The Analytic Center Feasibility Pump National Congress of Statistics and Operations Research, Madrid 2012

Daniel Baena and Jordi Castro

{daniel.baena@upc.edu // jordi.castro@upc.edu} Dept. of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona

19 April 2012 Supported by MICINN MTM2009-08747 and SGR-2009-1122 grants.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Contents

Introduction

- Feasibility Pump
 - Standard Feasibility Pump
 - Objective Feasibility Pump
- Analytic Center Feasibility Pump
 - Analytic Center
 - Using AC in the feasibility pump heuristic
- Computational Results
- The analytic center feasibility method (ACFM)
- AC-FP and ACFM
 - Differences
 - Computational results: Comparison
- Conclusion

< 回 > < 回 > < 回 >

Introduction

• The problem of finding a feasible solution of a generic mixed integer linear problem (MILP) is a NP-hard problem.

$$\begin{array}{ll} \min_{x} & c^{T}x \\ \text{s. to} & Ax = b \\ & x \geq 0 \\ & x_{j} & \textit{integer} \quad \forall j \in \mathcal{I}, \end{array}$$

- Feasibility Pump (FP) (Fischetti, Glover, Lodi, 2005): A succesful heuristic for finding feasible solutions of Mixed Integer Linear Problems (MILPs).
 - Objective FP (Achterberg, Berthold, 2007): A slight modification of FP in order to improve the quality of the solutions.
 - Analytic Center FP (Baena, Castro, 2011): Interior Point Methods (IPMs) to Standard or Objective FP Heuristic.

ヘロト ヘヨト ヘヨト

Standard Feasibility Pump

- The FP heuristic starts by solving the linear programming (LP) relaxation of the MIP problem to generate a point *x*^{*} which is rounded to the nearest integer point *x*.
 - The point x* satisfies the linear constraints, while x̃ satisfies the integrality constraints.
- FP heuristic finds the point x* closest to x
 x, by solving the following LP (using the L₁ Norm):

$$x^* = rg\min\{\Delta(x, ilde{x}) = \sum_{j \in \mathcal{I}} |x_j - ilde{x}_j| : Ax = b, x \ge 0\},$$

- If Δ(x*, x̃) = 0 then x* satisfies the linear and integrality constraints. If not, FP finds a new integer point x̃ from x* by rounding.
- The pair of points (*x̃*, *x**) are iteratively updated at each FP iteration with the aim of reducing the distance Δ(*x**, *x̃*).

ヘロン 人間 と 人 回 と 人 回 と

Objective Feasibility Pump

- Slight modification of the standard FP to find better solutions in terms of objective value.
- Consider a convex combination of objective function of MILP (c^Tx) and Δ(x, x̃):

$$\Delta_{\alpha}(\boldsymbol{x}, \tilde{\boldsymbol{x}}) := (1 - \alpha) \Delta(\boldsymbol{x}, \tilde{\boldsymbol{x}}) + \alpha \frac{||\Delta||}{||\boldsymbol{c}||} \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x}, \quad \alpha \in [0, 1]$$

- Objective FP concentrates the search of a feasible solution on the region of high-quality points.
- α could be decreased at each iteration to put emphasis in feasibility. Standard FP is obtained with $\alpha = 0$.

< 口 > < 同 > < 回 > < 回 > .

Analytic Center

 The Analytic Center (x̄) was computed by applying a primal-dual path following interior-point algorithm to the barrier problem of LP relaxation, after removing the objective function term (c=0):

$$\bar{x} = \min_{x} -\mu \sum_{i=1}^{n} \ln x_{i}$$

s. to $Ax = b$
 $x > 0$,

- AC depends on how the polytope $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ is represented.
 - Center of gravity is not affected by different formulations of the same polyhedron but is computationally more expensive.

Using AC in the feasibility pump heuristic

• AC (*x*) can be used as a clever search through the following feasible segment:

$$x(\gamma) = \gamma \overline{x} + (1 - \gamma)x^* \quad \gamma \in [0, 1]$$

- Goal: To increase (in theory infinitely) the number of candidate feasible points to be rounded.
- In AC-FP, each $x(\gamma)$ is rounded to $\tilde{x}(\gamma)$. If feasible integer, STOP.
- If no feasible solution found at segment x̄x* two options to continue:
 - ► Using the point \$\tilde{x}(0) = [x*]\$ (option \$\gamma\$ = 0)\$. Behaviour as standard/objective FP.
 - ► Using the point x̃(γ) that minimizes ||x̃(γ) x(γ)||_∞ (option L_∞). More chances to become feasible and integer. Better results in general.

