A mixed-integer stochastic programming model for the day-ahead and futures energy markets coordination

Cristina Corchero F. Javier Heredia cristina.corchero@upc.edu f.javier.heredia@upc.edu Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya

July, 2007

This work was supported by the Ministerio de Educación y Ciencia of Spain under Projects DPI2005-09117-C02-01 and MTM2004-21648-E

#### Introduction

Introduction and motivation Electric Energy Iberian Market: MIBEL

#### **MIBEL** Futures Market

MIBEL Futures Contracts Associated problems

#### Problem formulation

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

#### Case Study

Uncertainty characterization Data Results

#### Conclusions

イロト イヨト イヨト イヨト

æ

Introduction and motivation Electric Energy Iberian Market: MIBEL

## Introduction and motivation

- The recent creation of short term futures markets in the MIBEL and its particular rules
- The existence of futures market in most of the liberalized power markets around the world
- The fact that coordination between short term futures and spot markets is necessary for a GENCO
- Analyze hedging in electricity markets and interaction between physical production and electricity futures contracts

Introduction MIBEL Futures Market Problem formulation

Case Study Conclusions Introduction and motivation Electric Energy Iberian Market: MIBEL

< ≣ >

æ

### Electric Energy Iberian Market: MIBEL



Introduction and motivation Electric Energy Iberian Market: MIBEL

< 🗇 🕨

## Electric Energy Iberian Market: MIBEL



#### Main characteristics of bilateral contracts:

- Non organized market
- Physical bilateral contracts
- Minimum contract duration one year

Introduction and motivation Electric Energy Iberian Market: MIBEL

## Electric Energy Iberian Market: MIBEL



#### **OMIP's main characteristics:**

**Physical Contracts** 



#### **Financial Contracts**

#### **Financial Settlement**

OMIClear cash settles the differences between the Spot Reference Price and the Final Settlement Price

イロト イヨト イヨト イヨト

Introduction and motivation Electric Energy Iberian Market: MIBEL

## Electric Energy Iberian Market: MIBEL



#### OMEL's main characteristics:

- Organized markets
- Spot market:
  - > The matching procedure takes place 24h before the delivery period

<ロ> <同> <同> <同> < 同>

\_∢≣≯

æ

Hourly auction

MIBEL Futures Contracts Associated problems

Image: A matrix and a matrix

-≣->

## **MIBEL Futures Contracts**

### Main characteristics:

- Base load
- Physical or financial settlement.
- Delivery period: years, quarters, months and weeks.

MIBEL Futures Contracts Associated problems

## **MIBEL Futures Contracts**

### Main characteristics:

- Base load
- Physical or financial settlement.
- Delivery period: years, quarters, months and weeks.

### Definition:

- A Base Load Futures Contract consists in a pair  $(L^f, \lambda^f)$ 
  - L<sup>f</sup>: amount of energy (MW) to be procured each interval of the delivery period.
  - $\lambda^f$ : price of the contract ( $\in$ /MW).

MIBEL Futures Contracts Associated problems

### Physical Base Load Futures Contracts

### Market physical settlement rules:<sup>1</sup>

- At least two days prior to the physical delivery day, physical delivery futures contracts are entered as orders at 'acceptance price' in the call auction of OMEL's Mercado Diario
- Before the call auction each Physical Settlement Agent must specify which production/consumption units are to be allocated to the orders.

MIBEL Futures Contracts Associated problems

### Problems associated to the Futures Market

### Optimal bidding at futures market:

 During the trading period the GENCO could send bids for all products opened in the Futures Market.

MIBEL Futures Contracts Associated problems

## Problems associated to the Futures Market

### Optimal bidding at futures market:

 During the trading period the GENCO could send bids for all products opened in the Futures Market.

### Physical or financial delivery contracts selection:

Given the open positions of futures contracts the GENCO has to build the physical-delivery portfolio and the financial one.

