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■ Duality in conic optimization.
■ Optimality conditions for conic quadratic optimization

problems.
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Recall given a convex cone K then the dual cone K∗ is given by

K∗ := {s : sT x ≥ 0, ∀x ∈ K}.

Moreover, the primal conic optimization

min
∑r

k=1
(ck)T xk

st
∑r

k=1
Akxk = b,

xk ∈ Kk, k = 1, . . . , r,

(1)

has the corresponding dual problem

max bT y

st (Ak)T y + sk = ck, k = 1, . . . , r,

sk ∈ (Kk)∗, k = 1, . . . , r.

(2)
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Let us simplify the notation i.e.

c :=













c1

c2

...
cr













,

A :=
[

A1 A2 . . . Ar
]

,

K := K1 ×K2 × · · · × Kr,

K∗ := (K1)∗ × (K2)∗ × · · · × (Kr)∗.

We assume that
A ∈ Rm×n.
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Moreover let

x :=













x1

x2

...
xr













and s :=













s1

s2

...
sr













.

Observe that

K∗ = {s ∈ Rn : xT s ≥ 0, ∀x ∈ K}.
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The primal problem

min cT x

st Ax = b,

x ∈ K.

(3)

and the dual problem

max bT y

st AT y + s = c,

s ∈ K∗.

(4)

Definitions:

■ The problem is primal feasible if a solution x exists satisfying
the constraints of (3).

■ The problem is dual feasible if a solution (y, s) exists
satisfying the constraints of (4).
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Given a primal-dual feasible solution (x, y, s) then

duality gap := cT x − bT y

= (AT y + s)T x − bT y

= xT s + (Ax)T y − bT y

= xT s + bT y − bT y

= xT s

≥ 0.

Recall x ∈ K and s ∈ K∗ implies xT s ≥ 0.
Hence for all primal-dual feasible solutions (x, y, s) weak duality
holds i.e.

cT x ≥ bT y,

or in words

primal objective value ≥ dual objective value.
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Lemma 1 If (x, y, s) is a primal-dual feasible solution and

cT x = bT y,

then x is an optimal solution to (3) and (y, s) is an optimal
solution to (4).

Notes:

■ The value of weak duality cannot be overstated.

◆ Makes it possible to state a certificate that allows
verification of optimality in polynomial time.

◆ Makes it possible to evaluate the quality of feasible
solution given a dual feasible solution known.
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Does (3) always have an optimal solution?
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Does (3) always have an optimal solution?
No the problem could be infeasible e.g.

min x

st x = −1,

x ≥ 0.
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Does (3) always have an optimal solution?
No the problem could be infeasible e.g.

min x

st x = −1,

x ≥ 0.

Assume (3) is feasible then does it always have an optimal
solution?
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Does (3) always have an optimal solution?
No the problem could be infeasible e.g.

min x

st x = −1,

x ≥ 0.

Assume (3) is feasible then does it always have an optimal
solution?
No the problem could be unbounded e.g.

min −x

st x ≥ 1,

x ≥ 0.
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Assume (3) has an optimal solution. Is the dual then
feasible?
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Assume (3) has an optimal solution. Is the dual then
feasible?
No. For instance the problem

min −x2

st x1 − x3 = 0,
√

x2
2
+ x2

3
≤ x1,

has the set feasible solutions:

{(x1, x2, x3) : x1 ≥ 0, x2 = 0, x3 ≥ 0}.

Hence, x = (0, 0, 0) is an optimal solution.
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The corresponding dual problem is

max 0
st y + s1 = 0,

s2 = −1,

−y + s3 = 0,
√

s2
2
+ s2

3
≤ s3.

Hence,
√

s2
1
+ 1 ≤ s1

which implies the dual problem is infeasible.
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Assume both (3) and (4) has an optimal solution is the
duality gap then zero?
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Assume both (3) and (4) has an optimal solution is the
duality gap then zero?
No, consider

min x2

st
√

x2
1
+ (x2 − 1)2 ≤ x1,

√

(−x1 + x2)2 ≤ x1.

