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Abstract. This paper deals with the k-sample problem for functional data
when the observations are density functions. First we consider two known
ANOVA tests for generic functional data and we check their suitability for this
particular kind of data. Then we introduce new procedures based on distances
between pairs of observed density functions, allowing us to use the L1 distance,
the most natural choice for density functions. A simulation study is carried out
to compare the practical behaviour of the available tests. Theoretical derivations
have been done in order to allow weighted samples in the tests procedures. The
paper ends with a real data example: for a collection of European regions we
estimate the regional relative income densities and then we test the significance
of the country effect.
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1 Introduction

Over the last years, the joint development of real-time measurement instruments
and data storage computer resources has made possible to observe and save com-
plete functions as results of random experiments. For instance, continuous-time
monitoring clinical diagnostics or stock market information are common nowa-
days. Ramsay and Silverman (2005) express it saying that random functions are
the statistical atoms in these cases. Functional Data Analysis (FDA) deals with
the statistical description and modelization of samples of random functions. A
broad outlook to FDA is given in the books by Ramsay and Silverman (1997)
(see also the second edition, Ramsay and Silverman (2005)) and Ramsay and
Silverman (2002).

It’s well worthwhile noting that random functions can also be obtained from
standard random samples, by the application of nonparametric curve estimation
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methods. For instance, Kneip and Utikal (2001) study the temporal evolution of
income density functions in United Kingdom from 1968 to 1988. They work with
yearly cross-sectional samples of households, and use nonparametric density
estimation methods (kernel methods, to be specific) to obtain 21 income density
functions over time, one corresponding to each year.

The one-way analysis of variance is one of the standard methods that have
been generalized to be used in FDA, giving rise to functional ANOVA. In Ram-
say and Silverman (1997) it is included in what they call functional linear models
(a generalization of linear regression models). In addition to this approach, there
are works devoted specifically to this topic (see Cuevas, Febrero, and Fraiman
2004 and references therein). The present paper lies within this framework.

Our interest for functional ANOVA was motivated by a real problem in re-
gional income distribution in Europe. In a recent paper Mercader and Levy
(2004) study the dependency between the regional Gini inequality indices and
the country to which the region belongs, when the income distribution is con-
sidered both before and after taxes and transfers. They use standard univariate
one-way ANOVA tests to show that there is no significant relationship before
taxes and transfers, but the opposite happens after applying those redistributive
instruments. To study to what extent this conclusion holds when considering
the complete income distributions (instead of a summary inequality measure
such as the Gini index) a functional ANOVA test applied to density functions
is required. When using disposable income (after taxes and transfers) the effect
of the country in regional income distribution is clear and expected: regions in
rich countries tend to be richer than regions in poorer countries (see Perarnau
2005). Intuition is not so clear when talking about relative disposable income
(every individual income data is divided by the regional median income). In
doing so, the interest is centered on the role of the country factor in explaining
the shape variability in regional income distributions, rather than their location
variability. Relevant economic aspects, as relative poverty or inequality, depend
on the income distribution shape. Figure 5 shows the estimated regional rela-
tive disposable income density functions, which are studied in detail in Section
7. See Delicado and Mercader (2006) for a partial analysis of what happens
with incomes before taxes and transfers (they do not use all the tests presented
here and they work with a different database). Let us note that in this exam-
ple each region has a different weight, proportional to its population, and this
particularity has to be taken into account in test procedures.

This work has two main objectives. The first one is to deal with the k-sample
problem when data are density functions. We analyze the applicability of two
known functional ANOVA techniques (one proposed by Ramsay and Silverman
1997 and the other one by Cuevas, Febrero, and Fraiman 2004). Moreover we
present a distance-based ANOVA test (Gower and Krzanowski 1999) working
on pairwise distances between observed data. This device allows us to use
the L1 distance, the most natural one for density functions: it is always well
defined, it is invariant under monotone transformations of the argument, and it
is closely related to the total variation distance between probability measures
(see Devroye and Györfi 1985, Chapter 1). The same distance-based ANOVA
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procedure is also applicable to other distance definitions and to functional data
not being densities.

The second objective is to generalize functional ANOVA tests for weighted
samples. We establish results valid for weighted data that generalize those of
Gower and Krzanowski (1999) and Cuevas, Febrero, and Fraiman (2004).

The null distribution of any of the test statistics included in the paper is
unknown. Thus, a functional ANOVA test using these statistics requires the
use of permutations (or other specific Monte Carlo procedure, as in Cuevas,
Febrero, and Fraiman 2004). There is no consensus in the literature as to what
the best way of obtaining the permutation samples is (see Gower and Krzanowski
1999, and Anderson and Robinson 2001, and references therein). In this paper
we consider two alternatives, both described in Section 4.1.

The paper structure is as follows. In Section 2 we set out the functional k-
sample problem and discuss their connection with the functional ANOVA test.
In Section 3 we summarize two known methods for functonal ANOVA and we
heck if they are well suited for density functions (§3.1). In Section 4 we talk
about distance-based ANOVA and permutation tests (§4.1). In Section 5 we
present our proposals on the functional k-sample problem when data are den-
sity functions. A simulation study is included (§5.1) where we compare the
performance in practice of six test statistics and the different ways to approxi-
mate their null distribution. Particular characteristics of weighted samples are
the topic of Section 6. The example of the European regional relative income
density functions is analyzed in Section 7. Last section sums up the conclusions
of the paper. Proofs are deferred to an Appendix.

2 Notation and Preliminaries

In the functional k-sample problem it is assumed that n functions fri(x) have
been independently observed from the model

fri(x) ∼ Fr, i = 1, . . . , nr, r = 1, . . . , k, x ∈ [a, b] , (1)

where
∑

r nr = n and Fr, r = 1, . . . , k, are probability distributions of random
processes, the trajectories of which are functions defined in [a, b], with a and
b real numbers or ±∞, and a < b. We are particularly interested in the case
where the trajectories of Fr are density functions in [a, b]. The null hypothesis
to be tested is the homogeneity of the k samples:

H0 : F1 = · · · = Fk. (2)

We also refer to testing this hypothesis as the functional k-sample problem.
A particularly interesting submodel of (1) is the functional ANOVA model,

where the observed functions fri(x) are assumed to verify

fri(x) = mr(x) + eri(x), i = 1, . . . , nr, r = 1, . . . , k, x ∈ [a, b] , (3)

where mr(x) are k unknown mean functions and eri(x) are independent trajec-
tories drawn from a process with zero mean and covariance function K(x, y) =
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Cov(eri(x), eri(y)). So the observations fri(x) constitute k independent sam-
ples of random functions, each one with a specific function mean and a com-
mon covariance structure. This is the homoscedastic case. The heteroscedastic
version allows for a different covariance function in each sample: Kr(x, y) =
Cov(eri(x), eri(y)). The hypothesis to be tested in both cases is the equality of
means:

H0 : m1(x) = · · · = mk(x), for all x ∈ [a, b]. (4)

This hypothesis coincides with (2) if we assume that in the ANOVA model
(3) the noises eri(x) have the same distribution in the k samples (for instance,
assuming Gaussianity and homoscedasticity). In general, hypothesis (2) implies
(4), but the inverse is not true (for instance, take the heteroscedastic case with
equal group means).

