The Analytic Center Feasibility Pump National Congress of Statistics and Operations Research, Madrid 2012

Daniel Baena and Jordi Castro

{daniel.baena@upc.edu // jordi.castro@upc.edu} Dept. of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona

19 April 2012 Supported by MICINN MTM2009-08747 and SGR-2009-1122 grants.

Baena and Castro (UPC-GNOM-DEIO) and the [SEIO 2012](#page-15-0) 1 / 16 million of the UPC-GNOM-DEIO) and the SEIO 2012 1 / 16

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Contents

[Introduction](#page-2-0)

- **[Feasibility Pump](#page-3-0)**
	- **[Standard Feasibility Pump](#page-3-0)**
	- [Objective Feasibility Pump](#page-4-0)
- **[Analytic Center Feasibility Pump](#page-5-0)**
	- **[Analytic Center](#page-5-0)**
	- **[Using AC in the feasibility pump heuristic](#page-6-0)**
- **[Computational Results](#page-7-0)**
- [The analytic center feasibility method \(ACFM\)](#page-11-0)
- [AC-FP and ACFM](#page-12-0)
	- **•** [Differences](#page-12-0)
	- [Computational results: Comparison](#page-13-0)
- **[Conclusion](#page-14-0)**

AD > 4 B > 4 B >

Introduction

• The problem of finding a feasible solution of a generic mixed integer linear problem (MILP) is a NP-hard problem.

$$
\min_{x} c^{T} x
$$
\ns. to $Ax = b$

\n
$$
x \ge 0
$$
\n
$$
x_{j} \text{ integer } \forall j \in \mathcal{I},
$$

- Feasibility Pump (FP) (Fischetti, Glover, Lodi, 2005): A succesful heuristic for finding feasible solutions of Mixed Integer Linear Problems (MILPs).
	- \triangleright Objective FP (Achterberg, Berthold, 2007): A slight modification of FP in order to improve the quality of the solutions.
	- Analytic Center FP (Baena, Castro, 2011): Interior Point Methods (IPMs) to Standard or Objective FP Heuristic.

4 0 8 4 5 8 4 5 8 4 5 8 1

Standard Feasibility Pump

- The FP heuristic starts by solving the linear programming (LP) relaxation of the MIP problem to generate a point *x* [∗] which is rounded to the nearest integer point \tilde{x} .
	- ► The point *x*^{*} satisfies the linear constraints, while *x* satisfies the integrality constraints.
- FP heuristic finds the point *x* [∗] closest to *x*˜, by solving the following LP (using the L_1 Norm):

$$
x^* = \arg\min\{\Delta(x,\tilde{x}) = \sum_{j\in\mathcal{I}}|x_j - \tilde{x}_j| : Ax = b, x \ge 0\},\
$$

- If $\Delta(x^*,\tilde{x})=0$ then x^* satisfies the linear and integrality constraints. If not, FP finds a new integer point \tilde{x} from x ^{*} by rounding.
- The pair of points (\tilde{x}, x^*) are iteratively updated at each FP iteration with the aim of reducing the dista[nc](#page-2-0)[e](#page-4-0) $\Delta(x^*,\tilde{x})$ $\Delta(x^*,\tilde{x})$ $\Delta(x^*,\tilde{x})$ [.](#page-4-0)

- K 경 > K 경) >

Objective Feasibility Pump

- Slight modification of the standard FP to find better solutions in terms of objective value.
- Consider a convex combination of objective function of MILP $(c^T x)$ and $\Delta(x, \tilde{x})$:

$$
\Delta_{\alpha}(x,\tilde{x}) := (1-\alpha)\Delta(x,\tilde{x}) + \alpha \frac{||\Delta||}{||c||} c^{\mathsf{T}}x, \quad \alpha \in [0,1]
$$

- Objective FP concentrates the search of a feasible solution on the region of high-quality points.
- \bullet α could be decreased at each iteration to put emphasis in feasibility. Standard FP is obtained with $\alpha = 0$.

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト -

Analytic Center

• The Analytic Center (\bar{x}) was computed by applying a primal-dual path following interior-point algorithm to the barrier problem of LP relaxation, after removing the objective function term (c=0):

$$
\bar{x} = \min_{x} \quad -\mu \sum_{i=1}^{n} \ln x_i
$$
\ns. to
$$
Ax = b
$$
\n
$$
x > 0,
$$

- AC depends on how the polytope $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ is represented.
	- \triangleright Center of gravity is not affected by different formulations of the same polyhedron but is computationally more expensive.

