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1. Statistical inference
• We must provide evidence based on data.

For example, saying “my program works” requires evidence/data.

• It must be reproducible: only reproducible results might be of interest.

For example, a miraculous cure will not be useful for future patients.

• It must be transparent

to enable others to replicate the same results.

• We infer the characteristics of the population from a random sample (RS).

For example, I can infer the population-wide connection speed from a random

sample of speeds.

Sample Population
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1. Statistical inference. Risks
• The scientific and technical (statistical) method:

– by deduction→ data collection design (population→ RS)

– by induction→ inferring (estimating) results (RS→ population)

• Statistical inference defines and quantifies the risks of this process. [E.g., the

mean connection speed of the entire population cannot be known unless data are

available for the entire population, but statistics allows us to estimate and quantify the

error from a specific random sample.]

• The evidence provided by data ends with the analysis: e.g.,

– “My program works well”

→ estimating a measure (e.g., average performance) and its error.

– “My program improves the results of...”

→ estimating performance improvement (e.g., mean difference) and its error.
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To analyse the relationship between variables, we must establish the role of each one:

• Response Y. Measuring goal achievement – sometimes it can be an indirect measure.

E.g., performance Y measured for a subject.

• Decisions X. We assign their values in experimental studies. 

They represent the potential to change the future: we want to measure the effect of X
on Y.

An experimental design allows the X to be independent of other variables.

E.g., a teaching method based on printed lists of exercises (X=1) compared with a 
method based on e-status (X=2). 

• Co-variables Z. These represent the conditions observed in real data.

We can use Z to reduce the uncertainty of Y (we will have to quantify its success).

We can obtain Z in both experimental and observational studies.

Z are usually interrelated (colinear or non-orthogonal).

E.g., the marks of two previous subjects (Z1, Z2) usually have a certain relationship.

1. Statistical inference. Types of variables 
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• DO: Experimental studies

We want to change the future Y through interventions in X.
In the analysis we estimate the effects of X on Y.

E.g., To try to improve the marks Y, we assign at random the

students different work environments X.

• SEE: Observational studies

X represents an assignable and well-defined cause.

The key to intervening is to be owners of X.

To guarantee independence from all Z, we assign X

at random.

We assign respecting ethical and legal rights.

1. Statistical inference. Types of study

They allow us to predict Y from the observed values Z.

We will quantify the capacity of Z for reducing the uncertainty
in the prediction of Y.

E.g., we compare the prediction of Y according to Z1 or 
according to Z2, or depending on a certain model m of the two 
variables m=f(Z1, Z2).

→ The group Z1 reduces the uncertainty by 10%; Z2 by 20%; 
and the model m, with both, by 25%.

We are not owners of the Z variables (the units

already come with the Z value).

We can establish relationships between Z and Y,

which we can use to predict the values of Y from Z.

But the covariates Z may be related (collinear), so

their effects on Y may be confounded.

Establishing causality requires many premises

(which are beyond an introductory course).
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1. Statistical inference. Basic concepts

• Parameter: an indicator of the population that we wish to know or estimate.

E.g., the expectation (μ) of the heights of FIB students.

• Statistic: any indicator that is obtained as a function of the data of a sample.

E.g., the sum of the heights of the students in a sample.

• Estimator: a statistic of a sample used to know the value of a parameter of the

population. E.g., the average height in a random sample of FIB students is an

estimator of the expectation (μ) of the heights of FIB students.

Mean may mean expectation parameter regarding the centre of gravity of the population 

distribution, or statistical mean regarding the average of a series of values obtained from a 

sample.
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2. Point estimation
• An estimator ෡𝛉 of the unknown parameter  from the sample M(i) (X1,X2,...,Xn) (a

simple random sample defined in the appendix to Section B) is a function of the RVs:
መ𝜃 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛)

• Point estimation: the value that the estimator ෠θ takes in a specific sample.

E.g., ҧ𝑥 =
σ 𝑥𝑖

𝑛
is the sample mean and is a point estimate of μ.

• Standard error: the variability of the estimator. In the above case of MEAN, the

standard error of the mean (or mean standard error, or SE) is

𝒔𝒆 = 𝑽 ഥ𝑿𝒏 = 𝑬 ഥ𝑿𝒏 − 𝝁 𝟐 =
𝝈

𝒏

Generally, the σ will be unknown and the standard error will have to be approximated using the co-

rresponding estimator ( ො𝜎) with the sample data: ෞ𝒔𝒆 =
ෝ𝝈

𝒏
=

𝒔

𝒏
(with s the point estimator of σ). 

