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Abstract: Wholesale electricity markets can be organised into different types of marketsFenergy
markets and ancillary services marketsFthat are cleared sequentially. The paper proposes a
stochastic-optimisation model to obtain the distribution of the electricity resources of a generation
firm among the different sequential markets within a wholesale electricity market. Market power is
modelled by linear approximations of the residual-demand curves. In addition, the model obtains
the bid curves of a generation firm that are submitted for every hourly period of each market
comprising the sequence. A methodology to estimate the stochastic residual-demand curves for
every hour of each market based on decision trees has been designed. The model has been
developed for a Spanish utility to operate in the Spanish electricity market. A case study illustrates
the performance of the proposed model.

List of symbols

(a) Sets

h hourly period
M market (daily, secondary reserve, intra-

daily)
scM residual-demand curve scenarios for

market M
tu, hu, pu thermal, hydroelectric and pumping unit
g generator
allesc set that represents the sequence of

scenarios of all the energy markets
n each interval of the water-value curve

(b) Parameters

Ah,scM, Bh,scM linear-regression coefficients of the
scM residual-demand-curve pattern for
hour h

INj
h;scM tangent-cut j income in the scM

scenario of hour h for market M

Qj
h;scM tangent-cut j quantity in the scM

scenario of market M at hour h
rh,scM probability of scM scenario of market

M at hour h
rh,allesc probability of the sequence of scenarios

allesc
Lmin

PTEC g;h; Lmax
PTEC g;h upper and lower technical limits of

generator g at hour h
Lmax

POP g;h upper operational limit of g at hour h

CVARh,tu variable cost of thermal unit tu at
hour h

lhu,n marginal cost of water of hydroelectric
unit hu at each interval n

Erefhu energy reference for hydroelectric unit
hu at hour h

Erefhu,n energy reference for hydroelectric unit
hu at each hour h for interval n of the
water-value curve

dg,h binary parameter indicating if the ther-
mal generating unit g is either running
or stopped at hour h (provided by the
weekly model).

RAMP down
tu , up and down ramps for thermal unit tu

RAMP up
tu

LIQGM
g;h, hourly liquidity of the unit g at hour h

LIQHM
g;h

Zpu performance parameter of unit pu
BRh ratio of up/down band declared by the

system operator

(c) Variables

InM
h;scM income for scenario scMofmarketM at h

Ph,scM price for the hour h of the scenario scM
of market M

d1h;scM, d2h;scM binary variables for increasing conditions

temi total expected income
etc, ehc expected thermal and hydroelectric cost
qM

g;h;scM, qM
g;h;scim1 generation and demand of unit g at

each scenario scM of market M at
hour h

pppu,h pumping of unit pu at hour h
qBIL

g;h energy contracted using bilateral agree-

ments by generator g at hour h

urSR
g;h;scsr, drSR

g;h;scsr up and down secondary reserve of

generator g at hour h
ehu,n hydroelectric uh energy used in each

interval n of the water-value curve
ebspu,h energy in the upper reservoir of pump-

ing unit up at hour h
E[ ] expected value of the variable in bracketsE-mail: augtesisiit@gmail.com
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1 Introduction

During the past decade, electrical power systems all over the
world have experienced a number of regulatory changes to
improve the economic efficiency of the electricity business.
Wholesale electricity markets are organised into different
markets that can be classified as [1]: (a) energy markets
(day-ahead electricity market, energy-adjustment markets)
and (b) ancillary-services markets (secondary- and tertiary-
reserve markets, deviation-management markets and vol-
tage control). In a number of wholesale markets, these
different markets are arranged as a sequence of auctions.
Hence, generation firms have to transform their operational
decisions in terms of offering strategies. Within this
deregulated framework, strategic bidding procedures must
be developed by a generating firm to distribute its total
electricity resources among the different markets. The
objective function consists of maximising the total expected
profit, taking into account the sequence of markets.

Most strategic-bidding approaches have been designed to
optimise an agent’s bid curve considering only the daily
energy market [2–6]. In [7], an optimisation tool has been
developed to obtain independent optimal bidding curves
for each energy and ancillary services markets in Spain.
However, it builds independent curves for each market,
ignoring the market sequence. A conceptual approach to
optimise the market sequence has been explored in [1], but
has not been applied in practice to the complete market
sequence.

This paper proposes a stochastic-optimisation model to
obtain the distribution of the electricity resources of a
generation firm among the different markets in a sequential-
market context. The objective function maximises the agent
expected profit through the different markets. In addition,
the model obtains the bid curves of the firm to be submitted
for each hourly period of every market. The proposed
general model has been adapted for a Spanish utility to
optimise its strategic position in the Spanish sequential
markets. The proposed model can be adapted to different
international markets that consider a sequence of markets,
such as the NordPool [8] and the Californian electricity
market [9].

