS1 334
IloSOS1Array 337
IloSOS2 340
IloSOS2Array 344
IloSquare 299
ILOSTLBEGIN 46
IloSum 300
IloTableNotFoundException 376
IloThreeHalfPi 301
IloTimer 302
ILOTUNINGCALLBACK0 498
IloTwoPi 304
IloUnion 431, 432
ILOUSERCUTCALLBACK0 499
IloXmlContext 440
IloXmlInfo 446
IloXmlReader 457
IloXmlWriter 462
IncumbentCallbackI 661, 801
IntegerFeasibility 600, 652
IntegerFeasibilityArray 601, 653
IntParam 665
InvalidCutException 673
Iterator 172, 208, 296, 717

L

LazyConstraintCallbackI 674, 805
LinearIterator 128
LineIterator 377, 385

M

MIPCallbackI 677
MIPEmphasisType 683
MIPInfoCallbackI 684
MIPsearch 689
MultipleConversionException 690
MultipleObjException 692
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 824

I N D E X
N

NetworkCallbackI 693
NodeCallbackI 695, 808
NodeData 682
NodeEvaluator 700
NodeEvaluatorI 702
NodeSelect 706
NonLinearExpression 228
NotExtractedException 62
NumParam 707

O

operator 315, 316, 317, 318, 436
operator- 313, 435
operator && 305
operator * 306, 433
operator new 307
operator! 308
operator!= 309
operator% 310, 311
operator+ 312, 434
operator/ 314
operator== 319, 437, 438, 439
operator> 320
operator>= 321
operator>> 322
operator|| 323
optim.concert 39
optim.concert.cplex 324
optim.concert.extensions 354
optim.concert.xml 440
optim.cplex.cpp 466
optim.cplex.cpp.advanced 753
OptimizationCallbackI 710

P

Parallel_Mode 712
ParameterSet 713
PresolveCallbackI 719
PresolvedVariableException 602
PrimalPricing 721
ProbingCallbackI 722

ProbingInfoCallbackI 725

Q

Quality 727

R

Relaxation 731

S

SearchLimit 733
SearchLimitI 735
Sense 247
SimplexCallbackI 737
SolveCallbackI 739, 814
Status 64, 99
StringParam 744

T

TableIterator 379
TuningCallbackI 745
TuningStatus 747
Type 240, 503, 584

U

UnknownExtractableException 748
UserCutCallbackI 749, 819

V

VariableSelect 752
I L O G C P L E X C + + A P I 1 1 . 0 R E F E R E N C E M A N U A L 825

	ILOG CPLEX C++ API 11.0 Reference Manual
	Welcome to Concert Technology
	What Is Concert Technology?
	What You Need to Know
	Notation
	Naming Conventions
	Related Documents
	For More Information
	Web Sites

	Concepts
	Arrays
	Assert and NDEBUG
	Branch & Cut
	Callbacks in Concert Technology
	Column-Wise Modeling
	Creation of Extractable Objects
	Deletion of Extractable Objects
	Exceptions, Errors
	Extraction
	Goals
	Handle Class
	Infeasibility Tools
	Conflict Refiner
	FeasOpt
	Logical Constraints
	Normalization: Reducing Linear Terms
	Notification
	Piecewise Linearity
	Unboundedness

	Group optim.concert
	ILOSTLBEGIN
	ILO_NO_MEMORY_MANAGER
	IloAbs
	IloAdd
	IloAlgorithm
	IloAlgorithm
	clear
	end
	error
	extract
	getEnv
	getIntValue
	getIntValues
	getModel
	getObjValue
	getStatus
	getTime
	getValue
	getValue
	getValue
	getValue
	getValues
	getValues
	isExtracted
	out
	printTime
	resetTime
	setError
	setOut
	setWarning
	solve
	warning

	IloAlgorithm::CannotExtractException
	end
	getAlgorithm
	getExtractables

	IloAlgorithm::CannotRemoveException
	end
	getAlgorithm
	getExtractables

	IloAlgorithm::Exception
	Exception

	IloAlgorithm::NotExtractedException
	NotExtractedException
	getAlgorithm
	getExtractable

	IloAlgorithm::Status
	IloAnd
	IloAnd
	IloAnd
	IloAnd
	add
	add
	getImpl
	remove
	remove

	IloArcCos
	IloArray
	IloArray
	add
	add
	add
	clear
	end
	getEnv
	getSize
	operator[]
	operator[]
	remove

	IloBarrier
	IloBarrier
	wait

	IloBaseEnvMutex
	lock
	unlock

	IloBool
	IloBoolArray
	IloBoolArray
	IloBoolArray
	IloBoolArray
	add
	add
	add

	IloBoolVar
	IloBoolVar
	IloBoolVar
	IloBoolVar

	IloBoolVarArray
	IloBoolVarArray
	IloBoolVarArray
	IloBoolVarArray
	add
	add
	add
	operator[]
	operator[]
	operator[]

	IloCeil
	IloCondition
	IloCondition
	broadcast
	notify
	wait

	IloConstraint
	IloConstraint
	IloConstraint
	getImpl

	IloConstraintArray
	IloConstraintArray
	IloConstraintArray
	IloConstraintArray
	add
	add
	add
	operator[]
	operator[]

	IloCplex::Status
	IloDeleterMode
	IloDiff
	IloDiff
	IloDiff
	IloDiff
	IloDiff
	getImpl