Distinguish between the value ҧ𝑥 (small letter) of a specific simple random sample and the sample 

mean random variable ത𝑋 (capital letter).

Read the comments in point 5 of this section “Designs (how we obtain the data)” to use for Unit T
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2. Point estimation. Cases
Parameter (θ) (POPULATION) Estimator (෠θ) (SAMPLE)

 (expectation, population mean) ത𝐱 (sample mean)

σ2 (population variance)
σ (population standard deviation)

s2 (sample variance)
s (sample standard 

deviation)

 (probability) p (proportion)

For the parameters 

we use letters of the 

Greek alphabet.

MEAN:

ǉ𝒙 =
σ𝒊=𝟏
𝒏 𝒙𝒊

𝒏
The sample mean is a point estimate of the parameter µ of central tendency. 

STANDARD DEVIATION:

𝒔 =
σ𝒊=𝟏
𝒏 (𝒙𝒊 − ǉ𝒙)𝟐

𝒏 − 𝟏
=

σ𝑖=1
𝑛 𝑥𝑖

2 −
σ𝑖=1
𝑛 𝑥𝑖

2

𝑛
𝑛 − 1

PROPORTION:

𝒑 = Τσ𝒊,𝒙𝒊=𝟏
𝟏 𝒏 The sample proportion is a point estimate of the parameter .

The sample standard deviation is 
a point estimate of the parameter σ of dispersion. 

We must take into account the properties of the estimators (see the Appendix, along with other 

potential estimators).
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2. Estimators and descriptive statistics
The above point estimators correspond to the functions of descriptive statistics for
numerically summarising data (see more in the R section of the website).

The following table shows some (basic) functions in R for descriptive statistics in

univariate or bivariate numerical and categorical variables:

(More graph functions in R: https://www.r-graph-gallery.com/)

UNIVARIATE 

(numerical)

UNIVARIATE 

(categorical)

BIVARIATE

INDICATORS length( ) *

mean(  )

var(  )     

sd(  )

summary(  )

median(  )

table(  ) cov(    ,    )

cor(    ,    )

GRAPHICS hist(  )

boxplot(  )

barplot(table(  )) plot(    ,    )

* The sample size (n) is not an estimator, but we include it in the list for practicality. 

https://www.r-graph-gallery.com/
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3. Estimation using confidence intervals
• We know how to calculate an “interval” that contains ҧ𝑥 from μ. But the real problem is

to approximate μ from ഥ𝒙 (i.e., moving from an interval for the sample mean ҧ𝑥 to one

for the population mean µ)

• From a probability 1- between two (symmetric) values a and b (with known  ):

𝑃 𝑎 ≤ ത𝑋𝑛 ≤ 𝑏 = 1 − 𝛼 → 𝑃
𝑎−𝜇

Τ𝜎 𝑛
≤

ഥ𝑿𝑛−𝜇

Τ𝜎 𝑛
≤

𝑏−𝜇

Τ𝜎 𝑛
= 1 − 𝛼 → 𝑃 𝑧𝛼

2
≤

ഥ𝑿𝑛−𝜇

Τ𝜎 𝑛
≤ 𝑧

1−
𝛼

2
= 1 − 𝛼

• we get the interval of the RV ത𝑋𝑛 with probability 1-α:

𝑃 𝜇 + 𝑧𝛼
2
·
𝜎

𝑛
≤ ത𝑋𝑛 ≤ 𝜇 + 𝑧1− 𝛼

2
·
𝜎

𝑛
= 1 − 𝛼

• By rearranging, we get the confidence interval (CI) 1-α of the parameter μ:

𝑃 ത𝑋𝑛 + 𝑧𝛼
2
·
𝜎

𝑛
≤ 𝜇 ≤ ത𝑋𝑛 + 𝑧1− 𝛼

2
·
𝜎

𝑛
= 1 − 𝛼
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3. Estimation using confidence intervals

• 𝑃 ത𝑋𝑛 + 𝑧𝛼
2
·
𝜎

𝑛
≤ 𝜇 ≤ ത𝑋𝑛 + 𝑧

1−
𝛼

2
·
𝜎

𝑛
= 1 − 𝛼 means that we can ensure that E(X) = μ will be in 

the calculated range (with a confidence of 1-α ) 

• If 1-α is 95% (α =5%): 95% of the CIs will contain μ (see a simulation in the Appendix)

• This procedure is correct 100·(1-α)% of the time!