Depending on the number and size of the market
participants, a competitive market may behave as a
monopoly, oligopoly or a perfect competitive market.
Nowadays, many electricity markets behave like oligopolies.
Therefore, the production supplied to the market by an
agent may affect the clearing price. According to the theory
of supply function equilibrium [10], the residual-demand
curve (RDC) can be used to represent the influence of an
agent’s production supply on the clearing price of the
market, and therefore on its expected profit. The RDC of
an agent is obtained by subtracting from the total demand
curve the sum of the supply curves of the remaining
competitors. However, owing to the uncertainty in the
market conditions and the strategic behaviour of the
competitors, residual-demand curves are not known. There-
fore, they need to be estimated to represent the market
power within a stochastic strategic-bidding procedure.

Different approaches to estimation of RDCs, suitable to
use with a stochastic-optimisation model, have been
proposed in the literature. In [1], equal-probability RDCs
are selected by clustering past realisations together with
future estimations of the explanatory variables. In [11], the
strategic behavior of a firm is optimised for a large number
of RDC scenarios; the optimal-bidding curve is built by
fitting a ‘hinges’ model (a set of linear-function models
joined by equal points of energy priceFcalled hinges) with

all the optimal energy-price pairs which have been obtained.
In this way, it is not necessary to consider RDC estimations,
merely past realisations. Time series together with regression
techniques are used in [12] to obtain RDC for the model
proposed in [13]. Other approaches combine clustering
techniques and neural networks to estimate both RDC
patterns and their probability [7]. Although neural networks
perform rather well in terms of accuracy, they act as a black
box; given a set of input variables, it is not easy to interpret
their output.

A different approach, based on decision trees, is proposed
in this paper to obtain residual-demand-curve patterns and
their corresponding probability. The main advantage of
decision trees over other estimation techniques is the easy
of interpretation of the conclusions, and the provision of
probability values without the need for any assumption
about the probabilistic distributions of the variables, such as
normally distributed variables. The process comprises four
steps. The first step involves selecting an initial set of
explanatory variables. In the second step, factor analysis is
used to reduce the initial number of variables to a small
number of factors containing most of the explanatory
variables’ information. The third step classifies the different
RDC in a finite number of patterns representative of the
curve’s behaviour, by applying clustering techniques to the
whole set of available RDCs. A decision tree is built in
the fourth step to compute the probability of each RDC
pattern, taking as input the estimations of the explanatory
factors. In order to include the RDC patterns in a stochastic
linear-optimisation program, the patterns are approximated
by linear regression. The resulting quadratic-income func-
tion obtained is linearly modelled by a set of tangent cuts.

Figure 1 depicts the structure of the stochastic-optimisa-
tion model proposed in this paper. The stochastic-
optimisation program takes as input data the technical
and economic data of the generating units of the firm, the
results of the previously cleared markets, a set of strategic
parameters that model risk aversion of the agent, and
middle- and long-term objective signals [14], and the RDC
estimations for the subsequent markets. The stochastic
model returns the set of quantities that the agent must offer
at each scenario for every hourly period of the market. The
set of resultant price–quantity pairs is joined to obtain the
final bid curve that the agent must submit for every hourly
period. Note that the same optimisation model is applied
to all the markets except the tertiary and deviation-
management markets, owing to the special nature of these
markets.

2 Review of Spanish electricity sequential
markets

The Spanish electricity market is organised as a sequence
of markets. Each day is divided into 24 hourly periods.

explanatory variables estimation of residual-demand curves

thermal units

hydro units

pump-storage units

market data strategic parameters

stochastic
optimisation

market
bid curves

construction

Fig. 1 Structure of the proposed stochastic optimisation model
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The daily energy market is the first market to be cleared.
Most of the energy is cleared in this market. It covers the
24 hourly scenarios of the day ahead.

Once the daily energy market is cleared, the system
operator (SO) performs a technical-constraint analysis,
modifying the generation dispatch to guarantee secure
operation of the power system [15, 16].

Once the network constraints have been cleared, the
secondary reserve market is carried out. This market
provides, for the 24 hours of the next day, the up and
down band necessary to maintain the scheduled values of
the system frequency and interarea interchanges.

After this, the intradaily markets are called. They are
called six times a day in such a way that demand and
generation agents may carry out adjustments before the
energy is delivered, to correct infeasible schedules or to
apply strategic modifications. Note that in the Spanish
electricity market only the first intradaily market is
significant in terms of the amount of energy dealt
with. For this reason and for clarity, the optimisation
programme is formulated taking into account the first
intradaily market. The rest of the markets are used, in
practice, to solve operative issues, such as infeasible
schedules.

