5 Rules of Probability

TYPES OF EVENTS

- UNION OF TWO EVENTS

$E_{1} \cup E_{2}$ denotes the outcome of E_{1} or E_{2}
Example: Pull a card from a deck.
$E_{1}=$ Spade $\quad E_{2}=$ Ace
$E_{1} \cup E_{2}=$ Ace or Spade

- INTERSECTION OF TWO EVENTS

$E_{1} \cap E_{2}$ denotes the outcome of E_{1} and E_{2}
Example: Pull a card from a deck.
$E_{1}=$ Spade $\quad E_{2}=$ Ace
$E_{1} \cap E_{2}=$ Ace and Spade
$P\left(E_{1} \cap E_{2}\right)=\mathrm{P}($ Ace and Spade $)$

- MUTUALLY EXCLUSIVE EVENTS

E_{1} and E_{2} are mutually exclusive if they cannot occur together.
Example: Pull a card from a deck.
$E_{1}=$ Spade $\quad E_{2}=$ Heart
$E_{1} \cap E_{2}$ is impossible
$E_{1} \cap E_{2}=\emptyset$

AXIOMS OF PROBABILITY

A probability function P is defined on subsets of the sample space S to satisfy the following axioms:

1. Non-Negative Probability:

$$
P(E) \geq 0 .
$$

2. Mutually-Exclusive Events:

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)
$$

provided E_{1} and E_{2} are mutually exclusive. i.e. $E_{1} \cap E_{2}$ is empty.
3. The Universal Set:

$$
P(S)=1
$$

Example:

Consider the following if statement in a program:
if B then s_{1} else s_{2}
The random experiment consists of "observing" two successive executions of the if statement. The sample space consists of the four possible outcomes:

$$
S=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{1}\right),\left(s_{2}, s_{2}\right)\right\}
$$

Assume that on the basis of strong experimental evidence the following probability assignment is justified:
$P\left(s_{1}, s_{1}\right)=0.34, P\left(s_{1}, s_{2}\right)=0.26, P\left(s_{2}, s_{1}\right)=0.26, P\left(s_{2}, s_{2}\right)=0.14$,
Calculate the probability of

1. of at least one execution of the statement s_{1}
2. that statement s_{2} is executed first.

Solution:

1. Let $E=$ At least one execution of the statement s_{1}

$$
\begin{gathered}
E=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{1}\right)\right\} \\
P\left(E_{1}\right)=P\left(s_{1}, s_{1}\right)+P\left(s_{1}, s_{2}\right)+\left(s_{2}, s_{1}\right)=0.86
\end{gathered}
$$

2. Let $E=$ Statement s_{2} is executed first.

$$
\begin{gathered}
E=\left\{\left(s_{2}, s_{1}\right),\left(s_{2}, s_{2}\right)\right\} \\
P(E)=P\left(s_{2}, s_{1}\right)+P\left(s_{2}, s_{2}\right)=0.40
\end{gathered}
$$

Properties of Probability

Theorem 1: Complementary Events
For each $E \subset S$:

$$
P(\bar{E})=1-P(E)
$$

Proof:

$$
S=E \cup \bar{E}
$$

Now, E and \bar{E} are mutually exclusive.
i.e.

$$
E \cap \bar{E} \text { is empty. }
$$

Hence:

$$
P(S)=P(E \cup \bar{E})=P(E)+P(\bar{E})
$$

(Axiom2)
Also:

$$
P(S)=1
$$

i.e.

$$
\begin{aligned}
P(S) & =P(E)+P(\bar{E}) \\
1 & =P(E)+P(\bar{E})
\end{aligned}
$$

So:

$$
P(\bar{E})=1-P(E)
$$

Properties of Probability

Theorem 2: The Impossible Event/The Empty Set

$$
P(\emptyset)=0 \text { where } \emptyset \text { is the empty set }
$$

Proof:

$$
S=S \cup \emptyset
$$

Now: S and \emptyset are mutually exclusive.
i.e.

$$
S \cap \emptyset \text { is empty. }
$$

Hence:

$$
P(S)=P(S \cup \emptyset)=P(S)+P(\emptyset)
$$

(Axiom2)
Also:

$$
P(S)=1
$$

i.e.

$$
1=1+P(\emptyset)
$$

i.e.

$$
P(\emptyset)=0 .
$$

Properties of Probability

Theorem 3:

If E_{1} and E_{2} are subsets of S such that $E_{1} \subset E_{2}$, then

$$
P\left(E_{1}\right) \leq P\left(E_{2}\right)
$$

Proof:

$$
E_{2}=E_{1} \cup\left(\bar{E}_{1} \cap E_{2}\right)
$$

Now, since E_{1} and $\bar{E}_{1} \cap E_{2}$ are mutually exclusive,

$$
\begin{aligned}
P\left(E_{2}\right) & =P\left(E_{1}\right)+P\left(\bar{E}_{1} \cap E_{2}\right) \\
& \geq P\left(E_{1}\right)
\end{aligned}
$$

since $P\left(\bar{E}_{1} \cap E_{2}\right) \geq 0$ from Axiom 1 .

Properties of Probability

Theorem 4: Range of Probability
For each $E \subset S$

$$
0 \leq P(E) \leq 1
$$

Proof:
Since,

$$
\emptyset \subset E \subset S
$$

then from Theorem 3,

$$
\begin{gathered}
P(\emptyset) \leq P(E) \leq P(S) \\
0 \leq P(E) \leq 1
\end{gathered}
$$

Theorem 5: The Addition Law of Probability
If E_{1} and E_{2} are subsets of S then

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Proof:

$$
E_{1} \cup E_{2}=E_{1} \cup\left(E_{2} \cap \bar{E}_{1}\right)
$$

Now, since E_{1} and $E_{2} \cap \bar{E}_{1}$ are mutually exclusive,

$$
\begin{equation*}
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2} \cap \bar{E}_{1}\right) \tag{1}
\end{equation*}
$$

Now E_{2} may be written as two mutually exclusive events as follows:

$$
E_{2}=\left(E_{2} \cap E_{1}\right) \cup\left(E_{2} \cap \bar{E}_{1}\right)
$$

So

$$
P\left(E_{2}\right)=P\left(E_{2} \cap E_{1}\right)+P\left(E_{2} \cap \bar{E}_{1}\right)
$$

Thus:

$$
\begin{equation*}
P\left(E_{2} \cap \bar{E}_{1}\right)=P\left(E_{2}\right)-P\left(E_{2} \cap E_{1}\right) \tag{2}
\end{equation*}
$$

Inserting (2) in (1), we get

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Example:

In a computer installation, 200 programs are written each week, 120 in C^{++}and 80 in Java.
60% of the programs written in C^{++}compile on the first run 80% of the Java programs compile on the first run.

What is the probability that a program chosen at random:

1. is written in C^{++}or compiles on first run?
2. is written in Java or does not compile?
3. either compiles or does not compile?