э

・ロン ・雪 と ・ ヨ と ・

Computational Results: Details

- AC-FP was implemented using the base code of the objective FP (C++).
- The base FP implementation was extended for computing the analytic center using three different interior points solvers (CPLEX, PCx and GLPK).
 - Cplex was not always able to provide the right analytic center because of aggressive reduced preprocessing (which cannot be deactivated).
 - GLPK discarded. PCx much more efficient.
- Applied to a subset of MIPLIB2003 instances.
- All runs were carried on a Dell PowerEdge 6950 server, four dual core AMD Opteron 8222 3.0 Ghz processors, 64 GB of RAM. Without use of parallelism capabilities.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Computational Results: Only binary variables

	AC-FP					objective FP			
Instance	niter	tFP(tAC)	stage	gap%	niter	tt	stage	gap%	
10teams	179	26(0)*	3	10.59	278	19	3	9.73	
a1c1s1	0	0(0)**	0	232	351	8	2	97.45	
aflow30a	171	1(0)*	2	228.13	41	0	1	103.28	
aflow40b	54	2(0)**	1	503.25	21	1	1	99.32	
air04	186	1147(0)**	3	26.87	45	181	1	3.73	
air05	190	148(0)**	3	35.73	3	2	1	2.11	
cap6000	0	1(0)**	0	0.35	31	0	1	0.38	
danoint	99	4(0)*	1	15.50	96	3	1	12.50	
disctom	4	4(0)**	1	0	3	3	1	0	
ds	0	1(2)**	0	5633.77	446	9495	3	5633.77	
fast0507	0	2(1)**	0	57.71	8	51	1	5.71	
fiber	15	0(0)**	1	675.45	41	0	1	1496.68	
fixnet6	18	0(0)*	1	863.91	67	0	1	936.77	
glass4	224	1(0)**	3	316.67	374	1	3	958.34	
harp2	59	1(0)**	1	32.67	138	3	1	17.90	
markshare1	65	0(0)*	1	30100	65	0	1	36200	
markshare2	66	0(0)*	1	46200	65	0	1	48100	
mas74	0	0(0)**	0	423649728.01	109	0	1	40.10	
mas76	0	0(0)*	0	67000682.38	106	1	1	15.59	
misc07	219	2(0)**	2	21.34	188	1	1	31.31	
mkc	13	1(0)*	1	50.79	13	0	1	48.67	
mod011	23	3(1)*	1	31.30	12	1	1	16.36	
modglob	60	1(0)*	1	5.16	60	0	1	10.87	
net12	25	8(27)**	1	57.21	216	12	2	57.21	
nsrand-ipx	694	265(0)**	3	296.56	132	5	2	312.38	

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

э

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

Computational Results: Only binary variables

		AC	-FP	objective FP				
Instance	niter	tFP(tAC)	stage	gap%	niter	tt	stage	gap%
nw04	2	9(8)*	1	9	10	10	1	5.91
opt1217	124	0(0)*	1	22.80	40	0	1	0
p2756	279	7(0)**	3	1542.85	377	2	3	1542.85
pk1	57	0(0)*	1	625	56	0	1	208.33
pp08aCUTS	11	0(0)*	1	122.98	10	0	1	13.74
pp08a	15	0(0)*	1	115.63	11	0	1	63.39
protfold	307	365(2)**	3	37.81	286	90	2	46.88
giu	41	1(0)*	1	748.05	9	0	1	219.34
set1ch	0	0(0)**	0	296.92	46	0	1	75.74
seymour	0	0(0)**	0	38.92	7	3	1	11.32
sp97ar	63	57(4)*	1	75.87	9	4	1	39.21
swath	795	100(0)**	3	7324.22	395	14	2	7575.56
tr12-30	221	6(0)**	3	118.78	25	1	1	25.68
vpm2	27	0(0)**	1	67.8	12	0	1	30.51

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

AC-FP only obtain solutions with lower gap than FP in 14 of the 39 instances.

イロト イポト イヨト イヨト

Computational Results: Binary and general integer variables

		AC-F	P	objective FP				
Instance	niter	tFP(tAC)	stage	gap%	niter	tt	stage	gap%
arki001	871	43(0)*	3	1.96	803	15	3	1.83
atlanta-ip	397	934(11)**	3	70.32	454	227	3	75.52
gesa2-o	35	1(0)**	2	26.59	33	1	2	40.44
gesa2	3	1(0)*	2	49.23	33	0	2	9.32
manna81	0	0(6)*	0	1.64	52	2	2	1.70
msc98-ip	33	16(949)*	1	52.20	61	26	1	53.75
mzzv11	567	435(116)*	3	25.12	540	127	3	17.59
mzzv42z	27	12(15)**	1	30.90	25	49	1	29.39
noswot	33	0(0)**	2	23.81	13	1	2	0
roll3000	175	11(1)**	2	43.57	793	17	3	180.12
rout	74	1(0)**	1	24.08	117	0	1	53.31
timtab1	169	1(0)*	2	41.35	216	1	2	83.13
timtab2	972	6(0)**	3	91.96	1222	2	2	80.75

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

• AC-FP obtain results with lower gap than FP in 8 of the 13 instances.