The tertiary reserve market is intended to replace the
secondary energy in use, so it is only called and cleared
if the secondary reserve is exhausted. Finally, deviation-
management markets are only carried out if the SO
predicts a significant deviation between energy genera-
tion and demand for the hours not covered by the
intradaily markets. A generating firm participating in
the Spanish electricity market faces the issue of sharing its
electrical resources among these different markets.

The Spanish market sequence is depicted in Fig. 2,
where the time period when the market operator calls
and clears each market is represented in grey bars,
black bars indicating the time horizon devoted to each
market.

3 Modelling of residual-demand curves

3.1 Residual-demand-curve processing
As stated by the Spanish electricity-market rules [17],
a generation bid consists of a set of nondecreasing blocks
of energy-price for each hour. In the same way, hourly
demand-bid curves are formed by nonincreasing blocks of
energy price. Hence, the RDC of an agent results in a
nonincreasing set of energy-price blocks for each hour.
Some authors take advantage of the intrinsic nature of
generator offers that result in a RDC with the form of a
stepwise linear function that must be modelled with integer
variables in a mixed-integer linear program [18–22].
However, another practical approach to representing
RDC curves is obtained by sampling the i RDC at a
vector of n equally spaced values of energy (q1,y,qn),
obtaining the corresponding vector of prices (pi

1,y,pi
n),

as depicted Fig. 3 [1, 12, 23]. Note that each curve must be
sampled at the same energy vector (q1,y,qn), to perform

day d-1 day d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

daily energy

first intradaily

second intradaily

third intradaily

fourth intradaily

fifth intradaily

sixth intradaily

secondary reserve

tertiary reserve

DM

DM deviation management

offers reception and clearing

application of each market

DM
DM

DM
DM

Fig. 2 Spanish electricity sequence of markets
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Fig. 3 Sampling of the RDC at a set of n equally spaced values of
energy
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mathematical computations between curves. Sampling
RDCs is convenient in order to classify them through
clustering techniques obtaining representative patterns that
will be approximated by linear regression.

3.2 Methodology of estimation
The methodology proposed in this paper for estimating
the RDC patterns (and their corresponding probabilities)
that a generating firm will face in a specific energy
market or ancillary-service market comprises four steps:
(a) correlations study, (b) factor analysis, (c) clustering and
(d) decision tree.

The first step consists of selecting an initial set of possible
explanatory variables based on the knowledge and
experience of market performance. A correlation study is
then carried out to establish the level of correlation between
variables. This study assists the expert in the selection of
the significant explanatory variables, and also helps in the
understanding process about the underlying structure of the
variables under study. In this way, a better interpretation of
the results given by the following factor-analysis step is
expected, and also better accuracy of the conclusions based
on its results.

A factor analysis is performed in the second step. Factor
analysis is a statistical technique that identifies the under-
lying structure of a set of explanatory variables and achieves
a reduction in the dimensionality of the data without
significant loss of information [24]. Hence, the number of
explanatory variables is reduced to a smaller set of factors
that explain most of the data variability. Factors are formed
as a linear combination of the initial explanatory variables.
Factor analysis is also useful to show relationships not
suspected initially (in this case it may be necessary to go
back to the first step to correct the initial selection of
explanatory variables).

Clustering techniques [25] are applied to the historical set
of available RDC data, obtaining a finite number of
significant patterns that group similar behaviours of RDCs.
Note that the first two steps (analysis of correlations and
factor analysis) can be processed in parallel with the
clustering step.

In the last step, a decision tree is built to estimate the
probability of each RDC pattern, attending to the expected
values of the factors obtained in the factor analysis. A
decision tree is made up of a set of nodes connected forming
a tree structure. Each node contains a decision rule based
on the values of the explanatory factors. A final node,
where no more separation rule is applied, is reached by
evaluating the decision rules with the explanatory factors
forecast. This final node contains the proportion (or
probability) of each type of pattern according to the
explanatory factor predictions. Figure 4 illustrates how
the final node reached is used to estimate the probability
of each pattern. The node represents the total number of
examples traversing the node (referred to as L in Fig. 4) and
the total number of examples of each pattern (referred to as
a for the third pattern in Fig. 4). Thus, the probability of
pattern three is given by the ratio a/L. The classification rule
at each node is derived from a mathematical process that
minimises the impurity of the resulting nodes [26] with
respect to the purest node that contains a single pattern.

