

28th European Conference on Operational Research

ON THE OPTIMAL PARTICIPATION IN ELECTRICITY MARKETS OF WIND POWER PLANTS WITH BATTERY ENERGY STORAGE SYSTEMS

Stream: Energy/Environment and Climate / Session WB-48: Renewable Energy / Wednesday 6 July 2016

F.-Javier Heredia⁽¹⁾, Cristina Corchero⁽²⁾, Marlyn D. Cuadrado⁽¹⁾

(1): Group on Numerical Optimization and Modeling. Universitat Politècnica de Catalunya – BarcelonaTech

> (2): Energy Economics Research Group. Catalonia Institute for Energy Research

Grant MTM2013-48462-C2-1-R of the Ministry of Economy and Competitivity of Spain

SUMMARY

- Motivation and contributions.
- Virtual Power Plant definition and stochasticity.
- Model development:
 - o Participation in spot markets (day-ahead and intraday).
 - o BESS operation.
 - o Secondary Reserve Market.
 - o Imbalances.
 - o Profit maximization
 - The (*WBVPP*) stochastic programming model.
- Case study.
- Conclusions.

MOTIVATION

- 1. Medium size Battery Energy Storage Systems (BESS) is a **technology specially appropriate for small producers** with non-dispatchable (wind power plants or PV) or almost non-dispatchable generation (co-generation).
- Lithium-ion (Li-ion) batteries provide high power and a large depth of discharge, fast charge and discharge capability and high round-trip efficiency [1]. Moreover, Li-ion is expected to experience the greatest five year battery capital cost decline (~50%) [2].
- 3. There is a general consensus that profits from energy arbitrage are insufficient to achieve capital cost recovery [3].
- 4. However, the participation in the ancillary services market has been proved recently as a way to achieve economic viability of a Wind Power +Li-ion BESS facility [4].

[1] F. Díaz-González et al *Renewable and Sustainable Energy Reviews*, vol. 16, pp. 2154-2171, 2012.
[2] Lazard's Levelized Cost of Storage Analysis (<u>https://www.lazard.com/media/2391/lazards-levelized-cost-of-storage-analysis-10.pdf</u>)
[3] M. Kintner-Meyer et al. «National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC,» Richland, 2012.
[4] F-Javier Heredia et al. 12th International Conference on the European Energy Market (EEM15), 2015 (<u>http://hdl.handle.net/2117/82524</u>).

28th European Conference on Operational Research

CONTRIBUTION

- We present a new two-stage stochastic programming model (WBVPP) for the optimal bid of a wind producer both in spot and ancillary services electricity markets. This stochastic programming considers:
 - A Virtual Power Plant (VPP) comprising a Wind Power Plant (WPP) and Battery Storage System (BESS).
 - The VPP's bids to the spot electricity markets: day-ahead and intraday.
 - The VPP's bids to the secondary reserve band market.
 - The imbalances management of the electricity market.
- We use model (*WBVPP*) to analyse the effect of the BESS and the reserve market to the optimal bidding strategies of the VPP with **real data** from the **Iberian Electricity Market**.

28th European Conference on Operational Research

SUMMARY

- Motivation and contributions.
- Virtual Power Plant definition and stochasticity.
- Model development:
 - o Participation in spot markets (day-ahead and intraday).
 - o BESS operation.
 - o Secondary Reserve Market.
 - o Imbalances.
 - o Profit maximization
 - The (*WBVPP*) stochastic programming model.
- Case study.
- Conclusions.

VPP AND STOCHASTICITY

28th European Conference

on Operational Research

SUMMARY

- Motivation and contributions.
- Virtual Power Plant definition and stochasticity.
- Model development:
 - o Participation in spot markets (day-ahead and intraday).
 - o BESS operation.
 - o Secondary Reserve Market.
 - o Imbalances.
 - o Profit maximization
 - The (*WBVPP*) stochastic programming model.
- Case study.
- Conclusions.