• We call  CI(μ, 1-) the CONFIDENCE INTERVAL 1-  of μ

𝑰𝑪 𝝁, 𝟏 − 𝜶 = ഥ𝒙 ∓ 𝒛
𝟏−

𝜶
𝟐
·
𝝈

𝒏

We will only observe one sample, and we will not know whether the found CI contains μ or not, but 

we do know that in the long run this procedure gives true values 100·(1-α)% of the time

(z/2 = -z1-/2  bacause Z is simetric)
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3.a. Confidence and risk
The calculation of a CI implies a confidence 1- (and therefore a risk ), which we can 

represent as 

And we can relate the confidence value to the quantile that we need to build the CI
[E.g., the quantiles are indicated by a normal Z(0,1), where we know that z = -z1- or z/2 = -z1-/2]

z0.05 

qnorm(0.05)

-1,645

z0.95

qnorm(0.95)

1,645

z0.025
-1.96

z0.975
1.96

z0.005
-2.58

z0.995
2.58

Confidence 1-α Risk α α/2 1 - α/2

0.95 0.05 0,025 0,975

0.90 0.10 0.05 0.95

0.99 0.01 0,005 0,995
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3.b. Statistics for inference 

• We will see statistics of two types:

– Ratio of “signal” or “information” (difference between a value µ0 of the parameter and the 

sample value) to “noise” or “error” (standard error, SE).

These statistics are modelled following the Z or Student t* model (in some cases we 

evaluate the “t-ratio” that quantifies by how many times the signal is greater than the noise).

statistic   ො𝒛 =
ǉ𝒙−𝝁𝟎
Τ 𝒏

=
ǉ𝒙−𝝁𝟎
𝒔𝒆

ො𝒛  Z = N(0,1)     (then the CI is   µ ∈ ഥ𝒙 ± 𝒛𝟏−𝜶
𝟐
·
𝝈

𝒏
or ഥ𝒙 ± 𝒛𝟏−𝜶

𝟐
· 𝒔𝒆 )

statistic   ො𝒕 =
ǉ𝒙−𝝁𝟎
Τ𝑺 𝒏

=
ǉ𝒙−𝝁𝟎
ෞ𝒔𝒆

ො𝒕  T Student with degrees of freedom 𝒗

– Ratio of variances. These statistics are modelled following the F model.

statistic   ෡𝑭 =
𝑺𝑨
𝟐

𝑺𝑩
𝟐

෡𝑭  F Fisher−Snedecor with degrees of freedom 𝒗𝟏 and 𝒗𝟐

Student  𝑡𝜈, 1− Τ𝛼 2 ; Fisher 𝐹𝜈1,𝜈2,1− Τ𝛼 2 and chi squared 2
𝜈, 1− Τ𝛼 2 are defined in Section B (Appendix).

Those models are derived from the normal distribution, and they are parameterised with degrees of 
freedom (v), depending on the sizes (n) of the samples.
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3.c. Assumptions

• The fundamental assumption is to start from a random sample.

• The premise of normality is necessary because CIs are based on the CLT theorem,

which is based either on an original normal variable or a “large” n.

We say that values come from independent and identically distributed 

(IID) random variables. 

In small samples (n<30?), we will sustain the premise of normality with

the prior knowledge of the response variable and with the graphic 

analysis with R.

See Part 7 on functions in R and Graphical Analysis of Normality in the 

Appendix to Section B.

app app

https://shiny-eio.upc.edu/josean2/mnas/
https://shiny-eio.upc.edu/josean2/polling/
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Now we will see the CI formulas for 3 single parameters:

➢ The mean µ (with or without known population variance)

E.g., the mean mark of a subject

➢ A proportion π
E.g., the proportion of passes of a subject

➢ The variability σ2

E.g., the deviation from the mean mark of a subject

4. Confidence interval for one parameter
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• The confidence interval 1−α of μ (with known σ) is calculated as            

To estimate µ, we need to know σ, which is an unrealistic situation because σ is usually an unknown 

parameter (we can also assume a reasonable value from prior knowledge).

When n increases, the CI accuracy increases (narrower range). If the confidence increases (decreasing 
the risk  of error), the accuracy of the CIs decreases (wider range).

