Basics of Statistics

C - Probability and Statistics
 2023

Contents

1. Statistical inference. Introduction and basic concepts. Parameters
2. Point estimation. Estimators
a. Uni- and bivariate descriptive statistics
3. Estimation using confidence intervals
a. Statistics
b. Confidence and risk
c. Premises
4. Parameter estimation using confidence intervals
a. Confidence interval of μ (known σ and unknown σ)
b. Confidence interval of π
c. Confidence interval of σ
5. Comparison of two parameters using Cls
a. Confidence interval of $\mu_{1}-\mu_{2}$ in paired samples
b. Confidence interval of $\mu_{1}-\mu_{2}$ in independent samples
c. Confidence interval of $\pi_{1}-\pi_{2}$ in independent samples
d. Confidence interval of $\sigma_{1}^{2} / \sigma_{2}^{2}$ in independent samples
6. Designs (how we obtain the data)
7. Functions in R for confidence intervals

1. Statistical inference

- We must provide evidence based on data.

For example, saying "my program works" requires evidence/data.

- It must be reproducible: only reproducible results might be of interest.

For example, a miraculous cure will not be useful for future patients.

- It must be transparent
to enable others to replicate the same results.
- We infer the characteristics of the population from a random sample (RS).

For example, I can infer the population-wide connection speed from a random sample of speeds.

1. Statistical inference. Risks

- The scientific and technical (statistical) method:
- by deduction \rightarrow data collection design (population \rightarrow RS)
- by induction \rightarrow inferring (estimating) results (RS \rightarrow population)
- Statistical inference defines and quantifies the risks of this process. [E.g., the mean connection speed of the entire population cannot be known unless data are available for the entire population, but statistics allows us to estimate and quantify the error from a specific random sample.]
- The evidence provided by data ends with the analysis: e.g.,
- "My program works well"
\rightarrow estimating a measure (e.g., average performance) and its error.
- "My program improves the results of..."
\rightarrow estimating performance improvement (e.g., mean difference) and its error.

1. Statistical inference. Types of variables

To analyse the relationship between variables, we must establish the role of each one:

- Response \boldsymbol{Y}. Measuring goal achievement - sometimes it can be an indirect measure. E.g., performance \boldsymbol{Y} measured for a subject.
- Decisions X. We assign their values in experimental studies.

They represent the potential to change the future: we want to measure the effect of \boldsymbol{X} on Y.
An experimental design allows the \mathbf{X} to be independent of other variables.
E.g., a teaching method based on printed lists of exercises $(X=1)$ compared with a method based on e-status $(X=2)$.

- Co-variables Z. These represent the conditions observed in real data.

We can use \boldsymbol{Z} to reduce the uncertainty of \boldsymbol{Y} (we will have to quantify its success).
We can obtain \mathbf{Z} in both experimental and observational studies.
\mathbf{Z} are usually interrelated (colinear or non-orthogonal).
E.g., the marks of two previous subjects $\left(Z_{1}, Z_{2}\right)$ usually have a certain relationship.

1. Statistical inference. Types of study

- DO: Experimental studies

We want to change the future \boldsymbol{Y} through interventions in \boldsymbol{X}. In the analysis we estimate the effects of \boldsymbol{X} on \boldsymbol{Y}.
E.g., To try to improve the marks \boldsymbol{Y}, we assign at random the students different work environments \boldsymbol{X}.
\boldsymbol{X} represents an assignable and well-defined cause. The key to intervening is to be owners of \boldsymbol{X}.
To guarantee independence from all Z, we assign \boldsymbol{X} at random.
We assign respecting ethical and legal rights.

We are not owners of the Z variables (the units already come with the Z value).
We can establish relationships between Z and Y, which we can use to predict the values of Y from Z. But the covariates \boldsymbol{Z} may be related (collinear), so their effects on \mathbf{Y} may be confounded.

Establishing causality requires many premises (which are beyond an introductory course).

1. Statistical inference. Basic concepts

- Parameter: an indicator of the population that we wish to know or estimate. E.g., the expectation (μ) of the heights of FIB students.
- Statistic: any indicator that is obtained as a function of the data of a sample. E.g., the sum of the heights of the students in a sample.
- Estimator: a statistic of a sample used to know the value of a parameter of the population. E.g., the average height in a random sample of FIB students is an estimator of the expectation (μ) of the heights of FIB students.

Mean may mean expectation parameter regarding the centre of gravity of the population distribution, or statistical mean regarding the average of a series of values obtained from a sample.

