Using the analytic center in the feasibility pump

Daniel Baena Jordi Castro
Dept. of Stat. and Operations Research
Universitat Politècnica de Catalunya
daniel.baena@upc.edu jordi.castro@upc.edu
Research Report UPC-DEIO DR 2010-03
August 2010

Report available from http://www-eio.upc.es/~dbaena

Using the analytic center in the feasibility pump

Daniel Baena^a, Jordi Castro^{a,*}

^aDept. of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain

Abstract

The feasibility pump (FP) [5, 7] has proved to be a successful heuristic for finding feasible solutions of mixed integer linear problems (MILPs). FP was improved in [1] for finding better quality solutions. Briefly, FP alternates between two sequences of points: one of feasible solutions for the relaxed problem (but not integer), and another of integer points (but not feasible for the relaxed problem). Hopefully, the procedure may eventually converge to a feasible and integer solution. Integer points are obtained from the feasible ones by some rounding procedure. This short paper extends FP, such that the integer point is obtained by rounding a point on the (feasible) segment between the computed feasible point and the analytic center for the relaxed linear problem. Since points in the segment are closer (may be even interior) to the convex hull of integer solutions, it may be expected that the rounded point has more chances to become feasible, thus reducing the number of FP iterations. When the selected point to be rounded is the feasible solution of the relaxation (i.e., one of the two end points of the segment), this analytic center FP variant behaves as the standard FP. Computational results show that this variant may be efficient in some MILP instances.

Keywords: Analytic Center, Interior-point Methods, Mixed-integer Linear Programming, Feasibility Problem, Primal Heuristics

1. Introduction

The problem of finding a feasible solution of a generic mixed integer linear problem (MILP) of the form

$$\min_{x} c^{T} x$$
s. to $Ax = b$

$$x \ge 0$$

$$x_{j} \quad integer \quad \forall j \in I,$$
(1)

where $A \in \mathbb{R}^{mxn}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ and $I \subseteq \mathcal{N} = \{1, ..., n\}$, is a NP-hard problem. In [5, 7] the authors proposed a new heuristic approach to compute MILP solutions, named the *feasibility pump* (FP). This heuristic turned out to be successful in finding feasible solutions even for some hard MILP instances. A slight modification of FP was suggested in [1], named the *objective feasibility*

Email addresses: daniel.baena@upc.edu (Daniel Baena), jordi.castro@upc.edu (Jordi Castro)

Preprint submitted to October 3, 2010

^{*}Corresponding address: Dept. of Statistics and Operations Research, Universitat Politècnica de Catalunya, Campus Nord, Office C5218, Jordi Girona 1–3, 08034 Barcelona, Catalonia, Spain.

```
1. initialize t := 0 and x^* := \arg\min\{c^T x : Ax = b, x \ge 0\}
 2. if x_T^* is integer then return(x^*) end if
 3. \tilde{x} := [x^*] (rounding of x^*)
 4. while time < TimeLimit do
        x^* := \arg\min\{\triangle(x, \tilde{x}) : Ax = b, x \ge 0\}
        if x_{\tau}^* is integer then return(x^*) end if
        if \exists j \in \mathcal{I} : [x_i^*] \neq \tilde{x}_j then
7.
           \tilde{x} := [x^*]
9.
        else
10.
           restart
11.
        end if
        t := t + 1
13. end while
14. return(FP failed)
```

Figure 1: The feasibility pump heuristic (original version)

pump, in order to improve the quality of the solutions in terms of the objective value. The main difference between both versions is that the objective FP, in contrast to the original version, takes the objective function of the MILP into account during the course of the algorithm. FP alternates between feasible (for the linear relaxation of MILP) and integer points, hopefully converging to a feasible integer solution. The integer point is obtained by applying some rounding procedure to the feasible solution. This paper suggests an extension of FP where all the points in a feasible segment are candidates to be rounded. The end points of this segment are the feasible point of the standard FP and some interior point of the polytope of the relaxed problem, the analytic center being the best candidate. When the end point of the segment in the boundary of the polytope is considered for rounding, we obtain the standard FP algorithm. The motivation of this approach is that rounding a point of the segment closer to the analytic center may increase the chances of obtaining an integer point, in some instances, thus reducing the number of FP iterations. Although interior-point methods have been applied in the past in branch-and-bound frameworks for MILP and mixed integer nonlinear problems (MINLP) [3, 4, 11, 12], as far as we know this is the first attempt to apply them to a primal heuristic. The computational results show that, for some instances, taking a point in the interior of the feasible segment may be more effective than the standard end point of the objective FP. A recent version of FP [8] introduced a new improved rounding scheme based on constraint propagation. Although in this work we considered as base code a freely available implementation of the objective FP, the analytic center FP approach could also be used with the above new rounding scheme.