• Remember that we are using the CLT, which requires the random  variable X to be normal

or n to be “large”. Therefore, the requirement for performing this calculation is either 

X~N  or  n “large”

• This CI can be obtained by setting apart the parameter µ from the statistic: Ƹ𝑧 =
ҧ𝑥−𝜇

Τσ 𝑛
=

ҧ𝑥−𝜇

𝑠𝑒
whose distribution we know to be N(0,1)

• Therefore the CI(μ,1-α) can be seen as  ҧ𝑥 ± 𝑧1−𝛼
2
· 𝑠𝑒.                 

𝑪𝑰 𝝁, 𝟏 − 𝜶 = ഥ𝒙 ± 𝒛𝟏−𝜶
𝟐
·
𝝈

𝒏

4.a. Confidence interval of μ (with known σ)
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4.a. Confidence interval of μ with unknown σ
The previous confidence interval 1−α of μ with unknown σ is calculated as

Therefore, the CI with unknown σ will be wider than the equivalent assuming the true value of σ.

t and N(0,1) are similar, increasingly so when n grows, tn-->∞ → N(0,1)

For small values of n, t has more variability, reflecting more uncertainty (as σ is approximated by s).

The situation of not knowing σ is more realistic and frequent: no value is assumed but it is approximated by its point 

estimate s.

𝑪𝑰 𝝁, 𝟏 − 𝜶 = ഥ𝒙 ± 𝒕𝒏−𝟏,𝟏−𝜶
𝟐
·
𝒔

𝒏

This CI is obtained by isolating the parameter µ from the statistic: Ƹ𝑡 =
ǉ𝑥−𝜇

Τ𝑠 𝑛
=

ǉ𝑥−𝜇

𝑠𝑒

When σ is unknown, we replace σ by s; and

the Normal Z by the Student t with n-1 df

being df=degrees of freedom

In this case the initial variable X must be normal (the premise of normality) because the 

definition of the Student t model is based on normal variables.
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4.a Confidence interval of μ. Premises
To guarantee the confidence level of the CI, certain premises must be met.

The fundamental premise is that the origin of the sample must be random.

In addition:

• If sigma is known, one of the following two conditions is required:

– X~N→ since the linear combination of normals is also normal ( ത𝑋~N)

– The sample is “large”→ by the CLT, ത𝑋~N

• If sigma is unknown, one of the following conditions is required:

– X~N→ Τҧ𝑥 − 𝜇 Τ𝑠2 𝑛~𝑡𝑛−1

– The sample is large (“large” n)→ by the CLT, ത𝑋~N

In summary … Is known … is unknown

If X is normal and… We use the Student t

If X is not normal but n is “large” and…

In larger samples, the variation of s will be smaller 

(s estimates  well), and we can consider that 

Τҧ𝑥 − 𝜇 Τ𝑠2 𝑛 ≈ Τҧ𝑥 − 𝜇 Τ𝜎2 𝑛~N(0,1).
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4.b. Confidence interval of π

Let X ~ B(n,) → E(X) = ·n

V(X) = ·(1-)·n

Then, P = X/n → E(P) = E(X/n) = E(X)/n = ·n / n = 

V(P) = V(X/n) = V(X)/n2 = ·(1-)·n/n2 = ·(1-)/n

By using the convergence from B to N, 𝑃 → 𝑁 𝜇𝑃 = 𝜋, 𝜎𝑃 =
𝜋 1−𝜋

𝑛

So, the statistic Ƹ𝑧 =
𝑃−π

𝜎𝑃
=

𝑃−π

𝑠𝑒
is distributed as N(0,1) provided

n is “large” and  not extreme.

The paradox that we need to know  to estimate the CI of  is usually solved in two ways:

a) by substituting ො𝜋 with P: 𝐼𝐶 𝜋, 1 − 𝛼 = 𝑃 ± 𝑧1− Τ𝛼 2 · Τ𝑃 1 − 𝑃 𝑛

b) by obtaining the maximum of ො𝜋·(1- ො𝜋), making ො𝜋 equal to 0.5:        𝐼𝐶 𝜋, 1 − 𝛼 = 𝑃 ± 𝑧1− Τ𝛼 2 · Τ0.5 1 − 0.5 𝑛.