	IloDisableNANDetection
	IloDiv
	IloEmptyHandleException
	IloEmptyHandleException
	IloEmptyHandleException

	IloEnableNANDetection
	IloEndMT
	IloEnv
	IloEnv
	IloEnv
	end
	error
	getExtractable
	getImpl
	getMaxId
	getMemoryUsage
	getNullStream
	getRandom
	getTime
	getTotalMemoryUsage
	getVersion
	isValidId
	out
	printTime
	setDeleter
	setError
	setNormalizer
	setOut
	setWarning
	unsetDeleter
	warning

	IloEnvironmentMismatch
	IloEnvironmentMismatch
	IloEnvironmentMismatch

	IloException
	IloException
	end
	getMessage

	IloExponent
	IloExpr
	IloExpr
	IloExpr
	IloExpr
	IloExpr
	IloExpr
	IloExpr
	getConstant
	getImpl
	getLinearIterator
	isNormalized
	normalize
	operator *=
	operator+=
	operator+=
	operator+=
	operator+=
	operator+=
	operator+=
	operator-=
	operator-=
	operator-=
	operator-=
	operator-=
	operator-=
	operator/=
	remove
	setConstant
	setLinearCoef
	setLinearCoefs
	setNumConstant

	IloExprArray
	IloExprArray
	IloExprArray
	operator[]

	IloExpr::LinearIterator
	getCoef
	getVar
	ok
	operator++

	IloExtractable
	IloExtractable
	asConstraint
	asIntExpr
	asModel
	asNumExpr
	asObjective
	asVariable
	end
	getEnv
	getId
	getImpl
	getName
	getObject
	isConstraint
	isIntExpr
	isModel
	isNumExpr
	isObjective
	isVariable
	setName
	setObject

	IloExtractableArray
	IloExtractableArray
	IloExtractableArray
	IloExtractableArray
	add
	add
	add
	endElements
	setNames

	IloExtractableVisitor
	IloExtractableVisitor
	beginVisit
	endVisit
	visitChildren
	visitChildren

	IloFastMutex
	IloFastMutex
	isLocked
	lock
	unlock

	IloFloatVar
	IloFloatVarArray
	IloFloor
	IloGetClone
	IloHalfPi
	IloIfThen
	IloIfThen
	IloIfThen
	IloIfThen
	getImpl

	IloInitMT
	IloInt
	IloIntArray
	IloIntArray
	IloIntArray
	IloIntArray
	contains
	contains
	discard
	discard
	operator[]
	operator[]
	operator[]
	toNumArray

	IloIntExpr
	IloIntExpr
	IloIntExpr
	IloIntExpr
	IloIntExpr
	IloIntExpr
	getImpl
	operator *=
	operator+=
	operator+=
	operator-=
	operator-=

	IloIntExprArg
	IloIntExprArg
	IloIntExprArg
	getImpl

	IloIntExprArray
	IloIntExprArray
	IloIntExprArray
	add
	add
	add
	endElements
	operator[]
	operator[]
	operator[]

	IloIntSet
	IloIntSet
	IloIntSet
	IloIntSet
	IloIntSet
	add
	add
	contains
	contains
	empty
	getFirst
	getImpl
	getLast
	getNext
	getNextC
	getPrevious
	getPreviousC
	getSize
	intersects
	remove
	remove
	setIntersection
	setIntersection

	IloIntSet::Iterator
	Iterator
	ok
	operator *
	operator++

	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	IloIntSetVar
	addPossible
	addRequired
	getImpl
	getPossibleSet
	getPossibleSet
	getRequiredSet
	getRequiredSet
	removePossible
	removeRequired

	IloIntSetVarArray
	IloIntSetVarArray
	IloIntSetVarArray
	add
	add
	add
	operator[]
	operator[]

	IloIntTupleSet
	IloIntTupleSet
	add
	end
	getArity
	getCardinality
	getImpl
	isIn
	remove

	IloIntTupleSetIterator
	IloIntTupleSetIterator
	operator *

	IloIntVar
	IloIntVar
	IloIntVar
	IloIntVar
	IloIntVar
	IloIntVar
	IloIntVar
	IloIntVar
	IloIntVar
	getImpl
	getLB
	getMax
	getMin
	getUB
	setBounds
	setLB
	setMax
	setMin
	setPossibleValues
	setUB

	IloIntVarArray
	IloIntVarArray
	IloIntVarArray
	IloIntVarArray
	IloIntVarArray
	IloIntVarArray
	IloIntVarArray
	IloIntVarArray
	IloIntVarArray
	add
	add
	add
	endElements
	operator[]
	operator[]
	operator[]
	toNumVarArray

	IloIsNAN
	IloIterator
	IloIterator
	ok
	operator++

	IloLexicographic
	IloLog
	IloMax
	IloMaximize
	IloMin
	IloMinimize
	IloModel
	IloModel
	IloModel
	IloModel
	add
	add
	getImpl
	remove
	remove

	IloModel::Iterator
	Iterator
	ok
	operator *
	operator++

	IloMutexDeadlock
	IloMutexNotOwner
	IloMutexProblem
	IloMutexProblem

	IloNot
	IloNot
	IloNot
	getImpl

	IloNum
	IloNumArray
	IloNumArray
	IloNumArray
	IloNumArray
	IloNumArray
	contains
	operator[]
	operator[]
	operator[]
	toIntArray

