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Introduction m A very important application of conic quadratic optimization
nonustoptimization is robust optimization.

|Robust optimization | . .

A GHEI: m Robust optimization assumes the problem data e.g. A is not
example

Robust linear known exaCtly.

optimization . .

A simple example m [ries to compute a robust solution.

A statistical

interpretation

Portfolio
optimization

Summary
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Introduction Consider the toy linear optimization problem:
Robust optimization
AU A company produces two kinds of drugs, Drugl and
Drugll, containing a specific active agent A, which is
eptimization extracted from raw materials which should be
A simple eampi purchased on the market. The drug production data
A are as follows:
Portfolio
optimization Drug Selling price, Content of agent A,
SHIE L $ per 1000 packs | g per 1000 packs
Drugl 6,200 0.500
Drugll 6,900 0.600
Drug Production expenses per 1000 packs
manpower, equipment, operational
hours hours costs, $
Drugl 90.0 40.0 700
Drugl| 100.0 50.0 800 6 / 56
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Introduction

- There are two kinds of raw materials, Rawl and
Robust optimization ] ]
Robust optimization Rawll, which can be used as sources of the active

A motivati
agent. The related data are as follows:

Robust linear
optimization

A simple example Raw material | Purchasing price, | Content of agent A,
$ per kg g per kg

A statistical

it Raw| 100.00 0.01

Portfolio Rawll 199.90 0.02

optimization

S UIE Finally, the per month resources dedicated to

producing the drugs are as follows:

Capacity of raw

Budget, $ | Manpower, hours | Equipment, hours materials storage, kg

100,000 2,000 800 1,000

7 /56
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Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization
A simple example

A statistical
interpretation

Portfolio
optimization

Summary

The problem is to find the production plan which
maximizes the profit of the company.

The problem can be immediately posed as the following linear
programming program:
maximize

— (100 - RawI + 199.90 - RawII + 700 - DrugI + 800 - DrugII ) (cos
+ (6200 - DrugI + 6900 - DrugII) (income)
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Introduction su bject to

Robust optimization

°‘Zat‘°" 0.01 - RawI + 0.02 - RawII — 0.500 - DrugI — 0.600 - DrugII > 0

RawI 4+ RawII < 1000
o e 90.0 - DrugI + 100.0 - DrugII < 2000

A simple example 40.0 - DrugI + 50.0 - DrugII < &00

A statistical 100.0 - RawI + 199.90 - RawII + 700 - DrugI + 800 - DrugII < 100000
interpretation RawI,RawII,Drugl,DrugIl > 0
cptimization

Summary Explanation of constraints:

balance of active agent
storage restriction
manpower restriction
equipment restriction
budget restriction
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Introduction The optimal solution:

Robust optimization

Robust optimization

A motivating
*** (Jptimal value: 8819.658

Robust linear

optimization **x* (Optimal solution:
A simple example Raw] : O . OOO
S RawII: 438.789
Portfolio Drugl: 17.552

optimization

Drugll: 0.000

Summary

Comments

m The company makes a profit 8819 on a budget of 100,000
l.e. 8.8%.

m [he balance constraint is active as could have been guessed.

m |s there anything wrong with the solution?
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Introduction m s it likely that RawI contains exactly 0.01 g per kg of agent

Robust optimization A?

Robust optimization

A motivating
example

Robust linear
optimization
A simple example

A statistical
interpretation

Portfolio
optimization

Summary
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Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization
A simple example

A statistical
interpretation

Portfolio
optimization

Summary

Is it likely that RawI contains exactly 0.01 g per kg of agent
A? No.

Reasonable assumption: The contents of the active agent a;
in RawI and a7 in RawII in the raw materials are random
variables.

Assume instead:

o] 00095, p=05
=3 0.0105, p=0.5

and

o _ ] 0019, p=05
=13 0.0204, p=0.5

where p is a probability.

