
The Analytic Center Feasibility Pump
National Congress of Statistics and Operations Research, Madrid 2012

Daniel Baena and Jordi Castro

{daniel.baena@upc.edu // jordi.castro@upc.edu}
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Barcelona

19 April 2012

Supported by MICINN MTM2009-08747 and SGR-2009-1122 grants.

Baena and Castro (UPC-GNOM-DEIO) SEIO 2012 1 / 16



Contents
1 Introduction

2 Feasibility Pump
Standard Feasibility Pump
Objective Feasibility Pump

3 Analytic Center Feasibility Pump
Analytic Center
Using AC in the feasibility pump heuristic

4 Computational Results

5 The analytic center feasibility method (ACFM)

6 AC-FP and ACFM
Differences
Computational results: Comparison

7 Conclusion

Baena and Castro (UPC-GNOM-DEIO) SEIO 2012 2 / 16



Introduction

Introduction

The problem of finding a feasible solution of a generic mixed
integer linear problem (MILP) is a NP-hard problem.

min
x

cT x

s. to Ax = b
x ≥ 0
xj integer ∀j ∈ I,

Feasibility Pump (FP) (Fischetti, Glover, Lodi, 2005): A succesful
heuristic for finding feasible solutions of Mixed Integer Linear
Problems (MILPs).

I Objective FP (Achterberg, Berthold, 2007): A slight modification of
FP in order to improve the quality of the solutions.

I Analytic Center FP (Baena, Castro, 2011): Interior Point Methods
(IPMs) to Standard or Objective FP Heuristic.
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Feasibility Pump Standard Feasibility Pump

Standard Feasibility Pump
The FP heuristic starts by solving the linear programming (LP)
relaxation of the MIP problem to generate a point x∗ which is
rounded to the nearest integer point x̃ .

I The point x∗ satisfies the linear constraints, while x̃ satisfies the
integrality constraints.

FP heuristic finds the point x∗ closest to x̃ , by solving the following
LP (using the L1 Norm):

x∗ = arg min{∆(x , x̃) =
∑
j∈I
|xj − x̃j | : Ax = b, x ≥ 0},

If ∆(x∗, x̃) = 0 then x∗ satisfies the linear and integrality
constraints. If not, FP finds a new integer point x̃ from x∗ by
rounding.
The pair of points (x̃ , x∗) are iteratively updated at each FP
iteration with the aim of reducing the distance ∆(x∗, x̃).
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Feasibility Pump Objective Feasibility Pump

Objective Feasibility Pump

Slight modification of the standard FP to find better solutions in
terms of objective value.
Consider a convex combination of objective function of MILP
(cT x) and ∆(x , x̃):

∆α(x , x̃) := (1− α)∆(x , x̃) + α
||∆||
||c||

cT x , α ∈ [0,1]

Objective FP concentrates the search of a feasible solution on the
region of high-quality points.
α could be decreased at each iteration to put emphasis in
feasibility. Standard FP is obtained with α = 0.
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Analytic Center Feasibility Pump Analytic Center

Analytic Center

The Analytic Center (x̄) was computed by applying a primal-dual
path following interior-point algorithm to the barrier problem of LP
relaxation, after removing the objective function term (c=0):

x̄ = min
x
−µ

∑n
i=1 ln xi

s. to Ax = b
x > 0,

AC depends on how the polytope P = {x ∈ Rn : Ax = b, x ≥ 0}
is represented.

I Center of gravity is not affected by different formulations of the
same polyhedron but is computationally more expensive.
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Analytic Center Feasibility Pump Using AC in the feasibility pump heuristic

Using AC in the feasibility pump heuristic

AC (x̄) can be used as a clever search through the following
feasible segment:

x(γ) = γx̄ + (1− γ)x∗ γ ∈ [0,1]

Goal: To increase (in theory infinitely) the number of candidate
feasible points to be rounded.
In AC-FP, each x(γ) is rounded to x̃(γ). If feasible integer, STOP.
If no feasible solution found at segment x̄x∗ two options to
continue:

I Using the point x̃(0) = [x∗] (option γ = 0). Behaviour as
standard/objective FP.

I Using the point x̃(γ) that minimizes ||x̃(γ)− x(γ)||∞ (option L∞).
More chances to become feasible and integer. Better results in
general.
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Computational Results

Computational Results: Details

AC-FP was implemented using the base code of the objective FP
(C++).
The base FP implementation was extended for computing the
analytic center using three different interior points solvers
(CPLEX, PCx and GLPK).