The paper is organized as follows. The remainder of Section 1 reviews the original FP version of [5, 7] and the modified objective FP of [1]. Section 2 introduces the analytic center FP variant. Finally, Section 3 reports computational results on a subset of MILP instances from MIPLIB 2003 [2].

1.1. The original feasibility pump

The FP heuristic starts by solving the linear programming (LP) relaxation of (1)

$$\min_{x} \{ c^{T} x : Ax = b, x \ge 0 \},$$
(2)

and its solution x^* is rounded to an integer point \tilde{x} , which may be infeasible for (2). The rounding \tilde{x} of a given x^* , denoted as $\tilde{x} = [x^*]$, is obtained by setting $\tilde{x}_j = [x_j^*]$ if $j \in I$ and $\tilde{x}_j = x_j^*$ otherwise, where [.] represents scalar rounding to the nearest integer. If \tilde{x} is infeasible, FP finds the closest $x^* \in P$, where

$$P = \{ x \in \mathbb{R}^n : Ax = b, x \ge 0 \}, \tag{3}$$

by solving the following LP

$$x^* = \arg\min\{\triangle\ (x, \tilde{x}) : Ax = b, x \ge 0\},\tag{4}$$

 \triangle (x, \tilde{x}) being defined (using the L_1 norm) as

$$\Delta (x, \tilde{x}) = \sum_{i \in I} |x_j - \tilde{x}_j|. \tag{5}$$

Notice that continuous variables \tilde{x}_j , $j \notin I$, don't play any role. If \triangle $(x^*, \tilde{x}) = 0$ then $x_j^*(=\tilde{x}_j)$ is integer for all $j \in I$, so x^* is a feasible solution for (1). If not, FP finds a new integer point \tilde{x} from x^* by rounding. The pair of points (\tilde{x}, x^*) with \tilde{x} integer and $x^* \in P$ are iteratively updated at each FP iteration with the aim of reducing as much as possible the distance \triangle (x^*, \tilde{x}) . An outline of the FP algorithm is showed in Figure 1. To avoid that the procedure gets stuck at the same sequence of integer and feasible, there is a restart procedure when the previous integer point \tilde{x} is revisited (lines 7–11 of algorithm of Figure 1). In a restart, a random perturbation step is performed.

The FP implementation has three stages. *Stage 1* is performed just on the binary variables by relaxing the integrality conditions on the general integer variables. In *stage 2* FP takes all integer variables into account. The FP algorithm exits stage 1 and goes to stage 2 when either (a) a feasible point with respect to only the binary variables has been found; (b) the minimum $\Delta(x^*, \tilde{x})$ was not updated during a certain number of iterations; or (c) the maximum number of iterations was reached. The point \tilde{x} that produced the smallest $\Delta(x^*, \tilde{x})$ is stored and passed to stage 2 as the initial \tilde{x} point. When FP turns out to be unable to find a feasible solution within the provided time limit, the default procedure of the underlying MILP solver (CPLEX 12 [10] in this work) is started; this is named *stage 3*.

1.2. The modified objective feasibility pump

According to [1], although the original FP heuristic of [5, 7] has proved to be a very successful heuristic for finding feasible solutions of mixed integer programs, the quality of their solutions in terms of objective value tends to be poor. In the original FP algorithm of [5, 7] the objective function of (1) is only used at the beginning of the procedure. The purpose of the objective FP [1] is, instead of instantly discarding the objective function of (1), to consider a convex combination of it and Δ (x, \tilde{x}), reducing gradually the influence of the objective term. The hope is that FP still converges to a feasible solution but it concentrates the search on the region of high-quality points. The modified objective function Δ_{α} (x, \tilde{x}) is defined as