2. Point estimation

- An estimator $\hat{\boldsymbol{\theta}}$ of the unknown parameter θ from the sample $M\left(\omega_{i}\right)\left(X_{1}, X_{2}, \ldots, X_{n}\right)(a$ simple random sample defined in the appendix to Section B) is a function of the RVs:

$$
\hat{\theta}=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

- Point estimation: the value that the estimator $\hat{\theta}$ takes in a specific sample. E.g., $\bar{x}=\frac{\sum x_{i}}{n}$ is the sample mean and is a point estimate of μ.

Distinguish between the value \bar{x} (small letter) of a specific simple random sample and the sample mean random variable \bar{X} (capital letter).

- Standard error: the variability of the estimator. In the above case of MEAN, the standard error of the mean (or mean standard error, or SE) is

$$
s e=\sqrt{V\left(\bar{X}_{n}\right)}=\sqrt{E\left[\left(\bar{X}_{n}-\mu\right)^{2}\right]}=\frac{\sigma}{\sqrt{n}}
$$

Generally, the σ will be unknown and the standard error will have to be approximated using the corresponding estimator ($\hat{\sigma}$) with the sample data: $\widehat{\boldsymbol{S e}}=\frac{\widehat{\sigma}}{\sqrt{n}}=\frac{s}{\sqrt{n}}$ (with s the point estimator of σ).

[^0]
2. Point estimation. Cases

For the parameters we use letters of the Greek alphabet.

MEAN:

Parameter (θ) (POPULATION)	Estimator ($\widehat{\theta}$) (SAMPLE)
$\boldsymbol{\mu}$ (expectation, population mean)	$\overline{\mathbf{x}}$ (sample mean)
$\boldsymbol{\sigma} \quad$$\boldsymbol{\sigma}^{2}$ (population variance) (population standard deviation)	$\mathbf{s}^{\mathbf{2}}$ (sample variance)
	\mathbf{s} (sample standard
deviation)	

$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$ The sample mean is a point estimate of the parameter μ of central tendency.
STANDARD DEVIATION:

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}}
$$

The sample standard deviation is a point estimate of the parameter σ of dispersion.

PROPORTION:

$p=\sum_{i, x_{i}=1} 1 / n$ The sample proportion is a point estimate of the parameter π.

We must take into account the properties of the estimators (see the Appendix, along with other potential estimators).

2. Estimators and descriptive statistics

The above point estimators correspond to the functions of descriptive statistics for numerically summarising data (see more in the R section of the website).

The following table shows some (basic) functions in R for descriptive statistics in univariate or bivariate numerical and categorical variables:

	UNIVARIATE (numerical)	UNIVARIATE (categorical)	BIVARIATE
INDICATORS	length() * mean() var() sd() summary() median()	table()	cov(,) cor(,)
GRAPHICS	hist) boxplot()	barplot(table())	plot(,)

* The sample size (n) is not an estimator, but we include it in the list for practicality.
(More graph functions in R: https://www.r-graph-gallery.com/)

3. Estimation using confidence intervals

- We know how to calculate an "interval" that contains \bar{x} from μ. But the real problem is to approximate μ from \bar{x} (i.e., moving from an interval for the sample mean \bar{x} to one for the population mean μ)
- From a probability 1- α between two (symmetric) values a and b (with known σ):

$$
P\left(a \leq \bar{X}_{n} \leq b\right)=1-\alpha \rightarrow P\left(\frac{a-\mu}{\sigma / \sqrt{n}} \leq \frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq \frac{b-\mu}{\sigma / \sqrt{n}}\right)=1-\alpha \rightarrow P\left(Z_{\frac{\alpha}{2}} \leq \frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq z_{1-\frac{\alpha}{2}}\right)=1-\alpha
$$

- we get the interval of the RV \bar{X}_{n} with probability 1- α :

$$
P\left(\mu+z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \leq \bar{X}_{n} \leq \mu+z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha
$$

- By rearranging, we get the confidence interval (CI) 1- α of the parameter μ :

$$
P\left(\bar{X}_{n}+z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}+z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha
$$

3. Estimation using confidence intervals

- $P\left(\bar{X}_{n}+z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}+z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha$ means that we can ensure that $E(X)=\mu$ will be in the calculated range (with a confidence of 1- α)
- If $1-\alpha$ is $95 \%(\alpha=5 \%): 95 \%$ of the Cls will contain μ (see a simulation in the Appendix)

- This procedure is correct $100 \cdot(1-\alpha) \%$ of the time!
- We call $\mathrm{CI}(\mu, 1-\alpha)$ the CONFIDENCE INTERVAL 1- α of μ

$$
\operatorname{IC}(\mu, 1-\alpha)=\bar{x} \mp z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}
$$

$$
\left(z_{\alpha / 2}=-z_{1-\alpha / 2} \text { bacause } Z \text { is simetric }\right)
$$

