energy and power systems

A multi-objective approach to infrastructure planning in the early stages of EV introduction

Publication TypeConference Paper
Year of Publication2015
AuthorsCristina Corchero; Andina Brown; Oriol Serch; Miguel Cruz; F.-Javier Heredia
Conference Name27th European Conference on Operational Research
Conference Date12-15/07/2015
Conference LocationGlasgow, UK.
Type of Workinvited
Key Wordsresearch; multi objective optimization; electrical vehicle, charging point location
AbstractThe aim of this study is to address the problem of locating fast charging stations for electric vehicles in the early stages of infrastructure implementation. Despite existence of successful trials and pilot projects, there are barriers preventing the successful development of a private EV market in its present state; investors are reluctant to invest in infrastructure due to the relatively small number of EV users, and conversely consumers are hesitant about purchasing EVs due high prices and a lack of charging infrastructure. It has been identified that introducing fast charging stations can aid this process, in particular by easing users’ concerns about running out of charge before reaching their destination. This study approaches the problem from the perspective of a central planner wishing to install fast charging stations. A multi-objective approach is used to simultaneously consider two conflicting objectives in the optimisation problem: (1) to minimise the distance that potential consumers would need to deviate from their normal journeys in order to reach their nearest fast charging station and (2) to minimise the set up costs associated with the installation of the stations. A mathematical model is formulated and implemented to obtain results for the case study of Barcelona. The optimal solutions are found and used to depict the Pareto front, offering insight into the nature of the trade-offs between the objectives and aiding the decision making process.
URLClick Here
ExportTagged XML BibTex

Parallel Proximal Bundle Methods for Stochastic Electricity Market Problems

Publication TypeConference Paper
Year of Publication2015
AuthorsF.-Javier Heredia; Antonio Rengifo
Conference Name27th European Conference on Operational Research
Conference Date12-15/07/2015
Conference LocationGlasgow, UK.
Type of Workinvited
Key Wordsresearch; MTM2013-48462-C2-1; mixed-integer nonlinear programming; proximal bundle methods; multimarket electricity problems; parallelism
AbstractThe use of stochastic programming to solve real instances of optimal bid problems in electricity market usually implies the solution of large scale mixed integer nonlinear optimization problems that can't be tackled with the available general purpose commercial optimisation software. In this work we show the potential of proximal bundle methods to solve large scale stochastic programming problems arising in electricity markets. Proximal bundle methods was used in the past to solve deterministic unit commitment problems and are extended in this work to solve real instances of stochastic optimal bid problems to the day-ahead market (with embedded unit commitment) with thousands of scenarios. A parallel implementation of the proximal bundle method has been developed to take profit of the separability of the lagrangean problem in as many subproblems as generation bid units. The parallel proximal bundle method (PPBM) is compared against general purpose commercial optimization software as well as against the perspective cuts algorithm, a method specially conceived to deal with quadratic objective function over semi-continuous domains. The reported numerical results obtained with a workstation with 32 threads show that the commercial software can’t find a solution beyond 50 scenarios and that the execution times of the proposed PPBM are as low as a 15% of the execution time of the perspective cut approach for problems beyond 800 scenarios.
URLClick Here
ExportTagged XML BibTex

Participation in the 12th International Conference on the European Energy Market

 The International Conference on the European Energy Market  is the premier forum for the exchange of ideas and to discuss the development of the energy markets in Europe. It has achieved a huge success during the past eleven editions covering the electricity and gas markets policies and experiences, climate change impacts on the sector and developments at the European level. In 2015, the EEM was hosted by ISEL - Instituto Superior de Engenharia de Lisboa in cooperation with the Technical University of Lodz. I contributed to this conference with the presentation of the following two works:

A stochastic programming model for the tertiary control of microgrids

Publication TypeConference Paper
Year of Publication2015
AuthorsLeire Citores; Cristina Corchero; F.-Javier Heredia
Conference Name12th International Conference on the European Energy Market
Conference Date19-22/05/2015
Conference LocationLisbon, Portugal
Type of Workcontributed presentation
Key Wordsresearch; MTM2013-48462-C2-1; microgrid; stochastic programming; scenario generation; wind power
AbstractIn this work a scenario-based two-stage stochastic programming model is proposed to solve a microgrid’s tertiary control optimization problem taking into account some renewable energy resource’s uncertainty as well as uncertain energy deviation prices in the electricity market. Scenario generation methods for wind speed realizations are also studied. Results show that the introduction of stochastic programming represents a significant improvement over a deterministic model.
URLClick Here
ExportTagged XML BibTex