$$\Delta_{\alpha}(x,\tilde{x}) := (1 - \alpha) \Delta(x,\tilde{x}) + \alpha \frac{\|\Delta\|}{\|c\|} c^{T} x, \quad \alpha \in [0,1],$$
(6)

where $\| \cdot \|$ is the Euclidean norm of a vector, and \triangle is the objective function vector of \triangle (x, \tilde{x}) (i.e., at stage 1 is the number of binary variables, and at stage 2 is the number of integer (both general integer and binary) variables). At each FP iteration α is geometrically decreased with a fixed factor $\varphi < 1$, i.e., $\alpha_{t+1} = \varphi \alpha_t$ and $\alpha_0 \in [0, 1]$. Notice that the original FP algorithm

is obtained using $\alpha_0 = 0$. The objective FP algorithm is basically the same as the original FP algorithm of Figure 1, replacing $\Delta(x, \tilde{x})$ by $\Delta_{\alpha_t}(x^*, \tilde{x})$ at line 5, performing at the beginning the initialization of α_0 , and adding at the end of the loop $\alpha_{t+1} = \varphi \alpha_t$.

2. The analytic center feasibility pump

2.1. The analytic center

Given the LP relaxation (2), its analytic center is defined as the point $\bar{x} \in P$ that minimizes the *primal potential function* $-\sum_{i=1}^{n} \ln x_i$, i.e.,

$$\bar{x} = \underset{x}{\operatorname{arg \, min}} - \sum_{i=1}^{n} \ln x_{i}$$
s. to $Ax = b$

$$x > 0.$$
(7)

Note that constraints x > 0 could be avoided, since the domain of ln are the positive numbers. Problem (7) is a linearly constrained strictly convex optimization problem. It is easily seen that the objective function min $-\sum_{i=1}^{n} \ln x_i$ is equivalent to max $\prod_{i=1}^{n} x_i$. Therefore, the analytic center provides the point that maximizes the distance to the hyperplanes $x_i = 0, i = 1, \dots, n$, and it is thus expected to be well centered in the interior of the polytope P. We note that the analytic center is not a topological property of a polytope, and it depends on how P is defined. In this sense, redundant inequalities may change the location of the analytical center. Additional details can be found in [13].

The analytic may be computed by solving the KKT conditions of (7)

$$Ax = b$$

 $A^{T}y + s = 0$
 $x_{i}s_{i} = 1 \quad i = 1,...,n$
 $(x,s) > 0,$ (8)

 $y \in \mathbb{R}^m$ and $s \in \mathbb{R}^n$ being the Lagrange multipliers of Ax = b and x > 0 respectively. Alternatively, and in order to use an available highly efficient implementation, the analytic center was computed in this work by applying a primal-dual path-following interior-point algorithm to the barrier problem of (2), after removing the objective function term (i.e., setting c = 0):

$$\min_{x} -\mu \sum_{i=1}^{n} \ln x_{i}$$
s. to $Ax = b$

$$x > 0,$$
(9)

where μ is a positive parameter (the parameter of the barrier) that tends to zero. The arc of solutions of (9) $x^*(\mu)$ is named the central path. The central path converges to the analytic center of the optimal set. When c = 0 (as in (9)) the central path converges to the analytic center of the feasible set P [13].

2.2. Using the analytic center in the feasibility pump heuristic

Once the analytic center has been computed, it can be used to (in theory infinitely) increase the number of feasible points candidates to be rounded. Instead of rounding, at each FP iteration, the feasible point $x^* \in P$, points on the segment