The methodology presented can be seen as a general
methodology of estimation that is applied in this case
to estimate the RDC scenarios for the stochastic model.
Note that some previous developments such as [1] or [11]
use equal-probability scenarios, which is supported by
the principle of insufficient reason [27]. The principle states
that equal probabilities assigned to each scenario represent

a formal way to assign probabilities when a great
acknowledge about the problem is found, or when there
is no other easy way to do it. On one hand, the decision-tree
methodology presented here improves this result by
means of explanatory variables that are used to assign
probabilities for the RDC scenarios. On the other hand, the
methodology presents advantages over other estimation
alternatives such as [7] and [12] (easier interpretation
of the resultsFwhich represents a key issue in offering
strategiesFand a simpler and more direct way to assign
probabilities).

3.3 Linear formulation of residual-demand
curves
The RDC patterns and their associated probability are
included in a linear mixed-integer optimisation program.
Therefore, a linear regression of the each pattern is needed

[12]. In this way, the income Ij
h;scM obtained for market M

in the hour h if RDC pattern scMoccurs can be formulated
as

Inj
h;scM ¼ qM

h;scM � Ph;scM

¼ qM
h;scM � Ah;scM þ Bh;scM � qM

h;scM

� �
ð1Þ

InM
h;scM ¼ Ah;scM � qM

h;scM � Bh;scM � qM
h;scM

� �2
ð2Þ

Note that (2) is a quadratic concave function (since
coefficient Bh,scM of the linear regression is negative) of
the energy qM

h;scM. However, it can be included in a linear-

optimisation program by a set of j linear tangent cuts [28],
as illustrated in Fig. 5:

InM
h;scM � IN1

h;scM þ qInM
h;scM=qqM

h;scMjQ1
h;scM � ðqM

h;scM � Q1
h;scMÞ

InM
h;scM � IN1

h;scM þ qInM
h;scM=qqM

h;scMjQ
j
h;scM � ðqM

h;scM � Qj
h;scMÞ

9=
;
ð3Þ

where

qInM
scM=qqM

h;scMjQ1
h;scM ¼ Ah;scM þ 2 � Bh;scM � Q1

h;scM ð4Þ
In addition, since a generation bid consists on a set of
nondecreasing blocks of energy-price for each hour [17],
nondecreasing constraints must be imposed in the optimisa-
tion program. On one hand, if the price that results in the
linear RDC pattern function corresponding to scenario
scM at hour h is greater than the one corresponding to
scenario scM+1 for the same hour h, the energy must

L

a

Fig. 4 Structure of a node of a decision tree and computation of
the probabilities of each pattern
rP3 ¼ a=L
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be also greater. This condition can be imposed [1, 23, 29]

introducing a binary variable d1gh;scM: if Ph;scM4PM
h;ðscMÞþ1

then the binary variable d1g;h;scM takes the value 1; if

d1g;h;scM ¼ 1, then the constraint qM
g;h;scM4qM

q;h;ðscMÞþ1 is

imposed:

PM
h;scM4PM

h;ðscMÞþ1 ! d1g;h;scM ¼ 1

! qM
q;h;scM4qM

g;h;ðscMÞþ1 ð5Þ

The logical conditions contained in (5) are equivalent to the
following two constraints:

PM
h;scM � PM

h;ðscMÞþ1 � K � d1g;h;scM

qM
q;h;scM � qM

q;h;ðscMÞþ14� K � ð1� d1g;h;ðscMÞÞ

9=
; ð6Þ

where K is an upper bound of the two constraints (in
practice, it is set to a large number, such as 106). Note that
the implementation of a strict inequality a4b can be done
translating it to a nonstrict inequality aZb+ewhere e is set
to a very small positive threshold.

On the other hand, if the price that results in the linear
RDC pattern function corresponding to scenario scM is
smaller than that corresponding to scenario (scM)+1, the
energy must be also smaller: this condition can be imposed

defining the binary variable d2g;h;scM, so that

PM
h;scMoPM

h;ðscMÞþ1 ! d2g;h;scM ¼ 1

! qM
q;h;scMoqM

q;h;ðscMÞþ1 ð7Þ

The logical conditions contained in (7) are equivalent to the
two following constraints:

PM
h;scM � PM

h;ðscMÞþ1 � �K � d2g;h;scM

qM
g;h;scM � qM

q;h;scMþ1oK � ð1� d2g;h;scMÞ

9=
; ð8Þ

Note that d1g;h;scM and d2g;h;scM cannot take value 1 at the

same time, so the following constraint is added to help the
branch-and-bound-solution method of the linear mixed-
integer program:

d2g;h;scM þ d1g;h;scM � 1 ð9Þ

4 Strategic-bidding-model description

4.1 Overview
The model proposed in this paper has been formulated as a
mixed-integer stochastic optimisation program that distri-
butes the electric resources of a generating firm to maximise
its expected profit taking into account the sequence of
markets. The model has been adapted for the sequential
energy and ancillary-services markets of the Spanish
electricity business. In this way, the formulation has been
applied including only the first intradaily market, since the
amount of energy dealt in the rest of intradaily markets is
not large enough to consider strategic modifications.
However, the remaining intradaily markets can easily be
included in the model. The presented methodology is
flexible to be adapted depending on the target utility, adding
additional constraints or remodelling actual ones.