DAY-AHEAD AND INTRADAY MARKET

Variables (period $t \in \mathcal{T}$, scenario $s \in S$) p_t^D : price accepting bid to the DM [*MWh*]. ip_t^D : = 1 if $p_t^D > 0$, = 0 otherwise. $p_{t,s}^I$: price accepting bid to the IM [*MWh*].

Parameters:
$$\overline{p}^{D}$$
, \underline{p}^{D} , $\overline{p}^{I} > 0$, $\underline{p}^{I} < 0$

Coupling between day-ahead and intraday market bid:

$$p_t^D \cdot ip_t^D \le p_t^D \le \overline{p}_t^D \cdot ip_t^D \qquad t \in \mathcal{T}$$
(1)

$$\underline{p}_{t,s}^{I} \cdot ip_{t}^{D} \leq p_{t,s}^{I} \leq \overline{p}_{t,s}^{I} \cdot ip_{t}^{D} \qquad t \in \mathcal{T}, s \in \mathcal{S} \qquad (2)$$

 $ip_t^D \in \{0,1\}$

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

28th European Conference on Operational Research

 $t \in \mathcal{T}$

(*WBVPP*) - 8

(3)

THE BATTERY ENERGY STORAGE SYSTEM

- **Variables** (period $t \in \mathcal{T}$, scenario $s \in S$)
 - $c_{t,s}$: charging rate [*MW*].
- $d_{t,s}$: discharging rate [*MW*].
- *id*_{*t,s*}: discharge state (binary)

Parameters

 d^{max} : maximum charging/disch. rate [MW]. e^{max} : battery's capacity [*MWh*].

cyc^{max}: max. Number of charge/discharge cycles

Charging/discharging state and limits:

$$0 \le d_{t,s} \le d^{max} \cdot id_t \qquad t \in T, s \in S \qquad (4)$$

$$0 \le c_{t,s} \le d^{max} \cdot (1 - id_t) \qquad t \in \mathcal{T}, s \in S \qquad (5)$$

$$id_t \in \{0,1\} \qquad t \in \mathcal{T} \qquad (6)$$

Maximum mean number of charge/discharge cycles:

$$\sum_{T,s\in\mathcal{S}} P_s \cdot \left(\frac{d_{t,s}}{d_{t,s}} + c_{t,s} \right) / (2 \cdot e^{max}) \le cyc^{max}$$

28th European Conference on Operational Research (7)

STATE OF CHARGE (SOC) CONS.

Variables (period $t \in \mathcal{T}$, scenario $s \in S$) $soc_{t,s}$: SOC at the end of period $t \in \mathcal{T} \cup \{0\}$. **Parameters**

 γ^{RTE} : round-trip efficiency. e^{max} : battery's capacity [*MWh*]. soc^{min}, soc^{max} : minimum/maximum SOC. soc^{0}, soc^{T} : initial and final SOC.

• State of Charge (SOC) equations after DM and IM clearing:

 $soc_{t,s} = soc_{t-1,s} + \Delta t \cdot (c_{t,s} - d_{t,s}/\gamma^{RTE})/e^{max} \quad t \in \mathcal{T}, s \in \mathcal{S} \quad (8)$ $soc^{min} \leq soc_{t,s} \leq soc^{max} \quad t \in \mathcal{T}, s \in \mathcal{S} \quad (9)$ $soc_{0,s} = soc^{0}, soc_{T,s} = soc^{T} \quad (10)$

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

28th European Conference on Operational Research

SECONDARY RESERVE MARKET (1/3)

- The VPP submits a price accepting bid for the total available reserve up and reserve down of the BESS to the **Secondary Reserve Band Market (RM)**.
- Variables (period $t \in \mathcal{T}$, scenario $s \in \mathcal{S}$)

 r_t^U, r_t^D : up/down secondary reserve bid of the the BESS at time period $t \in \mathcal{T}$ [*MW*].