$$x(\gamma) = \gamma \bar{x} + (1 - \gamma)x^* \quad \gamma \in [0, 1]$$
(10)

```
1. initialize t := 0, \alpha_0 \in [0, 1], \varphi \in [0, 1], and x^* := \arg\min\{c^T x : Ax = b, x \ge 0\}
 2. { Beginning of stage 0}
 3. compute analytic center \bar{x} := \arg\min \left\{ -\sum_{i=1}^{n} \ln x_i : Ax = b, x > 0 \right\}
 4. for \gamma \in [0, 1] do
         x(\gamma) := \gamma \bar{x} + (1 - \gamma)x^*
         \tilde{x}(\gamma) := [x(\gamma)] (rounding of x(\gamma))
         if \tilde{x}(\gamma) is feasible then return(\tilde{x}(\gamma)) end if
 8. end for
 9. { End of stage 0}
10. select \tilde{x} from the set \{\tilde{x}(\gamma)\}\
11. while time < TimeLimit do
         x^* := \arg\min\{\triangle_{\alpha_t}(x, \tilde{x}) : Ax = b, x \ge 0\}
12.
13.
         for \gamma \in [0, 1] do
             x(\gamma):=\gamma\bar{x}+(1-\gamma)x^*
14.
             \tilde{x}(\gamma) := [x(\gamma)] (rounding of x(\gamma))
15.
             if \tilde{x}(\gamma) is feasible then \operatorname{return}(\tilde{x}(\gamma)) end if
16.
17.
         end for
         select \hat{x} from the set \{\tilde{x}(\gamma)\}\
18.
         if \hat{x}_I \neq \tilde{x}_I then
19.
            \tilde{x} := \hat{x}
20.
21.
         else
22.
            restart
23.
         end if
         \alpha_{t+1} := \varphi \alpha_t
25.
         t := t + 1
26. end while
27. return(FP failed)
```

Figure 2: The analytic center feasibility pump heuristic

will be considered. Note that the segment is feasible, since it is a convex combination of two feasible points.

The analytic center FP first considers a *stage* 0 (which is later applied at each FP iteration) where several $x(\gamma)$ points are tested, from $\gamma=0$ to $\gamma=1$ (i.e, from x^* to \bar{x}). Each $x(\gamma)$ is rounded to $\tilde{x}(\gamma)$. If $\tilde{x}(\gamma)$ is feasible, then a feasible integer solution was found and the procedure is stopped at the stage 0. Otherwise the algorithm proceeds with the next stage of FP, considering two different options:

- a) using the point $\tilde{x}(0) = [x^*]$ (option $\gamma = 0$);
- b) using the point $\tilde{x}(\gamma)$ that minimizes $\|\tilde{x}(\gamma) x(\gamma)\|_{\infty}$ (option L_{∞}).

If the first option is applied at each FP iteration, and no feasible $\tilde{x}(\gamma)$ for $\gamma > 0$ is found, the analytic center FP behaves as the standard FP algorithm. In the second option, if no feasible $\tilde{x}(\gamma)$ is found, the procedure selects the $x(\gamma)$ which is closer to $[x(\gamma)]$ according to the L_{∞} norm. The aim is to select the point with more chances to become both integer and feasible, in an attempt to reduce the number of FP iterations. This second option provided better results in general and it was used in the computational results of Section 3. It is worth to note that if the rounding of several $x(\gamma)$ points is feasible, the procedure selects the one with a lower γ , i.e., the one closer to x^* (instead of the one closer to the analytic center \bar{x}), since this point was computed considering the objective function (for $\alpha > 0$). An outline of the algorithm is shown in Figure 2.

3. Computational results

The analytic center FP was implemented using the base code of the objective FP, freely available from http://www.or.deis.unibo.it/research_pages/ORcodes/FP-gen.html. The base FP implementation was extended for computing the analytic center using three different interior-point solvers, CPLEX [10], GLPK [9] and PCx [6]. The new code can be obtained from the authors on request. CPLEX integrates better with the rest of the FP code, which also relies on CPLEX, and it also turned out to be significantly more efficient than GLPK and PCx. On the other hand, even deactivating all the preprocessing options and removing the crossover postprocess, CPLEX was not always able to provide the analytic center of P because of its aggressive reduced preprocessing (which can not be deactivated as we were told by CPLEX developers). For instance, for $P = \{x : \sum_{i=1}^{n} = n, x \ge 0\}$, the barrier option of CPLEX did not apply the interior-point algorithm, not providing an interior solution (i.e., it provided $x_i = n$, $x_j = 0$, $j \neq i$), whereas both GLPK and PCx reported the right analytic center $x_i = 1, i = 1, ..., n$. Of the other two solvers, PCx turned out to be much more efficient than GLPK. Indeed, PCx may handle upper bounds implicitly (i.e., $0 \le x \le 1$ from linear relaxations of $x \in \{0, 1\}$) in its interior-point implementation, whereas GLPK transforms the problem to the standard form (replacing $x \le 1$ by x + s = 1, $s \ge 0$), significantly increasing the size of the Newton's system to be solved at each interior-point iteration.