From the first constraint it follows

x2 = 1

Using this fact and the second constraint then

1 ≤ 2x1.
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The set of primal feasible solutions is

{

(x1, x2) : x1 ≥ 1

2
, x2 = 1

}

and the optimal objective value is 1.
The corresponding dual problem is

max z2

st z1 + w1 − z3 + w2 = 0,

z2 + z3 = 1,
√

z2
1

+ z2
2

≤ w1,√
z3 ≤ w2.
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The two last constraints implies

w1 ≥ |z1| and w2 ≥ |z3|

we have
w1 + z1 ≥ 0 and w2 − z3 ≥ 0.

Using the first constraint this implies

w1 = −z1 and w2 = z3.

Now using the second constraint we have that

z2 = 1 − z3 = 1 − w2.



Introduction

Duality

The (dirty) details of
duality

Simplifying notation

Weak duality

Questions and
answers
Comparison of linear
and conic duality

The main theorem

Srongly infeasible

Central statements

The quadratic cone
again

Summary

Exercises

17 / 44

Therefore, the dual problem is equivalent to

max 1 − w2

st
√

w2
1

+ (1 − w2)2 ≤ w1,
√

w2
2

≤ w2

which has the feasible set {(w1, w2) : w1 ≥ 0, w2 = 1} and the
optimal objective value is zero. Hence,

duality gap = 1 − 0
= 1.
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It can be verified that if

(x2 − 1)2

with
(x2 − α)2

where α > 0 then the dual gap will be α.
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Is the optimal objective value always attained?
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Is the optimal objective value always attained?
No. Consider

min 1

x

st x ≥ 0

which is equivalent to

min z

st t =
√

2,

t2 ≤ 2xz, x, z ≥ 0.

Clearly, the optimal objective value is 0 but this implies

x = ∞

which can never be attained.
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■ Almost identical.
■ Linear optimization:

◆ A nonzero duality gap cannot occur.
◆ Problems with attainment does not exist.
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First define the primal problem

νp = inf cT x

st Ax = b,

x ∈ K
(5)

and the dual problem

νd = sup bT y

st AT y + s = c,

s ∈ K∗.

(6)

By convention we use

■ If (5) is infeasible, then νp = ∞.
■ If (6) is infeasible, then νd = −∞.
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(5) is said to be strongly feasible if there ∃ε > 0 such that

{x ∈ Rn : Ax = b̂, x ∈ K} 6= ∅

for all b̂ satisfying
∥

∥

∥b̂ − b
∥

∥

∥ ≤ ε.

This is the same as saying that a small perturbation in b does
NOT make the problem infeasible.
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(5) is said to be strongly infeasible if there ∃ε > 0 such that

{x ∈ Rn : Ax = b̂, x ∈ K} = ∅

for all b̂ satisfying
∥

∥

∥b̂ − b
∥

∥

∥ ≤ ε.

This is the same as saying that a small perturbation in b does
NOT make the problem feasible.
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Lemma 2 (5) is strongly infeasible if and only if

bT y = 1, AT y + s = 0, s ∈ K∗

is strongly feasible.

Lemma 3 (6) is strongly infeasible if and only if

cT x = −1, Ax = 0, x ∈ K

is strongly feasible.

Theorem 1 (Strong duality) If either (5) or (6) is strong
feasible, then νd = νp.

See [3, p. 73] and [1].
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Observe:

■ If A is of full row rank and

int({x ∈ Rn : Ax = b, x ∈ K}) 6= ∅

then (5) is strongly feasible.
■ When does it go wrong?

◆ If a small perturbation in the problem data makes the
problem status flip from feasible to infeasible or from
infeasible to feasible.

■ Such problems must be intrinsically hard to solve.

◆ Consider that computations are done in finite precision.
◆ Data are inaccurate usually.
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The interior of the quadratic cone is given by

int(Kq) := {x ∈ Rn : x1 > ‖x2:n‖}.

(obviously).
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In linear optimization complementarity means something like

xisi = 0.

What does the complementarity conditions look like for conic
quadratic optimization?
First define the arrow head matrix

V := mat (v) =













v1 v2 · · · vn

v2 v1

...
. . .

vn v1













.
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Observe

mat (x) s =













x1 x2:n · · · xn

x2 x1

...
. . .

xn x1













s

=













xT s

x1s2 + s1x2

...
x1sn + s1xn












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Lemma 4 Assume K = K1 × · · · × Kr and each Kk is a
quadratic cone. If x, s ∈ K, then x and s are complementary, i.e.
xT s = 0, if and only if

XkSkek = SkXkek = 0, k = 1, . . . , r,

where Xk := mat
(

xk
)

, Sk := mat
(

sk
)

and

ek = (0, 0, . . . , k, . . . , 0)T ∈ R
nk

.