𝑰𝑪 𝝅, 𝟏 − 𝜶 = 𝑷 ± 𝒛
𝟏−

𝜶
𝟐
𝒔𝒆 = 𝑷 ± 𝒛

𝟏−
𝜶
𝟐

ෝ𝝅 𝟏 − ෝ𝝅

𝒏

As a summary guide, check that

·n  5 and (1-)·n  5
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4.c. Confidence interval of σ2

If Xi → N (𝒏 − 𝟏) ·
𝒔𝟐

𝝈𝟐
= (𝑛 − 1) ·

Τσ𝑖=1
𝑛 𝑥𝑖− ҧ𝑥 2 (𝑛−1)

𝜎2
=

σ𝑖=1
𝑛 𝑥𝑖− ҧ𝑥 2

𝜎2
= σ𝑖=1

𝑛 𝑥𝑖− ҧ𝑥

𝜎

2
~ 𝝌𝒏−𝟏

𝟐

We can relate the variance ratio statistic (S2/σ2) to a χ2

as the sum of squared normal variables is χ2

(see models derived from the normal in the Appendix to Section B).

Therefore, 𝑃 𝜒
𝑛−1,

𝛼

2

2 ≤
𝑆2· 𝑛−1

𝜎2
≤ 𝜒

𝑛−1,1−
𝛼

2

2 = 1 − 𝛼

𝑃
1

𝜒
𝑛−1,1−

𝛼
2

2 ≤
𝜎2

𝑆2· 𝑛−1
≤

1

𝜒
𝑛−1,

𝛼
2

2 = 1 − 𝛼

𝑃
𝑆2· 𝑛−1

𝜒
𝑛−1,1−

𝛼
2

2 ≤ 𝜎2 ≤
𝑆2· 𝑛−1

𝜒
𝑛−1,

𝛼
2

2 = 1 − 𝛼

Since χ2 is not symmetrical, it requires obtaining the upper and lower quantiles instead of doing  .

This is a CI for σ2, not for σ!! 
𝑰𝑪 𝝈𝟐, 𝟏 − 𝜶 =

𝒔𝟐(𝒏 − 𝟏)

𝝌
𝒏−𝟏,𝟏−

𝜶
𝟐

𝟐 ,
𝒔𝟐(𝒏 − 𝟏)

𝝌
𝒏−𝟏,

𝜶
𝟐

𝟐
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The CI formulas to…:

➢ Compare µ1 and µ2

E.g., the CI of the differential effect (µ1-µ2) comparing averages between two subjects*

We must differentiate between
➢ paired samples** (each case results in two measures, pairs of measures)

(the same students in both subjects, µ1-µ2 = µdifference = µd)

➢ independent samples (each case is an independent measure)

(different students in the two subjects)

➢ Compare π1 and π2

E.g., the CI of the differential effect (π1-π2) comparing averages between two subjects*

➢ Compare σ2
1 and σ2

2
E.g., the CI comparing deviations between two subjects*

* The origin of the sample must be random. 

** If possible, a design with paired data will be more efficient (as we will see below).

5. Confidence interval to compare two parameters
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5.a. CI of 𝝁𝟏 − 𝝁𝟐 (or of 𝝁𝑫) in paired samples

If obtain a simple random paired sample of size n, and 
we define d = Y1 - Y2 then E(d)= d and V(d)= d

2

and the n observed differences values have a mean ሜ𝑑 and deviation sd.

• The statistic  Ƹ𝑡 =
ത𝑑−𝜇

𝐷

Τ𝑠
𝑑

𝑛
=

ത𝑑−𝜇
𝐷

𝑠𝑒
follows the 𝑡𝑛−1 model

where ሜ𝑑 − 𝜇𝐷 is the signal and  𝑠𝑒 = Τ𝑠𝑑 𝑛 is the standard error.

• The CI of the population mean difference with confidence 1- is

It may be of practical interest to evaluate the t-ratio:    𝒕 = ഥ𝒅 /
𝒔𝒅
𝒏

= ഥ𝒅/𝒔𝒆, 

which says how many times the signal is greater than the noise.

𝑰𝑪(𝝁𝟏− 𝝁𝟐, 𝟏 − 𝜶) = 𝑰𝑪(𝝁𝒅, 𝟏 − 𝜶) =  ഥ𝒅 ± 𝒕𝒏−𝟏,𝟏−𝜶
𝟐
·
𝒔
𝒅

𝒏
= ഥ𝒅 ± 𝒕𝒏−𝟏,𝟏−𝜶

𝟐
· 𝒔𝒆
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5.b. CI of (𝝁𝟏 − 𝝁𝟐) independent samples

Be Y1 with E(Y1) = 1, V(Y1) = 1
2; and Y2  with E(Y2) = 2, V(Y2) = 2

2 with normal 
distributions (1 and 2 will be unknown values but must be assumed to be the same*),
from which we obtain two independent simple random samples of size n1 and n2 with 
means ǉ𝑦1, ǉ𝑦2 and deviations s1 and s2 as estimators of the common parameter σ.