The analytic center FP implementation was applied to a subset of MIPLIB2003 instances, whose dimensions are shown in Table 1. Columns "rows", "cols", "nnz", "int", "bin" and "con" provide respectively the number of constraints, variables, nonzeros, general integer variables, binary variables, and continuous variables of the instances. Column "objective" shows the optimal objective function. Unknown optimal objectives are marked with a "?".

Table 2 shows the results obtained for the objective FP, the analytic center FP using PCx, and the analytic center FP using CPLEX-12.1. For each variant, Table 2 reports the number of FP iterations (columns "niter"), objective value of feasible point found ("fobj"), gap between

Instance	rows	cols	nnz	int	bin	con	objective
10teams	230	2025	12150	0	1800	225	924
alc1s1	3312	3648	10178	0	192	3456	11503.40
aflow30a	479	842	2091	0	421	421	1158
aflow40b	1442	2728	6783	0	1364	1364	1168
air04	823	8904	72965	0	8904	0	56137
air05	426	7195	52121	0	7195	0	26374
arki001	1048	1388	20439	96	415	877	7580810
atlanta-ip	21732	48738	257532	106	46667	1965	90.00
cap6000	2176	6000	48243	0	6000	0	-2451380
dano3mip	3202	13873	79655	0	552	13321	?
danoint	664	521	3232	0	56	465	65.66
disctom	399	10000	30000	0	10000	0	-5000
ds	656	67732	1024059	0	67732	0	93.52
fast0507	507	63009	409349	0	63009	0	174
fiber	363	1298	2944	0	1254	44	405935
fixnet6	478	878	1756	0	378	500	3983
gesa2-o	1248	1224	3672	336	384	504	25779900
gesa2	1392	1224	5064	168	240	816	25779900
glass4	396	322	1815	0	302	20	1200010000
harp2	112	2993	5840	0	2993	0	-73899800
lin	2178	1156	10626	0	1089	67	7 2077000
manna81	6480	3321	12960	3303	18	0	-13164
markshare1	6	62	312	0	50	12	-15104
markshare2	7	74	434	0	60	14	1
mas74	13	151	1706	0	150	1	11801.20
mas76	12	151	1640	0	150	1	40005.10
misc07	212	260	8619	0	259	1	2810
mkc	3411	5325	17038	0	5323	2	-563.84
mod011	4480	10958	22254	0	3323 96	10862	-54558500
modglob	291	422	968	0	98	324	20740500
msc98-ip	15850	21143	92918	53	20237	853	19839500
mzzv11	9499	10240	134603	251	9989	0.55	-21718
mzzv42z	10460	11717	151261	235	11482	0	-20540
				233	1603	12512	
net12	14021	14115	80384	25			214
noswot	182	128	735		75	28	-41
nsrand-ipx	735	6621	223261	0	6620	0	51200
nw04	36	87482	636666	0	87482	-	16862
opt1217	64	769	1542	0	768	1	-16
p2756	755	2756	8937	0	2756	0	3124
pk1	45	86	915	0	55	31	11
pp08aCUTS	246	240	839	0	64	176	7350
pp08a	136	240	480	0	64	176	7350
protfold	2112	1835	23491	0	1835	0	-31
qiu	1192	840	3432	0	48	792	-132.87
roll3000	2295	1166	29386	492	246	428	12890
rout	291	556	2431	15	300	241	1077.56
set1ch	492	712	1412	0	240	472	54537.80
seymour	4944	1372	33549	0	1372	0	423
sp97ar	1761	14101	290968	0	14101	0	660706000
swath	884	6805	34965	0	6724	81	467.40
timtab1	171	397	829	94	64	239	764772
	294	675	1482	164	113	398	1096560
timtab2	274	075					
timtab2 tr12-30	750 234	1080 378	2508 917	0	360 168	720 210	130596 13.75