イロト イポト イヨト イヨト

The analytic center feasibility method (ACFM)

- Analytic Center Feasibility Method (Naoum-Sawaya, Elhedli,2011): Use a cutting plane approach where the AC is computed repeteadly.
- ACFM computes a weighted analytic center (updating upper bounds or adding additional constraints).
- ACFM considers two line segments: $\overline{\overline{x} x_{\min}^*}$ and $\overline{\overline{x} x_{\max}^*}$.
 - x^{*}_{min} and x^{*}_{max} are the minimizer and maximizer, respectively, of the objective function of the LP relaxation.
 - Candidate integer solutions are found by rounding the solutions on $\overline{\overline{x} x_{\min}^*}$ and $\overline{\overline{x} x_{\max}^*}$ to the nearest integer.
- If integer feasible solution found, update upper bound, recompute weighted AC and continue the search.
- Else: Additional constraints added to shift the AC to a new position. Greater weight is given to constraints violated by the rounded points. Continue the search.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Differences

- ACFM computes one analytic center (for a modified polyhedron) at each iteration. So, ACFM is computationally more inefficient since the computation of AC can be expensive.
- ACFM and AC-FP are completely different approaches:
 - AC-FP is an extension of FP.
 - ACFM is based on computing analytic centers of modified polyhedrons obtained by adding cutting planes to *P*.
- In AC-FP the analytic center is the same for all the iterations and x^* is different at each iteration. In ACFM the AC is different at each iteration and x^*_{min} , x^*_{max} is the same for all the iterations.
- Initially, AC-FP also considered two segments: the current and the farthest feasible point from \bar{x} in direction $\bar{x} x^*$ (name it x_f^*).
 - Computational benefit of using x^{*}_f instead of x^{*}_{max} is that the solution of an extra LP problem is avoided.
 - In practice, using the second segment $\overline{\overline{x}x_f^*}$ was not useful.

ヘロト ヘ部ト ヘヨト ヘヨト

Computational results: Comparison

	AC-FP				ACFM		
Instance	niter	tFP(tAC)	stage	gap%	niter	tt(tAC)	gap%
mas74	0	0(0)**	0	423649728.01	7	8.89(8.26)	434.75
mas76	0	0(0)*	0	67000682.38	1	2.55(2.1)	12.18
misc07	219	2(0)**	2	21.34	13	9.28(8.71)	70.64
noswot	33	0(0)**	2	23.81	3	2.51(2.11)	9.76
pk1	57	0(0)*	1	625	1	0.75(0.72)	163.55
pp08aCUTS	11	0(0)*	1	122.98	1	2.81(2.25)	15.07
pp08a	15	0(0)*	1	115.63	1	2.07(1.5)	23.11
rout	74	1(0)**	1	24.08	4	101.95(100.58)	3.18
vpm2	27	0(0)**	1	67.8	6	28.43(27.31)	12.73

*: Compute AC with PCx Solver

**: Compute AC with Cplex Solver

- ACFM seems to provide better points, but it is computationally much more expensive (it computes one AC per iteration, AC-FP only computes one AC).
- ACFM was only tested on nine of the smaller MIPLIB2003 instances. AC-FP was tested on 54 (some of them much larger) instances.

Conclusion

- Feasibility Pump (Fischetti, Glover, Lodi): A succesful heuristic for finding feasible solutions of Mixed Integer Linear Problems (MILPs).
- Use the Analytic Center of the polyhedron to round points in a segment of LP-feasible points: points in this segment are "interior", so more chances to get a rounded MILP-feasible point.
- For general 0-1 problems, no improvement observed over standard/objective feasibility pump.
- For problems with both general integer and binary variables, and for some particular binary problems, the AC-FP may result in more efficient and lower gap solutions.
- An example of how Interior Point methods and Simplex may collaborate to get a MILP feasible solution.
- Work published in D. Baena, J. Castro, Using the analytic center in the feasibility pump, Operations Research Letters, 39 (2011) 310-317

Thanks

イロト イポト イヨト イヨト 二日