

Session 33: Electricity market design, regulation and monitoring

Friday 22 May 2015

ECONOMIC ANALYSIS OF BATTERY ELECTRIC STORAGE SYSTEMS OPERATING IN ELECTRICITY MARKETS

F.-Javier Heredia^(*)

Group on Numerical Optimization and Modeling Universitat Politécnica de Catalunya – BarcelonaTech

Jordi Riera Institut de Robòtica i Informàtica Industrial (IRI) Universitat Politécnica de Catalunya – BarcelonaTech – CSIC

> Montserrat Mata, Joan Escuer and Jordi Romeu EMELCAT, S.L., Barcelona, Spain

> > **EMELCAT**

(*) Grant MTM2013-48462-C2-1-R of the Ministry of Economy and Competitivity of Spain

F.-Javier Heredia et al. : Economic analysis of BESS operating in electricity markets

SUMMARY

- Introduction, motivation and contributions.
- Battery Electricity Storage System in Electricity Markets optimization model (BESSEM).
- Case study: economic viability of a BESS attached to a wind power plant.
- Conclusions

CATALUNYA

INTRODUCTION

Introduction:

- Battery electric storage systems (BESS) in the mid-range of 1-10 MWh is a key technology allowing a more efficient operation of small electricity market producer.
- EMELCAT S.L. is an start-up company founded by researchers of the Universitat Politècnica de Catalunya and energy engineering to deploy midrange energy storage systems with advanced energy management systems (EMS) and operation in electricity markets.
- One of the first outcomes of this collaborations has been a mathematical optimization based methodology to asses the economic viability of Li-ion based BESS systems for small electricity producers.
- The results of the ex-post economic analysis performed with real data from the Iberian Electricity Market shows the economic viability of a Li-ion based BESS thanks to the optimal operation in day-ahead and ancillary electricity markets.

F.-Javier Heredia et al. : Economic analysis of BESS operating in electricity markets

MOTIVATION

Motivation:

- 1. Medium size BESS in the range of 1-10 MWh is a technology specially appropriate for small producers with non-dispatchable generator (wind power plants or PV) or almost non-dispatchable generation (co-generation).
- 2. Lithium-ion (Li-ion) batteries provide high power and a large depth of discharge, fast charge and discharge capability and high round-trip efficiency [1] [2].
- 3. Some studies indicated that profits from energy arbitrage were insufficient to achieve capital cost recovery [3].
- 4. The participation in the ancillary services market has been suggested as a way to achieve economic viability [3]. Nevertheless, recent works analysing Vanadium Redox Flow technology seemed to refute this possibility [4].
- [1] A. Poullikkas, Renewable and Sustainable Energy Reviews, vol. 27, pp. 778-788, 2013.
- [2] F. Díaz-González et al Renewable and Sustainable Energy Reviews, vol. 16, pp. 2154-2171, 2012.
- [3] M. Kintner-Meyer et al. «National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC,» Richland, 2012.
- [4] L. Johnston et al. «Methodology for the economic optimisation of energy storage systems for frequency support in wind power plants,» Applied Energy, nº 137, pp. 660-669, 2015.

EMELCAT

VPP'S PROFIT ESTIMATION : INCOMES

- Our *ex-post* analysis aims at approximate as fair as possible the situation of a **VPP manager that has to decide on day** D 1 **the optimal bid of the VPP to the day-ahead and reserve markets for the next day** D without knowing the true value of the day-ahead and reserve markets clearing prices λ_t^{DAM} , λ_t^{SRB} .
- To not to assume any *a priori* knowledge of the clearing prices, we use the prices of the same weekday of the previous week which is an information available at day D 1.
- This is equivalent to assume that at day D 1 the VPP manager finds the optimal bid with respect to the one-week-ago clearing prices. This assumption results in the following (likely under-)estimated market revenue functions:

F.-Javier Heredia et al. : Economic analysis of BESS operating in electricity markets

VPP'S PROFIT ESTIMATION : COSTS (1/2)

- Operation costs of the generation unit of the VPP: let $C^{G}(g)$ represent the operation costs of the generation unit of the VPP.
- Life cycle costs of the BESS:

E CATALUNY

- These are the operation cost associated to the charge/discharge cycles of the Li-ion battery.
- The cycle life cyc^{max} of a battery is the estimated maximum number of complete charge/discharge processes (cycles) before reaching EOL.
 The cycle life depends on several factors (temperature, charging rate,...) but above all, the maximum and minimum allowed SOC.
- Let cyc^{max} be the cycle life associated to some pair (soc^{min}, soc^{max}) . The total number of cycles performed during horizon \mathcal{T} by the battery *b* is