• The statistic  Ƹ𝑡 =
ǉ𝑦
1
− ǉ𝑦

2
)−(𝜇

1
−𝜇

2

𝑠𝑒
follows the distribution 𝑡𝑛

1
+𝑛

2
−2, with standard error  

𝒔𝒆 = s
1

𝑛1
+

1

𝑛2
, where s is the root of the “pooled” variance s2=

(𝑛1−1)𝑠1
2+(𝑛2−1)𝑠2

2

(𝑛1−1)+(𝑛2−1)

• The CI of the difference with confidence 1- is

The fundamental condition is random samples. We know it.

The other two assumptions (normality of Y1, Y2 and 1
2=2

2) will be analysed graphically. 

𝑰𝑪(𝝁𝟏− 𝝁𝟐, 𝟏 − 𝜶) = ǉ𝒚𝟏 − ǉ𝒚𝟐 ± 𝒕𝒏
𝟏
+𝒏

𝟐
−𝟐,𝟏−

𝜶

𝟐
· 𝒔𝒆 =

ǉ𝒚𝟏 − ǉ𝒚𝟐 ± 𝒕𝒏
𝟏
+𝒏

𝟐
−𝟐,𝟏−

𝜶

𝟐
· s

𝟏

𝒏𝟏
+

𝟏

𝒏𝟐
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5.c. CI of 𝟏 − 𝟐

• The statistic  Ƹ𝑧 =
P1−P2)−(1

−
2

𝑠𝑒
follows the distribution N(0,1) with standard error  

𝒔𝒆 = 𝑃1(1 − 𝑃1)/𝑛1 + 𝑃2(1 − 𝑃2)/𝑛2.

• The CI of the difference with confidence 1- is

Let P1 and P2 be the sample proportions of two binomial populations with 1, 2, from which 
we obtain two independent simple random samples of size n1 and n2 .

𝑰𝑪(π𝟏− 𝟐, 𝟏 − 𝜶) = 𝑷𝟏 − 𝑷𝟐 ± 𝒛𝟏−𝜶
𝟐
· 𝒔𝒆 =

𝑷𝟏− 𝑷𝟐 ± 𝒛𝟏−𝜶
𝟐
· 𝑷𝟏(𝟏 − 𝑷𝟏)/𝒏𝟏 + 𝑷𝟐 (𝟏 − 𝑷𝟐)/𝒏𝟐

In this case, convergence requires “large” samples: usually

P·n >5 and (1-P)·n >5.
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5.d.   CI of 𝝈𝟏
𝟐/𝝈𝟐

𝟐

Let s1 and s2 be the sample deviations of two independent simple random samples of size n1

and n2 of two normal variables.

• The statistic  ෠𝐹 =
൘

𝑠1
𝟐

σ1
𝟐

൘
𝑠2
𝟐

σ2
𝟐

follows the distribution 𝐹 𝑛
1
−1,𝑛

2
−1 .

• The CI of the ratio of variances with confidence 1- is
(following the same reasoning as the CI of 𝜎2)

𝐼𝐶(𝜎21/𝜎
2
2,1 − 𝛼) = ൗ𝑠1

2

𝑠2
2 𝐹 𝑛

2
−1,𝑛

1
−1 ,

𝛼

2
, ൗ𝑠1

2

𝑠2
2 𝐹 𝑛

2
−1,𝑛

1
−1 ,1−

𝛼

2

or (note the exchange of degrees of freedom of F)

𝑰𝑪(𝝈𝟐𝟏/𝝈
𝟐
𝟐, 𝟏 − 𝜶) = 

൘
𝒔𝟏
𝟐

𝒔𝟐
𝟐

𝑭
𝒏
𝟏
−𝟏,𝒏

𝟐
−𝟏 ,𝟏−

𝜶
𝟐

,
൘

𝒔𝟏
𝟐

𝒔𝟐
𝟐

𝑭
𝒏
𝟏
−𝟏,𝒏

𝟐
−𝟏 ,

𝜶
𝟐
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6.  Designs (how we obtain the data)

This is a simple approximation. The world of experiment design is much broader.

The key is random:
Collecting data arbitrarily does not guarantee a random sample:   willy-nilly  ≠ at random.

(1) to plan the random selection of the units to be measured; (2) to carry out the experiment 
correctly; (3) without missing values; and (4) to document it in a reproducible way.

