In the routine setproblemdata()
, there are parameters for qmatbeg
, qmatcnt
, qmatind
, and qmatval
to fill the quadratic coefficient matrix. The Callable Library routine CPXcopyquad()
copies this data into the problem object created by the Callable Library routine CPXcreateprob()
.
Instead of calling CPXlpopt()
to find a solution as we do for the linear programming problem in lpex1.c
, this time we call CPXbaropt()
to optimize this quadratic programming problem.
The complete program, qpex1.c
, appears here or online in the standard distribution.
#include <ilcplex/cplex.h> #include <stdlib.h> /* Bring in the declarations for the string functions */ #include <string.h> /* Include declaration for function at end of program */ #ifndef CPX_PROTOTYPE_MIN static int setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, int *objsen_p, double **obj_p, double **rhs_p, char **sense_p, int **matbeg_p, int **matcnt_p, int **matind_p, double **matval_p, double **lb_p, double **ub_p, int **qmatbeg_p, int **qmatcnt_p, int **qmatind_p, double **qmatval_p); static void free_and_null (char **ptr); #else static int setproblemdata (); static void free_and_null (); #endif /* The problem we are optimizing will have 2 rows, 3 columns, 6 nonzeros, and 7 nonzeros in the quadratic coefficient matrix. */ #define NUMROWS 2 #define NUMCOLS 3 #define NUMNZ 6 #define NUMQNZ 7 #ifndef CPX_PROTOTYPE_MIN int main (void) #else int main () #endif { /* Declare pointers for the variables and arrays that will contain the data which define the LP problem. The setproblemdata() routine allocates space for the problem data. */ char *probname = NULL; int numcols; int numrows; int objsen; double *obj = NULL; double *rhs = NULL; char *sense = NULL; int *matbeg = NULL; int *matcnt = NULL; int *matind = NULL; double *matval = NULL; double *lb = NULL; double *ub = NULL; int *qmatbeg = NULL; int *qmatcnt = NULL; int *qmatind = NULL; double *qmatval = NULL; /* Declare and allocate space for the variables and arrays where we will store the optimization results including the status, objective value, variable values, dual values, row slacks and variable reduced costs. */ int solstat; double objval; double x[NUMCOLS]; double pi[NUMROWS]; double slack[NUMROWS]; double dj[NUMCOLS]; CPXENVptr env = NULL; CPXLPptr lp = NULL; int status; int i, j; int cur_numrows, cur_numcols; /* Initialize the CPLEX environment */ env = CPXopenCPLEX (&status); /* If an error occurs, the status value indicates the reason for failure. A call to CPXgeterrorstring will produce the text of the error message. Note that CPXopenCPLEX produces no output, so the only way to see the cause of the error is to use CPXgeterrorstring. For other CPLEX routines, the errors will be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */ if ( env == NULL ) { char errmsg[1024]; fprintf (stderr, "Could not open CPLEX environment.\n"); CPXgeterrorstring (env, status, errmsg); fprintf (stderr, "%s", errmsg); goto TERMINATE; } /* Turn on output to the screen */ status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON); if ( status ) { fprintf (stderr, "Failure to turn on screen indicator, error %d.\n", status); goto TERMINATE; } /* Fill in the data for the problem. */ status = setproblemdata (&probname, &numcols, &numrows, &objsen, &obj, &rhs, &sense, &matbeg, &matcnt, &matind, &matval, &lb, &ub, &qmatbeg, &qmatcnt, &qmatind, &qmatval); if ( status ) { fprintf (stderr, "Failed to build problem data arrays.\n"); goto TERMINATE; } /* Create the problem. */ lp = CPXcreateprob (env, &status, probname); /* A returned pointer of NULL may mean that not enough memory was available or there was some other problem. In the case of failure, an error message will have been written to the error channel from inside CPLEX. In this example, the setting of the parameter CPX_PARAM_SCRIND causes the error message to appear on stdout. */ if ( lp == NULL ) { fprintf (stderr, "Failed to create problem.