?: Unknown value

Table 1: Characteristics of the subset of MILP instances from MIPLIB 2003

Table 2: Computational results using the objective and the analytic center FP

_				_							_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_						_	_	_	_	_					_
vpm2	tr12-30	timtab I	swath	sp97ar	seymour	set1ch	rout	10000 1000	prottold	pp08a	pp08aCUTS	pkl	p2756	opt1217	nw04	nsrand-ipx	nos wot	net12	mzzv42z	mzzv11	msc98-ip	modglob	mod011	mkc	misc07	mas 76	mas 74	markshare2	marksharel	manna81	lin	ham?	gesa2	gesa2-o	fixnet6	fiber	fast0507	ds	danoint	dano3mip	cap6000	atlanta-ip	arki001	air05	air04	aflow40h	alcisi	10teams	Instance	
12	25	1275	395	9	7	4	117	793	085	=	10	56	377	40	10	132	13	216	25	540	61	90	12	13	188	106	109	S,	8, 1	52	110	138	37.3	33	67	41	∞ ō	446	. Y	₹ ≥	31	24	803	3	5 !	2 1	351	278	niter	
																																															22714.68		fobj tt	ohiec
0	- 1) –	4.	4	ω	0 0	o :	17	8	80	0	0	2	0	10	5	_	12	49	127	26	0	_	0	_	_	0	0	0	2 -	- 0	⊣در	- 0	-	0	0	51	9495	s c	361	0	227	15	2	181	- <	> ∞	19	# 1	FD FD
_	- 1) K	2	_	_		_ (- در	- 2	. –	_	_	ယ	_	_	2	2	2	_	w	_	_	_	_	_	_	_	_	- 1	2.		- 0	2 12	2	_	_	_ ,	- در			_	s	w	_			- 12	3	stage	
30.51	25.68	80.75	7575.56	39.21	11.32	75.74	53.31	180.12	46.88	63.39	13.74	208.33	1542.85	0	5.91	312.38	0	57.21	29.39	17.59	53.75	10.87	16.36	48.67	31.31	15.59	40.10	48100	36200	1.70	27.70	17 90	9.32	40.44	936.77	1496.68	5.71	5633 77	06.21	5	0.38	75.52	1.83	2.11	3.73	99.32	97.45	9.73	gap%	
=	214	077	795	63	39	0	79	2 ±	2	15	=	57	244	124	2	883	34	25	23	567	33	60	23	13	217	0	0	66	65	0	110	178	2 2	20	18	41	39	198 4	2 99	205	0	42	871	186	186	394	171	179	niter	
29.50	289227.99	2105005 99	34774.58	1161990000	754	268719	1644.41	40048.40	969 57	15850	16390	86	51338	-12.11	18380	258080	-15	337	-12736	-16262	30196300	21809700	-37482400	-276.96	3935	26804400000	57195600000	925	603	-12948	3036	40631391	38472300	71213100	38401	6481510	11884	5418 56	5000 0 / 0	1000	-2442800	198.02	7729296.21	37907	72098.00	8300	46756.40	1022	fobj	
0(0)	7(0)	9 3	96(1)	57(4)	5(35)	0(0)	1(0)	65(1)	100	0(0)	0(0)	0(0)	7(0)	0(0)	9(8)	367(2)	0(0)	10(86)	13(147)	435(116)	16(949)	1(0)	3(1)	1(0)	3(0)	0(0)	0(0)	0(0)	0(0)	066	4(5)	3(0)	3 (6)	0(0)	0(0)	0(0)	131(4)	1945(10)	3 6	1892(17)	1(0)	68(9398)	43(0)	162(1)	1220(2)	12(0)	0(0)	26(0)	tFP(tAC) stage	analytic con
_	w	n 1	, w	_	_	0 -	_ ,	- در	-	_	_	_	ယ	_	_	ω	2	_	_	ယ	_	_	_	_	2	0	0	_	_	0 -		ں در	2 12	2	_	_		- در		ني د	0	_	w	w	ယ	۱ ند	٥ د	3	stage	ter ED with