The program takes as input data the RDC patterns and
their associated probability for each sequential market, the
technical and economic features of the firm’s generating
units, the results of the previously cleared markets and
strategic parameters in the short, medium and long term.
The program returns the distribution of the electric
resources at each scenario of every hourly period of the
market and builds the hourly bids to be sent to the market
by the agent.

The stochastic optimisation recombining tree proposed in
[23] has been extended to include the whole sequence of
energy and ancillary-services markets in the Spanish
electricity business. Figure 6 depicts the structure of the
tree, assuming that, in each hour of each market, three
RDC scenarios have been modelled as explained in Section
2. The tree starts with the three RDC scenarios of the first
hour of the daily market. The RDC scenarios of the
secondary reserve market are joined with the last leaves
obtained in the last hour of the daily market (hour 24).

IN 1
h,scM

Q1
h,scMqh,scM

qh,scM

qh,scM, MWh

In
M h,

sc
M

,  
 /h

Fig. 5 Approximation of the income quadratic concave function by
a set of tangent cuts

daily market scenarios market M scenarios first intradaily market scenarios

hour 23hour 2hour 1 hour i hour i+1 hour 24

Fig. 6 Structure of the recombining tree of the stochastic-optimisation problem
a Daily market scenarios
b Market M scenarios
c First intradaily market scenarios
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Finally, the intradaily hourly market scenarios are
assembled sequentially, ending the tree with the last
scenarios of the first intradaily market (hour 24).

4.2 Mathematical formulation

4.2.1 Objective function: The model proposed in
the paper maximises the total expected profit (income minus
cost, which is a positive variable) obtained by a generating
firm with its thermal, hydroelectric and pumping units. The
objective function is formulated as

Max temi� etc� ehcf g ð10Þ
The objective function is subject to different economic,
technical and strategic constraints, which are described in
Section 5.2.2. The decision variables of the model are
related to the generator’s operational decisions (quantities,
which are modelled as positive variables). The price of each
energy market (which is a also positive variable) is obtained
as a result of the model (the price that corresponds with the
total generation in the RDC). Some binary variables are
used, as was seen in the previous Section.

The generation cost incurred by a thermal unit is
modelled by its start-up cost and its variable cost. Start-
up decisions are given by a middle-term model (with a
weekly time scope), so there are not considered as decision
variables. Hence, the objective expected thermal cost etc is
computed as

etc ¼
X

tu

X
allesc

X
h

rallescCVARh;tuqtu sale ð11Þ

The cost of a hydroelectric unit is modelled with the water-
value curve. Note that, in deregulated electricity markets,
the water value at time t must be computed as the loss of
future profit if the water is turbined at time t and is not
saved for the future [30]. The future profit according to the
energy turbined by a hydroelectric unit is modelled by a
piecewise linear function as depicted in Fig. 7. The slope of
each segment li is the marginal cost (ch/kWh) of water
in each interval. The water-value curve is given by the
middle-term weekly model that takes into consideration a
detailed model of the basins comprising the hydroelectric
equipment [28].

According to the water value curve, the expected
hydroelectric cost ehc is formulated as

ehc ¼
X

hu

X
u

lhu;n ehu;n � Erefhu;n
� �

ð12Þ

where Erefhu,n is computed from the target turbined water
value Erefhu, given by the weekly middle-term model.

The cost of pumping units is computed taking into
account the performance parameter of each pumping unit:

ebspu;hþ1 ¼ ebspu; h � qpu;h þ Zpu � ppu;h ð13Þ
Equation (13) says that the energy generated by the
pumping unit is reduced to the actual energy, and
the energy pumped by the unit to the reservoir (affected
by the performance parameter) is increased, to obtain
the energy contained in the upper reservoir at the
following hour.

A detailed model is formulated for each pumping unit.
The model decides through binary decision variables if the
pumping unit either generates or pumps water in each
hourly scenario, introducing complexity to the optimisation
program. Note that this complexity is possible because of
the limited size of the Spanish utility under consideration
(seven thermal units, one hydroelectric unit and one
pumping bid group with four physical units). Note that
inflows and spilling are considered in a larger scope-term
model that sets the final reservoir’s volume of energy at the
end of each day.