We will only observe one sample, and we will not know whether the found Cl contains μ or not, but we do know that in the long run this procedure gives true values $100 \cdot(1-\alpha) \%$ of the time

3.a. Confidence and risk

The calculation of a Cl implies a confidence 1- α (and therefore a risk α), which we can represent as

And we can relate the confidence value to the quantile that we need to build the Cl [E.g., the quantiles are indicated by a normal $Z(0,1)$, where we know that $z_{\alpha}=-z_{1-\alpha}$ or $z_{\alpha / 2}=-z_{1-\alpha / 2}$]

3.b. Statistics for inference

- We will see statistics of two types:
- Ratio of "signal" or "information" (difference between a value μ_{0} of the parameter and the sample value) to "noise" or "error" (standard error, SE).

These statistics are modelled following the Z or Student t^{*} model (in some cases we evaluate the " t-ratio" that quantifies by how many times the signal is greater than the noise).
statistic $\hat{\mathbf{z}}=\frac{\left(\bar{x}-\mu_{0}\right)}{\sigma / \sqrt{n}}=\frac{\left(\bar{x}-\mu_{0}\right)}{s e} \quad \widehat{\mathbf{z}} \sim Z=N(0,1) \quad$ (then the Cl is $\mu \in \bar{x} \pm z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$ or $\bar{x} \pm z_{1-\frac{\alpha}{2}} \cdot s e$)
statistic $\hat{\boldsymbol{t}}=\frac{\left(\bar{x}-\mu_{0}\right)}{S / \sqrt{n}}=\frac{\left(\bar{x}-\mu_{0}\right)}{\widehat{s e}} \quad \hat{\boldsymbol{t}} \sim$ T Student with degrees of freedom v

- Ratio of variances. These statistics are modelled following the F model.
statistic $\widehat{\boldsymbol{F}}=\frac{s_{A}^{2}}{s_{B}^{2}} \quad \widehat{\boldsymbol{F}} \sim$ F Fisher-Snedecor with degrees of freedom \boldsymbol{v}_{1} and \boldsymbol{v}_{2}

Student $t_{v, 1-\alpha / 2}$; Fisher $F_{v 1, v 2,1-\alpha / 2}$ and chi squared $\chi^{2} v_{v, 1-\alpha / 2}$ are defined in Section B (Appendix). Those models are derived from the normal distribution, and they are parameterised with degrees of freedom (\mathbf{v}), depending on the sizes (\mathbf{n}) of the samples.

3.c. Assumptions

- The fundamental assumption is to start from a random sample.

We say that values come from independent and identically distributed (IID) random variables.

- The premise of normality is necessary because Cls are based on the CLT theorem, which is based either on an original normal variable or a "large" n.

In small samples ($n<30$?), we will sustain the premise of normality with the prior knowledge of the response variable and with the graphic analysis with R.

See Part 7 on functions in R and Graphical Analysis of Normality in the Appendix to Section B.

4. Confidence interval for one parameter

Now we will see the $\mathbf{C l}$ formulas for 3 single parameters:
$>$ The mean μ (with or without known population variance)
E.g., the mean mark of a subject
> A proportion π
E.g., the proportion of passes of a subject
$>$ The variability σ^{2}
E.g., the deviation from the mean mark of a subject

4.a. Confidence interval of μ (with known σ)

- The confidence interval $1-\alpha$ of μ (with known σ) is calculated as

$$
C I(\mu, 1-\alpha)=\bar{x} \pm z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}
$$

- Remember that we are using the CLT, which requires the random variable X to be normal or \underline{n} to be "large". Therefore, the requirement for performing this calculation is either $X \sim N$ or n "large"
- This Cl can be obtained by setting apart the parameter μ from the statistic: $\hat{z}=\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}}=$ $\frac{(\bar{x}-\mu)}{s e} \quad$ whose distribution we know to be $N(0,1)$
- Therefore the $\mathrm{CI}(\mu, 1-\alpha)$ can be seen as $\bar{x} \pm z_{1-\frac{\alpha}{2}} \cdot s e$.

When n increases, the Cl accuracy increases (narrower range). If the confidence increases (decreasing the risk α of error), the accuracy of the Cls decreases (wider range).

To estimate μ, we need to know σ, which is an unrealistic situation because σ is usually an unknown parameter (we can also assume a reasonable value from prior knowledge).

4.a. Confidence interval of μ with unknown σ

The previous confidence interval $1-\alpha$ of μ with unknown σ is calculated as

$$
C I(\mu, 1-\alpha)=\bar{x} \pm t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}
$$

This Cl is obtained by isolating the parameter μ from the statistic: $\hat{t}=\frac{(\bar{x}-\mu)}{s / \sqrt{n}}=\frac{(\bar{x}-\mu)}{s e}$ When σ is unknown, we replace $\quad \sigma$ by s; and the Normal Z by the Student t with $n-1 d f$ being $d f=$ degrees of freedom
In this case the initial variable X must be normal (the premise of normality) because the definition of the Student t model is based on normal variables.