\n"); goto TERMINATE; } /* Now copy the LP part of the problem data into the lp */ status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs, sense, matbeg, matcnt, matind, matval, lb, ub, NULL); if ( status ) { fprintf (stderr, "Failed to copy problem data.\n"); goto TERMINATE; } status = CPXcopyquad (env, lp, qmatbeg, qmatcnt, qmatind, qmatval); if ( status ) { fprintf (stderr, "Failed to copy quadratic matrix.\n"); goto TERMINATE; } /* Optimize the problem and obtain solution. */ status = CPXbaropt (env, lp); if ( status ) { fprintf (stderr, "Failed to optimize QP.\n"); goto TERMINATE; } status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj); if ( status ) { fprintf (stderr, "Failed to obtain solution.\n"); goto TERMINATE; } /* Write the output to the screen. */ printf ("\nSolution status = %d\n", solstat); printf ("Solution value = %f\n\n", objval); /* The size of the problem should be obtained by asking CPLEX what the actual size is, rather than using what was passed to CPXcopylp. cur_numrows and cur_numcols store the current number of rows and columns, respectively. */ cur_numrows = CPXgetnumrows (env, lp); cur_numcols = CPXgetnumcols (env, lp); for (i = 0; i < cur_numrows; i++) { printf ("Row %d: Slack = %10f Pi = %10f\n", i, slack[i], pi[i]); } for (j = 0; j < cur_numcols; j++) { printf ("Column %d: Value = %10f Reduced cost = %10f\n", j, x[j], dj[j]); } /* Finally, write a copy of the problem to a file. */ status = CPXwriteprob (env, lp, "qpex1.lp", NULL); if ( status ) { fprintf (stderr, "Failed to write LP to disk.\n"); goto TERMINATE; } TERMINATE: /* Free up the problem as allocated by CPXcreateprob, if necessary */ if ( lp != NULL ) { status = CPXfreeprob (env, &lp); if ( status ) { fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status); } } /* Free up the CPLEX environment, if necessary */ if ( env != NULL ) { status = CPXcloseCPLEX (&env); /* Note that CPXcloseCPLEX produces no output, so the only way to see the cause of the error is to use CPXgeterrorstring. For other CPLEX routines, the errors will be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */ if ( status ) { char errmsg[1024]; fprintf (stderr, "Could not close CPLEX environment.\n"); CPXgeterrorstring (env, status, errmsg); fprintf (stderr, "%s", errmsg); } } /* Free up the problem data arrays, if necessary. */ free_and_null ((char **) &probname); free_and_null ((char **) &obj); free_and_null ((char **) &rhs); free_and_null ((char **) &sense); free_and_null ((char **) &matbeg); free_and_null ((char **) &matcnt); free_and_null ((char **) &matind); free_and_null ((char **) &matval); free_and_null ((char **) &lb); free_and_null ((char **) &ub); free_and_null ((char **) &qmatbeg); free_and_null ((char **) &qmatcnt); free_and_null ((char **) &qmatind); free_and_null ((char **) &qmatval); return (status); } /* END main */ /* This function fills in the data structures for the quadratic program: Maximize obj: x1 + 2 x2 + 3 x3 - 0.5 ( 33x1*x1 + 22*x2*x2 + 11*x3*x3 - 12*x1*x2 - 23*x2*x3 ) Subject To c1: - x1 + x2 + x3 <= 20 c2: x1 - 3 x2 + x3 <= 30 Bounds 0 <= x1 <= 40 End */ #ifndef CPX_PROTOTYPE_MIN static int setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, int *objsen_p, double **obj_p, double **rhs_p, char **sense_p, int **matbeg_p, int **matcnt_p, int **matind_p, double **matval_p, double **lb_p, double **ub_p, int **qmatbeg_p, int **qmatcnt_p, int **qmatind_p, double **qmatval_p) #else static int setproblemdata (probname_p, numcols_p, numrows_p, objsen_p, obj_p, rhs_p, sense_p, matbeg_p, matcnt_p, matind_p, matval_p, lb_p, ub_p, qmatbeg_p, qmatcnt_p, qmatind_p, qmatval_p) char **probname_p; int *numcols_p; int *numrows_p; int *objsen_p; double **obj_p; double **rhs_p; char **sense_p; int **matbeg_p; int **matcnt_p; int **matind_p; double **matval_p; double **lb_p; double **ub_p; int **qmatbeg_p; int **qmatcnt_p; int **qmatind_p; double **qmatval_p; #endif { char *zprobname = NULL; /* Problem name <= 16 characters */ double *zobj = NULL; double *zrhs = NULL; char *zsense = NULL; int *zmatbeg = NULL; int *zmatcnt = NULL; int *zmatind = NULL; double *zmatval = NULL; double *zlb = NULL; double *zub = NULL; int *zqmatbeg = NULL; int *zqmatcnt = NULL; int *zqmatind = NULL; double *zqmatval = NULL; int status = 0; zprobname = (char *) malloc (16 * sizeof(char)); zobj = (double *) malloc (NUMCOLS * sizeof(double)); zrhs = (double *) malloc (NUMROWS * sizeof(double)); zsense = (char *) malloc (NUMROWS * sizeof(char)); zmatbeg = (int *) malloc (NUMCOLS * sizeof(int)); zmatcnt = (int *) malloc (NUMCOLS * sizeof(int)); zmatind = (int *) malloc (NUMNZ * sizeof(int)); zmatval = (double *) malloc (NUMNZ * sizeof(double)); zlb = (double *) malloc (NUMCOLS * sizeof(double)); zub = (double *) malloc (NUMCOLS * sizeof(double)); zqmatbeg = (int *) malloc (NUMCOLS * sizeof(int)); zqmatcnt = (int *) malloc (NUMCOLS * sizeof(int)); zqmatind = (int *) malloc (NUMQNZ * sizeof(int)); zqmatval = (double *) malloc (NUMQNZ * sizeof(double)); if ( zprobname == NULL || zobj == NULL || zrhs == NULL || zsense == NULL || zmatbeg == NULL || zmatcnt == NULL || zmatind == NULL || zmatval == NULL || zlb == NULL || zub == NULL || zqmatbeg == NULL || zqmatcnt == NULL || zqmatind == NULL || zqmatval == NULL ) { status = 1; goto TERMINATE; } strcpy (zprobname, "example"); /* The code is formatted to make a visual correspondence between the mathematical linear program and the specific data items. */ zobj[0] = 1.0; zobj[1] = 2.0; zobj[2] = 3.0; zmatbeg[0] = 0; zmatbeg[1] = 2; zmatbeg[2] = 4; zmatcnt[0] = 2; zmatcnt[1] = 2; zmatcnt[2] = 2; zmatind[0] = 0; zmatind[2] = 0; zmatind[4] = 0; zsense[0] = `L'; zmatval[0] = -1.0; zmatval[2] = 1.0; zmatval[4] = 1.0; zrhs[0] = 20.0; zmatind[1] = 1; zmatind[3] = 1; zmatind[5] = 1; zsense[1] = `L'; zmatval[1] = 1.0; zmatval[3] = -3.0; zmatval[5] = 1.0; zrhs[1] = 30.0; zlb[0] = 0.0; zlb[1] = 0.0; zlb[2] = 0.0; zub[0] = 40.0; zub[1] = CPX_INFBOUND; zub[2] = CPX_INFBOUND; /* Now set up the Q matrix. Note that we set the values knowing that * we're doing a maximization problem, so negative values go on * the diagonal. Also, the off diagonal terms are each repeated, * by taking the algebraic term and dividing by 2 */ zqmatbeg[0] = 0; zqmatbeg[1] = 2; zqmatbeg[2] = 5; zqmatcnt[0] = 2; zqmatcnt[1] = 3; zqmatcnt[2] = 2; /* Matrix is set up visually. Note that the x1*x3 term is 0, and is * left out of the matrix. */ zqmatind[0] = 0; zqmatind[2] = 0; zqmatval[0] = -33.0; zqmatval[2] = 6.0; zqmatind[1] = 1; zqmatind[3] = 1; zqmatind[5] = 1; zqmatval[1] = 6.0; zqmatval[3] = -22.0; zqmatval[5] = 11.5; zqmatind[4] = 2; zqmatind[6] = 2; zqmatval[4] = 11.5; zqmatval[6] = -11.0; TERMINATE: if ( status ) { free_and_null ((char **) &zprobname); free_and_null ((char **) &zobj); free_and_null ((char **) &zrhs); free_and_null ((char **) &zsense); free_and_null ((char **) &zmatbeg); free_and_null ((char **) &zmatcnt); free_and_null ((char **) &zmatind); free_and_null ((char **) &zmatval); free_and_null ((char **) &zlb); free_and_null ((char **) &zub); free_and_null ((char **) &zqmatbeg); free_and_null ((char **) &zqmatcnt); free_and_null ((char **) &zqmatind); free_and_null ((char **) &zqmatval); } else { *numcols_p = NUMCOLS; *numrows_p = NUMROWS; *objsen_p = CPX_MAX; /* The problem is maximization */ *probname_p = zprobname; *obj_p = zobj; *rhs_p = zrhs; *sense_p = zsense; *matbeg_p = zmatbeg; *matcnt_p = zmatcnt; *matind_p = zmatind; *matval_p = zmatval; *lb_p = zlb; *ub_p = zub; *qmatbeg_p = zqmatbeg; *qmatcnt_p = zqmatcnt; *qmatind_p = zqmatind; *qmatval_p = zqmatval; } return (status); } /* END setproblemdata */ /* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */ #ifndef CPX_PROTOTYPE_MIN static void free_and_null (char **ptr) #else static void free_and_null (ptr) char **ptr; #endif { if ( *ptr != NULL ) { free (*ptr); *ptr = NULL; } } /* END free_and_null */ |