MIBEL Futures Contracts Associated problems

## Problems associated to the Futures Market

### Optimal bidding at futures market:

 During the trading period the GENCO could send bids for all products opened in the Futures Market.

### Physical or financial delivery contracts selection:

Given the open positions of futures contracts the GENCO has to build the physical-delivery portfolio and the financial one.

### Futures contract energy allocation:

Given the portfolio of futures contracts with physical-delivery the GENCO has to decide how to allocate the energy among the offer to the spot market.

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

A (1) > (1) > (1)

## Characteristics of the study

- The model currently developed is restricted to:
  - A *Price Taker* generation company
  - ► A set of thermal generation units, T
  - An optimization horizon of 24h, I
  - A fan of spot market price scenarios, S
- It has been implemented with AMPL, without exploiting the structure of the problem, and it has been solved with CPLEX.
- The main objective of the computational tests is to evaluate the coherence of the proposed methodology.

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

イロン イヨン イヨン イヨン

Optimal bid curve for thermal unit t (I/II)

- Let q<sub>i</sub><sup>t</sup> be the generation of thermal t at time i allocated to all the physical contracts of the portfolio.
- The market rules forces each generator to send the amount q<sup>t</sup><sub>i</sub> to the day-ahead market through an *instrumental price bid* (bid at zero price).
- For a given value q<sub>i</sub><sup>t</sup>, the optimal bid curve is the function λ<sub>i</sub><sup>o,t</sup>(p<sub>i</sub><sup>o,t</sup>; q<sub>i</sub><sup>t</sup>) that provides the energy-price pairs (p<sub>i</sub><sup>o,t</sup>, λ<sub>i</sub><sup>o,t</sup>) that maximize the benefit function for any given spot price λ<sub>i</sub><sup>d</sup>

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

## Optimal bid curve for thermal unit t (II/II)

The expression of the optimal bid curve for thermal unit t at time interval i, for a given q<sup>t</sup><sub>i</sub>, is:

$$\lambda_{i}^{o,t}(p_{i}^{o,t};q_{i}^{t}) = \begin{cases} 0 & \text{if } 0 \le p_{i}^{o,t} \le q_{i}^{t} \\ 2c_{q}^{t}p_{i}^{o,t} + c_{l}^{t} & \text{if } q_{i}^{t} < p_{i}^{o,t} \le \overline{P}^{t} \end{cases}$$
(1)

graphically:



Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

# Matched energy (I/II)

Given a spot price λ<sup>d,s</sup><sub>i</sub>, corresponding to scenario s, and a value q<sup>t</sup><sub>i</sub>, the matched energy p<sup>ts</sup><sub>i</sub> is completely determined through expression (1), and depends on the comparison between q<sup>t</sup><sub>i</sub> and p<sup>d,ts</sup>:

$$p_i^{ts} = \begin{cases} q_i^t & \text{if } q_i^t \ge p_i^{d,ts} \\ p_i^{d,ts} & \text{otherwise} \end{cases}$$
(2)

・ロト ・回ト ・ヨト ・ヨト

where the constant  $p_i^{d,ts}$  is the generation that maximizes the benefit function for a given spot-price  $\lambda_i^{d,s}$ .

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

# Matched energy (II/II)

 Expression (2) defines the matched energy p<sup>ts</sup><sub>i</sub> as a piece-wise linear function of the zero priced bid q<sup>t</sup><sub>i</sub>



This non-differential expression can be conveniently expressed through an equivalent mixed-linear formulation.