The situation of not knowing σ is more realistic and frequent: no value is assumed but it is approximated by its point estimate s.
t and $N(0,1)$ are similar, increasingly so when n grows, $t_{n-\rightarrow \infty} \rightarrow N(0,1)$
For small values of n, t has more variability, reflecting more uncertainty (as σ is approximated by s).
Therefore, the Cl with unknown σ will be wider than the equivalent assuming the true value of σ.

4.a Confidence interval of μ. Premises

To guarantee the confidence level of the Cl , certain premises must be met.
The fundamental premise is that the origin of the sample must be random.
In addition:

- If sigma is known, one of the following two conditions is required:
- $\mathrm{X} \sim \mathrm{N} \rightarrow$ since the linear combination of normals is also normal ($\bar{X} \sim \mathrm{~N}$)
- The sample is "large" \rightarrow by the CLT, $\bar{X} \sim N$
- If sigma is unknown, one of the following conditions is required:
$-\mathrm{X} \sim \mathrm{N} \rightarrow(\bar{x}-\mu) / \sqrt{s^{2} / n} \sim t_{n-1}$
- The sample is large ("large" n) \rightarrow by the $\mathrm{CLT}, \bar{X} \sim \mathrm{~N}$

In larger samples, the variation of s will be smaller (s estimates σ well), and we can consider that $(\bar{x}-\mu) / \sqrt{s^{2} / n} \approx(\bar{x}-\mu) / \sqrt{\sigma^{2} / n} \sim \mathrm{~N}(0,1)$.

In summary	... σ Is known	... σ is unknown
If X is normal and...	$w_{e_{e}} u_{s_{e}}$	We use the Student t
If X is not normal but n is "large" and...		

4.b. Confidence interval of π

Let $\mathrm{X} \sim \mathrm{B}(n, \pi) \rightarrow \mathrm{E}(\mathrm{X})=\pi \cdot n$

$$
\mathrm{V}(\mathrm{X})=\pi \cdot(1-\pi) \cdot n
$$

Then, $\mathrm{P}=\mathrm{X} / n \rightarrow \mathrm{E}(\mathrm{P})=\mathrm{E}(\mathrm{X} / n)=\mathrm{E}(\mathrm{X}) / n=\pi \cdot n / n=\pi$

$$
\mathrm{V}(\mathrm{P})=\mathrm{V}(\mathrm{X} / n)=\mathrm{V}(\mathrm{X}) / n^{2}=\pi \cdot(1-\pi) \cdot n / n^{2}=\pi \cdot(1-\pi) / n
$$

By using the convergence from B to $\mathrm{N}, P \rightarrow N\left(\mu_{P}=\pi, \sigma_{P}=\sqrt{\frac{\pi(1-\pi)}{n}}\right)$
So, the statistic $\hat{z}=\frac{(P-\pi)}{\sigma_{P}}=\frac{(P-\pi)}{s e}$ is distributed as $N(0,1)$ provided n is "large" and π not extreme.

$$
I C(\pi, 1-\alpha)=P \pm z_{1-\frac{\alpha}{2}} s e=P \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}}
$$

As a summary guide, check that $\pi \cdot n \geq 5$ and $(1-\pi) \cdot n \geq 5$

The paradox that we need to know π to estimate the Cl of π is usually solved in two ways:
a) by substituting $\hat{\pi}$ with P :

$$
I C(\pi, 1-\alpha)=P \pm z_{1-\alpha / 2} \cdot \sqrt{(P(1-P)) / n}
$$

b) by obtaining the maximum of $\hat{\pi} \cdot(1-\hat{\pi})$, making $\hat{\pi}$ equal to 0.5 : $\quad I C(\pi, 1-\alpha)=P \pm z_{1-\alpha / 2} \cdot \sqrt{(0.5(1-0.5)) / n}$.

4.c. Confidence interval of $\boldsymbol{\sigma}^{\mathbf{2}}$

If $X_{i} \rightarrow \mathrm{~N} \quad(n-1) \cdot \frac{s^{2}}{\sigma^{2}}=(n-1) \cdot \frac{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) /(n-1)}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma}\right)^{2} \sim \chi_{n-1}^{2}$
We can relate the variance ratio statistic (S2/ס2) to a χ^{2}
as the sum of squared normal variables is χ^{2} (see models derived from the normal in the Appendix to Section B).