• The battery's reserve is limited by the gap between the maximum discharge d^{max} and the current discharging rate and current charging rate :

$$0 \leq \boldsymbol{r_t^{U}} \leq d^{max} - \left(d_{t,s} - c_{t,s}\right)$$

$$0 \leq \boldsymbol{r_t^{D}} \leq d^{max} - \left(\boldsymbol{c_{t,s}} - \boldsymbol{d_{t,s}}\right)$$

 $t \in \mathcal{T}, \mathbf{s} \in \mathcal{S} \tag{11}$

$$t \in \mathcal{T}, s \in \mathcal{S} \tag{12}$$

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

28th European Conference on Operational Research

SECONDARY RESERVE MARKET (2/3)

- The VPP submits a price accepting bid for the total available reserve up and reserve down of the BESS to the **Secondary Reserve Band Market (RM)**.
- Variables (period $t \in \mathcal{T}$, scenario $s \in \mathcal{S}$)
 - r_t^U, r_t^D : up/down secondary reserve bid of the the BESS at time period $t \in \mathcal{T}$ [*MW*].

Parameters:

- Δt^{SR} : time response of the sec. reserve [h].
- The incremental (A) / decremental (B) energy is limited by the maximum/minimum SOC:

$$soc^{min} + \frac{\Delta t^{SR} \cdot r_t^U / \gamma^{RTE}}{e^{max}} \le soc_{t,s} \le soc^{max} - \frac{\Delta t^{SR} \cdot r_t^D}{e^{max}} \qquad t \in \mathcal{T}, s \in \mathcal{S} \quad (13)$$

$$\underbrace{\text{WBVPP} - 12}_{\text{BARCELONATECH}}$$

SECONDARY RESERVE MARKET (2/3)

- The VPP submits a price accepting bid for the total available reserve up and reserve down of the BESS to the **Secondary Reserve Band Market (RM)**.
- Variables (period $t \in \mathcal{T}$, scenario $s \in \mathcal{S}$)
 - r_t^U, r_t^D : up/down secondary reserve bid of the the BESS at time period $t \in \mathcal{T}$ [*MW*].

Parameters

- α^{SR} : ratio between the up/down band declared by the system operator.
- Up/down reserve bid ratio:

$$r_t^U = \alpha^{SR} \cdot r_t^D$$

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

28th European Conference on Operational Research

 $t \in \mathcal{T}$

(14)

IMBALANCES (1/2)

For any given value of the variables c, d, p^D and p^I and wind generation scenario p_s^W we define the **imbalance variables** (period $t \in \mathcal{T}$, scenario $s \in S$):

 $p_{t,s}^{IB}$: net imbalance [*MWh*].

 $p_{t,s}^{IB+}, p_{t,s}^{IB-}$: positive/negative imbalance [*MWh*].

• Imbalance definition ($\Delta t = 1h$):

$$p_{t,s}^{IB} = \underbrace{\left(p_{s,t}^{W} + \Delta t \cdot d_{t,s}\right)}_{\text{VPP energy inflow}} - \underbrace{\left(p_{t,s}^{D} + p_{t,s}^{I} + \Delta t \cdot c_{t,s}\right)}_{\text{VPP energy outflow}} \qquad t \in T, s \in S$$
(15)

Neutral mean imbalance :

$$\sum_{t\in\mathcal{T},s\in\mathcal{S}}P_s\cdot p_{t,s}^{IB}=0$$

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

28th European Conference on Operational Research

 $t \in T, s \in S$

(*WBVPP*) - 14

(16)

IMBALANCES (2/2)

For any given value of the variables c, d, p^D and p^I and wind generation scenario p_s^W we define the **imbalance variables** (period $t \in \mathcal{T}$, scenario $s \in S$):

 $p_{t,s}^{IB}$: net imbalance [*MWh*].

 $p_{t,s}^{IB+}, p_{t,s}^{IB-}$: positive/negative imbalance [*MWh*].