When we work with density functions (positive and integrating 1 on [a, b]),
this model is not appropriate because it does not automatically verify the re-
quired conditions on the zero mean additive noise eri(x): it has to be such that
mr(x) + eri(x) ≥ 0, it must belong to L1([a, b]) and

∫ b

a
eri(x)dx must be equal

to 0.
A possible way to circumvent this difficulty is to consider a transformation

Ψ of the density functions and replace model (3) by

Ψ(fri)(x) = mΨ
r (x) + eri(x), i = 1, . . . , nr, r = 1, . . . , k, x ∈ [a, b] , (5)

where Ψ is an injective functional, and the null hypothesis (4) by

HΨ
0 : mΨ

1 (x) = · · · = mΨ
k (x), for all x ∈ [a, b]. (6)

A relevant example is the functional Ψ(f) = log(f). Using it there is no need
of any sign restriction on mΨ

r (x) + eri(x). Another useful transformation is

ΨN (f)(x) ≡ ∂

∂x
log f(x)

that transforms the density of a N(µ, σ2) random variable into the straight line
−(x− µ)/σ. Therefore it could be appropriate when observed densities fri are
close to normality. Ramsay and Silverman (2002) use this transformation in the
context of Functional Principal Component Analysis for data that are density
functions. For the case of densities fri(x), x ∈ (0,∞), close to log-normal
density functions, a suitable functional is

ΨlN (f)(y) = ΨN (f(exp(y)) exp(y)), y ∈ (−∞,∞),

given that f(exp(y)) exp(y) is the density function of Y = log(X), X having
density f .

Observe that model (5) is different for different choices of Ψ. Also the corre-
sponding null hypothesis (6) does not longer coincide in general with hypothesis
(4), the original one, because E[fri] 6= Ψ−1(E[Ψ(fri)]) in general.

In this paper we borrow some statistic from functional ANOVA (see Section
3 below) and use them as test statistics for hypothesis (2).
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3 Two known methods for functional ANOVA

We summarize here the proposals of Ramsay and Silverman (1997) and that
of Cuevas, Febrero, and Fraiman (2004) for functional ANOVA using generic
functional data. The next subsection is devoted to check their applicability in
the case of data being density functions.

Ramsay and Silverman (1997) assume the additive ANOVA model (3) with
homoscedastic noise. They propose to fix x ∈ [a, b] and to compute the F-ratio
statistic for the univariate ANOVA test

Hx
0 : m1(x) = · · · = mk(x).

Let FR
x be the corresponding F-ratio statistic. Repeating the procedure for all x

(in practice, for a grid of values xt, t = 1 . . . T ) a F-ratio function FR(x) = FR
x ,

x ∈ [a, b], is obtained. The values of the F-ratio function are expected to be
much smaller under the null hypothesis than under the alternative. So it is
sensible to take the integral of that function as the statistic for the functional
ANOVA test:

TF =
∫ b

a

FR(x)dx.

Its null distribution is unknown and Ramsay and Silverman (1997) suggest to ap-
proximate it using a standard permutation-based mechanism (see Section 4.1).
The use of a permutation test implies that homogeneity of the noise distribution
in different groups is assumed (in general, homoscedasticity is not enough). An
important theoretical drawback of this approach is that the integrability of FR

is not guaranteed.
Cuevas, Febrero, and Fraiman (2004) also consider the (now maybe het-

eroscedastic) ANOVA model (3) but their approach is different. They assume
that fri are trajectories of an L2-process and argue as follows. The classical
F -ratio statistic for the univariate one-way ANOVA computes the ratio of vari-
ability between samples and intra sample. The functional version would be

Fn =
∑k

r=1 nr

∥∥f̄r• − f̄••
∥∥2

/(k − 1)
∑

r,i

∥∥fri − f̄r•
∥∥2

/(n− k)
(7)

where f̄•• = f̄••(x) is the global mean function, f̄r• = f̄r•(x) is the mean

function in the r-th sample, and ‖f‖ =
(∫ b

a
f2(x)dx

)1/2

is the usual L2 norm.
The null hypothesis H0 should be rejected if the numerator of Fn (a measure of
the differences between groups) is too big, compared with the denominator of
Fn (a measure of the variability of the noise process generating eri(x)). Cuevas,
Febrero, and Fraiman (2004) indicate that it is enough to only consider the
numerator of Fn when you are comparing values of the statistic coming from
functional ANOVA models with noise processes having the same variability (all
the denominators are estimating the same quantity). This is the case when
an observed Fn value is compared with Monte Carlo simulated values and the
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simulation is done to produce data according to the null hypothesis and having
the same noise variability as the observed data. Technical reasons lead Cuevas,
Febrero, and Fraiman (2004) to measure differences between groups using the
statistic

Vn =
∑
r<s

nr

∥∥f̄r• − f̄s•
∥∥2

,

that is equivalent in practice to use the numerator of Fn (in the balanced case
they only differ by a multiplicative constant). Their Theorem 1 establishes that
the asymptotic distribution of Vn under H0 coincides with that of the statistic

V =
∑
r<s

‖Zr − CrsZs‖2 ,

where Crs = (pr/ps)1/2, (nr/n) → pr as n → ∞, and Zr = Zr(x), r =
1, . . . , k, are independent Gaussian processes with 0 mean and covariance func-
tion Kr(x, y), that can be consistently estimated by

K̂r(x, y) =
nr∑

i=1

1
nr − 1

(
fri(x)− f̄r•(x)

) (
fri(y)− f̄r•(y)

)
.

In the homoscedastic case the natural estimator of the common covariance func-
tion is

K̂(x, y) =
1

n− 1

k∑
r=1

(nr − 1)K̂r(x, y).

This theoretical result offers an asymptotic Monte Carlo procedure to tabulate
the null distribution of Vn: a large number N of values of statistic V are simu-
lated (say V ∗

l , l = 1, . . . , N) and the p-value corresponding to the observed Vn

is computed as the proportion of simulated values V ∗
l greater than Vn.

Assuming homoscedasticity, an alternative way to obtain a valid approxima-
tion to the null distribution of Vn is to use a permutation mechanism.

3.1 Applicability when functions are density functions

The proposals of Ramsay and Silverman (1997) and Cuevas, Febrero, and
Fraiman (2004) rely on the additive ANOVA model (3) and we have said in
Section 2 that this model is not well suited for density functions. There is an
additional difficulty related with integrability issues.

When applying the test of Cuevas, Febrero, and Fraiman (2004) it is required
to have k samples of functions in L2. This may not be the case when we are
comparing samples of density functions because some densities do not belong
to L2 (they would do if they were bounded, for instance). We could consider as
primary functional data the squared root of the density functions: Ψ√ (fri)(x) =√

fri(x). These new functions are always in L2 and the Cuevas, Febrero, and
Fraiman (2004) functional ANOVA test is applicable to them. Unfortunately,
the problem of lack of positiveness appears again.
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Other functionals Ψ could also lead to a model (5) with trajectories Ψ(fri)
not in L2([a, b]). For instance, if fri is the density function of a N(µr + δri, σ

2),
δri is drawn from a zero mean random variable, and Ψ = ΨN , then ΨN (fri(x)) =
−(µr + x − δri)/σ, x ∈ (−∞,∞), is not in L2(−∞,∞). A natural solution is
to limit the analysis to a shorter compact interval [a∗, b∗] ⊆ [a, b] where the
function inside the integral are bounded. This choice may lead to a lowering
of power. Moreover, the test conclusion could depend on the choice of the new
interval.

Regarding the Ramsay and Silverman (1997) proposal, let us consider the
integrability problems of the F-ratio function FR. A way to assure integrability
follows. Observe that the denominator of the F-ratio FR

x is an estimation of
σ2(x) = V (eri(x)). Then the statistic TF is approximately equal to

k∑
r=1

∫ b

a

(f̄r•(x)− f̄••(x))2
1

σ2(x)
dx.