The expected profit is modelled for each market with
tangent cuts (3). The total expected income temi is the
addition of the income obtained in each scenario scM of
each market M at each hour h:

temi ¼
X

h

X
M

X
scM

rh;scMInM
h;scM ð14Þ

4.2.2 Constraints: The optimisation problem is sub-
ject to the set of technical, economical and strategic
constraints. Each unit is subject to the following constraints:

(a) Energy balance:

qg;h;allesc ¼ qDM
g;h;scdm þ qIM1

g;h;scim1 � dIM1
g;h;csim1

� �
þ qBIL

g;h ð15Þ

This constraint couples the production of each generation
unit through the different energy markets. The energy-
balance equation yields that the final program of generator
g in every hour h for the set of price scenarios available
for each kind of market is the result of adding the energy
sold in the daily market to the energy sold and bought in
the first intradaily market and to the energy contracted with
bilateral agreements. The energy-balance constraint can be
extended to the six intradaily markets, if needed.

(b) Maximum and minimum technical output:

PTECmin
g;h � dg;h � qMD

g;h;scmd � PTECmax
g;h � dg;h ð16Þ

(c) Ramp-rate constraints between two hours: Only thermal
units are subject to these constraints.

�RAMP down
tu � qtu;hþ1 � qtu;h � RAMP up

tu ð17Þ
Note that ramp-rate constraints defined in (17) are not valid
for the transitions from on to off states, nor for transitions
from off to on states. In the model presented of the paper,
results of the optimisation program are processed to
compute feasible values of on and off energy within startups
or shutdowns of thermal units. Note also that transitions
constraints are considered in detail in the weekly model that
decides daily optimal startups and shutdowns of thermal
units, in the same way as they are addressed in [20, 21].

(d) Limits for the up and down band of the generating units:

0 � urg;h;scsr � PTECmax
g;h � dg;h � E½qg;h� ð18Þ

0 � drg;h;scsr � E qg;h
� �

� PTECmin
g;h � dg;h ð19Þ

turbined water, MWh

−�hu,3

−�hu,2

−�hu,1

Erefhu,1 Erefhu,2

Erefhu

fu
tu

re
 p

ro
fit

, c

Fig. 7 Future profit/water-turbined curve
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These constraints impose a condition that the quantity of
up and down band that generator g bids in each hour h at
the price of scenario scbs of the secondary reserve market
can be obtained with the final expected program and the
maximum and minimum generation limits of the unit.

(e) Increasing and decreasing offers: In energy-selling offers,
quantities increase when the price does. In purchasing
offers, quantities decrease with price. These constraints are
formulated using (6), (8) and (9) for each generating unit.
Moreover, strategic constraints are imposed to the objective
function. These constraints are related with the market’s
energy liquidity, the strategic share targets of the firm in
different markets, and the OS requirements for the band
offers.

( f ) Energy-liquidity constraints: They are used to consider
the energy liquidity of each market. These constraints
can be divided in two different types of constraints:
The generating-unit liquidity (20) and the hourly liquidity
(21):

E½qM
g;h�

PTECmax
g;h
� LIQGM

g;h ð20Þ

P
tu

qM
tu;h þ

P
hu

qM
hu;h þ

P
pu

qM
pu;hP

tu
PTECmax

u;h þ
P
hu

POP max
hu;h þ

P
pu

PTECmax
pu;h
� LIQHM

g;h ð21Þ

Residual-demand curves represent the effect of market
power, so that increasing the offer of energy may reduce the
clearing price. Hence, they act as a natural barrier that
prevents the agents from offering over the market’s energy
liquidity. However, the liquidity constraints act as subjective
risk-aversion barriers.

(g) Ratio of up/down band must equal the necessity of
up/down band declared by the OS:

urg;h;scsr=drg;h;scsr ¼ BRh ð22Þ

The problem under consideration results in a mixed-integer
optimisation problem. The integer variables of the problem
are those that impose increasing bids, and those that decide
for each scenario whether the pumping units either
generates or pumps energy.

5 Bid-curve construction

5.1 Performance modes
Three different performance modes have been defined in the
model:

(i) Daily mode: Obtains the bid curves of the agent for each
hour of the following day in the daily energy market;

(ii) Secondary-reserve mode: Obtains the up- and down-
band bid curves of the agent for each hour of the following
day in the secondary reserve market;

(iii) Intradaily mode: Obtains the energy-bid curves that the
agent wants to sell and buy (in order to remove technical
infeasibilities and/or to apply strategic modifications), for
each hour covered by the first intradaily market.

The model is thus run three times, once before the daily
market (daily mode), once before the secondary reserve
market (secondary-reserve mode) and once before the first
intradaily market (intradaily mode). Considering the energy
balance of a firm’s generator g, formulated in (15) and
the secondary-reserve constraints yielded by (18) and (19),
the following considerations are taken into account. For the

daily mode, all of the terms in (15) are decision variables,
and the bid curve of g for each hour is built from the pairs
price–quantity (qDM

g;h;scdm, pDM
h;scdm) that result in the optimisa-

tion problem (scdm denotes the scenarios scM correspond-
ing to the daily market dm).