106.78	121.47	91.35	7324.22	75.87	78.07	392.71	52.56	210.68	7/0 05	115.63	122.98	625	1542.85	22.80	9	404.05	61.90	57.21	37.99	25.12	52.20	5.16	31.30	50.79	40.02	67000682.38	484618022.50	46200	30100	1.64	200	45.03	49.23	176.23	863.91	1496.68	6691.43	5633 77	13.30	15.0	0.35	118.68	1.96	43.73	28.43	610.09	306.43	10.59	gap%	, DC,
48.48	135860	2052380	1470.14	8272000000	728.54	224714	1455.68	44336.80	722.04	21666.70	18715	34.13	139225	-8.23	50318.90	761986	-21.82	325.12	-3210.77	4264.40	29571000	272286000	-31430100	-253.58	3601.66	536000000000	571956000000	36.10	30.48	-7307.16	9218 57	-50758200	1/288000000	116914000	60883.20	19694200	8254.52	1053.93	434,436	12849.20	-596562	171.31	7807100	45309	79260.30	7234.03	50396.80	1020	AC value	
27	221	1073	795	97	0	0 :	74	175	30/	0	0	0	279	0	42	694	33	25	27	561	29	0	23	12	219	0	0	0	0	0	3 9	50	4 5	35	0	15	0 0	o 4	220	252	0	397	1573	190	186	54) 0	177	niter	
23.75	285716	1777747 99	34774.58	11702100000	588	216475	1337.27	18507	-18.90	18439.30	21671.40	731	51338	0	61640	203040	-31	337	-14192	-13744	30928000	82243300	-35547800	38.81	3410	50000000000	50000000000	10512	7286	-12878	5876	-49759800	4030/000	32635500	97271.70	3147830	275	-5000									38193.60 \$\$78			
0(0)	6(0)	3(U) 7(O)	100(0)	88(1)	0(0)	0(0)	166	= e	365(2)	0(0)	0(0)	0(0)	7(0)	0(0)	120(2)	265(0)	0(0)	8(27)	12(15)	484(7)	19(22)	0(0)	3(0)	<u>[</u>	2(0)	0(0)	0(0)	0(0)	0(0)	0(0)	5(0)	55		1(0)	0(0)	0(0)	2(I)	- to	4(0)	1947(4)	1(0)	934(11)	79(0)	148(0)	1147(0)	2(0)	0(0)	25(0)	tFP(tAC) stage	analytic cent
_	ω	ມເ	·w	_	0	0 -	- 1	20	o 0.	0	0	0	w	0	_	ယ	2	_	_	w	_	0	_	_	2	0	0	0	0	0 -		- 0	ر در د	2	0	_	0 0	0 -	ى د	ن د	0	3	w	s)	ω,	- 1	٥ , ٥	3	stage	ar ED with
67.8	118.78	61.62	7324.22	1671.15	38.92	296.92	24.08	43.57	37.81	150.85	194.82	6000	1542.85	94.12	265.54	296.56	23.81	57.21	30.90	36.71	55.89	296.53	34.84	106.69	21.34	124980840.41	423649728.01	525550	364250	2.17	24:07	32.67	30.35	26.59	2341.58	675.45	57.71	5633 77	29.73		0.35		2.41	35.73	26.87	503.25	232		gap%	CDI EV
14.08	75936.50	419539 671850	1470.14	18441700000	1345	262834	1474.90	38004.10	-18.42	18778.70	23012.40	731	164724	0	52460.90	802647	-15.67	337	-3825.70	4794.93	29545100	142949000	-36600000	-95.53	4894.40	1000000000000	1000000000000	10512	7286	0	050000	46262500	000807881	166784000	101827	45602200	122425	5418 56	5000	995.15	-109362	159.76	7822170	45732.10	79989.5	6635.63	40504.70	1020	AC value	