Thus a sufficient condition for the integral of FR being finite is that the observed
trajectories fri verify

∫ b

a
f2

ri(x)/σ2(x)dx < ∞. These integrals are squares of
weighted L2-norms of functions fri. In fact we could say that the test based
on the F-ratio function FR corresponds to the test of Cuevas, Febrero, and
Fraiman (2004) whith a different norm definition. When a transformation Ψ is
used, determining whether or not they are finite is at least as difficult as in the
usual L2-norm case. If no transformation is used, a sufficient condition is that
σ2(x) ≥ fri(x) for all x ∈ [a, b].

There are two natural ways to avoid the F-ratio function integrability prob-
lems. The first one is to limit the analysis to a shorter compact interval
[a∗, b∗] ⊆ [a, b] such that fri(x)/σ(x) ≤ M < ∞ for all x ∈ [a∗, b∗]. We have
mentioned before the drawbacks of such a practice. The second one is to argue
as in Cuevas, Febrero, and Fraiman (2004) and then consider as test statistic
the integral of just the numerator of the F-ratio function. It is easy to see that
doing this the resulting statistic is equivalent to that used by Cuevas, Febrero,
and Fraiman (2004).

We conclude that approaches of Ramsay and Silverman (1997) and Cuevas,
Febrero, and Fraiman (2004) are not completely satisfactory when dealing with
density functions neither under the original model (3) nor under the transformed
one (5). The main two problems are that both the additivity assumption and
the use of L2 distances are not natural when working with density functions.

In the next section we introduce a framework to test hypothesis (2) that
overcomes these difficulties. In particular, we will be able to construct the
functional k-sample problem for density functions based on L1 distances between
observed densities. We also whow that statistics equivalent to those proposed
by Ramsay and Silverman (1997) and Cuevas, Febrero, and Fraiman (2004) can
be obtained in this new framework.
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4 ANOVA based on distances

The geometrical concept of distance between individuals or populations has
an important role in Statistics. Techniques as multidimensional scaling are
entirely based on distances between observations. Other statistical methods
admit versions taking exclusively a matrix of inter-individual distances as the
relevant information from the data. Examples are the regression based on dis-
tances (Cuadras and Arenas 1990), the ANOVA based on distances (Gower and
Krzanowski 1999; see below for more details) or the early MRPP tests (Mulri-
Response Permutation Procedures; see Mielke, Berry, Brockwell, and Williams
1981, for instance). Arenas and Cuadras (2002) present a survey on statistical
methods based on distances. Distance-based statistical methods work for a very
huge variety of observed objects, (for instance, individuals where non-numerical
or mixed variables have been observed) because the only requirement is to be
able to define a metric between objects.

Gower and Krzanowski (1999) provide a framework for the analysis of any
data set whose structure conforms to that of an ANOVA model, but is not
analyzable with this technique because ANOVA assumptions are not fulfilled
(the case where some or all of the variables are categorical is an example). They
assume that there are n individuals (divided into k groups of sizes n1, . . . , nk)
and that a distance function between individuals is available. Let dij ≥ 0 be
the dissimilarity between individuals i and j. It is assumed that dij = dji and
that dii = 0 for all i, j = 1 . . . , n. They define the n× n matrix D with element
(i, j) equal to d2

ij/2. Let ∆ be the n×n matrix with element (i, j) equal to dij .
Let G be the n× k matrix indicating to which group every individual belongs:
gir = 1 if individual i is in group r and gir = 0 otherwise.

Let us assume that for q ≤ n there exists a n × q data matrix X such that
the Euclidean distance between the i-th and j-th rows of X is dij . We would
say that X is an Euclidean configuration of ∆. Such a configuration does not
always exist. When it does, the distance matrix ∆ is said to be Euclidean.
Consider the usual ANOVA analysis with the rows of X as dependent variables
and groups indicated by G. Let T , W and B be the total, the within-group and
the between-group sums of squares respectively. Gower and Krzanowski (1999)
prove that

T =
1
n
1′D1, W =

k∑
r=1

1
nr

1r
′Drr1r, B =

1
n
n′DBn, (8)

where 1 = (1, (n). . ., 1)′, 1r = (1, (nr). . . , 1)′, n = (n1, . . . , nk)′, Drr is the diagonal
block of matrix D corresponding to the r-th group of individuals, and DB is the
k × k matrix with element (r, s) equal to (δw

rs)
2/2 = (2frs − frr − fss)/2, frs

being the element (r, s) of matrix

F = N−1G′DGN−1

and N = diag(n). They also prove that the fundamental ANOVA identity
T = W + B remains valid even if the distance matrix ∆ is not Euclidean and
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T , W and B are directly defined by equation (8). Observe that the value δw
rs

represents the distance between groups r and s.
The distance-based ANOVA statistic is based on the ratio B/W . Alterna-

tively, arguing as Cuevas, Febrero, and Fraiman (2004) do to consider only the
numerator of Fn in equation (7), it is enough to consider the between group
sum of squares B as test statistic if the reference distribution under the null
hypothesis is computed through a permutation test (this is the suggestion of
Gower and Krzanowski 1999 and it is what we do in this paper). The MRPP
test of Mielke, Berry, Brockwell, and Williams (1981) is based on W , that is
equivalent to B given that W + B = T .

The previous arguments can be entirely reproduced with the following mod-
ification. Instead of assuming that there exist n elements in IRq (the rows of X)
with Euclidean distances dij between them, consider now that there are n ele-
ments x1, . . . , xn in a linear space X with inner product such that dij = ‖xi−xj‖.
The main consequence of this observation is that if we consider a sample of func-
tions in L2([a, b]) and we use their L2 distances to define the distance matrix ∆,
then B/(k − 1) and W/(n − k) are equal to the numerator and the denomina-
tor of Fn in equation (7), respectively. Therefore in this case it is equivalent to
work with the test statistic proposed by Cuevas, Febrero, and Fraiman (2004) or
with the statistic B computed from the distance matrix. Small differences may
appear in the unbalanced case and when using permutations or Monte Carlo
simulation to compute p-values. The same applies for the test proposed by
Ramsay and Silverman (1997) and distances computed as weighted L2-norms.

Let us note that in distance-based ANOVA, as it happens in the test pro-
posed by Ramsay and Silverman (1997), the use of a permutation mechanism
to approximate the null distribution of the test statistic implies the assumption
of some kind of homoscedasticity. But it is not apparent what the meaning of
homoscedasticity is when working only with inter-individual distances.

It is clear from equation (8) that the only required information from the data
in order to apply a distance-based ANOVA test is the inter-individual distance
matrix. So this framework allows us to analyze ANOVA models for any kind of
statistical objects as long as a distance measure between objects is available. In
particular we can analyze functional data using any reliable distance between
the observed functions. In this paper we apply this procedure to the specific
case of the ANOVA model for density functions. See Section 5 for more details.

4.1 Two ways to do permutation tests

The standard way to carry out an ANOVA permutation test is as follows (see
for instance Manly 1997, Chapter 7). Let fri be data following the model (1).
The subscript r is the label indicating to which group the data fri belongs. The
procedure to obtain pseudo functional data sets according to the null hypothesis
(2) consists in randomly permute the group label r of the observed functions.
Under the null hypothesis the original sample and the permuted sample are
interchangeable, and so they are the observable statistic T and the value T p

that it takes in a permuted sample. Let T0 be the observed value of the ANOVA
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test T in the actual sample. The permutation mechanism is repeated a large
number N of times in order to generate values T1, . . . , TN from the permutation
distribution of T . The p-value of the permutation test is defined as #{Ts ≥ T0 :
s = 1, . . . , N}/N .

When a distance-based ANOVA test is used, the data are used through a
n×n distance matrix ∆ (or equivalently, through the transformed matrix D) and
a n×k matrix G, whose i-th row indicates to which group the i-th observed data
belongs. In this context a permuted sample is obtained by randomly permuting
the rows of G, whereas matrix ∆ remains unaltered. Then equation (8) is used
to obtain the value of the between-group variability in the permuted sample.