In the secondary-reserve mode, the daily energy market
has already taken place. Hence, the energy qDM

g;h;scdm becomes

a parameter equal to the generator market clearing in the
daily market. The up/down-band bid curve of the
secondary-reserve market is obtained joining the pairs up/
down band–price ðurSR

g;h;scsr; pSR
h;scsrÞ/ðdrSR

g;h;scsr; pSR
h;scsr) that

result in the optimisation (scsr denotes the scenarios scM
corresponding to the secondary-reserve market sr).

In the intradaily mode, the daily energy market and the
secondary-reserve market have been cleared, and their
results are constants in (15), (18) and (19). The bid curve of
the energy to be sold in each hour h of the first intradaily
market is calculated joining the energy-price pairs
ðqIMi1

g;h;scim1; pIMi1
g;h;scim1Þ. In the same way, the bid curve of the

energy to be bought by generator g is built from the energy-
price pairs ðdIMi1

g;h;scim1; pIMi1
g;h;scim1Þ (scim1 denotes the scenarios

scM corresponding to the first intradaily market IM1). A
typical case occurs in the intradaily mode when a unit with
energy cleared in the energy market breaks down in an hour
h. The final program of generator g in hour h is fixed to
zero, and the energy equation (15) yields that the unit must
buy the energy scheduled.

Bid curves for the tertiary and deviation-management
markets are built in a separate module that identifies the
firm’s free generating resources and offers them in
accordance to the firm’s selected strategy.

5.2 Building bid curves
The bid curve that a generator must submit to each market
consists of a nondecreasing set of quantity–price blocks.
It is obtained by locating a selected number n of segments
between two consecutive optimal quantity–price pairs. The
price of each segment is determined by imposing that the
net area between the segments and the linear function that
joins the two optimal pairs is equal to zero [13]. Figure 8
illustrates the proposed method for obtaining the bid curve
that generator g submits for hour h in the daily market,
selecting n¼ 2.

In practice, some complex strategic parameters are
included in the process of building the bid curve to adapt
the bid to the firm’s strategy (these parameters take into
consideration, for instance, the risk aversion of the market
agent or unmodelled knowledge about the strategic position
of competitors).
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Fig. 8 Method for bid-curve building
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6 Case study

6.1 Description
The proposed model is used daily by the Spanish utility
Viesgo SL of the Enel Group to configure the hourly
generation bids submitted to each market of the sequence.
The performance of the tool is illustrated in this Section
considering a realistic example corresponding to the
generating assets owned by Spanish utilility Viesgo. At
present, the generation assets of Viesgo SL comprise seven
thermal units, one hydroelectric bidding group (with 25
physical units) and one pumping bid group (with four
physical units), representing a total amount of around 2300
MW installed.

RDCs scenarios have been estimated with the metho-
dology described in Section 4 for the daily market,
secondary reserve market and the first intradaily market.
However, Viesgo acts as a price taker in these two
markets (yielding a value 0 of parameter Bh,scM of the
corresponding market). Note that the model proposed in
the paper is general, allowing to manage a firm that acts as
price taker in some markets and that can affect the
clearing price in other markets (such as the first intradaily
market). Taking into account the Spanish experience,
it is concluded that it is not worth including RDCs in the
second to sixth intradaily markets, owing to the small
volume of energy dealt; these markets are normally used
to make last-minute adjustments (and not to adapt the
firm’s strategic criteria). The estimated scenarios comprise
seven RDC scenarios corresponding to the daily market,
three RDC scenarios corresponding to the secondary-
reserve market, and six RDC corresponding to the
first intradaily market. The forecasting process of the six
RDC scenarios of the first intradaily market is sketched in
Section 6.2.

The problem has been formulated in GAMS (General
Algebraic Modelling Language) and solved with CPLEX
8.1 in a Pentium4 1.7GHz 512MB PC.

6.2 Residual-demand-curve estimation for
first intradaily market

6.2.1 Correlation study: An initial set of variables
that explains the behaviour of the residual-demand curves is
chosen. Note that, to take into account correlations between
subsequent hours and markets, variables representing past
realisations ( for instance, of the hour before, the day before
or the week before) can be included in the set of explanatory
variables.