	IloNumExpr
	IloNumExpr
	IloNumExpr
	IloNumExpr
	IloNumExpr
	IloNumExpr
	IloNumExpr
	IloNumExpr
	getImpl
	operator *=
	operator+=
	operator+=
	operator-=
	operator-=
	operator/=

	IloNumExprArg
	IloNumExprArg
	IloNumExprArg
	getImpl

	IloNumExprArray
	IloNumExprArray
	IloNumExprArray
	add
	add
	add
	endElements
	operator[]

	IloNumExpr::NonLinearExpression
	getExpression

	IloNumVar
	IloNumVar
	IloNumVar
	IloNumVar
	IloNumVar
	IloNumVar
	IloNumVar
	IloNumVar
	IloNumVar
	IloNumVar
	getImpl
	getLB
	getPossibleValues
	getType
	getUB
	setBounds
	setLB
	setPossibleValues
	setUB

	IloNumVarArray
	IloNumVarArray
	IloNumVarArray
	IloNumVarArray
	IloNumVarArray
	IloNumVarArray
	IloNumVarArray
	IloNumVarArray
	IloNumVarArray
	add
	add
	add
	endElements
	operator[]
	setBounds
	toIntExprArray
	toIntVarArray
	toNumExprArray

	IloNumVar::Type
	IloObjective
	IloObjective
	IloObjective
	IloObjective
	IloObjective
	getConstant
	getExpr
	getImpl
	getSense
	operator()
	operator()
	setConstant
	setExpr
	setLinearCoef
	setLinearCoefs
	setSense

	IloObjective::Sense
	IloOr
	IloOr
	IloOr
	IloOr
	add
	add
	getImpl
	remove
	remove

	IloPi
	IloPiecewiseLinear
	IloPower
	IloQuarterPi
	IloRandom
	IloRandom
	IloRandom
	IloRandom
	IloRandom
	end
	getEnv
	getFloat
	getImpl
	getInt
	getName
	getObject
	reSeed
	setName
	setObject

	IloRange
	IloRange
	IloRange
	IloRange
	IloRange
	IloRange
	getExpr
	getImpl
	getLB
	getUB
	operator()
	setBounds
	setExpr
	setLB
	setLinearCoef
	setLinearCoefs
	setUB

	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	IloRangeArray
	add
	add
	add
	operator()
	operator()
	operator[]
	operator[]
	setBounds
	setBounds

	IloRound
	IloScalProd
	IloScalProd
	IloScalProd
	IloScalProd
	IloSemaphore
	IloSemaphore
	post
	tryWait
	wait

	IloSolution
	IloSolution
	IloSolution
	IloSolution
	IloSolution
	add
	add
	add
	add
	add
	add
	add
	contains
	copy
	copy
	end
	getEnv
	getImpl
	getMax
	getMin
	getName
	getObject
	getObjective
	getObjectiveValue
	getObjectiveVar
	getPossibleSet
	getRequiredSet
	getValue
	getValue
	getValue
	isBetterThan
	isBound
	isBound
	isEquivalent
	isEquivalent
	isFixed
	isObjectiveSet
	isRestorable
	isWorseThan
	makeClone
	operator=
	remove
	remove
	restore
	restore
	setFalse
	setMax
	setMin
	setName
	setNonRestorable
	setNonRestorable
	setObject
	setObjective
	setPossibleSet
	setRequiredSet
	setRestorable
	setRestorable
	setTrue
	setValue
	setValue
	setValue
	store
	store
	unsetObjective

	IloSolutionArray
	IloSolutionIterator
	IloSolutionIterator
	operator *
	operator++

	IloSolution::Iterator
	Iterator
	ok
	operator *
	operator++

	IloSolutionManip
	IloSolutionManip

	IloSquare
	IloSum
	IloThreeHalfPi
	IloTimer
	IloTimer
	getEnv
	getTime
	reset
	restart
	start
	stop

	IloTwoPi
	operator &&
	operator *
	operator new
	operator!
	operator!=
	operator%
	operator%
	operator+
	operator-
	operator/
	operator<
	operator<<
	operator<<
	operator<=
	operator==
	operator>
	operator>=
	operator>>
	operator||

	Group optim.concert.cplex
	IloConversion
	IloConversion
	IloConversion
	IloConversion
	IloConversion
	IloConversion
	getImpl

	IloNumColumn
	IloNumColumn
	IloNumColumn
	clear
	operator const IloAddNumVar &
	operator+=
	operator+=
	operator+=

	IloNumColumnArray
	IloNumColumnArray
	IloNumColumnArray
	IloNumColumnArray

	IloSOS1
	IloSOS1
	IloSOS1
	IloSOS1
	IloSOS1
	IloSOS1
	getImpl
	getNumVars
	getValues

	IloSOS1Array
	IloSOS1Array
	IloSOS1Array
	add
	add
	add
	operator[]
	operator[]

	IloSOS2
	IloSOS2
	IloSOS2
	IloSOS2
	IloSOS2
	IloSOS2
	getImpl
	getNumVars
	getValues

	IloSOS2Array
	IloSOS2Array
	IloSOS2Array
	add
	add
	add
	operator[]
	operator[]

	IloSemiContVar
	IloSemiContVar
	IloSemiContVar
	IloSemiContVar
	IloSemiContVar
	getImpl
	getSemiContLB
	setSemiContLB