Paired design:
One variable and two observations are taken from each unit 
(the two measures or responses),
Requirement: the first observation in a “pair” must not alter the 
state of the unit and therefore of the second observation.

Independent samples
For each unit, one observation and two variables are taken: 
(1) the outcome, the measure of the response and
(2) the category to compare.
Requirements:

• It must be possible to assign the category to the unit (it 
cannot be a condition, such as sex).

• In observational studies, when the group is not assignable, 
the samples are selected separately.
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6.  Designs (how we obtain the data)
The chosen design conditions the subsequent statistical analysis. 

If the collection is complex, the statistical model used is also complex:

• Cases with nested data (clusters): groups from the top level (e.g., school) are first randomly 

selected, then groups from the lower level (class), until the individual (student) is reached. 

It is unusual to have the listing of the 
complete population; nor to be able to 
access any unit under the same conditions 
(both are requirements for a simple random 

sample). 

Usually, some units will be more “visible” 
than others and will have a higher 
probability of being chosen (e.g., results 
that can only be obtained in order). 

Population

• Cases with stratified data: all the strata can be seen, but within each stratum the individuals 

are randomly selected.

Then, the group of students chosen is not strictly a random sample; they must be analysed with 

appropriate techniques (not explained at a first level statistical course).
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7.  Functions in R for CIs

We will see the following:

- A list of functions in R.

- Functions in R for a sample. CI of µ. 

- Functions in R for two independent samples. CI of  µ1-µ2.

- Functions in R for paired samples. CI of µD.

- Functions in R for paired samples. Graph of differences vs. means.

- Functions en R for comparing σs. CI of σ1-σ2.

- Functions in R for π. 
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A list of functions in R
Premise of normality (in Graphical Analysis of Normality in the Appendix to Section B):

qqnorm(X)

qqline(X)

CI of µ with known σ (for this function you need the BSDA library):
library(BSDA) 

z.test(X,sigma.x= )    # for a sample when sigma is known

CI of µ (or µs) when σ (or σs) is unknown:
t.test(X) # for one sample

t.test(XY) or   t.test(X,Y,paired=T) # for paired samples

t.test(X,Y,var.equal=T) # for two independent samples with equal variances

t-test(X,Y,var.equal=F) # for two independent samples with different variances

CI of σs in two independent samples:

var.test(X,Y)

CI of π:

prop.test and binom.test

app

https://shiny-eio.upc.edu/josean2/qqplot/
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In a sample
An example of nine values with positives and negatives (measurements above or below a threshold)

X <- c(-4,-2,-1,0,0,4,8,8,9)# mean = 2.4 SD = 4.9. We study normality with qqnorm(X), qqline(X)

library(BSDA) 

z.test(X,sigma.x=4)   # CI assuming a population σ of 4.

You can check whether the CI limits coincide with those that would be calculated with the formulas.

Apart from CIs, these functions in R provide the result of a p-value: P value assess the probability that the 
statistic is “extreme” in the distribution of the reference model (see more in the Appendix to section D with more 
functions that provide p-values)

z = 1.8333, p-value = 0.06675

Alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.1688409  5.0577298

Sample estimates: mean of x  2.444444 

t = 1.496, df = 8, p-value = 0.173

Alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-1.323423  6.212312

Sample estimates: mean of x  2.444444

t.test(X)     # CI if we do not know the population σ but use the sample s.
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In two independent samples

t = 0.91335, df = 18, p-value = 0.3731

Alternative hypothesis: true difference is not equal to 0

95 percent confidence interval:

-1.405312  3.566928

Sample estimates: mean of x mean of y  5.636364  4.555556 

Interpretation: the difference in means is up to 0.85 points in favour of group 3 or up 
to 2.9 points in favour of group 1, with a confidence of 95%

An example of two samples to compare µ1 and µ2 with the CI of the differential effect (µ1-µ2)

X1 <-c(1,2,3,5,6,6,7,7,8,8,9)# mean = 5.6 SD = 2.62.   We study normality with qqnorm(X1), qqline(X1)

X2 <-c(1,1,3,4,5,5,6,7,9)    # mean = 4.5 SD = 2.65.   We study normality with qqnorm(X2), qqline(X2)

E.g., X1 and X2, two samples of marks with equal variability

t.test(X1,X2,var.equal=T) boxplot(X1,X2)