Economic analysis of battery electric storage systems operating in electricity markets

Publication TypeConference Paper
Year of Publication2015
AuthorsF.-Javier Heredia; Jordi Riera; Montserrat Mata; Joan Escuer; Jordi Romeu
Conference Name12th International Conference on the European Energy Market
Conference Date19-22/05/2015
Conference LocationLisbon, Portugal
Type of Workcontributed presentation
Key Wordsresearch; MTM2013-48462-C2-1; battery electricity storage systems; electricity markets; day-ahead market; secondary reserve market; SAS/OR; wind power plants; energy economy; virtual power plant
AbstractBattery electric storage systems (BESS) in the range of 1-10 MWh is a key technology allowing a more efficient operation of small electricity market producer. The aim of this work is to assess the economic viability of Li-ion based BESS systems for small electricity producers. The results of the ex-post economic analysis performed with real data from the Iberian Electricity Market shows the economic viability of a Li-ion based BESS thanks to the optimal operation in day-ahead and ancillary electricity markets.
URLClick Here
ExportTagged XML BibTex

Participation in the 20th Conference of the International Federation of Operational Research Societies (IFORS2014)

 On July 2014 Barcelona hosted the 20th Conference of the International Federation of Operational Research Societies (IFORS2014), one the most important meetings of the international OR community. The 20th edition of this conference was organized by the OR community in the different universities of Catalonia, under the leadership of prof. Elena Fernández, from the UNiversitat Politècnica de Catalunya-BarcelonaTech. I had the opportunity to contribute to this event as a member of the Organizing Committee as well as organizing a very successfull stream on Optimization Models and Algorithms in Energy Industry (28 contributions), together with my friend and colleague Dr. Cristina Corchero (Catalonian Institute for Energy Research, IREC). I also presented the work Stochastic Optimal Bid to Electricity Markets with Emission Risk Constraints, co-authored with Julián Cifuentes , a former student of the Master in Statistics and Operations Research, and Dr. Cristina Corchero.

Optimal Energy Management for a Residential Microgrid Including a Vehicle-to-Grid System

Publication TypeJournal Article
Year of Publication2014
AuthorsLucia Igualada; Cristina Corchero; Miguel Cruz; F-.Javier Heredia
Journal TitleIEEE Transactions on Smart Grid
Volume5
Issue4
Pages2163-2172
Journal Date07/2014
PublisherIEEE
ISSN Number1949-3053
Key Wordsresearch; paper; smart grids; vehicle- to-grid (V2G); renewable generation; microgrids; smartgrids; modeling
AbstractAn optimization model is proposed to manage a residential microgrid including a charging spot with a vehicle-to-grid system and renewable energy sources. In order to achieve a realistic and convenient management, we take into account: (1) the household load split into three different profiles depending on the characteristics of the elements considered; (2) a realistic approach to owner behavior by introducing the novel concept of range anxiety; (3) the vehicle battery management considering the mobility profile of the owner and (4) different domestic renewable energy sources. We consider the microgrid operated in grid-connected mode. The model is executed one-day-ahead and generates a schedule for all components of the microgrid. The results obtained show daily costs in the range of 2.82 to 3.33 ; the proximity of these values to the actual energy costs for Spanish households validate the modeling. The experimental results of applying the designed managing strategies show daily costs savings of nearly 10%.
URLClick Here
DOI10.1109/TSG.2014.2318836
Preprinthttp://hdl.handle.net/2117/20642
ExportTagged XML BibTex