	IloSemiContVarArray
	IloSemiContVarArray
	IloSemiContVarArray
	IloSemiContVarArray
	IloSemiContVarArray
	IloSemiContVarArray
	add
	add
	add

	Group optim.concert.extensions
	IloCsvLine
	IloCsvLine
	IloCsvLine
	IloCsvLine
	copy
	emptyFieldByHeader
	emptyFieldByPosition
	end
	getFloatByHeader
	getFloatByHeaderOrDefaultValue
	getFloatByPosition
	getFloatByPositionOrDefaultValue
	getImpl
	getIntByHeader
	getIntByHeaderOrDefaultValue
	getIntByPosition
	getIntByPositionOrDefaultValue
	getLineNumber
	getNumberOfFields
	getStringByHeader
	getStringByHeaderOrDefaultValue
	getStringByPosition
	getStringByPositionOrDefaultValue
	operator=
	printValueOfKeys

	IloCsvReader
	IloCsvReader
	IloCsvReader
	IloCsvReader
	IloCsvReader
	end
	getCsvFormat
	getCurrentLine
	getEnv
	getFileVersion
	getImpl
	getLineByKey
	getLineByNumber
	getNumberOfColumns
	getNumberOfItems
	getNumberOfKeys
	getNumberOfTables
	getPosition
	getReaderForUniqueTableFile
	getRequiredBy
	getTable
	getTableByName
	getTableByNumber
	isHeadingExists
	operator=
	printKeys

	IloCsvReader::IloColumnHeaderNotFoundException
	IloCsvReader::IloCsvReaderParameterException
	IloCsvReader::IloDuplicatedTableException
	IloCsvReader::IloFieldNotFoundException
	IloCsvReader::IloFileNotFoundException
	IloCsvReader::IloIncorrectCsvReaderUseException
	IloCsvReader::IloLineNotFoundException
	IloCsvReader::IloTableNotFoundException
	IloCsvReader::LineIterator
	LineIterator
	LineIterator
	ok
	operator *
	operator++

	IloCsvReader::TableIterator
	TableIterator
	ok
	operator *
	operator++

	IloCsvTableReader
	IloCsvTableReader
	IloCsvTableReader
	IloCsvTableReader
	IloCsvTableReader
	end
	getCurrentLine
	getEnv
	getImpl
	getLineByKey
	getLineByNumber
	getNameOfTable
	getNumberOfColumns
	getNumberOfItems
	getNumberOfKeys
	getPosition
	isHeadingExists
	operator=
	printKeys

	IloCsvTableReader::LineIterator
	LineIterator
	LineIterator
	ok
	operator *
	operator++

	IloDifference
	IloDifference
	IloIntersection
	IloIntervalList
	IloIntervalList
	IloIntervalList
	addInterval
	addPeriodicInterval
	contains
	copy
	dilate
	empty
	getDefinitionIntervalMax
	getDefinitionIntervalMin
	isEmpty
	isKeptOpen
	keepOpen
	removeInterval
	removeIntervalOnDuration
	removePeriodicInterval
	setDifference
	setPeriodic
	setUnion
	shift

	IloIntervalListCursor
	IloIntervalListCursor
	IloIntervalListCursor
	IloIntervalListCursor
	getEnd
	getStart
	getType
	ok
	operator++
	operator--
	operator=
	seek

	IloMax
	IloMin
	IloNumToAnySetStepFunction
	IloNumToAnySetStepFunction
	IloNumToAnySetStepFunction
	add
	add
	add
	alwaysContains
	alwaysContains
	alwaysContains
	alwaysIntersects
	alwaysIntersects
	contains
	contains
	copy
	dilate
	empty
	everContains
	everContains
	everContains
	everIntersects
	everIntersects
	fill
	getComplementSet
	getDefinitionIntervalMax
	getDefinitionIntervalMin
	getSet
	intersects
	isEmpty
	isFull
	remove
	remove
	remove
	set
	set
	setIntersection
	setIntersection
	setIntersection
	setPeriodic
	shift
	usesComplementaryRepresentation

	IloNumToAnySetStepFunctionCursor
	IloNumToAnySetStepFunctionCursor
	IloNumToAnySetStepFunctionCursor
	IloNumToAnySetStepFunctionCursor
	getComplementSet
	getSegmentMax
	getSegmentMin
	getSet
	isEmpty
	isFull
	ok
	operator++
	operator--
	operator=
	seek
	usesComplementaryRepresentation

	IloNumToNumSegmentFunction
	IloNumToNumSegmentFunction
	IloNumToNumSegmentFunction
	IloNumToNumSegmentFunction
	addValue
	copy
	dilate
	getArea
	getDefinitionIntervalMax
	getDefinitionIntervalMin
	getMax
	getMin
	getValue
	operator *=
	operator+=
	operator-=
	setMax
	setMax
	setMax
	setMin
	setMin
	setMin
	setPeriodic
	setPeriodicValue
	setPoints
	setSlope
	setValue
	shift

	IloNumToNumSegmentFunctionCursor
	IloNumToNumSegmentFunctionCursor
	IloNumToNumSegmentFunctionCursor
	getSegmentMax
	getSegmentMin
	getValue
	getValueLeft
	getValueRight
	ok
	operator++
	operator--
	seek