Therefore,

$$
P\left(\chi_{n-1, \frac{\alpha}{2}}^{2} \leq \frac{S^{2} \cdot(n-1)}{\sigma^{2}} \leq \chi_{n-1,1-\frac{\alpha}{2}}^{2}\right)=1-\alpha
$$

$$
P\left(\frac{1}{\chi_{n-1,1-\frac{\alpha}{2}}^{2}} \leq \frac{\sigma^{2}}{S^{2} \cdot(n-1)} \leq \frac{1}{\chi_{n-1, \frac{\alpha}{2}}^{2}}\right)=1-\alpha
$$

$$
P\left(\frac{S^{2} \cdot(n-1)}{\chi_{n-1,1-\frac{\alpha}{2}}^{2}} \leq \sigma^{2} \leq \frac{S^{2} \cdot(n-1)}{\chi_{n-1, \frac{\alpha}{2}}^{2}}\right)=1-\alpha
$$

$$
I C\left(\sigma^{2}, 1-\alpha\right)=\left[\frac{s^{2}(n-1)}{\chi_{n-1,1-\frac{\alpha}{2}}^{2}}, \frac{s^{2}(n-1)}{\chi_{n-1, \frac{\alpha}{2}}^{2}}\right]
$$

This is a Cl for σ^{2}, not for $\sigma!!$

Since χ^{2} is not symmetrical, it requires obtaining the upper and lower quantiles instead of doing \pm.

5. Confidence interval to compare two parameters

The Cl formulas to...:
$>$ Compare μ_{1} and μ_{2}
E.g., the Cl of the differential effect ($\mu_{1}-\mu_{2}$) comparing averages between two subjects* We must differentiate between
> paired samples** (each case results in two measures, pairs of measures) (the same students in both subjects, $\mu_{1}-\mu_{2}=\mu_{\text {difference }}=\mu_{d}$)
> independent samples (each case is an independent measure)
(different students in the two subjects)
\Rightarrow Compare π_{1} and π_{2}
E.g., the Cl of the differential effect $\left(\pi_{1}-\pi_{2}\right)$ comparing averages between two subjects*
$>$ Compare σ^{2} and σ_{2}^{2}
E.g., the Cl comparing deviations between two subjects*

* The origin of the sample must be random.
** If possible, a design with paired data will be more efficient (as we will see below).

5.a. CI of $\mu_{1}-\mu_{2}$ (or of μ_{D}) in paired samples

If obtain a simple random paired sample of size n, and we define $\mathbf{d}=Y_{1}-Y_{2}$ then $E(d)=\mu_{d}$ and $V(d)=\sigma_{d}{ }^{2}$ and the n observed differences values have a mean \bar{d} and deviation s_{d}.

- The statistic $\hat{t}=\frac{\left(\bar{d}-\mu_{D}\right)}{s_{d} / \sqrt{n}}=\frac{\left(\bar{d}-\mu_{D}\right)}{s e}$ follows the t_{n-1} model where $\left(\bar{d}-\mu_{D}\right)$ is the signal and $s e=s_{d} / \sqrt{n}$ is the standard error.
- The Cl of the population mean difference with confidence 1- α is

$$
I C\left(\mu_{1}-\mu_{2}, 1-\alpha\right)=I C\left(\mu_{d}, 1-\alpha\right)=\bar{d} \pm t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{s_{d}}{\sqrt{n}}=\bar{d} \pm t_{n-1,1-\frac{\alpha}{2}} \cdot s e
$$

It may be of practical interest to evaluate the t-ratio: $\boldsymbol{t}=\overline{\boldsymbol{d}} / \frac{s_{d}}{\sqrt{n}}=\overline{\boldsymbol{d}} / \boldsymbol{s e}$, which says how many times the signal is greater than the noise.

5.b. CI of $\left(\mu_{1}-\mu_{2}\right)$ independent samples

Be Y_{1} with $E\left(Y_{1}\right)=\mu_{1}, V\left(Y_{1}\right)=\sigma_{1}{ }^{2}$; and Y_{2} with $E\left(Y_{2}\right)=\mu_{2}, V\left(Y_{2}\right)=\sigma_{2}{ }^{2}$ with normal distributions (σ_{1} and σ_{2} will be unknown values but must be assumed to be the same*), from which we obtain two independent simple random samples of size n_{1} and n_{2} with means \bar{y}_{1}, \bar{y}_{2} and deviations s_{1} and s_{2} as estimators of the common parameter σ.