I Cplex was not always able to provide the right analytic center
because of aggressive reduced preprocessing (which cannot be
deactivated).

I GLPK discarded. PCx much more efficient.

Applied to a subset of MIPLIB2003 instances.
All runs were carried on a Dell PowerEdge 6950 server, four dual
core AMD Opteron 8222 3.0 Ghz processors, 64 GB of RAM.
Without use of parallelism capabilities.
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Computational Results

Computational Results: Only binary variables

AC-FP objective FP
Instance niter tFP(tAC) stage gap% niter tt stage gap%
10teams 179 26(0)* 3 10.59 278 19 3 9.73
a1c1s1 0 0(0)** 0 232 351 8 2 97.45
aflow30a 171 1(0)* 2 228.13 41 0 1 103.28
aflow40b 54 2(0)** 1 503.25 21 1 1 99.32
air04 186 1147(0)** 3 26.87 45 181 1 3.73
air05 190 148(0)** 3 35.73 3 2 1 2.11
cap6000 0 1(0)** 0 0.35 31 0 1 0.38
danoint 99 4(0)* 1 15.50 96 3 1 12.50
disctom 4 4(0)** 1 0 3 3 1 0
ds 0 1(2)** 0 5633.77 446 9495 3 5633.77
fast0507 0 2(1)** 0 57.71 8 51 1 5.71
fiber 15 0(0)** 1 675.45 41 0 1 1496.68
fixnet6 18 0(0)* 1 863.91 67 0 1 936.77
glass4 224 1(0)** 3 316.67 374 1 3 958.34
harp2 59 1(0)** 1 32.67 138 3 1 17.90
markshare1 65 0(0)* 1 30100 65 0 1 36200
markshare2 66 0(0)* 1 46200 65 0 1 48100
mas74 0 0(0)** 0 423649728.01 109 0 1 40.10
mas76 0 0(0)* 0 67000682.38 106 1 1 15.59
misc07 219 2(0)** 2 21.34 188 1 1 31.31
mkc 13 1(0)* 1 50.79 13 0 1 48.67
mod011 23 3(1)* 1 31.30 12 1 1 16.36
modglob 60 1(0)* 1 5.16 60 0 1 10.87
net12 25 8(27)** 1 57.21 216 12 2 57.21
nsrand-ipx 694 265(0)** 3 296.56 132 5 2 312.38
*: Compute AC with PCx Solver
**: Compute AC with Cplex Solver
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Computational Results

Computational Results: Only binary variables

AC-FP objective FP
Instance niter tFP(tAC) stage gap% niter tt stage gap%
nw04 2 9(8)* 1 9 10 10 1 5.91
opt1217 124 0(0)* 1 22.80 40 0 1 0
p2756 279 7(0)** 3 1542.85 377 2 3 1542.85
pk1 57 0(0)* 1 625 56 0 1 208.33
pp08aCUTS 11 0(0)* 1 122.98 10 0 1 13.74
pp08a 15 0(0)* 1 115.63 11 0 1 63.39
protfold 307 365(2)** 3 37.81 286 90 2 46.88
qiu 41 1(0)* 1 748.05 9 0 1 219.34
set1ch 0 0(0)** 0 296.92 46 0 1 75.74
seymour 0 0(0)** 0 38.92 7 3 1 11.32
sp97ar 63 57(4)* 1 75.87 9 4 1 39.21
swath 795 100(0)** 3 7324.22 395 14 2 7575.56
tr12-30 221 6(0)** 3 118.78 25 1 1 25.68
vpm2 27 0(0)** 1 67.8 12 0 1 30.51
*: Compute AC with PCx Solver
**: Compute AC with Cplex Solver

AC-FP only obtain solutions with lower gap than FP in 14 of the 39
instances.
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Computational Results

Computational Results: Binary and general integer variables

AC-FP objective FP
Instance niter tFP(tAC) stage gap% niter tt stage gap%
arki001 871 43(0)* 3 1.96 803 15 3 1.83
atlanta-ip 397 934(11)** 3 70.32 454 227 3 75.52
gesa2-o 35 1(0)** 2 26.59 33 1 2 40.44
gesa2 3 1(0)* 2 49.23 33 0 2 9.32
manna81 0 0(6)* 0 1.64 52 2 2 1.70
msc98-ip 33 16(949)* 1 52.20 61 26 1 53.75
mzzv11 567 435(116)* 3 25.12 540 127 3 17.59
mzzv42z 27 12(15)** 1 30.90 25 49 1 29.39
noswot 33 0(0)** 2 23.81 13 1 2 0
roll3000 175 11(1)** 2 43.57 793 17 3 180.12
rout 74 1(0)** 1 24.08 117 0 1 53.31
timtab1 169 1(0)* 2 41.35 216 1 2 83.13
timtab2 972 6(0)** 3 91.96 1222 2 2 80.75
*: Compute AC with PCx Solver
**: Compute AC with Cplex Solver