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

イロト イヨト イヨト イヨト

Two-stage stochastic program formulation

- Scenarios: spot prices  $\lambda^{d,s} \in \Re^{|I|}$ ,  $s \in S$
- First stage variables:  $\forall t \in T$ ,  $\forall i \in I$ 
  - Instrumental price offer bid :  $q_i^t$
  - ▶ Scheduled energy for contract  $j: f_{ii}^t, \forall j \in F$
  - Unit commitment:  $u_i^t$ ,  $a_i^t$ ,  $e_i^t$ ,  $\forall i \in I$ ,  $\forall t \in T$
- Second stage variables:  $\forall t \in T$ ,  $\forall i \in I$ ,  $\forall s \in S$ :
  - Matched energy: p<sup>ts</sup><sub>i</sub>
  - Auxiliary variables:  $z_i^{ts}, v_i^{ts}, w_i^{ts}$

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program **Objective function** Constraints

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

## Objective function

$$\min_{q,f,u,a,e,p,z,v,w} \sum_{\forall i \in I} \sum_{\forall t \in T} c_{on}^{t} e_{i}^{t} + c_{off}^{t} a_{i}^{t} + c_{b}^{t} u_{i}^{t} + \sum_{s \in S} P^{s} \left[ (c_{l}^{t} - \lambda_{i}^{d,s}) p_{i}^{ts} + c_{q}^{t} (p_{i}^{ts})^{2} \right] \quad (3)$$

Associated constants: 
$$c_{on}^t, c_{off}^t, c_b^t, c_l^t, c_q^t, P^s, \lambda_i^{d,s}$$

Cristina Corchero, F. Javier Heredia EURO XXII

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

・ロト ・回ト ・ヨト

### Physical Future contracts constraints

#### Physical future contract covering:

$$\sum_{t\in\mathcal{T}}f_{ij}^t = L_j , \ \forall j\in\mathcal{F}$$
(4)

#### Instrumental price bid:

$$q_i^t \ge \sum_{j \in F} f_{ij}^t , \ \forall t \in T , \ \forall i \in I$$
(5)

Associated variables:  $q_i^t, f_{ij}^t \in 0 \cup [\underline{P}^t, \overline{P}^t]$ Associated constants:  $L_i$ 

Characteristics of the study Model for the matched energy Formulation of a two-stage stochastic program Objective function Constraints

## Start-up/Shut-down constraints: $\forall i \in I$ , $\forall t \in T$

$$a_i^t + e_i^t \le 1 \tag{6}$$

$$u_i^t - u_{i-1}^t - e_i^t + a_i^t = 0$$
 (7)

$$a_i^t + \sum_{i=i+1}^{i+\min_{off}} e_j^t \le 1$$
(8)

$$e_i^t + \sum_{j=i+1}^{i+min_{on}} a_j^t \le 1$$
(9)

ヘロン 人間 とくほど くほとう

3

Associated variables:  $u_i^t, a_i^t, e_i^t \in \{0, 1\} \cap \mathcal{U}^t$ 

Introduction Characteristics of the study MIBEL Futures Market Model for the matched energy Problem formulation Case Study Objective function Conclusions Constraints

### Definition of the matched energy: $\forall s \in S$ , $\forall i \in I$ , $\forall t \in T$

$$p_i^{ts} = p_i^{d,ts} u_i^t + v_i^{ts} \tag{10}$$

$$v_i^{ts} - w_i^{ts} = q_i^t - p_i^{d,ts} u_i^t$$
 (11)

$$v_i^{ts} \le \overline{M}^{ts} z_i^{ts} , \ w_i^{ts} \le \underline{M}^{ts} (1 - z_i^{ts})$$
(12)

$$\underline{P}^{t}u_{i}^{t} \leq p_{i}^{ts} \leq \overline{P}^{t}u_{i}^{t}$$
(13)

$$p_i^{d,ts} u_i^t + \underline{M}^{ts} \left( z_i^{ts} - 1 \right) \le q_i^t \le p_i^{d,ts} u_i^t + \overline{M}^{ts} z_i^{ts} \qquad (14)$$

$$\sum z_i^{ts} \le |S| u_i^t \qquad (15)$$

・ロン ・回と ・ヨン・

$$s \in S$$

 $\begin{array}{ll} \text{Associated variables:} & p_i^{ts}, \in 0 \cup \left[\underline{P}^t, \overline{P}^t\right], \ z_i^{ts} \in \{0, 1\}, \ v_i^{ts}, w_i^{ts} \geq 0 \\ \text{Associated constants:} & p_i^{d,ts}, \overline{M}_i^{ts} = \overline{P}^t - p_i^{d,ts}, \underline{M}_i^{ts} = p_i^{d,ts} - \underline{P}^t \\ \end{array}$ 