	IloNumToNumStepFunction
	IloNumToNumStepFunction
	IloNumToNumStepFunction
	addValue
	copy
	dilate
	getArea
	getDefinitionIntervalMax
	getDefinitionIntervalMin
	getMax
	getMin
	getValue
	operator *=
	operator+=
	operator-=
	setMax
	setMax
	setMin
	setMin
	setPeriodic
	setPeriodicValue
	setSteps
	setValue
	shift

	IloNumToNumStepFunctionCursor
	IloNumToNumStepFunctionCursor
	IloNumToNumStepFunctionCursor
	getSegmentMax
	getSegmentMin
	getValue
	ok
	operator++
	operator--
	seek

	IloUnion
	IloUnion
	operator *
	operator+
	operator-
	operator<<
	operator==
	operator==
	operator==

	Group optim.concert.xml
	IloXmlContext
	IloXmlContext
	IloXmlContext
	end
	getChildIdReadError
	getChildTagReadError
	getIdListReadError
	getImpl
	getParentIdReadError
	getParentTagReadError
	getTagListReadError
	getWriteError
	getWritePrecision
	readModel
	readModel
	readModelAndSolution
	readRtti
	readSolution
	readSolution
	readSolutionValue
	registerXML
	registerXMLArray
	setWriteMode
	setWritePrecision
	writeModel
	writeModelAndSolution
	writeRtti
	writeSolution
	writeSolutionValue

	IloXmlInfo
	IloXmlInfo
	IloXmlInfo
	checkAttExistence
	checkExprExistence
	getContext
	getIntValArray
	getNumValArray
	getRefInChild
	getTag
	getTagElement
	getTagName
	getVarType
	getVersion
	read
	readArrayFromXml
	readFrom
	readFromXml
	readRtti
	readSolution
	readXml
	readXmlArray
	setBoolArray
	setCommonArrayXml
	setCommonValueXml
	setCommonXml
	setIntArray
	setIntSet
	setNumArray
	setNumSet
	setVersion
	setXml
	write
	write
	writeExtractable
	writeRef
	writeRtti
	writeSolution
	writeSolutionValue
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeVarArray
	writeXml
	writeXmlRef

	IloXmlReader
	IloXmlReader
	IloXmlReader
	checkRttiOfObjectById
	checkRttiOfObjectById
	checkTypeOfObjectById
	checkTypeOfObjectById
	deleteAllocatedMemory
	deleteAllocatedMemory
	findElement
	findElementByTag
	getChildrenCardinal
	getEnv
	getEnvImpl
	getFirstSubElement
	getIntAttribute
	getNumAttribute
	getObjectById
	getRoot
	getSerialized
	getSolutionSerialized
	isSerialized
	openDocument
	readAttribute
	readCData
	readComment
	readData
	readText
	setfileName
	string2Int
	string2IntArray
	string2IntRange
	string2IntSet
	string2Num
	string2NumArray

	IloXmlWriter
	IloXmlWriter
	IloXmlWriter
	addAttribute
	addCData
	addComment
	addElement
	addSubElement
	addText
	createElement
	deleteAllocatedMemory
	deleteAllocatedMemory
	getEnv
	getEnvImpl
	getfileName
	getRoot
	getSerialized
	getSolutionSerialized
	Int2String
	IntArray2String
	IntSet2String
	isSerialized
	isSolutionSerialized
	Num2String
	NumArray2String
	NumSet2String
	setfileName
	string2Int
	writeDocument

	Group optim.cplex.cpp
	ILOBARRIERCALLBACK0
	ILOBRANCHCALLBACK0
	ILOCONTINUOUSCALLBACK0
	ILOCPLEXGOAL0
	ILOCROSSOVERCALLBACK0
	ILOCUTCALLBACK0
	ILODISJUNCTIVECUTCALLBACK0
	ILODISJUNCTIVECUTINFOCALLBACK0
	ILOFLOWMIRCUTCALLBACK0
	ILOFLOWMIRCUTINFOCALLBACK0
	ILOFRACTIONALCUTCALLBACK0
	ILOFRACTIONALCUTINFOCALLBACK0
	ILOHEURISTICCALLBACK0
	ILOINCUMBENTCALLBACK0
	ILOLAZYCONSTRAINTCALLBACK0
	ILOMIPCALLBACK0
	ILOMIPINFOCALLBACK0
	ILONETWORKCALLBACK0
	ILONODECALLBACK0
	ILOPRESOLVECALLBACK0
	ILOPROBINGCALLBACK0
	ILOPROBINGINFOCALLBACK0
	ILOSIMPLEXCALLBACK0
	ILOSOLVECALLBACK0
	ILOTUNINGCALLBACK0
	ILOUSERCUTCALLBACK0
	IloBound
	IloBound
	IloBound
	IloBound
	getImpl
	getType
	getVar