This permutation test presents a drawback under the alternative hypothesis.
The between group variability is translated by the permutation procedure to
noise variability in the permuted samples. Therefore the artificial samples verify
the null hypothesis of groups homogeneity, but the noise variability is greater
than the corresponding to the original data. The main consequence of the
increment in noise variability is the reduction of the test power: small deviation
from the null hypothesis would not be detected because of the precision loss.

The preceding procedure can be modified to obtain a more powerful per-
mutation test, as it was suggested by ter Braak (1992) in the context of the
standard linear model. Consider the additive model (3). Instead of permuting
the observed functions, we can permute the estimated residuals and define the
artificial functions as the sum of the global mean plus a permuted estimated
residual,

fp
ri(x) = f̄••(x) + êp

ri(x),

and êp
ri(x) is selected from the estimated residuals, êrl(x) = frl(x) − f̄r•(x),

by random permutation. When the null hypothesis is false this modified per-
mutation test guarantees that the artificial data verify the null hypothesis and
have approximately the same noise variability as the original sample. Therefore
this modified test (that we can call permuting residuals, in contrast with per-
muting observations, the standard one) would detect deviations from the null
hypothesis that would overlooked by the standard permutation test.

Manly (1997) points out that doing the ANOVA test permuting residuals
is very close to doing a bootstrap test. In the context of bootstrap tests Hall
and Wilson (1991) give two general recommendations (see Delicado and del Rı́o
1994 for their application in the one-way ANOVA model): to do the resampling
in a way that reflects the null hypothesis even if it is false (a serious reduction
in power can occurs otherwise), and to use asymptotic pivotal test statistics
(what improves the level accuracy of the test). The first guideline can also be
expressed as follows: estimate the model assuming that the data were generated
under the alternative hypothesis, and generate the bootstrap data under the null
hypothesis. The permuting residuals scheme complies with this recommendation
completely, whereas permuting observations follows only its second part. This
argument suggests that the permuting residual test will be more powerfull than
the other one.

Despite the rationale behind the permuting residual test, there are references
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in the literature indicating that the claimed increase in power (with respect to
permuting observations) does not seem to occur. For instance, the permuting
residuals procedure is analyzed in Manly (1997), Sections 6.5 and 7.2, for the
standard ANOVA test. Manly points out that it is not an exact test (there is
no guarantee that a nominal α level test will have probability of Type I error
not greater than α) but he also indicates that the behaviour of the permuting
residuals test under the null hypothesis is acceptable in practice. Regarding the
performance of both alternatives under the null hypothesis, the limited Monte
Carlo experiments done by Manly (1997) indicate that they give similar results.
In a more complex model (testing of partial regression coefficients in a multiple
linear regression model) Anderson and Robinson (2001) prove that permuting
observations and permuting residuals have the same asymptotic power under
local alternatives, and their simulations support the theoretical result.

In order to find out whether or not permuting residuals improves the power
of the standard permutation test in the functional ANOVA model, we have
included both procedures in the simulation study presented in Section 5.1.

We finish this section indicating how the permuting residual ANOVA test
can be done when the test statistic is a distance-based statistic. The inter-
residual distance matrix ∆R (or equivalently, the transformed matrix DR) is
required. The following Proposition shows that ∆R can be computed directly
from the original distance matrix ∆ and the group indicator matrix G. The
proof is deferred to the Appendix.

Proposition 1 Assume that the n×n distance matrix ∆ is Euclidean, that the
n × q matrix X is an Euclidean configuration of ∆ and that X∗ is the n × q
matrix of residuals obtained by fitting an ANOVA model to X where the groups
are defined by the n×k matrix G. Then the Euclidean distance dR

ij between rows
i and j of X∗ is given by

(dR
ij)

2 = 2eR
ij − eR

ii − eR
ij ,

where eR
ij is the entry (i, j) of the n× n matrix ER defined as

ER =
(
In −GN−1G′

)
D

(
In −GN−1G′

)
,

where In is the n× n identity matrix, and N and D were defined in Section 4.

The matrix ∆R having element (i, j) equal to dR
ij is the inter-residual distance

matrix, and associated to it we define the matrix DR with element (i, j) equal
to (1/2)(dR

ij)
2. It can be seen that ∆R does not depend on what particular

Euclidean configuration X has been chosen in Proposition 1. So we define the
inter-residual distance matrix associated to the distance matrix ∆ as ∆R, even
if ∆ is not Euclidean.

When permuting residuals, the reference statistic values (to which the between-
group variability B in the original sample has to be compared) are generated
taking ∆R as distance matrix, randomly permuting the rows of G, and applying
the definition of between-group variability given in equation (8).
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5 Functional ANOVA for density functions

Given that density functions are always in L1, we propose to base functional
ANOVA tests on L1 distances between observed densities. Let ∆L1 be the
(n×n) matrix of pairwise L1 distances

∫ b

a
|fi(x)−fj(x)|dx. The distance-based

ANOVA of Gower and Krzanowski (1999) is directly applicable to this distance
matrix.

Other distances can be the base of this methodology: for instance, L2 dis-
tance between densities (assuming they are well defined) or L2 distance be-
tween squared root of densities (this is also known as Hellinger distance). As
we pointed out in Section 4, in this two specific cases the resulting distance-
based tests are equivalent to using directly the proposal of Cuevas, Febrero, and
Fraiman (2004) on the observed functions or on their squared root, respectively.
A similar connection exists between the Ramsay and Silverman (1997) proposal

and the weighted L2-norm ‖f‖σ =
(∫ b

a
f2(x)/σ2(x)dx

)1/2

. This gives us an
argument for using these test statistics with density functions.

From now on, we use the proposals of Ramsay and Silverman (1997) and
that of Cuevas, Febrero, and Fraiman (2004) as two more tentative test statistics
for testing hypothesis (2) in model (1). Their use here does not imply that we
are assuming that the observed density functions follow model (3). It is also
possible to use distances between transformed densities Ψ(f). In the framework
of distance-based ANOVA, the use of a specific distance or transformation Ψ
implies the definition of a specific test statistic for testing hypothesis (2). Some
of them would be better than other, but we are always testing the same null
hypothesis. Remember that in the additive ANOVA model (Section 3) changes
in the choice of functional Ψ(f) entail changes in the assumed model and in the
null hypothesis to be tested.

In practice it is not possible to observe real density functions and we are
only able to work with estimates of them. Let us note that working with esti-
mated densities has special characteristics. First, in order to have a true null
hypothesis (2) applied to estimates f̂ri it is required that this hypothesis is true
for the unknown densities fri, that the samples from each fri used to compute
the nonparametric density estimators have equal sizes and that the bandwidth
choice method is always the same. Otherwise the probability distribution of f̂ri

would depend either on the specific sample size or on bandwidth. An alternative
requirement for sample sizes is to consider them as random variables following
the same law.

Secondly, the additive ANOVA model (3) is harder to be accepted than in
the case of known densities. Even if fri(x) = mr(x)+ eri(x), with eri(x) having
zero mean, the biased nature of the usual non-parametric density estimators
(kernel methods among them) implies that the working densities are

f̂ri(x) = mr(x) + eri(x) + hri(x),

and the error term eri(x) + hri(x) is no longer a centered process. In order to
have homoscedasticity, same conditions on sample sizes and bandwidth choice

12



as before are required.
When working with distance-based tests, the observed distance between es-

timated densities f̂ri and f̂sj is a kind of random dissimilarity between fri and
fsj : as a way to evaluate whether fri and fsj are close or not, we take random
samples from both densities, we compute nonparametric density estimators from
the samples, then we apply a distance formula to the estimators and we annotate
this value as a dissimilarity between fri and fsj . This argument supports the
use of tests based on distances between estimated densities, even if you want
to test the hypothesis of groups homogeneity for true densities. In the next
subsection a part of the simulation study is devoted to evaluate the effect of
replacing true densities by estimates of them.