For confidentiality reasons, the selected explanatory
variables are named x1–x7. A correlation study is carried
out to establish the level of correlation between variables.
Direct inspection of the scatter plot. Figure 9 shows a direct
correlation between variables x1, x2, x3 and x5, and between
variables x3 and x6. Moreover, some direct relation is sensed
between variables x1, x2, x5 and x7. This correlation study
suggests the existence of two or three main factors which
explain most of the variability of the data. This study assists
the expert in the selection of significant explanatory
variables, and also helps in the process of understanding
the underlying structure of the variables under study. In this
way, a better interpretation of the results given by the
following factor-analysis step is expected, and also better
accuracy of the conclusions based on its results.

6.2.2 Factor analysis: The factor analysis [24] is used
for different purposes. The Bartlett test shows that x1, x2, x3
and x5 are the most significant variables. Then, the factor-
scree plot (Fig. 10a) shows that two factors explains more
than the 95% of the total variability, i.e. most of the
information. The factors are illustrated in the rotation-space
graph (Fig. 10b). The picture depicts the underlying structure
of the explanatory variables, showing that the first factor
comprises variables x2, x3 and x5, and is related to the
electricity demand. The second factor is formed mainly by x1
and is related to the clearing price of the daily market.

x1
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x3
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x4

x4

x5

x5

x6
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x7
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Fig. 9 Scatter plot of the initial set of explanatory variables
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6.2.3 Clustering: An initial set of 4992 residual
demand curves of the first intradaily market was available
to obtain the behaviour patterns. The analysis of the
relationship between clustering error and number of clusters
yields six as the appropriate number of clusters. The
clustering of the residual demand curves has been addressed
using the k-means algorithm [25]. Figure 11 depicts the
prototypes and the dispersion lines of the residual-demand
curves that define the 95% confidence interval of the curves
of each cluster.

6.2.4 Decision tree and estimation: A decision
tree has been carried out to estimate the probability of each
RDC pattern according to the expected values of the
explanatory variables [26]. The probabilities of the RDC
patterns for the second hour of the first intradaily market,
when the expected values of the explanatory factors are 0.2
and 0.4, are obtained by traversing the tree until the final
node circled in Fig. 12 is reached. The probabilities of the
patterns 1, 3 and 5 are 41.62%, 48.11% and 10.27%,
respectively.

6.3 Performance modes

6.3.1 Daily mode: The optimisation problem con-
tains 49108 constraints, 19063 variables (1527 correspond-
ing to integer variables) and 251476 nonzero elements. It
took 91 s to solve the daily mode.

Figure 14a depicts the bid curve of thermal unit 3
(minimum output PTECmin

g;h and maximum output PTECmax
g;h )

for the second hour of the daily energy market. For
confidentiality reasons, numerical figures are not shown
and the resulting prices figure as p1–p7. The resulting pairs
price–quantity (ch/kWh–MWh) values are obtained
for each one of the seven scenarios for TU3. The bid curve
is formed by blocks that are included between two
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optimal energy–price pairs. The minimum output is
offered at zero ch/MWh to ensure that the minimum
output will be cleared in the market. The rest of the
energy blocks are formed with the procedure outlined in
Section 5. The final bid of generator TU3 submitted to the
daily market at the second hourly period is indicated in
Fig. 13.

6.3.2 Secondary-reserve mode: After the daily
market is cleared and technical constraints are addressed,
the next market to take place is the secondary-reserve one,
and so the next mode to be launched is the secondary-
reserve mode. The optimisation problem contains 21716
constraints, 16325 variables (812 corresponding to integer
variables) and 101277 nonzero elements. It took 31.14 s to
solve the secondary-reserve mode. Figure 14b shows the bid
curve of thermal unit 3 for the second hour of the
secondary-reserve market.

6.3.3 First intradaily mode: The optimisation
problem contains 28154 constraints, 15383 variables (171
corresponding to integer variables) and 140041 nonzero
elements. The computer took 60.71 s to solve this mode.
Figure 14c shows the bid-selling curve of thermal unit 3 for
the second hour of the first intradaily market.

7 Conclusions

Wholesale electricity markets can be organised into energy
and ancillary-services markets that are cleared sequentially.
In the process of building the bids to submit to the market,
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Fig. 12 Decision tree to estimate the probability of each RDC pattern
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uncertainty in the demand and the strategic behaviour of
the competitors is found. To deal with this uncertainty,
the residual-demand curve can be used to represent the
influence of the generation offers in the clearing price. This
paper proposes an approach based on decision trees to
estimate the stochastic residual-demand curve that faces a
generating firm. The stochastic residual-demand curves are
linearly modelled with integer variables. Finally, the curves
are included in the stochastic-optimisation program that
gives the bids to submit to each market of the sequence. The
model is applied to the Spanish daily, secondary and first
intradaily market. However, it has the flexible to be adapted
depending on the target utility, by adding or adapting some
constraints. Future research will explore the inclusion of
risk constraints (modelling of the conditional value at risk)
within the model.
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