the feasible and the optimal solution ("gap%"), and FP stage where the feasible point was found ("stage"). For the objective FP, the column "tt" shows the total CPU time. For the two analytic center FP variants, columns "tFP(tAC))" report separately the CPU time spent in stages 1 to 3 ("tFP") and the time for computing the analytic center at stage 0 (in brackets, "tAC"); the total time is the sum of the two values. For the two analytic center FP variants columns "AC value" show the value of the original objective function evaluated at the analytic center. Differences are due to different computed analytic centers because both solvers apply very distinct preprocessing strategies. The default FP settings were used as suggested in [1]. All runs were carried on a Dell PowerEdge 6950 server with four dual core AMD Opteron 8222 3.0 GHZ processors (without exploitation of parallelism capabilities) and 64 GB of RAM.

Although from Table 2, in general it can be concluded that the analytic center FP is inferior to the objective FP, there are some notable exceptions. For instance, for the 13 instances with both binary and general integer variables, the analytic center FP (either with PCx or CPLEX) obtained a solution with a lower gap than the objective FP in eight of the 13 instances; in some cases more efficiently and even being able to find a solution when the objective FP failed (i.e., it required stage 3), as for instances "roll3000" and "atlanta-ip" (in this latter case, however, at the expense of a very large CPU time). On the other hand, for problems with only binary variables the analytic center FP obtained solutions with a lower gap in very few instances. A possible explanation of this different behaviour in problems with and without general integer variables is that, for a binary problem, the only feasible integer points "close" to the segment $x(\gamma)$ are $\{0,1\}^n$, which in addition may be far from the center. For problems with general integer variables, the number of feasible integer solutions close to the analytic center will be, in general, much larger. For some problems with only integer binary variables, the analytic center FP behaved very poorly, as for "mas74" and "mas76" (it stopped at stage 0 in those cases). However, in other instances it was much more efficient obtaining the same gap that the objective FP, as for "ds". Note that for "ds" the analytic center FP with CPLEX obtained the feasible solution in one second at stage 0 (the other two variants failed, requiring stage 3). However, in that case CPLEX did not really compute the analytic center: it solved $\min_{x} \{0 : x \in P\}$ heuristically, instead of applying the barrier algorithm, as required. It thus considered a segment between two feasible solutions, none of them being the analytic center of P. Therefore, the idea of using a segment of feasible points is not restricted to the case where one of the endpoints is the analytic center, and it can be extended to more general situations.

4. Conclusions

The analytic center FP is an extension of the original FP where candidate points to be rounded are found in a segment of feasible points, one of the extremes being the analytic center. The objective FP is a particular case where the endpoint associated to the solution of the relaxed problem is selected as the point to be rounded. The analytic center FP has not been shown to outperform the objective FP, in general. However for problems with both general integer and binary variables, and for some particular binary problems, it may result in more efficient and lower gap solutions. The analytic center FP could also be used with the recent rounding scheme based on constraint propagation suggested in [8].

Acknowledgments

This work has been supported by grants MTM2009-08747 of the Spanish Ministry of Science and Innovation, and SGR-2009-1122 of the Government of Catalonia.

References

- [1] T. Achterberg, T. Berthold, Improving the feasibility pump, Discrete Optimization 4 (2007), 77–86.
- [2] T. Achterberg, G. Gamrath, T. Koch, A. Martin, The mixed integer programming library: MIPLIB 2003. http://miplib.zib.de.
- [3] H.Y. Benson, Mixed integer nonlinear programming using interior-point methods, Optimization Methods and Software (2010), doi: 10.1080/10556781003799303.
- [4] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossman, C.D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, A.Wachter, An algorithmic framework for convex mixed integer nonlinear programs, Discrete Optimization 5 (2008), 186–204.
- [5] L. Bertacco, M. Fischetti, A. Lodi, A feasibility pump heuristic for general mixed-integer problems, Discrete Optimization 4 (2007), 63–76.
- [6] J.Czyzyk, S. Mehrotra, M. Wagner, S.J. Wright, PCx: an interior-point code for linear programming, Optimization Methods and Software 11 (1999) 397–430.
- [7] M. Fischetti, F. Glover, A. Lodi, The Feasibility Pump, Mathematical Programming 104 (2005), 91–104.
- [8] M.Fischetti, D. Salvagnin, Feasibility pump 2.0, Mathematical Programming Computation 1 (2009), 201–222.
- [9] GNU, GNU Linear Programming Kit v. 4.43, 2010.
- [10] IBM ILOG CPLEX 12.1, User's Manual, 2010.
- [11] J.E. Mitchell, Fixing variables and generating classical cutting planes when using an interior point branch and cut method to solve integer programming problems, European Journal of Operational Research 97 (1997), 139–148.
- [12] J.E. Mitchell, M.J. Todd, Solving combinatorial optimization problems using Karmarkar's algorithm, Mathematical Programming 56 (1992), 245–284.
- [13] Y. Ye, Interior Point Algorithms. Theory and Analysis, Wiley, 1997.