	IloBound::Type
	IloCplex
	IloCplex
	IloCplex
	addCut
	addCuts
	addDiversityFilter
	addDiversityFilter
	addLazyConstraint
	addLazyConstraints
	addRangeFilter
	addRangeFilter
	addUserCut
	addUserCuts
	Apply
	basicPresolve
	clearCuts
	clearLazyConstraints
	clearModel
	clearUserCuts
	delDirection
	delDirections
	delFilter
	delPriorities
	delPriority
	delSolnPoolSoln
	delSolnPoolSolns
	dualFarkas
	exportModel
	feasOpt
	feasOpt
	feasOpt
	feasOpt
	freePresolve
	getAborter
	getAlgorithm
	getAX
	getAX
	getBasisStatus
	getBasisStatus
	getBasisStatus
	getBasisStatuses
	getBasisStatuses
	getBasisStatuses
	getBestObjValue
	getBoundSA
	getConflict
	getConflict
	getCplexStatus
	getCplexSubStatus
	getCutoff
	getDefault
	getDeleteMode
	getDirection
	getDirections
	getDiverging
	getDiversityFilterLowerCutoff
	getDiversityFilterRefVals
	getDiversityFilterUpperCutoff
	getDiversityFilterWeights
	getDual
	getDuals
	getFilterIndex
	getFilterType
	getFilterVars
	getIncumbentNode
	getInfeasibilities
	getInfeasibilities
	getInfeasibilities
	getInfeasibility
	getInfeasibility
	getInfeasibility
	getMax
	getMin
	getNbarrierIterations
	getNbinVars
	getNcols
	getNcrossDExch
	getNcrossDPush
	getNcrossPExch
	getNcrossPPush
	getNcuts
	getNdualSuperbasics
	getNfilters
	getNintVars
	getNiterations
	getNnodes
	getNnodesLeft
	getNNZs
	getNphaseOneIterations
	getNprimalSuperbasics
	getNQCs
	getNrows
	getNsemiContVars
	getNsemiIntVars
	getNsiftingIterations
	getNsiftingPhaseOneIterations
	getNSOSs
	getObjective
	getObjSA
	getObjValue
	getParam
	getParameterSet
	getPriorities
	getPriority
	getQuality
	getQuality
	getRangeFilterCoefs
	getRangeFilterLowerBound
	getRangeFilterUpperBound
	getRangeSA
	getRay
	getReducedCost
	getReducedCost
	getReducedCosts
	getReducedCosts
	getRHSSA
	getSlack
	getSlacks
	getSolnPoolMeanObjValue
	getSolnPoolNreplaced
	getSolnPoolNsolns
	getStatus
	getSubAlgorithm
	getValue
	getValue
	getValue
	getValue
	getValues
	getValues
	getValues
	getValues
	getValues
	getValues
	getValues
	getVersion
	importModel
	importModel
	importModel
	isDualFeasible
	isMIP
	isPrimalFeasible
	isQC
	isQO
	LimitSearch
	populate
	presolve
	protectVariables
	protectVariables
	qpIndefCertificate
	readBasis
	readFilters
	readMIPStart
	readOrder
	readParam
	readSolution
	refineConflict
	remove
	setBasisStatuses
	setDefaults
	setDeleteMode
	setDirection
	setDirections
	setParam
	setParameterSet
	setPriorities
	setPriority
	setVectors
	solve
	solve
	solveFixed
	tuneParam
	use
	use
	writeBasis
	writeConflict
	writeFilters
	writeMIPStart
	writeMIPStarts
	writeOrder
	writeParam
	writeSolution
	writeSolutions

	IloCplex::Aborter
	Aborter
	abort
	clear
	end
	isAborted

	IloCplex::Algorithm
	IloCplex::BarrierCallbackI
	BarrierCallbackI
	getDualObjValue

	IloCplex::BasisStatus
	IloCplex::BasisStatusArray
	IloCplex::BoolParam
	IloCplex::BranchCallbackI
	BranchCallbackI
	getBranch
	getBranchType
	getNbranches
	getNodeId
	isIntegerFeasible
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	prune

	BranchCallbackI::BranchType
	IloCplex::BranchDirection
	IloCplex::BranchDirectionArray
	IloCplex::Callback
	Callback
	end
	getImpl
	getType

	IloCplex::CallbackI
	abort
	duplicateCallback
	getEnv
	main

	Callback::Type
	IloCplex::ConflictStatus
	IloCplex::ConflictStatusArray
	IloCplex::ContinuousCallbackI
	ContinuousCallbackI
	getDualInfeasibility
	getInfeasibility
	getNiterations
	getObjValue
	isDualFeasible
	isFeasible

	IloCplex::ControlCallbackI
	getDownPseudoCost
	getDownPseudoCost
	getFeasibilities
	getFeasibilities
	getFeasibility
	getFeasibility
	getFeasibility
	getFeasibility
	getLB
	getLB
	getLBs
	getLBs
	getNodeData
	getObjValue
	getSlack
	getSlacks
	getUB
	getUB
	getUBs
	getUBs
	getUpPseudoCost
	getUpPseudoCost
	getValue
	getValue
	getValue
	getValues
	getValues
	isSOSFeasible
	isSOSFeasible

	ControlCallbackI::IntegerFeasibility
	ControlCallbackI::IntegerFeasibilityArray
	ControlCallbackI::PresolvedVariableException
	end
	getPresolvedVariables

	IloCplex::CplexStatus
	IloCplex::CrossoverCallbackI
	CrossoverCallbackI
	getNdualExchanges
	getNdualPushes
	getNprimalExchanges
	getNprimalPushes
	getNsuperbasics

	IloCplex::CutCallbackI
	CutCallbackI
	add
	addLocal

	IloCplex::CutType
	IloCplex::DeleteMode
	IloCplex::DisjunctiveCutCallbackI
	DisjunctiveCutCallbackI
	getProgress