 $cyc(c_b, e_b^D) = \frac{\text{Total energy charged along } \mathcal{T}}{\text{BESS capacity}} = \frac{\Delta t \cdot \sum_{b \in \mathcal{B}, t \in \mathcal{T}} c_{bt} + \sum_{b \in \mathcal{B}, \in \mathcal{T}} e_{bt}^D}{e^{max}}$ (21)

EMELCAT

EEM

THE (BESSEM) OPTIMIZATION MODEL

• Battery Electricity Storage System in Electricity Markets model (BESSEM):

(BESSEM) ∢

- max $EP^{VPP}(m, r^U, r^D, g, c, e^D)$ s.t.: DAM: (1)-(3) BESS: (4)-(9) SRM: (10), (11), (14)-(18)
- (*BESSEM*) model is a large scale mixed integer linear or quadratic (depending on *C^G(g)*) optimization problem. It must be noticed that actually problem (*BESSEM*) is decomposable in 365 daily independent subpropolems due to constraints (9).
- The optimal solution $x^* \triangleq argmax\{(BESSEM)\}$ is a suboptimal approximation of the optimal operation of the VPP because it could be easily improved in the real-time management (for instance, with a better forecasting of λ^{DAM} and λ^{DRM} or relaxing constraints (9)).

F.-Javier Heredia et al. : Economic analysis of BESS operating in electricity markets

SUMMARY

- Introduction and motivation.
- A mathematical optimization model for Battery Electricity Storage System in Electricity Markets (BESSEM).
 - o BESS's Virtual Power Plant model.
 - VPP's annual profit estimation and the (BESSEM) optimization model.
- Case study: economic viability of a BESS attached to a wind power plant.
- Conclusions.

CATALUNY

[2] F. Díaz-González et al Renewable and Sustainable Energy Reviews, vol. 16, pp. 2154-2171, 2012.

INTERNATIONAL CONFERENCE ON THE EAN ENERGY MARKET (BESSEM) - 24

system operators.

BESS+WPP ECONOMIC ANALYSIS

$AR^{DAM}(m^*) =$	529,430€
$AR^{SRB}(r^{U^*},r^{U^*}) =$	736,258€
$AR^{SRE}(e^{U^*},e^{U^*}) =$	41,896€
$AP^{VPP}(x^*) =$	1, 307, 584 €
$AP^{WPP} =$	569 , 798 €
$\Delta P^{BESS}(x^*) =$	737,786€
$C^{BESS} =$	7,500,000€
$IPP(x^*) =$	10.17 years
$FEOL(x^*) =$	20.35 years
$ROI(x^*) =$	100%
	$AR^{DAM}(m^*) =$ $AR^{SRB}(r^{U^*}, r^{U^*}) =$ $AR^{SRE}(e^{U^*}, e^{U^*}) =$ $AP^{VPP}(x^*) =$ $AP^{WPP} =$ $\Delta P^{BESS}(x^*) =$ $C^{BESS} =$ $IPP(x^*) =$ $FEOL(x^*) =$ $ROI(x^*) =$

(a):	AP^{WPP}	$= \sum_{t}$	$= \tau \lambda_t^{DAM}$	$\cdot g_t$

- (b): $\Delta P^{BESS}(x^*) = AP^{VPP}(x^*) AP^{WPP}$
- (c): $C^{BESS} = |\mathcal{B}| \cdot C^{CAP}$
- (d): $IPP(x^*) = C^{BESS} / \Delta P^{BESS}(x^*)$

EMELCAT

(e): $ROI(x^*) = (EOL(c^*, e^{D^*}) \cdot \Delta P^{BESS}(x^*) - C^{BESS})/C^{BESS}$

th INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (BESSEM) - 25 Lisbon, 19-22 May 2015 | Portugal

Windows 7 Professional).

(BESSEM) model:

385440 continuous variables, 8760 binary

variables and 573120 linear constraints. Solved with the SAS/OR 9.3[®] in 4 minutes on

a desktop PC (i7@2.93GHz, 8GB RAM,

F.-Javier Heredia et al. : Economic analysis of BESS operating in electricity markets

SUMMARY

- Introduction and motivation.
- A mathematical optimization model for Battery Electricity Storage System in Electricity Markets (BESSEM).
 - o BESS's Virtual Power Plant model.
 - VPP's annual profit estimation and the (BESSEM) optimization model.
- Case study: economic viability of a BESS attached to a wind power plant.
- Conclusions.

CATALUNY

