
17 Applications of the Exponential Distribution

Failure Rate and Reliability

Example 1

The length of life in years, T , of a heavily used terminal in

a student computer laboratory is exponentially distributed
with λ = .5 years, i.e.

f(t) = .5e−.5t, t ≥ 0,

= 0, otherwise.

λ = .5 is called the failure rate of the terminal.

Reliability of t.

Rel(t) = P (T > t) = e−.5t

For example

Rel(1) = P (T > 1) = e−.5 = 0.607.

the probability that the terminal will last more than 1 year.

Use R to calculate P (X ≤ 1):

> pexp(1, .5)

[1] 0.3934693

And so the reliability P (X > 1):

> 1-pexp(1, .5)

[1] 0.6065307



Also
Rel(2) = P (T > 2) = e−1 = 0.368

In R

> 1-pexp(2, .5)

[1] 0.3678794

Use R to examine the reliability as t increases.

curve(exp(-.5*x), 0, 7,

xlab = "Time in years",

ylab = "Reliability", type = "l")

Reliability of a Terminal with failure rate λ =.5
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We might want to know when the reliability is just 5%:

Choose k so that

P (T > k) = .05

or equivalently, choose k so that

P (T ≤ k) = .95

From R

qexp(.95, .5)

[1] 5.991465

95% likelihood that the machine will last less than 6 years

just a 5% chance that it will last longer than 6 years.

Rel(6) = .05.



Example:

Suppose that there are 100 terminals in the laboratory, how
long will it take to have 90 of them still working, or equiv-

alently 10% of them broken down.

We need to find k so that

P (T > k) = .9

or equivalently
P (T ≤ k) = .1

In R :

qexp(.1,.5)

[1] 0.2107210

i.e.

P (T ≤ .21 years) = .1

a 10% chance that the terminal will last up to .21 years (3

months approx),

or a 90% chance that the lifetime will be greater than 3

months.

After just under 3 months 10 of the 100 terminals broken
and about 90 still working.

To check it in R

pexp(.21, .5)

[1] 0.09967548



In general, if the lifetime of a machine is modeled by an
exponential distribution of the form

f(t) = λe−λt, t > 0

= 0, otherwise

then λ is the failure rate of the machine

Rel(t) = e−λt is the reliability of the machine at time t.

Because the exponential distribution enjoys the Markov prop-
erty,

P (T > t + s|T > t) = P (T > s)

i.e.
Rel(t + s|T > t) = Rel(s)

For example

Rel(5|T > 2) = Rel(3)

which means that the probability that the terminal will last
3 years more after lasting for 2 years, is the same as the

probability lasting 3 years from the start.

Breakdown is a result of some sudden failure, not wear and
tear.



Example

Studies of a single-machine-tool system showed that the
time the machine operates before breaking down is expo-

nentially distributed with a mean 10 hours.

1. Determine the failure rate and the reliability.

2. Find the probability that the machine operates for at
least 12 hours before breaking down.

3. If the machine has already been operating 8 hours, what
is the probability that it will last another 4 hours?

E(T ) = 10 hours

Also for the exponential distribution:

E(T ) =
1

λ
.

So 1/λ = 10, giving λ = 0.1

The failure rate is 0.1

The pdf is

f(t) = 0.1e−0.1t, t > 0

= 0 otherwise



Solution:

1. Failure rate = .1 hours
Reliability: Rel(t) = e−.1t.

2. The reliability at T = 12:

Rel(12) = e−1.2 = .30

In R

> 1-pexp(12, .1)

[1] 0.3011942

i.e. just aver 30% chance that the machine will last
longer than 12 hours.

3. the likelihood that the machine will last at least 12

hours given that it has already lasted 8 hours.

We seek:
P (T > 12 hours |T > 8)

From Markov;

P (T > 12 hours|T > 8 hours) = P (T > 4) = e−4(0.1) = .67032

In R

> 1-pexp(4, .1)

[1] 0.67032

Rel(12|T > 8) = Rel(4) = .67



Applications of the Exponential Distribution

Modelling Response Times

A Single Server Queue

Server

* * * * * −→ −→

It is assumed

• jobs arrive at a single server, in accordance with a Pois-

son distribution.