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト -

Using AC in the feasibility pump heuristic

 \bullet AC (\bar{x}) can be used as a clever search through the following feasible segment:

$$
x(\gamma) = \gamma \bar{x} + (1 - \gamma) x^* \quad \gamma \in [0, 1]
$$

- Goal: To increase (in theory infinitely) the number of candidate feasible points to be rounded.
- In AC-FP, each $x(\gamma)$ is rounded to $\tilde{x}(\gamma)$. If feasible integer, STOP.
- **If no feasible solution found at segment** $\overline{\overline{x}}$ **_x[₹] two options to** continue:
	- ► Using the point $\tilde{x}(0) = [x^*]$ (option $\gamma = 0$). Behaviour as standard/objective FP.
	- \triangleright Using the point $\tilde{x}(\gamma)$ that minimizes $||\tilde{x}(\gamma) x(\gamma)||_{\infty}$ (option L_{∞}). More chances to become feasible and integer. Better results in general.

画

4 0 8 4 5 8 4 5 8 4 5 8 1

Computational Results: Details

- AC-FP was implemented using the base code of the objective FP $(C_{++}).$
- The base FP implementation was extended for computing the analytic center using three different interior points solvers (CPLEX, PCx and GLPK).
	- \triangleright Cplex was not always able to provide the right analytic center because of aggressive reduced preprocessing (which cannot be deactivated).
	- \triangleright GLPK discarded. PCx much more efficient.
- Applied to a subset of MIPLIB2003 instances.
- All runs were carried on a Dell PowerEdge 6950 server, four dual core AMD Opteron 8222 3.0 Ghz processors, 64 GB of RAM. Without use of parallelism capabilities.

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Computational Results: Only binary variables

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

E.

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Computational Results: Only binary variables

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

AC-FP only obtain solutions with lower gap than FP in 14 of the 39 instances.

イロト イ押ト イヨト イヨト

Computational Results: Binary and general integer variables

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

AC-FP obtain results with lower gap than FP in 8 of the 13 instances.

4 (D) 3 (F) 3 (E) 3 (E) 3

The analytic center feasibility method (ACFM)

- Analytic Center Feasibility Method (Naoum-Sawaya, Elhedli,2011): Use a cutting plane approach where the AC is computed repeteadly.
- ACFM computes a weighted analytic center (updating upper bounds or adding additional constraints).
- ACFM considers two line segments: $\overline{\overline{x}}\; x^{*}_{\sf min}$ and $\overline{\overline{x}}\; x^{*}_{\sf max}.$
	- ► *x*^{*}_{*min*} and *x*^{*}_{*max*} are the minimizer and maximizer, respectively, of the objective function of the LP relaxation.
	- \triangleright Candidate integer solutions are found by rounding the solutions on $\overline{\overline{x}}\ \overline{x^*_{\sf min}}$ and $\overline{\overline{x}}\ \overline{x^*_{\sf max}}$ to the nearest integer.
- If integer feasible solution found, update upper bound, recompute weighted AC and continue the search.
- Else: Additional constraints added to shift the AC to a new position. Greater weight is given to constraints violated by the rounded points. Continue the search.

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Differences

- ACFM computes one analytic center (for a modified polyhedron) at each iteration. So, ACFM is computationally more inefficient since the computation of AC can be expensive.
- ACFM and AC-FP are completely different approaches:
	- \triangleright AC-FP is an extension of FP.
	- \triangleright ACFM is based on computing analytic centers of modified polyhedrons obtained by adding cutting planes to *P*.
- In AC-FP the analytic center is the same for all the iterations and *x* ∗ is different at each iteration. In ACFM the AC is different at each iteration and x^*_{min} , x^*_{max} is the same for all the iterations.
- Initially, AC-FP also considered two segments: the current and the farthest feasible point from \bar{x} in direction $\bar{x} - x^*$ (name it x_f^*).
	- ► Computational benefit of using x_f^* instead of x_{max}^* is that the solution of an extra LP problem is avoided.
	- ► In practice, using the second segment $\overline{\overline{x}} \overline{x_f^*}$ was not useful.

(ロ) (個) (悪) (悪)

Computational results: Comparison

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

- ACFM seems to provide better points, but it is computationally much more expensive (it computes one AC per iteration, AC-FP only computes one AC).
- ACFM was only tested on nine of the smaller MIPLIB2003 instances. AC-FP was tested on 54 (some of them much larger) instances.

≮ロト ⊀御 ▶ ∢ 君 ▶ ⊀ 君 ▶ 。

Conclusion

- Feasibility Pump (Fischetti, Glover, Lodi): A succesful heuristic for finding feasible solutions of Mixed Integer Linear Problems (MILPs).
- Use the Analytic Center of the polyhedron to round points in a segment of LP-feasible points: points in this segment are "interior", so more chances to get a rounded MILP-feasible point.
- **•** For general 0-1 problems, no improvement observed over standard/objective feasibility pump.
- **•** For problems with both general integer and binary variables, and for some particular binary problems, the AC-FP may result in more efficient and lower gap solutions.
- An example of how Interior Point methods and Simplex may collaborate to get a MILP feasible solution.
- Work published in **D. Baena, J. Castro, Using the analytic center in the feasibility pump, Operations Research Letters, 39 (2011) 310-317** 4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト Ω

Thanks

イロトメ部トメモトメモト、モ