- Parameters: \bar{p}^{IB} , $\bar{p}^{IB-}_{t,s}$, $\bar{p}^{IB+}_{t,s}$
- Imbalance coupling to DM and limitations :
 - $p_{t,s}^{IB} = p_{t,s}^{IB+} p_{t,s}^{IB-} \qquad t \in \mathcal{T}, s \in S \quad (17)$ $p_{t,s}^{IB+} + p_{t,s}^{IB-} \leq \bar{p}^{IB} \cdot ip_t^D \qquad t \in \mathcal{T}, s \in S \quad (18)$ $0 \leq p_{t,s}^{IB+} \leq \bar{p}_{t,s}^{IB-}, 0 \leq p_{t,s}^{IB-} \leq \bar{p}_{t,s}^{IB+} \qquad t \in \mathcal{T}, s \in S \quad (19)$

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

28th European Conference on Operational Research

PROFIT MAXIMIZATION

• Expected value of the profit: $EP^{VPP} = DM + RM + IM + IB^+ - IB^-$

28th European Conference on Operational Research

THE (WBVPP) OPTIMIZATION MODEL

Wind power- BESS Virtual Power Plant model (WBVPP) can be expressed as:

- MILP with 21,572 continuous variables, 2,448 binary variables and 33,522 linear constraints.
- Implemented and solved with AMPL/CPLEX on a desktop PC (i7@2.93GHz, 8GB RAM, Windows 7 Professional).

28th European Conference on Operational Research

SUMMARY

- Motivation and contributions.
- Virtual Power Plant definition and stochasticity.
- Model development:
 - o Participation in spot markets (day-ahead and intraday).
 - o BESS operation.
 - o Secondary Reserve Market.
 - o Imbalances.
 - o Profit maximization
 - o The (*WBVPP*) stochastic programming model.
- Case study.
- Conclusions.

CASE STUDY

- Optimal bid of a programming unit (VPP) of the Iberian Electricity Market (IEM) composed by:
 - An on-shore wind plant located in the north of Spain with 9 wind turbine and a total nominal output of 18MW.
 - A Li-ion based BESS with the following characteristics:

$d^{max} = 10 MW$	EOL = 20 years	$soc^0 = soc^{\mathrm{T}} = 0.6$	$soc^{min} =$	0.3
$e^{max} = 30 MWh$	$cyc^{EOL} = 6000$	$soc^{max} = 0.9$	$\gamma^{RTE} =$	0.8

28th European Conference on Operational Research

Scenarios

- The scenarios for the random variables λ^D, λ^R, λ^I, p^W and λ^{IB} are based on the historical data from January 1st 2014 to June 30th 2014 to elaborate the optimal bid for July 1st 2014.
- The complete set of observations has been reduced to 100 scenarios through standard scenario reduction tecniques [6].

[6] N. Gröwe-Kuska, H. Heitsch, and W. Römisch, "Scenario reduction and scenario tree construction for power management problems," in Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 3, 23-26 June 2003.

28th European Conference on Operational Research

RESULTS: WPP + DM + IM

UPC

BARCELONATECH

RESULTS: VPP+DM+IM

RESULTS: VPP+DM+IM+RM

SUMMARY

- Motivation and contributions.
- Virtual Power Plant definition and stochasticity.
- Model development:
 - o Participation in spot markets (day-ahead and intraday).
 - o BESS operation.
 - o Secondary Reserve Market.
 - o Imbalances.
 - o Profit maximization
 - o The (*WBVPP*) stochastic programming model.
- Case study.
- Conclusions.

CONCLUSIONS

- A two stage stochastic programming model has been developed to find the optimal bid to spot and reserve markets of a WPP+BESS.
- The model has been used to find the optimal bid to DM and RM of a test case with real data from the Iberian Electricity Market.
- The preliminary results show that:
 - With respect to the optimal biding strategies, the participation in the RM strongly reshapes both the charge/discharge profile and the optimal bid to the DM.
 - The uncertainty in the operation of the BESS (charge/discharge/SOC) vanishes when the participation in the RM is allowed.
 - The increase in the total profit of the VPP w.r.t. the WPP is not relevant when the bids are restricted to the DM and IM.
 - However, the participation in the RM induces a strong increase in profits, a results that agrees with previos studies.

Thank you very much for your attention!!

28th European Conference on Operational Research