• job is processed immediately if the queue is empty, oth-

erwise joins the end of the queue.

• Service times are assumed to be exponentially distributed.

Called M/M/1; the two Ms refer to the arrival and service

times being exponential and hence enjoy the Markov or
Memoryless property, while the 1 refers to the single server.



Arrivals

pdf
f(t) = λe−λt

Average inter-arrival time is 1/λ.

Processing time

pdf
f(s) = µe−µs

cdf is

F (s) = P (S ≤ s) = 1 − e−µs

Average processing time is 1/µ.

Response rate depends on the arrival rate λ and the pro-

cessing rate µ.



Traffic Intensity (I)

arrival rate relative to the process rate.

I =
λ

µ

• I > 1

i.e. λ > µ:

average arrival rate exceeds the average processing rate.

• I = 1

i.e. λ = µ:

the average arrival rate equals the average processing
rate.

• I < 1

i.e. λ < µ:

jobs are being processed faster than they arrive.



Queue Lengths

Example:

Supposing that jobs arrive at the rate of 4 per minute, use
R to examine the queue length when the service rate is:

(a) 3.8 per minute,

(b) 4 per minute,

(c) 4.2 per minute.

You can assume that both the service times and the inter-
arrival times are exponentially distributed.

Solution:

(a) service rate µ = 3.8 < λ = 4, the arrival rate.

Therefore,
the traffic intensity I = λ/µ ≈ 1.05 > 1.

In this case we would expect the queue to increase indefi-

nitely.



Simulating Queues in R

In R

rpois

generates random observations from a Poisson distribution.

For example:

rpois(10000, 4)

generates 10,000 Poisson λ = 4

R program for queue length

arrivals<- rpois(10000, 4)

service <-rpois(10000, 3.8)

queue[1] <-max(arrivals[1] - service[1], 0)

for (t in 2:10000)

queue[t] = max(queue[t-1]+arrivals[t]-service[t], 0)

plot(queue, xlab = "Time", ylab = "Queue length")

Queue length with traffic intensity > 1.

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00
20

00

Time

Qu
eu

e l
en

gth



(b)Queue length when the traffic intensity = 1

service rate µ = 4 and λ = 4 arrival rate.

Traffic intensity:

I = λ/µ = 1.

Investigate with R

arrivals <- rpois(10000, 4)

service <-rpois(10000, 4)

queue[1] <-max(arrivals[1] - service[1], 0)

for (t in 2:10000)

queue[t] = max(queue[t-1]+arrivals[t]-service[t], 0)

plot(queue, xlab = "Time", ylab = "Queue length")

Queue pattern when the traffic intensity = 1
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(c) Queue length when the traffic intensity ¡ 1.

service rate µ = 4.2 > λ = 4 arrival rate

Traffic intensity I = λ/µ < 4/4.2 ≈ 0.95 < 1.

arrivals <- rpois(10000, 4)

service <-rpois(10000, 4.2)

queue[1] <-max(arrivals[1] - service[1], 0)

for (t in 2:10000)

queue[t] = max(queue[t-1]+arrivals[t]-service[t], 0)

plot(queue, xlab = "Time", ylab = "Queue length")

Queue pattern when the traffic intensity I < 1.
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Queuing Statistics when I < 1

mean(queue)

[1] 18.4218

an average of 18.4218 jobs in the queue.

Average queuing time

mean(queue)*(1/4)

[1] 4.6

4.6 minutes spent in the queue on average.

Longest lengh:

max(queue)

[1] 103

Longest wait;

max(queue)/4

[1] 25.75

less than 26 minutes.

Best case

min(queue)

[0]



Queue length with arrival rate λ = 4
and processing rates

µ = 3.8, 4 and 4.2 jobs per minute
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