- The statistic $\hat{t}=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s e}$ follows the distribution $t_{n_{1}+n_{2}-2}$, with standard error $\boldsymbol{s} \boldsymbol{e}=s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$, where s is the root of the "pooled" variance $s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}$
- The Cl of the difference with confidence $1-\alpha$ is

$$
\begin{gathered}
I C\left(\mu_{1}-\mu_{2}, 1-\alpha\right)=\left(\bar{y}_{1}-\bar{y}_{2}\right) \pm t_{n_{1}+n_{2}-2,1-\frac{\alpha}{2}} \cdot s e= \\
\left(\bar{y}_{1}-\bar{y}_{2}\right) \pm t_{n_{1}+n_{2}-2,1-\frac{\alpha}{2}} \cdot \mathrm{~s} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
\end{gathered}
$$

The fundamental condition is random samples. We know it.
The other two assumptions (normality of Y_{1}, Y_{2} and $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$) will be analysed graphically.

5.c. Cl of $\pi_{1}-\pi_{2}$

Let P_{1} and P_{2} be the sample proportions of two binomial populations with π_{1}, π_{2}, from which we obtain two independent simple random samples of size n_{1} and n_{2}.

- The statistic $\hat{z}=\frac{\left(P_{1}-P_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{s e}$ follows the distribution $N(0,1)$ with standard error $\boldsymbol{s} \boldsymbol{e}=\sqrt{P_{1}\left(1-P_{1}\right) / n_{1}+P_{2}\left(1-P_{2}\right) / n_{2}}$.
- The Cl of the difference with confidence $1-\alpha$ is

$$
\begin{gathered}
I C\left(\pi_{1}-\pi_{2}, 1-\alpha\right)=\left(P_{1}-P_{2}\right) \pm z_{1-\frac{\alpha}{2}} \cdot s e= \\
\left(P_{1}-P_{2}\right) \pm z_{1-\frac{\alpha}{2}} \cdot \sqrt{P_{1}\left(1-P_{1}\right) / n_{1}+P_{2}\left(1-P_{2}\right) / n_{2}}
\end{gathered}
$$

In this case, convergence requires "large" samples: usually

$$
P \cdot n>5 \text { and }(1-P) \cdot n>5 .
$$

5.d. Cl of $\sigma_{1}^{2} / \sigma_{2}^{2}$

Let s_{1} and s_{2} be the sample deviations of two independent simple random samples of size n_{1} and n_{2} of two normal variables.

- The statistic $\hat{F}=\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}}$ follows the distribution $F_{\left(n_{1}-1, n_{2}-1\right)}$.
- The Cl of the ratio of variances with confidence 1- α is
(following the same reasoning as the Cl of σ^{2})

$$
\operatorname{IC}\left(\boldsymbol{\sigma}^{2}{ }_{1} / \boldsymbol{\sigma}^{2}{ }_{2}, \mathbf{1}-\boldsymbol{\alpha}\right)=\left[\frac{s_{1}^{2} / s_{2}^{2}}{\boldsymbol{F}_{\left(n_{1}-1, n_{2}-1\right), 1-\frac{\alpha}{2}}}, \frac{s_{1}^{2} / s_{2}^{2}}{\boldsymbol{F}_{\left(n_{1}-1, n_{2}-1\right), \frac{\alpha}{2}}}\right]
$$

or (note the exchange of degrees of freedom of F)

$$
\operatorname{IC}\left(\sigma^{2}{ }_{1} / \sigma^{2}{ }_{2}, 1-\alpha\right)=\left[s_{1}^{2} / s_{2}^{2} F_{\left(n_{2}-1, n_{1}-1\right), \frac{\alpha}{2}},{ }^{s_{1}^{2}} / s_{2}^{2} F_{\left(n_{2}-1, n_{1}-1\right), 1-\frac{\alpha}{2}}\right]
$$

6. Designs (how we obtain the data)

Paired design:
One variable and two observations are taken from each unit (the two measures or responses),
Requirement: the first observation in a "pair" must not alter the state of the unit and therefore of the second observation.

Independent samples
For each unit, one observation and two variables are taken:
(1) the outcome, the measure of the response and
(2) the category to compare.

Requirements:

- It must be possible to assign the category to the unit (it cannot be a condition, such as sex).
- In observational studies, when the group is not assignable,
 the samples are selected separately.

This is a simple approximation. The world of experiment design is much broader. The key is random:

Collecting data arbitrarily does not guarantee a random sample: willy-nilly \neq at random.
(1) to plan the random selection of the units to be measured; (2) to carry out the experiment correctly; (3) without missing values; and (4) to document it in a reproducible way.

6. Designs (how we obtain the data)

The chosen design conditions the subsequent statistical analysis.
If the collection is complex, the statistical model used is also complex:

- Cases with nested data (clusters): groups from the top level (e.g., school) are first randomly selected, then groups from the lower level (class), until the individual (student) is reached.
- Cases with stratified data: all the strata can be seen, but within each stratum the individuals are randomly selected.
Then, the group of students chosen is not strictly a random sample; they must be analysed with appropriate techniques (not explained at a first level statistical course).