	IloCplex::DisjunctiveCutInfoCallbackI
	DisjunctiveCutInfoCallbackI
	getProgress

	IloCplex::DualPricing
	IloCplex::Exception
	getStatus

	IloCplex::FlowMIRCutCallbackI
	FlowMIRCutCallbackI
	getProgress

	IloCplex::FlowMIRCutInfoCallbackI
	FlowMIRCutInfoCallbackI
	getProgress

	IloCplex::FractionalCutCallbackI
	FractionalCutCallbackI
	getProgress

	IloCplex::FractionalCutInfoCallbackI
	FractionalCutInfoCallbackI
	getProgress

	IloCplex::Goal
	Goal
	Goal
	Goal
	Goal
	Goal
	operator=

	IloCplex::GoalI
	GoalI
	abort
	AndGoal
	BranchAsCplexGoal
	duplicateGoal
	execute
	FailGoal
	getBestObjValue
	getBranch
	getBranchType
	getCutoff
	getDirection
	getDirection
	getDownPseudoCost
	getDownPseudoCost
	getEnv
	getFeasibilities
	getFeasibilities
	getFeasibility
	getFeasibility
	getFeasibility
	getFeasibility
	getIncumbentObjValue
	getIncumbentValue
	getIncumbentValue
	getIncumbentValues
	getIncumbentValues
	getLB
	getLB
	getLBs
	getLBs
	getModel
	getMyThreadNum
	getNbranches
	getNcliques
	getNcols
	getNcovers
	getNdisjunctiveCuts
	getNflowCovers
	getNflowPaths
	getNfractionalCuts
	getNGUBcovers
	getNimpliedBounds
	getNiterations
	getNMIRs
	getNnodes
	getNremainingNodes
	getNrows
	getObjCoef
	getObjCoef
	getObjCoefs
	getObjCoefs
	getObjValue
	getPriority
	getPriority
	getSlack
	getSlacks
	getUB
	getUB
	getUBs
	getUBs
	getUpPseudoCost
	getUpPseudoCost
	getUserThreads
	getValue
	getValue
	getValue
	getValues
	getValues
	GlobalCutGoal
	GlobalCutGoal
	hasIncumbent
	isIntegerFeasible
	isSOSFeasible
	isSOSFeasible
	OrGoal
	SolutionGoal
	SolutionGoal

	GoalI::BranchType
	GoalI::IntegerFeasibility
	GoalI::IntegerFeasibilityArray
	IloCplex::HeuristicCallbackI
	getCplexStatus
	getStatus
	isDualFeasible
	isPrimalFeasible
	setBounds
	setBounds
	setBounds
	setBounds
	setSolution
	setSolution
	setSolution
	setSolution
	solve

	IloCplex::IncumbentCallbackI
	getNodeData
	getNodeId
	getObjValue
	getSlack
	getSlacks
	getValue
	getValue
	getValue
	getValues
	getValues
	reject

	IloCplex::IntParam
	IloCplex::InvalidCutException
	getCut

	IloCplex::LazyConstraintCallbackI
	IloCplex::MIPCallbackI
	MIPCallbackI
	getNcliques
	getNcovers
	getNdisjunctiveCuts
	getNflowCovers
	getNflowPaths
	getNfractionalCuts
	getNGUBcovers
	getNimpliedBounds
	getNMIRs
	getObjCoef
	getObjCoef
	getObjCoefs
	getObjCoefs
	getUserThreads

	MIPCallbackI::NodeData
	getDataType

	IloCplex::MIPEmphasisType
	IloCplex::MIPInfoCallbackI
	MIPInfoCallbackI
	getBestObjValue
	getCutoff
	getDirection
	getDirection
	getIncumbentObjValue
	getIncumbentSlack
	getIncumbentSlacks
	getIncumbentValue
	getIncumbentValue
	getIncumbentValues
	getIncumbentValues
	getMyThreadNum
	getNiterations
	getNnodes
	getNremainingNodes
	getPriority
	getPriority
	hasIncumbent

	IloCplex::MIPsearch
	IloCplex::MultipleConversionException
	getConversion
	getVariables

	IloCplex::MultipleObjException
	IloCplex::NetworkCallbackI
	NetworkCallbackI
	getInfeasibility
	getNiterations
	getObjValue
	isFeasible

	IloCplex::NodeCallbackI
	NodeCallbackI
	getBranchVar
	getBranchVar
	getDepth
	getDepth
	getEstimatedObjValue
	getEstimatedObjValue
	getInfeasibilitySum
	getInfeasibilitySum
	getNinfeasibilities
	getNinfeasibilities
	getNodeData
	getNodeData
	getNodeId
	getNodeNumber
	getObjValue
	getObjValue
	selectNode
	selectNode

	IloCplex::NodeEvaluator
	NodeEvaluator
	NodeEvaluator
	NodeEvaluator
	getImpl
	operator=

	IloCplex::NodeEvaluatorI
	NodeEvaluatorI
	duplicateEvaluator
	evaluate
	getBranchVar
	getDepth
	getEstimatedObjValue
	getInfeasibilitySum
	getNinfeasibilities
	getNodeId
	getObjValue
	init
	subsume

	IloCplex::NodeSelect
	IloCplex::NumParam
	IloCplex::OptimizationCallbackI
	getModel
	getNcols
	getNQCs
	getNrows