5.1 Simulation study

A simulation study is carried out to compare the practical behaviour of six test
statistics:

1. Vn, from the test of Cuevas, Febrero, and Fraiman (2004) applied directly
to observed density functions. (We have labeled it as V in tables and
figures below).

2. V
√
n , from the test of Cuevas, Febrero, and Fraiman (2004) applied to the

squared root of observed density functions. (Labeled as Vsqrt below).

3. TF , from the test based on the F-ratio function. (Labeled as Frat below).

4. TL1 , from the distance-based test for L1 distances between observed den-
sity functions. (Labeled as L1 below).

5. TL2 , from the distance-based test for L2 distances between observed den-
sity functions. (Labeled as L2 below).

6. T
√
L2

, from the distance-based test for L2 distances between the squared
root of observed density functions. (Labeled as L2sqrt below).

We also pay attention to what extent the different available Monte Carlo meth-
ods to reproduce the null distribution of these statistics are adequate. Two
models are considered.

Model 1. We have simulated random density functions following model (5)
with functional ΨlN , so they are close to log-normality. To be precise, we
generate density functions f(x) in such a way that

ΨlN (f)(y) = η(y) = −y − µ

σ
+ ε(y), y = log(x), x ∈ (0,∞),

for some µ ∈ IR, σ > 0, where ε(y) is a smooth noise process. Therefore, the
densities we are working with have the expression

f(x) =
exp

(∫ log(x)

−∞ η(u)du
)

∫∞
−∞ exp

(∫ y

−∞ η(u)du
)

dy

1
x

, x ∈ (0,∞). (9)
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Specifically, ε(y) is the function of y obtained as the local linear fit of the data
(yi, ei), i = 1, . . . , ne, where yi are evenly spaced points between µ − 3σ and
µ + 3σ, and ei are i.i.d. observations from a N(0, σ2

e). In our implementation
(done in the package R, R Development Core Team 2005), we have chosen ne =
51, σe = 0.5, and the function loess (with span=0.25) as local linear fitting
method.

The number of groups is k = 3, and nr = 10, r = 1, 2, 3, so n = 30. Let
fri be one of the simulated density functions. The simulation parameters have
been taken to have

ΨlN (fri)(y) = −y − µ

σr
+ εri(y),

with µ = 0, σ1 = s, σ2 = 1, σ3 = 1/s, s = 1 + .03× i, i = 1 . . . 5. When s = 1,
data follow the null hypothesis of groups homogeneity. The other five values
of parameter s allow for tests power evaluation. The numerical integrals have
been done in the interval [a, b], a = exp−3× 1.15, b = exp 3× 1.15.

We have simulated 200 samples for each value of parameter s. For each
sample, the six statistics listed above are computed. For statistics Vn and V

√
n

there are three alternative ways to approximate their null distribution (sim-
ulating Gaussian processes as the asymptotic result of Cuevas, Febrero, and
Fraiman 2004 indicates, permuting observations and permuting residuals). For
the other statistics there are only two ways (permuting observations and permut-
ing residuals). The number of simulated Gaussian processes and the number of
pseudo-samples obtained by permutations is always 200 in our simulation study.

In order to have an idea about the behaviour of the statistics independent of
the resampling mechanism used to approximate their null distribution, we have
generated 1000 extra samples following H0. This way we have samples of size
1000 for the six statistics under the null hypothesis, the empirical distributions of
which are a good approximation to the statistics null distribution. Observe that
in a real case we are not able to compute such empirical distribution functions
because we do not know the real data generating process.

Figure 1 shows the six statistics power functions (s varying from 1 to 1.15)
when these empirical distributions functions are used as reference distributions.
The theoretical level is fixed in α = 0.05. We observe that the power functions
corresponding to tests based on TL2 and Vn coincide, as it was expected to
happen because the design is balanced. The same comment applies for tests
based on T

√
L2

and V
√
n . It is clear that the most powerful test is that based on

TF (F -ratio), followed by the test based on T
√
L2

(or V
√
n ). We also observe that

tests based on TL1 and TL2 (or Vn) perform similarly. Obviously, the empirical
level (the ordinate of the power function for s = 1) is close to the theoretical
one in all cases.

Figure 2 compares the unfeasible power functions (those labeled as H0, al-
ready displayed in Figure 1) with the feasible ones (those based on permuta-
tions, or on simulated Gaussian processes). The interest here is to determine
for each statistic what feasible procedure gives the closest power function to the
unfeasible one.
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Figure 1: Power functions based on the empirical distribution function of size
1000 samples simulated under the null hypothesis. Horizontal doted lines are
pointwise acceptance bands for the null hypothesis that the true power is α =
0.05.

In the case of the test based on the F -ratio function (TF , label as Frat in
the figure) permuting observations and permuting residuals are very close to the
unfeasible one. For other test statistics, permuting residuals leads to empirical
levels greater than the nominal ones and they tend to over-estimate the test
power. Moreover, permuting observations is always closer to the true power
function than permuting residuals. For statistics Vn and V

√
n the procedures

based on simulated Gaussian processes (labeled as CLT) performs worse than
permuting residuals and better than permuting residuals under the null hypoth-
esis. Under the alternative they are comparable to permuting observations.

The high power reported in Figure 1 by the test based on the F -ratio func-
tion, points this functional ANOVA test as the most advisable one in Model 1.
We also conclude that in this case permuting observations is a better practice
than permuting residuals.

Model 1. Unbalanced case. We have repeated the preceding simulation
plan varying the sample sizes. Now we use n1 = 5, n2 = 10 and n3 = 15.
Figure 3 (similar to Figure 1) shows the differences between power functions
for the balanced design and the unbalanced one. All the methods lose power in
a similar way when the design is unbalanced. It can also be seen that in the
unbalanced case the tests based on Cuevas, Febrero, and Fraiman (2004) differ
slightly from the corresponding distances based tests.
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Figure 2: Power functions based on permutations (Perm, Perm.res) and on simu-
lated Gaussian processes (CLT), compared with those based on simulation under
the null hypothesis (H0).
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Figure 3: Power functions under the null hypothesis. Comparison between
balanced (dashed lines) and unbalanced (solid lines) designs.

Let us now talk about the performance of the feasible methods to approxi-
mate the statistic null distributions. A figure analogous to Figure 2 (not shown
here) allows us to say that in the unbalanced case permuting observations works
well in all cases, that permuting residuals lead to power functions always over
the true ones, and that the procedures based on simulated Gaussian processes
(for statistics Vn and V

√
n ) are worse than permuting residuals (and consequently

worse than permuting observations).

Model 2. Estimated densities. Now we want to explore the effect of non-
parametric density estimation in the tests results. We reproduce the simulation
plan of the balanced Model 1 and, instead of working with density functions fri

as in equation (9), we generate from them 500 random numbers and we compute
kernel estimators f̂ri. We use these estimated density functions as our primary
functional data.

The kernel estimation of fri is done as follows. We generate random data
from Y = log(X), X having density fri (Y is close to normality). We take
the usual kernel estimation of the density of Y , choosing the bandwidth by the
normal reference rule. Changing the variable back, we obtain f̂ri.