It is unusual to have the listing of the complete population; nor to be able to access any unit under the same conditions (both are requirements for a simple random sample).

Usually, some units will be more "visible" than others and will have a higher probability of being chosen (e.g., results that can only be obtained in order).

7. Functions in R for Cls

We will see the following:

- A list of functions in R.
- Functions in R for a sample. Cl of μ.
- Functions in R for two independent samples. Cl of $\mu_{1}-\mu_{2}$.
- Functions in R for paired samples. Cl of μ_{D}.
- Functions in R for paired samples. Graph of differences vs. means.
- Functions en R for comparing σ s. Cl of $\sigma_{1}-\sigma_{2}$.
- Functions in R for π.

A list of functions in \mathbf{R}

Premise of normality (in Graphical Analysis of Normality in the Appendix to Section B):
qqnorm (X)
qqline (X)
Cl of μ with known σ (for this function you need the BSDA library):
library (BSDA)
\mathbf{z}. test (\mathbf{X}, sigma. $\mathbf{x}=$) \# for a sample when sigma is known
Cl of μ (or $\mu \mathrm{s}$) when σ (or $\sigma \mathrm{s}$) is unknown:
t.test (X)
\# for one sample
t.test(XY) or t.test(X,Y,paired=T) \#for paired samples
t . test (X,Y,var.equal=T) \# for two independent samples with equal variances
t-test (X,Y,var. equal=F) \# for two independent samples with different variances
Cl of σ s in two independent samples:
var.test(X,Y)
Cl of π :
prop.test and binom.test

In a sample

An example of nine values with positives and negatives (measurements above or below a threshold) $\mathrm{x}<-\mathrm{c}(-4,-2,-1,0,0,4,8,8,9) \#$ mean $=2.4 \mathrm{SD}=4.9$. We study normality with qqnorm (X), qqline(X) library (BSDA)
\mathbf{z}.test (X, sigma. $\mathbf{x}=4$) $\# \mathrm{Cl}$ assuming a population σ of 4 .

```
z = 1.8333, p-value = 0.06675
    Alternative hypothesis: true mean is not equal to 0
    95 percent confidence interval:
    -0.1688409 5.0577298
    Sample estimates: mean of x 2.444444
```

t. test (X) \# Cl if we do not know the population σ but use the sample s.

```
t = 1.496, df = 8, p-value = 0.173
    Alternative hypothesis: true mean is not equal to 0
    95 percent confidence interval:
    -1.323423 6.212312
    Sample estimates: mean of x 2.444444
```

You can check whether the Cl limits coincide with those that would be calculated with the formulas. Apart from Cls, these functions in R provide the result of a p-value: P value assess the probability that the statistic is "extreme" in the distribution of the reference model (see more in the Appendix to section D with more functions that provide p-values)

In two independent samples

An example of two samples to compare μ_{1} and μ_{2} with the CI of the differential effect ($\mu_{1}-\mu_{2}$)
$\mathrm{X} 1<-\mathrm{c}(1,2,3,5,6,6,7,7,8,8,9)$ \# mean $=5.6 \mathrm{SD}=2.62$. We study normality with qqnorm(X 1), qqine $(\mathrm{X} 1)$
$\mathrm{X} 2<-\mathrm{c}(1,1,3,4,5,5,6,7,9) \quad \#$ mean $=4.5 \mathrm{SD}=2.65$. We study normality with qqnorm(X2), qqline(X2)
E.g., $X 1$ and $X 2$, two samples of marks with equal variability
t.test ($\mathrm{X} 1, \mathrm{X} 2$, var.equal $=T$)
boxplot(X1,X2)

x3 <-c (3,4,4,4.5,4.5,5,6,6) \# mean=4.6SD=1.0. We assume normality (or qqnorm(X3) and qqline(X3)). E.g., $X 1$ and $X 3$, two samples of marks with non-equal variability
t.test($\mathrm{X} 1, \mathrm{X} 3$, var.equal=F)
boxplot(X1, X3)

```
t = 1.1641, df = 13,793, p-value = 0.2641
    Alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.8546781 2.8774054
    Sample estimates: mean of x mean of y 5.636364 4.625000
```

Interpretation: the difference in means is up to 0.85 points in favour of group 3 or up to 2.9 points in favour of group 1, with a confidence of 95%


```
t = 0.91335, df = 18, p-value = 0.3731
    Alternative hypothesis: true difference is not equal to 0
    95 percent confidence interval:
        -1.405312 3.566928
    Sample estimates: mean of x mean of y 5.636364 4.555556
```