Stochastic optimal sale bid for a wind power producer

Publication TypeReport
Year of Publication2013
AuthorsSimona Sacripante; F.-Javier Heredia; Cristina Corchero
Pages17
Date11/2013
ReferenceResearch report DR 2013/06, Dept. of Statistics and Operations Research. E-Prints UPC, Universitat Politècnica de Catalunya
Prepared forSubmitted
Key Wordsresearch; electricity markets; wind generator; stochastic programming
AbstractWind power generation has a key role in Spanish electricity system since it is a native source of energy that could help Spain to reduce its dependency on the exterior for the production of electricity. Apart from the great environmental benefits produced, wind energy reduce considerably spot energy price, reaching to cover 16,6 % of peninsular demand. Although, wind farms show high investment costs and need an efficient incentive scheme to be financed. If on one hand, Spain has been a leading country in Europe in developing a successful incentive scheme, nowadays tariff deficit and negative economic conjunctures asks for consistent reductions in the support mechanism and demand wind producers to be able to compete into the market with more mature technologies. The objective of this work is to find an optimal commercial strategy in the production market that would allow wind producer to maximize their daily profit. That can be achieved on one hand, increasing incomes in daily and intraday markets, on the other hand, reducing deviation costs due to error in generation predictions. We will previously analyze market features and common practices in use and then develop our own sale strategy solving a two-stage linear stochastic optimization problem. The first stage variable will be the sale bid in the day–ahead market while second stage variables will be the offers to the six sessions of intraday market. The model is implemented using real data from a wind producer leader in Spain.
ExportTagged XML BibTex

Stochastic optimal generation bid to electricity markets with emission risk constraints.

Publication TypeReport
Year of Publication2013
AuthorsF.-Javier Heredia; Julian Cifuentes; Cristina Corchero
Pages21
Date09/2013
ReferenceResearch report DR 2013/04, Dept. of Statistics and Operations Research. E-Prints UPC, http://hdl.handle.net/2117/20640. Universitat Politècnica de Catalunya
Prepared forsubmitted
Key Wordsresearch; OR in Energy; Stochastic Programming; Risk Management; Electricity market; Emission reduction
AbstractThere are many factors that influence the day-ahead market bidding strategies of a generation company (GenCo) in the current energy market framework. Environmental policy issues have become more and more important for fossil-fuelled power plants and they have to be considered in their management, giving rise to emission limitations. This work allows investigating the influence of the emission reduction plan, and the incorporation of the derivatives medium-term commitments in the optimal generation bidding strategy to the day-ahead electricity market. Two different technologies have been considered: the coal thermal units, high-emission technology, and the combined cycle gas turbine units, low-emission technology. The Iberian Electricity Market (MIBEL) and the Spanish National Emission Reduction Plan (NERP) defines the environmental framework to deal with by the day-ahead market bidding strategies. To address emission limitations, some of the standard risk management methodologies developed for financial markets, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), have been extended giving rise to the new concept of Conditional Emission-at-Risk (CEaR). This study offers to electricity generation utilities a mathematical model to determinate the individual optimal generation bid to the wholesale electricity market, for each one of their generation units that maximizes the long-run profits of the utility abiding by the Iberian Electricity Market rules, as well as the environmental restrictions set by the Spanish National Emissions Reduction Plan. The economic implications for a GenCo of including the environmental restrictions of this National Plan are analyzed, and the effect of the NERP in the expected profits and optimal generation bid are analyzed.
URLClick Here
ExportTagged XML BibTex

A new optimal electricity market bid model solved through perspective cuts

Publication TypeReport
Year of Publication2011
AuthorsCristina Corchero; Eugenio Mijangos; F.-Javier Heredia
Pages25
Date11/2011
ReferenceResearch report DR 2011/04, Dept. of Statistics and Operations Research. E-Prints UPC, http://hdl.handle.net/2117/18368. Universitat Politècnica de Catalunya
Prepared forPublished by TOP
Key Wordsresearch; electricity market;
AbstractOn current electricity markets the electrical utilities are faced with very sophisticated decision making problems under uncertainty. Moreover, when focusing in the shortterm management, generation companies must include some medium-term products that directly influence their short-term strategies. In this work, the bilateral and physical futures contracts are included into the day-ahead market bid following MIBEL rules and a stochastic quadratic mixed-integer programming model is presented. The complexity of this stochastic programming problem makes unpractical the resolution of large-scale instances with general purpose optimization codes. Therefore, in order to gain efficiency, a polyhedral outer approximation of the quadratic objective function obtained by means of perspective cuts (PC) is proposed. A set of instances of the problem has been defined with real data and solved with the PC methodology. The numerical results obtained show the efficiency of this methodology compared with standard mixed quadratic optimization solvers.
URLClick Here
ExportTagged XML BibTex
Syndicate content