Figure 4 (similar to Figure 1) shows the differences between power functions
for Model 1 (dashed lines), where the true densities were known, and Model 2
(solid lines), where only kernel estimators are available. It can be seen that the
most remarkable power decrease is for the test based on the F-ratio function.
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Figure 4: Power functions under the null hypothesis. Comparison between using
true (dashed lines) and estimated (solid lines) densities.

Observe that the effect of having to estimate densities is greater than the effect
of having an unbalanced design (compare Figures 4 and 3). The other tests lose
power less markedly here than in the case of unbalanced design. In fact, Figure
4 shows that the test based on T

√
L2

(or V
√
n , because the design is balanced) is

comparable to that based on TF (F -ratio).
With respect to the performance of the feasible methods to approximate

the statistic null distributions, simulation results not shown here indicate that
conclusions drawn from Model 1 are also valid when using estimated densities.

We conclude that estimated densities are useful for testing the null hypothe-
sis (2) of groups homogeneity for the unknown true density functions. The most
advisable test are those based on TF or T

√
L2

using a permuting observations re-
sampling scheme to obtain the p-value.

6 Methods for weighted data

Let us now discuss an important question arising in economic and social micro
data bases: in these contexts it is usual that each observation has a different
weight, proportional to the amount of people in the population it is representing.
The six functional ANOVA tests listed in Section 5 are not directly applicable
to such weighted samples. In this section we provide valid versions of those tests
for weighted samples.
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The method based on the F-ratio function is easily adapted to this case:
the univariate F-ratio statistics are now defined as the quotient between two
weighted sums of squares, and the definition of the statistic TR as the integral
of the F-ratio function does not change.

The following Proposition establishes the analogue result to Theorem 1 in
Cuevas, Febrero, and Fraiman (2004) for weighted samples. The proof is de-
ferred to the Appendix.

Proposition 2 Assume that each observed function fri(x) has an associated
weight wri > 0. Let f̄w

r• = f̄w
r•(x) be the weighted mean function in the r-th

sample. Let wr• =
∑nr

i=1 wri be the total weight of the i-th sample. Define

α2
nr =

w2
r•∑nr

i=1 w2
ri

and assume that (α2
nr/

∑k
s=1 α2

ns) → pw
r ∈ (0, 1) for all r, as n →∞. Then the

statistic
V w

n =
∑
r<s

α2
nr

∥∥f̄w
r• − f̄w

s•
∥∥2 (10)

has the same asymptotic distribution under H0 that the statistic

V w =
∑
r<s

‖Zr − Cw
rsZs‖2 ,

where Cw
rs = (pw

r /pw
s )1/2, and Zr = Zr(x), i = 1, . . . , k are independent Gaussian

processes with 0 mean and covariance function Kr(x, y).

The statistic V w
n is the version of Vn appropriate for weighted samples. Its

null distribution can be approximated by Monte Carlo simulation based on
Proposition 2. The coefficients Cw

rs can be approximated by Cw
nrs = (αnr/αns)

to compute V w in practice. Permutations method is also a suitable way to
approximate the null distribution of V w

n in the homoscedastic case.
Let us now give appropriate versions of the distance-based ANOVA test

when data are weighted. First we will provide a decomposition of the total
variability generalizing equation (8), and then we will give the weighted version
of Proposition 1.

The next proposition states the result that extends that of Gower and
Krzanowski (1999). The proof is deferred to the Appendix. We need some extra
notation. Let w = (w1, . . . , wn)′ be the vector of individual weights, let wr be
the piece of this vector with length nr corresponding to individuals in group r,
and let wr• = 1r

′wr, r = 1, . . . , k. Let WD = diag(w), nw = (w1•, . . . , wk•)′,
Nw = diag(nw), and 1k = (1, (k). . ., 1)′.

Proposition 3 Assume that the n × n distance matrix ∆, with element (i, j)
equal to dij, is Euclidean, that the n× q matrix X is an Euclidean configuration
of ∆ and that the i-th row of X has weight wi. Let D be the matrix with element
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(i, j) equal to d2
ij/2. Then the weighted total, weighted within-group and the

weighted between-group sums of squares are, respectively,

Tw = (1′w)−1w′Dw(1′w)−1

Ww =
∑k

r=1

(
(1r

′wr)−1wr
′Drrwr(1r

′wr)−1
)
(1r

′wr)(1′w)−1

Bw = (1′knw)−1n′wDw
B nw(1′knw)−1



 (11)

where Dw
B is the k × k matrix with element (r, s) equal to (δw

rs)
2/2 = (2fw

rs −
fw

rr − fw
ss)/2, fw

rs being the element (r, s) of matrix

Fw = N−1
w G′WDDWDGN−1

w .

Moreover it is verified that Tw = Ww +Bw, even if the distance matrix ∆ is not
Euclidean and Tw, Ww and Bw are directly defined by equation (11).

Observe that the value δw
rs is the distance between the weighted means of

groups r and s. The ANOVA test statistic we propose is the weighted between-
group variability Bw. The standard permutation procedure (permuting obser-
vations) to approach the null distribution of this statistic is analogous to what
we introduced in Section 4.1 for unweighted samples, with the only difference
that now we use equation (11) instead of (8). A permuted sample is obtained by
randomly permuting the rows of G, whereas both matrix ∆w and weight vector
w remain unaltered.

In order to apply the permuting residual version of the permutation test,
we need an additional result extending Proposition 1 to the weighted sample
case. The following proposition states such a result. The proof is deferred to
the Appendix.

Proposition 4 Assume that the n×n distance matrix ∆ is Euclidean, that the
n×q matrix X is an Euclidean configuration of ∆ and that the i-th row of X has
weight wi. Assume that X∗

w is the n× q matrix of residuals obtained by fitting
an ANOVA model to the weighted rows of X, where the groups are defined by
the n× k matrix G. Then the Euclidean distance dR

w,ij between rows i and j of
X∗

w is given by
(dR

w,ij)
2 = 2eR

w,ij − eR
w,ii − eR

w,ij ,

where eR
w,ij is the entry (i, j) of the n× n matrix ER

w defined as

ER
w =

(
In −GN−1

w G′WD

)
D

(
In −WDGN−1

w G′
)
.

The inter-residual distance matrix is ∆R
w having element (i, j) equal to dR

w,ij ,
and the associated matrix DR

w has element (i, j) equal to (1/2)(dR
w,ij)

2. As
it happened in Proposition 1, ∆R

w does not depend on X, and the associated
inter-residual distance matrix can be defined as ∆R

w even for a non-Euclidean
∆.
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7 European regional income densities

In this section we analyze European regional income distributions taking into
account the country to which each region belongs, as it was introduced in Section
1. Let fri(x) be the relative equivalent disposable income (after taxes and
benefits) density function of region i in country r, one of the k = 15 countries
forming the European Union before May 2004. The total number of regions is
n = 88. The null hypothesis (2) establishes that regional relative equivalent
disposable income densities have the same mean value in each country. Another
way of wording it is to say that under the null hypothesis there is no country
effect in the observed variability of regional relative equivalent disposable income
densities. Given that the true densities fri(x) are not available, we are working
with nonparametric estimates of them. In Sections 2 and 5 we offer arguments
and simulation results backing the use of density estimates.

The used incomes are disposable (or net) because they are the result of apply-
ing taxes and social benefits to the household gross income. They are equivalent
incomes in the sense that the household incomes are divided by the equivalent
number of adults living in there, according to the modified OECD scale: one
adult (person aged 14 or plus), plus one half of the additional number of adults,
plus 0.3 times the number of children. Finally they are relative because in each
region the observed equivalent incomes are divided by the regional median. So
the data x corresponding to a household represents that this household has a
equivalent disposable income equal to x times the median regional equivalent
disposable income.