X3 <-c(3,4,4,4.5,4.5,5,6,6) # mean = 4.6  SD = 1.0. We assume normality (or qqnorm(X3) and qqline(X3)).
E.g., X1 and X3, two samples of marks with non-equal variability

t.test(X1,X3,var.equal=F)         boxplot(X1,X3)

t = 1.1641, df = 13,793, p-value = 0.2641

Alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval:

-0.8546781  2.8774054

Sample estimates: mean of x mean of y  5.636364  4.625000 
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In paired samples
An example of two samples with the CI of the differential effect (µ1-µ2)

Y1 <- c(1,1,2,2.0,2,2.5,4,5,5.5,6,7.5,8,8,9.5,9,9.5)

Y2 <- c(1.5,1,2,1.0,3,3,3.5,5,6,6,8.5,8.5,9.5,8.5,9.1,9)

E.g., X1 and X2, two samples of marks, both came from the same student

t.test(Y1,Y2,paired=T)

In paired samples, it is possible to work with the difference of the values (D=Y1-Y2), so it is like 
the case of one sample (instead of µ1-µ2, we are interested in µD).

D <- Y1-Y2

-0.5  0.0  0.0  1.0 -1.0 -0.5  0.5  0.0 -0.5  0.0 -1.0 -0.5 -1.5  1.0 -0.1  0.5

mean(D)

-0.1625

sd(D)

0.6994045

t = -0.92936, df = 15, p-value = 0.3674

Alternative hypothesis: true difference is not equal to 0

95 percent confidence interval:

-0.5351864  0.2101864

Sample estimates: mean of the differences  -0.1625 
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In paired samples
It is very important not to do an analysis of paired data as independent data.

In the graph on the left (independent samples)

we do not see that there could be differences in mean

between the two populations.

In the graph on the right (paired samples)

it is clearly seen that the mean

is higher in sample B.

We have graphical descriptive functions in R to see the relationship between the two
variables and the normality of the difference:

plot(Y1,Y2) qqnorm(Y1-Y2)

qqline(Y1-Y2)

app

https://shiny-eio.upc.edu/josean2/pares/
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In paired samples
There are specific R functions for paired samples: the Bland-Altman (BA) plot, which represents the
differences in the responses for each individual according to their means.

install.packages("PairedData")

library(PairedData)

p <- paired(Y1,Y2)

plot(p,type='BA’)

(or plot((Y1+Y2)/2,Y2-Y1) )

The mean-difference plot (complementing the plot and the qqnorm) shows whether there is an
additive (or multiplicative) effect and helps decide whether a transformation of the data would be
appropriate (this will be seen in block D).
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Comparing variances

F test to compare two variances

data:  B and A

F = 2.2502, num df = 5, denom df = 7, p-value = 0.3199

Alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.4257491 15.4206862

Sample estimates:

Ratio of variances 

2.250185 

An example with the CI of σ2
1/σ2

2

(as in the exercises comparing the variability in the duration of refills of ink cartridges of two brands).

A <- c(350,361.9,365,365,365,370,372,377)

# mean(A)=365.7375 SD(A)=8.00231 var(A)=64.03696. We study normality with qqnorm (A), qqline(A)

B <- c(390,391.7,410,412,414,418)

# mean(B)=405.95 SD(B)=12.00396 var(B)=144.095. We study normality with qqnorm(B), qqline(B)

var.test(B,A)

Interpretation: V(B)=2·V(A) although the 95% CI shows that the true population V(A)/V(B) ratio could be as small as 
0.4, (V(A)=2.5·Var(B); and also as large as 15, V(B)=15·V(A).

Final interpretation: high uncertainty, so more information should be considered.

There is no preference with the current data.
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For the CI of π
For example, tossing a coin 100 times and observing 56 heads.

prop.test(56,100) # requires convergence to Normal (large n)

binom.test(56,100) # more appropriate if the sample is small

1-sample proportions test with continuity correction

data:  56 out of 100, null probability 0.5

X-squared = 1.21, df = 1, p-value = 0.2713

Alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.4573588 0.6579781

Sample estimates:  p   0.56 

Exact binomial test

data:  56 and 100

Number of successes = 56, number of trials = 100, p-value = 0.2713

Alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.4571875 0.6591640

Sample estimates:

Probability of success 

0.56 

None of these CIs exactly match the one calculated with the formula approximating the normal 
distribution explained above. The agreement would increase with larger sample sizes and with 
proportions closer to ½.

Although at a practical and interpretive level, all CIs agree with [46% to 66%]