In paired samples

An example of two samples with the Cl of the differential effect $\left(\mu_{1}-\mu_{2}\right)$

```
Y1 <- c(1,1,2,2.0,2,2.5,4,5,5.5,6,7.5,8,8,9.5,9,9.5)
Y2 <- c(1.5,1,2,1.0,3,3,3.5,5,6,6,8.5,8.5,9.5,8.5,9.1, 9)
```

E.g., X1 and X2, two samples of marks, both came from the same student
t. test(Y1,Y2,paired=T)

```
t = -0.92936, df = 15, p-value = 0.3674
    Alternative hypothesis: true difference is not equal to 0
    95 percent confidence interval:
    -0.5351864 0.2101864
    Sample estimates: mean of the differences -0.1625
```

In paired samples, it is possible to work with the difference of the values ($\mathrm{D}=Y 1-Y 2$), so it is like the case of one sample (instead of $\mu_{1}-\mu_{2}$, we are interested in μ_{D}).
D <- Y1-Y2
$\begin{array}{lllllllllllllllllllllll}-0.5 & 0.0 & 0.0 & 1.0 & -1.0 & -0.5 & 0.5 & 0.0 & -0.5 & 0.0 & -1.0 & -0.5 & -1.5 & 1.0 & -0.1 & 0.5\end{array}$
mean (D)
-0.1625
sd (D)
0.6994045

In paired samples

It is very important not to do an analysis of paired data as independent data.
In the graph on the left (independent samples) we do not see that there could be differences in mean between the two populations.
In the graph on the right (paired samples)
it is clearly seen that the mean
is higher in sample B.

We have graphical descriptive functions in R to see the relationship between the two variables and the normality of the difference:
plot(Y1, Y2)

qqnorm(Y1-Y2)
qqline (Y1-Y2)

Normal Q-Q Plot

In paired samples

There are specific R functions for paired samples: the Bland-Altman (BA) plot, which represents the differences in the responses for each individual according to their means.

```
install.packages("PairedData")
library(PairedData)
p <- paired(Y1,Y2)
plot(p,type='BA')
(or plot((Y1+Y2)/2,Y2-Y1))
```


The mean-difference plot (complementing the plot and the qqnorm) shows whether there is an additive (or multiplicative) effect and helps decide whether a transformation of the data would be appropriate (this will be seen in block D).

Comparing variances

An example with the Cl of $\sigma^{2} / \sigma^{2}{ }_{2}$

(as in the exercises comparing the variability in the duration of refills of ink cartridges of two brands).
$A<-\quad c(350,361.9,365,365,365,370,372,377)$
\# mean $(A)=365.7375 \mathrm{SD}(A)=8.00231 \operatorname{var}(A)=64.03696$. We study normality with qqnorm (A), qqline (A)
$B<-\quad C(390,391.7,410,412,414,418)$
\# mean $(B)=405.95 \mathrm{SD}(B)=12.00396 \operatorname{var}(B)=144.095$. We study normality with qqnorm(B), qqline(B)
var.test (B, A)

```
F test to compare two variances
data: B and A
F}=2.2502, num df=5, denom df=7, p-value = 0.3199
Alternative hypothesis: true ratio of variances is not equal to 1
9 5 \text { percent confidence interval:}
    0.4257491 15.4206862
Sample estimates:
Ratio of variances
    2.250185
```

Interpretation: $V(B)=2 \cdot V(A)$ although the $95 \% \mathrm{Cl}$ shows that the true population $V(A) / V(B)$ ratio could be as small as $0.4,(V(A)=2.5 \cdot \operatorname{Var}(B)$; and also as large as $15, V(B)=15 \cdot V(A)$.
Final interpretation: high uncertainty, so more information should be considered.
There is no preference with the current data.

For the CI of π

For example, tossing a coin 100 times and observing 56 heads.
prop.test $(56,100)$ \# requires convergence to Normal (large n)

```
1-sample proportions test with continuity correction
data: 56 out of 100, null probability 0.5
X-squared = 1.21, df = 1, p-value = 0.2713
Alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
    0.4573588 0.6579781
Sample estimates: p 0.56
```

binom.test $(56,100)$ \# more appropriate if the sample is small

```
    Exact binomial test
data: 56 and 100
Number of successes = 56, number of trials = 100, p-value = 0.2713
Alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
    0.4571875 0.6591640
Sample estimates:
Probability of success
    0.56
```

None of these Cls exactly match the one calculated with the formula approximating the normal distribution explained above. The agreement would increase with larger sample sizes and with proportions closer to $1 / 2$.
Although at a practical and interpretive level, all Cls agree with [46\% to 66\%]

[^0]: Read the comments in point 5 of this section "Designs (how we obtain the data)" to use for Unit T