The information about the income distribution in European countries and
regions comes from the 8th wave of the European Community Household Panel
(ECHP-w8) corresponding to year 2001. We work with the households rela-
tive equivalent disposable income data. This information is summarized by the
nonparametric estimation of the probability density function representing the
relative income distribution for each region. We use the logarithmic transfor-
mation and kernel density estimation techniques to estimate income density
functions (see Simonoff 1996, for instance). Observe that any household in the
sample has a specific weight and this characteristic has to be taken into account
in the estimation process.

A well known characteristic of income distributions is their marked right
asymmetry, that classically leads to model them as log-normal random vari-
ables. From a nonparametric point of view, asymmetry implies that different
degree of smoothness should be used in different levels of income (typically, more
smoothness is needed in the right tail of the distribution, with low density, cor-
responding to high incomes). A way to apply different degree of smoothness to
different zones is based on transformations. Data x1, . . . , xn are transformed by
a known function g (we use the logarithm function) achieving that the trans-
formed data are almost symmetric. Then usual kernel estimation is done in the
transformed scale, and a change-of-variable formula is used to recover a density
estimation in the original scale.

An additional problem should be noted here. The logarithm transformation
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has to be applied to positive data, but not all the income data we are analyzing
are positive. Then a positive constant c has to be added to each observation
before taking logs. In our example we have chosen c = 1 (all the observed values
x are greater than -1).

Finally, the nonparametric density estimator we are using is as follows:

f̂(x) = f̂ lg
w (log(x + c))

1
x + c

, for incomes x > −c,

where f̂ lg
w is the weighted kernel density estimator derived from yi = log(xi +c),

i = 1, . . . , n:

f̂ lg
w (y) =

n∑

i=1

wi∑
j wj

1
h

K

(
y − yi

h

)
,

where the kernel K is a unimodal density function symmetric around 0 (a stan-
dard normal density, for instance), and h is the bandwidth or smoothing para-
meter.

We select the bandwidth using the normal reference rule for weighted data.
It is well known that this rule is appropriate only when data are near normality
(that is the case for log(xi+c)) and that it tends to over-smooth (to produce too
high values for h). In order to correct the over-smoothing, a common practice
is to multiply the proposed values by a positive constant lower than 1. In our
case, we always take 2/3 times the values provided by the normal reference
rule (Luxembourg, where the normal reference rule is respected, is an exception
because otherwise the estimated density would be very bumpy). The constant
2/3 was chosen by visual inspection. The same applies for the constant c choice.
In order to evaluate the sensitiveness of our result with respect to the constant
2/3, we have repeated the computation using other values: .5, .75, 1, 1.5. In all
cases the results are very similar to those obtained with 2/3.

An alternative bandwidth choice rule, nowadays accepted as the most sat-
isfactory one, is the plug-in method (Sheather and Jones 1991) that consists
in replacing in the theoretical expression of optimal bandwidth h the unknown
terms (because they depend on derivatives of the unknown density that is be-
ing estimated) by estimations (based on kernel estimation of the derivatives).
The involved computations are far from being trivial, and in fact there are not
available implementations covering the possibility of weighted samples. This is
an additional reason that leads us to use the normal reference rule, jointly with
the fact that data log(xi + c) are almost normally distributed.

The density estimation has been done using the library sm (Bowman and
Azzalini 2001) in the package R (R Development Core Team 2005), that im-
plements the normal reference bandwidth choice rule and kernel estimation for
weighted data. All densities are evaluated in 51 points evenly spaced from -1 to
5. The estimated regional densities are shown in Figure 5. They are grouped
by countries. The number of regions in each country is indicated next to the
country name.

Now we present the results of the no country effect tests. We have used the
six test procedures listed in Section 5. Table 1 shows the test statistics observed
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Figure 5: Density estimation for regional equivalent income after taxes and
benefits, grouped by countries.
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Test statistics
Vn V

√
n TF TL1 TL2 T

√
L2

Observed value 12.98 10.69 2.798 0.0134 0.0083 0.0068
p-values

Permuting observations <.01 <.01 <.01 <.01 <.01 <.01
Permuting residuals <.01 <.01 <.01 <.01 <.01 <.01
CLT, homoscedastic <.01 <.01
CLT, heteroscedastic <.01 <.01

Table 1: Income density data. The observed values for the six test statistics
are shown in the first row. The other rows contain the associated p-values,
that have been computed using permutations procedures and, when available,
simulated Gaussian processes (last two rows, first two columns).

values. The statistics null distributions have been approximated using all the
available methods (Section 2) and taking into account the specific techniques
for weighted data introduced in Section 6. Therefore, there are two ways (per-
muting observations or residuals) to compute p-values corresponding to four
statistics: TF (based on the F-ratio function), TL1 , TL2 and T

√
L2

(based on dis-

tances). For the other two statistics (Vn and V
√
n , based on Cuevas, Febrero,

and Fraiman 2004), the p-value can be computed using Proposition 2, that ex-
tends the Central Limit Theorem (CLT) result of Cuevas, Febrero, and Fraiman
(2004) to the weighted case. We have considered the homoscedastic case as well
as the heteroscedastic one. The number of permuted (or simulated) samples was
always equal to 100. Table 1 shows the resulting p-values. In all cases p-values
are lower than 0.01 (meaning that all the simulated statistics values were lower
than the observed one). Based on these numbers, we conclude that the null
hypothesis must be rejected.

In order to establish whether or not different ways of doing the functional
ANOVA test give similar results (beyond the coincident reported p-values), in
Figure 6 we look at the whole set of simulated reference statistics values. It can
be seen that observed statistics values are always far from the simulated values.
Moreover we observe that the observed values are considered less extreme when
using the permuting observation mechanism to approximate the statistics null
distribution than when permuting residuals or CLT based simulations were used.

Let us note that all the integrals involved in the test definitions have been
done in [a, b], for a = −.25 and b = 5. Other choices of a and b were also consid-
ered (the results are not shown here) and we conclude that only the test based
on the F-ratio function is sensitive to the choice of a. When using a = −1 or
a = −.5 numerical instability problems appeared leading to permuted samples
with abnormally high values of TF (the integral of the F-ratio function). A plau-
sible explanation is that in these permuted samples for some x ∈ [−1,−.25) the
intra sample variability is zero but the between samples variability is positive.
The choice of b was revealed as unimportant. We conclude that integrabil-
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Figure 6: Income density data. Box-plots for 100 simulated test statistics values
under the null hypothesis. The observed statistics values are marked as big solid
circles.
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ity problems of the F-ratio function (discussed in Section 3.1) are relevant in
practice.

8 Conclusions

In this paper we have considered several ways to carry out the test of homo-
geneity between k-samples of functional data. We have focused on the case
of density functions having different weights, but the presented theoretical re-
sults are also valid for more general functions. We have used methods based on
between-cases distances as well as methods that were proposed for the ANOVA
test with generic functional data. We have shown that the last ones can be used
when data are density functions because there are equivalent test procedures
based on distances.

Our simulation experiments suggests that tests based on the F-ratio func-
tion and those working with the squared root of density functions are preferable
to other alternatives. When using the F-ratio test attention must be paid to
eventual numerical instability. Regarding permutation tests, permuting obser-
vations gives accurate results when data follow both the null and the alternative
hypothesis. Permuting residuals does not work properly. We have considered a
real data example in European regional income distribution were all the tests
considered here lead to accept that the country effect is important.

The main technical contributions of the paper are the derivations of formulas
for doing the permuting residuals resampling method in distance-based ANOVA,
and the generalization for weighted samples of two previous test methods (Gower
and Krzanowski 1999 and Cuevas, Febrero, and Fraiman 2004).