AC-FP obtain results with lower gap than FP in 8 of the 13
instances.
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The analytic center feasibility method (ACFM)

The analytic center feasibility method (ACFM)
Analytic Center Feasibility Method (Naoum-Sawaya,
Elhedli,2011): Use a cutting plane approach where the AC is
computed repeteadly.
ACFM computes a weighted analytic center (updating upper
bounds or adding additional constraints).
ACFM considers two line segments: x̄ x∗min and x̄ x∗max.

I x∗min and x∗max are the minimizer and maximizer, respectively, of the
objective function of the LP relaxation.

I Candidate integer solutions are found by rounding the solutions on
x̄ x∗min and x̄ x∗max to the nearest integer.

If integer feasible solution found, update upper bound, recompute
weighted AC and continue the search.
Else: Additional constraints added to shift the AC to a new
position. Greater weight is given to constraints violated by the
rounded points. Continue the search.
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AC-FP and ACFM Differences

Differences

ACFM computes one analytic center (for a modified polyhedron)
at each iteration. So, ACFM is computationally more inefficient
since the computation of AC can be expensive.
ACFM and AC-FP are completely different approaches:

I AC-FP is an extension of FP.
I ACFM is based on computing analytic centers of modified

polyhedrons obtained by adding cutting planes to P.

In AC-FP the analytic center is the same for all the iterations and
x∗ is different at each iteration. In ACFM the AC is different at
each iteration and x∗min, x

∗
max is the same for all the iterations.

Initially, AC-FP also considered two segments: the current and the
farthest feasible point from x̄ in direction x̄ − x∗ (name it x∗f ).

I Computational benefit of using x∗f instead of x∗max is that the
solution of an extra LP problem is avoided.

I In practice, using the second segment x̄x∗f was not useful.
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AC-FP and ACFM Computational results: Comparison

Computational results: Comparison

AC-FP ACFM
Instance niter tFP(tAC) stage gap% niter tt(tAC) gap%
mas74 0 0(0)** 0 423649728.01 7 8.89(8.26) 434.75
mas76 0 0(0)* 0 67000682.38 1 2.55(2.1) 12.18
misc07 219 2(0)** 2 21.34 13 9.28(8.71) 70.64
noswot 33 0(0)** 2 23.81 3 2.51(2.11) 9.76
pk1 57 0(0)* 1 625 1 0.75(0.72) 163.55
pp08aCUTS 11 0(0)* 1 122.98 1 2.81(2.25) 15.07
pp08a 15 0(0)* 1 115.63 1 2.07(1.5) 23.11
rout 74 1(0)** 1 24.08 4 101.95(100.58) 3.18
vpm2 27 0(0)** 1 67.8 6 28.43(27.31) 12.73
*: Compute AC with PCx Solver
**: Compute AC with Cplex Solver

ACFM seems to provide better points, but it is computationally
much more expensive (it computes one AC per iteration, AC-FP
only computes one AC).
ACFM was only tested on nine of the smaller MIPLIB2003
instances. AC-FP was tested on 54 (some of them much larger)
instances.
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Conclusion

Conclusion
Feasibility Pump (Fischetti, Glover, Lodi): A succesful heuristic for
finding feasible solutions of Mixed Integer Linear Problems
(MILPs).
Use the Analytic Center of the polyhedron to round points in a
segment of LP-feasible points: points in this segment are
"interior", so more chances to get a rounded MILP-feasible point.
For general 0-1 problems, no improvement observed over
standard/objective feasibility pump.
For problems with both general integer and binary variables, and
for some particular binary problems, the AC-FP may result in more
efficient and lower gap solutions.
An example of how Interior Point methods and Simplex may
collaborate to get a MILP feasible solution.
Work published in D. Baena, J. Castro, Using the analytic
center in the feasibility pump, Operations Research Letters,
39 (2011) 310-317
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