Proof:
Clearly

XkSkek = 0 ⇒ (xk)T sk = 0

because

0 =
n
∑

i=1

(ek)T XkSkek

=
k
∑

i=1

(xk)T sk

= xT s.
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Next we prove if

(xk)T sk = 0 ⇒ XkSkek = 0

This is clearly true if xk
1

= 0 or sk
1

= 0. Therefore, we can
assume that xk

1
> 0 and sk

1
> 0.

Now
0 = xT s

=
r
∑

k=1

(xk)T (sk)

=
r
∑

k=1

(

xk
1
sk
1

+ (xk
2:nk)T sk

2:nk

)

≥
r
∑

k=1

(

xk
1
sk
1
−

∥

∥

∥(xk
2:nk)

∥

∥

∥

∥

∥

∥sk
2:nk

∥

∥

∥

)

≥ 0.
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We can conclude

xk
1
sk
1

=
∥

∥

∥xk
2:nk

∥

∥

∥

∥

∥

∥sk
2:nk

∥

∥

∥ ,

xk
1

=
∥

∥

∥xk
2:nk

∥

∥

∥

sk
1

=
∥

∥

∥sk
2:nk

∥

∥

∥ .

(Why?).
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Now
∣

∣

∣(xk
2:nk)T sk

2:nk

∣

∣

∣ =
∥

∥

∥xk
2:nk

∥

∥

∥

∥

∥

∥sk
2:nk

∥

∥

∥

can only be the case if

∃α : xk
2:nk = αsk

2:nk .

Therefore,
0 = (xk)T sk

= xk
1
sk
1

+ α
∥

∥

∥sk
2:nk

∥

∥

∥

2

= xk
1
sk
1

+ α(sk
1
)2

and

α = −xk
1

sk
1

implying that the complementarity conditions Xksk = 0 are
satisfied.
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Theorem 2 Assume that ∃x, s ∈ int(K) such that Ax = b and
AT y + s = c for some y then (x, y, s) is an optimal solution if
and only if

Ax = b, x ∈ K,

AT y + s = c, s ∈ K,

Xksk = 0, k = 1, . . . , r.
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.
Recall given a convex cone K then the dual cone K∗ is given by

K∗ := {s : sT x ≥ 0, ∀x ∈ K}.

Lemma 5

1. If K is convex and closed, then (K∗)∗ = K.
2. K∗ is closed and convex. (Holds even if K is not convex but

is a cone).
3. K1 ⊆ K2 implies K∗

2
⊆ K∗

1
.
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.

Lemma 6 Let

K = {x ∈ Rn : x1 ≥ ‖x2:n‖1
}

then
K∗ = {x ∈ Rn : x1 ≥ ‖x2:n‖∞}.



Nonlinear cones

Introduction

Duality

The quadratic cone
again

Topological
properties

Complementarity

Optimality
conditions
Further facts about
the dual cone

Other cones

Nonlinear cones

Summary

Exercises

37 / 44

More generally we have

Lemma 7 Let ‖‖ be a norm on Rn and then define

K = {x ∈ Rn : x1 ≥ ‖x2:n‖}

then
K∗ = {x ∈ Rn : x1 ≥ ‖x2:n‖∗}.

where ‖‖
∗

is the dual norm i.e.

‖u‖
∗

= sup{uT x : ‖x‖ ≤ 1}.
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■ Conic duality has been studied.
■ Shown pathological duality cases exists.
■ Derived the complementarity conditions for conic quadratic

optimization problems.
■ [2] is good reference.
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Exercise 1 Prove that the quadratic cone is self-dual.

Exercise 2 What is the dual problem to

max bT y

st (Ak)T y + sk = ck, k = 1, . . . , r,

sk ∈ (Kk)∗, k = 1, . . . , r.

where Kk is a quadratic cone.
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Exercise 3
Show that the dual problem corresponding to

min fT x

st ||Aix − bi|| ≤ ci:x − di, i = 1, . . . , k,

Hx = h

is

max bT z + dT w + hT v

st AT z + CT w + HT v = f,

||zi|| ≤ wi, i = 1, . . . , k,
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Exercise 4 Prove Lemma 6.
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