Our experience working with methods based on distances allows us to suggest
that statistical methods based on distances are ready to be used in a wide range
of Functional Data Analysis problems, the present paper being an example.

Appendix: Proofs

Proof of Proposition 1.
This result is a particular case of Proposition 4, with equal weights for all the
observations.

Proof of Proposition 2.
The proof reproduces that of Theorem 1 in Cuevas, Febrero, and Fraiman
(2004), adapting it to weighted samples. It has to be taken into account that
if f̄w

r• =
∑nr

i=1 wrifri is the weighted mean function in the r-th sample, then
according to the Central Limit Theorem for random variables in Hilbert spaces,

αnr(f̄w
r• −mr)

d→ Zr,

where Zr = Zr(x) is a Gaussian process with 0 mean and covariance function
Kr(x, y). The rest of the proof follows exactly as in Cuevas, Febrero, and
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Fraiman (2004), with α2
nr,

∑k
s=1 α2

ns, pw
r and Cw

rs taking here the roles that nr,
n, pr and Crs have there, respectively.

Proof of Proposition 3.
This proof follows the lines of reasoning used in Gower and Krzanowski (1999)
to establish their equation (7). Without lost of generality we can assume that
the centroid of the rows of X is the origin of coordinates:

∑n
i=1 wixi = 0, where

x′i is the i-th row of matrix X. Therefore, the weighted total sum of squares is

Tw =
∑n

i=1 wix
′
ixi∑n

i=1 wi
.

On the other hand,

(1′w)−1w′Dw(1′w)−1 =
1

2(
∑n

i=1 wi)2

n∑

i=1

n∑

j=1

wiwj(xi − xj)′(xi − xj) =

1
2(

∑n
i=1 wi)2

n∑

i=1

n∑

j=1

wiwj(x′ixi + x′jxj − 2x′ixj) =

1
2(

∑n
i=1 wi)2

2(
n∑

i=1

wi)
n∑

i=1

wix
′
ixi = Tw.

Let us note that in the previous lines it can be observed the known relation
between distance dij and the elements of the scalar product matrix E = XX ′ =
(eij):

d2
ij = eii + ejj − 2eij . (12)

It is also known that X and D verify the equation

XX ′ = −(In − 1(1′w)−1w′)D(In −w(1′w)−11′) (13)

(see equations (2) and (4) in Gower and Krzanowski 1999). We will be using
both expressions below.

Let us now proceed with the weighted within-group sum of squares. Let T r
w

be the sum of squares within the r-th group, that is a weighted total sum of
squares restricted to individuals in group r. Therefore we can use the above
expression for the weighted total sum of squares:

T r
w = (1r

′wr)−1wr
′Drrwr(1r

′wr)−1.

Then, the weighted within-group sum of squares is

Ww =
k∑

r=1

wr•∑n
i=1 wi

T r
w =

k∑
r=1

(
(1r

′wr)−1wr
′Drrwr(1r

′wr)−1
)
(1r

′wr)(1′w)−1.

Now we deal with the weighted between-group sum of squares. The k × q
matrix with the groups mean of X is

X̄ = N−1
w G′WDX.
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So, the corresponding scalar product matrix is

X̄X̄ ′ = N−1
w G′WDXX ′WDGNw

−1

and using equation (13),

X̄X̄ ′ = N−1
w G′WD

(−(In − 1(1′w)−1w′)D(In −w(1′w)−11′)
)
WDGN−1

w .

Moreover, if we take into account that 1′ = 1′kG′ and that Nw = G′WDG it
follows that

1′WDGN−1
w = 1′kG′WDGN−1

w = 1′k. (14)

We conclude that

X̄X̄ ′ = −N−1
w G′WDDWDGN−1

w + a1′ + 1a′ + b11′,

where a = N−1
w G′WDD(1′w)−1w is a k-vector and b = (1′w)−1w′Dw(1′w)−1

is a number. This expression is analogous to equation (5) in Gower and Krzanowski
(1999) and, for the same reasons given there (the terms involving a and b can-
cel when applying equation (12) to the elements of X̄X̄ ′ to obtain inter-mean
distances), the only relevant term is the first one, that is equal to matrix −Fw.
Using the standard relation between distances and elements of the scalar prod-
uct matrix, it follows that the distance between rows r and s of X̄ is

δw
rs = (2fw

rs − fw
rr − fw

ss)
1/2,

fw
rs being the element (r, s) of matrix Fw. Taking into account that the weighted

between-group sum of squares is also the weighted total sum of squares of the
rows of X̄, with weights in nw, it follows that

Bw = (1′knw)−1n′wDw
B nw(1′knw)−1.

In order to prove that Tw = Ww + Bw, observe that Bw can also be expressed
as

Bw =
1

(
∑n

i=1 wi)2
1
2

k∑
r=1

k∑
s=1

wr•ws•(δw
rs)

2

=
1

(
∑n

i=1 wi)2

k∑
r=1

k∑
s=1

wr•ws•fw
rs −

1∑n
i=1 wi

k∑
r=1

wr•fw
rr.

Moreover Fw = N−1
w G′WDDWDGN−1

w implies that fw
rs = wr

′Drsws/(wr•ws•).
Therefore,

Bw =
1

(
∑n

i=1 wi)2
w′Dw − 1∑n

i=1 wi

k∑
r=1

wr•wr
′Drrwr = Tw −Ww.

Proof of Proposition 4.
Observe that

X∗
w = X −GX̄ = X −GN−1

w G′WDX =
(
In −GN−1

w G′WD

)
X.
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Then, using (13),

X∗
w(X∗

w)′ =
(
In −GN−1

w G′WD

)
XX ′ (In −WDGN−1

w G′
)

=
(
In −GN−1

w G′WD

) [−(In − 1(1′w)−1w)D(In − 1(1′w)−1w)
] (

In −WDGN−1
w G′

)
=

(
In −GN−1

w G′WD

)
D

(
In −WDGN−1

w G′
)

+ S,

where
S =

(
In −GN−1

w G′WD

)
M

(
In −WDGN−1

w G′
)

and

M = Dw(1′w)−11′ + 1(1′w)−1w′D − 1(1′w)−1w′Dw(1′w)−11′ =

aM1′ + 1a′M + bM11′,

where aM = Dw(1′w)−1 and bM = (1′w)−1w′Dw(1′w)−1.
It can be seen that S = a1′ + 1a′ + b11′ for some a and b. Effectively,

S = S1 − S2 − S3 + S4

= M −GN−1
w G′WDM −MWDGN−1

w G′ + GN−1
w G′WDMWDGN−1

w G′.

Observe that

S1 = M = aM1′ + 1a′M + bM11′, S2 = a21′ + 1a′3, S3 = S′2 = a31′ + 1a′2

and then
S2 + S3 = a231′ + 1a′23

with a23 = a2 + a3. Moreover, if we take into account equation (14) it follows
that

1′WDGN−1
w G = 1′, GN−1

w G′WD1 = 1.

Therefore

S4 = GN−1
w G′WD [aM1′ + 1a′M + bM11′] WDGN−1

w G′ = a41′ + 1a′4 + b411′,

where a4 = GN−1
w G′WDaM, and b4 = bM .

We have established that

X∗
w(X∗

w)′ = ER
w + a1′ + 1a′ + b11′.

Let vij be the (i, j)-th element of X∗
w(X∗

w)′. The general relationship between
distances and scalar products, equation (12), is in this case

(dR
w,ij)

2 = 2vij − vii − vjj = 2eR
w,ij − eR

w,ii − eR
w,ij ,

where eR
w,ij is the entry (i, j) of matrix ER

w . In other words, the terms a1′, 1a′

and b11′ do not contribute to the computation of distances dR
w,ij .
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