	IloCplex::Parallel_Mode
	IloCplex::ParameterSet
	clear
	end
	getParam
	getParam
	getParam
	getParam
	setParam
	setParam
	setParam
	setParam

	ParameterSet::Iterator
	Iterator
	ok
	operator *
	operator++
	operator++

	IloCplex::PresolveCallbackI
	PresolveCallbackI
	getNaggregations
	getNmodifiedCoeffs
	getNremovedCols
	getNremovedRows

	IloCplex::PrimalPricing
	IloCplex::ProbingCallbackI
	ProbingCallbackI
	getPhase
	getProgress

	IloCplex::ProbingInfoCallbackI
	ProbingInfoCallbackI
	getPhase
	getProgress

	IloCplex::Quality
	IloCplex::Relaxation
	IloCplex::SearchLimit
	SearchLimit
	SearchLimit
	SearchLimit
	getImpl
	operator=

	IloCplex::SearchLimitI
	SearchLimitI
	check
	duplicateLimit
	init

	IloCplex::SimplexCallbackI
	SimplexCallbackI

	IloCplex::SolveCallbackI
	SolveCallbackI
	getCplexStatus
	getStatus
	isDualFeasible
	isPrimalFeasible
	setVectors
	setVectors
	solve
	useSolution

	IloCplex::StringParam
	IloCplex::TuningCallbackI
	TuningCallbackI
	getProgress

	IloCplex::TuningStatus
	IloCplex::UnknownExtractableException
	getExtractable

	IloCplex::UserCutCallbackI
	IloCplex::VariableSelect

	Group optim.cplex.cpp.advanced
	IloCplex::BranchCallbackI
	BranchCallbackI
	getBranch
	getBranchType
	getNbranches
	getNodeId
	isIntegerFeasible
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	makeBranch
	prune

	IloCplex::ControlCallbackI
	getDownPseudoCost
	getDownPseudoCost
	getFeasibilities
	getFeasibilities
	getFeasibility
	getFeasibility
	getFeasibility
	getFeasibility
	getLB
	getLB
	getLBs
	getLBs
	getNodeData
	getObjValue
	getSlack
	getSlacks
	getUB
	getUB
	getUBs
	getUBs
	getUpPseudoCost
	getUpPseudoCost
	getValue
	getValue
	getValue
	getValues
	getValues
	isSOSFeasible
	isSOSFeasible

	IloCplex::CutCallbackI
	CutCallbackI
	add
	addLocal

	IloCplex::Goal
	Goal
	Goal
	Goal
	Goal
	Goal
	operator=

	IloCplex::GoalI
	GoalI
	abort
	AndGoal
	BranchAsCplexGoal
	duplicateGoal
	execute
	FailGoal
	getBestObjValue
	getBranch
	getBranchType
	getCutoff
	getDirection
	getDirection
	getDownPseudoCost
	getDownPseudoCost
	getEnv
	getFeasibilities
	getFeasibilities
	getFeasibility
	getFeasibility
	getFeasibility
	getFeasibility
	getIncumbentObjValue
	getIncumbentValue
	getIncumbentValue
	getIncumbentValues
	getIncumbentValues
	getLB
	getLB
	getLBs
	getLBs
	getModel
	getMyThreadNum
	getNbranches
	getNcliques
	getNcols
	getNcovers
	getNdisjunctiveCuts
	getNflowCovers
	getNflowPaths
	getNfractionalCuts
	getNGUBcovers
	getNimpliedBounds
	getNiterations
	getNMIRs
	getNnodes
	getNremainingNodes
	getNrows
	getObjCoef
	getObjCoef
	getObjCoefs
	getObjCoefs
	getObjValue
	getPriority
	getPriority
	getSlack
	getSlacks
	getUB
	getUB
	getUBs
	getUBs
	getUpPseudoCost
	getUpPseudoCost
	getUserThreads
	getValue
	getValue
	getValue
	getValues
	getValues
	GlobalCutGoal
	GlobalCutGoal
	hasIncumbent
	isIntegerFeasible
	isSOSFeasible
	isSOSFeasible
	OrGoal
	SolutionGoal
	SolutionGoal

	IloCplex::HeuristicCallbackI
	getCplexStatus
	getStatus
	isDualFeasible
	isPrimalFeasible
	setBounds
	setBounds
	setBounds
	setBounds
	setSolution
	setSolution
	setSolution
	setSolution
	solve

	IloCplex::IncumbentCallbackI
	getNodeData
	getNodeId
	getObjValue
	getSlack
	getSlacks
	getValue
	getValue
	getValue
	getValues
	getValues
	reject

	IloCplex::LazyConstraintCallbackI
	IloCplex::NodeCallbackI
	NodeCallbackI
	getBranchVar
	getBranchVar
	getDepth
	getDepth
	getEstimatedObjValue
	getEstimatedObjValue
	getInfeasibilitySum
	getInfeasibilitySum
	getNinfeasibilities
	getNinfeasibilities
	getNodeData
	getNodeData
	getNodeId
	getNodeNumber
	getObjValue
	getObjValue
	selectNode
	selectNode

	IloCplex::SolveCallbackI
	SolveCallbackI
	getCplexStatus
	getStatus
	isDualFeasible
	isPrimalFeasible
	setVectors
	setVectors
	solve
	useSolution

	IloCplex::UserCutCallbackI
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