Uncertainty characterization Data Results

## Price scenario generation

- Price Spot Market, λ<sup>d,s</sup><sub>i</sub>, is a stochastic variable, in particular, a time serie.
- Time series study results in a ARIMA model: ARIMA (23, 1, 13)(14, 1, 21)<sub>24</sub>(0, 1, 1)<sub>168</sub><sup>2</sup>
- Price scenario construction:
  - Generation of 350 scenarios by time series simulation
  - Reduction of the number of scenarios <sup>3</sup>

<sup>&</sup>lt;sup>2</sup>Amell et Bernáldez Previsió de preus i planificació de la producció al MIBEL

<sup>&</sup>lt;sup>3</sup>Gröwe-Kuska et al. Scenario Reduction and Scenario Tree Construction for Power Management Problems 📒 🔊 🔍

Uncertainty characterization Data Results

## Case study characteristics

- October, 24th and 25th 2006
- 10 thermal generation units (7 coal, 3 fuel) from a generation company with daily bidding to the MIBEL

| $[\overline{P} - \underline{P}]$ (MW) | 160-243 | 250-550 | 80-260 | 160-340 | 30-70   |
|---------------------------------------|---------|---------|--------|---------|---------|
| <i>min<sub>o</sub>n/off</i> (h)       | 3       | 3       | 3      | 4       | 4       |
| $[\overline{P} - \underline{P}]$ (MW) | 60-140  | 160-340 | 90-340 | 110-157 | 110-157 |
| $min_on/off$ (h)                      | 3       | 3       | 4      | 4       | 4       |

6 physical futures contracts

| $L_f$ (MW)                | 20   | 150  | 320  | 50   | 200  | 150  |
|---------------------------|------|------|------|------|------|------|
| $\lambda_f \ (c \in /KW)$ | 5.12 | 4.96 | 6.60 | 5.35 | 5.09 | 5.00 |

10 spot-market price scenarios

Uncertainty characterization Data Results

<ロ> <同> <同> < 同> < 同> < 同> :

æ



### Unit commitment



Uncertainty characterization Data Results

<ロ> <同> <同> <同> < 同>

- < ≣ →

æ

## Results (II/IV)

### Procurement of physical-delivery contracts



Cristina Corchero, F. Javier Heredia EURO XXII

Uncertainty characterization Data Results

# Results (III/IV)

### **Optimal bid**



Cristina Corchero, F. Javier Heredia

EURO XXII

Uncertainty characterization Data Results

Image: A math a math

글 > 글



#### Futures contracts covering



#### Figure: Futures contract #6

Cristina Corchero, F. Javier Heredia EURO XXII

# Conclusions (I/II)

- It has been build an Optimal Bidding Model for a *price-taker* GENCO following in detail the MIBEL rules.
- The stochasticity of the spot price has been took into account and it has been fully represented by the scenario tree.
- ► The model developed gives the GENCO:
  - ► Optimal bid for the spot market: quantity at 0€/MWh and the rest of the power capacity at the unit's marginal cost
  - Unit commitment
  - Optimal allocation of the physical futures contracts among the thermal units

< ≣ >



#### Further developments:

- Exploitation of the problem structure
- Coordination with mid-term strategies
- Inclusion of hydro units
- Inclusion of emissions rights trading
- Introduction of risk terms

<⊡> < ⊡

∢ ≣⇒

A mixed-integer stochastic programming model for the day-ahead and futures energy markets coordination

Cristina Corchero F. Javier Heredia cristina.corchero@upc.edu f.javier.heredia@upc.edu Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya

July, 2007

This work was supported by the Ministerio de Educación y Ciencia of Spain under Projects DPI2005-09117-C02-01 and MTM2004-21648-E