11 / 56
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Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization
A simple example

A statistical
interpretation

Portfolio
optimization

Summary

The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.
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Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization
A simple example

A statistical
interpretation

Portfolio
optimization

Summary

The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.
That will be an infeasible plan with probability of 0.5.

12 / 56
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Lot Haton m The optimal solution says buy 438.8 kg of RawII and
Robust optimization

- ogtimization produce. 17552 packs of drug DrugII.

m [hat will be an infeasible plan with probability of 0.5.
example .

Robust linear m In that case we can only produce 17201 packs leading to a
optimization .

Apsimme example profit of 6889.

A statistical

interpretation

Portfolio
optimization

Summary
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Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization

A simple example
A statistical
interpretation

Portfolio
optimization

Summary

The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.
That will be an infeasible plan with probability of 0.5.

In that case we can only produce 17201 packs leading to a

profit of 6889. A 21% decrease in the profit.

12 / 56
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Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization

A simple example
A statistical
interpretation

Portfolio
optimization

Summary

The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.
That will be an infeasible plan with probability of 0.5.

In that case we can only produce 17201 packs leading to a

profit of 6889. A 21% decrease in the profit.
The expected profit is 7854.

12 / 56
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Introduction

Robust optimization

Robust optimization
A motivating

example

Robust linear
optimization

A simple example
A statistical
interpretation

Portfolio
optimization

Summary

The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.

That will be an infeasible plan with probability of 0.5.

In that case we can only produce 17201 packs leading to a
profit of 6889. A 21% decrease in the profit.

The expected profit is 7854.

Conclusion:

We see that in our toy example pretty small (and unavoidable
in reality) perturbations of the data may make the optimal
solution infeasible, and a straightforward adjustment to the
actual solution values may heavily affect the solution quality.

12 / 56
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Introduction The standard linear optimization problem:

Robust optimization

Robust optimization
A motivating

min clz

i st a;.x < b, Vi.

Robust linear
optimization

A simple example

Assume:

A statistical
interpretation T
(4

Portfolio . < gz = {Z LR = a’;,r —I— sz7 HyH S ]‘}7
optimization

Summary Where

H ¢ R™¥,
Observe:

m & is an ellipsoid.
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Introduction For a fixed x we have

Robust optimization

Robust optimization max a..T _ max CUT(a,T _|_ sz)
. 0 1: - y o

A motivating a;.CE; ||y||§1 1:

example

Robust linear — ;T + max ;UTHiy
optimization ) ||y||<1

= a;T + H(HZ)T:CH .

A simple example

A statistical
interpretation

Portfolio (Why does the last equality holds?)

optimization

Summary

14 / 56
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Introduction Therefore

Robust optimization

min cl'z

Robust optimization
A motivating

example st ;. T S bi) CLT - g@', \V/Z

Robust linear
optimization

1.

A simple example and

A statistical min CTZC

interpretation . .
st ;- + H(HZ)TCCH < b, A}

Portfolio
optimization

Summary are eqUiValent.
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Introduction Consider

Robust optimization mln —I1

Robust optimization

A motivating st a1 —1— agx?2 S 17
example

L1, L2 > 0.

Robust linear
optimization

Assuming that a; = as = 1 then the optimal solution is

A statistical
interpretation r1 = 1 and To = O

Portfolio
optimization

Notes

Summary

m  The optimal solution is on the boundary (holds generically).
m The optimal solution is infeasible if a; > 1 and therefore not
robust.

16 / 56



maoseK

http://www.mosek.com

Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization

A simple example

u
A statistical
interpretation

Portfolio
optimization

Summary

Next consider the robust version

min —x1
st a1r1 + asxryg < 1, V(al,ag) c &
L1, X2 > 0.

where

€ :=A{(a1,a2) : (a1,a2) = (1,1) + 0y, [yl <1;

and 6 is a fixed nonnegative number. Equivalent robust version

min —x1
stz +x2+0|(21,22)|| <1,
C5'1733220-
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Introduction

Robust optimization

Robust optimization

A motivating
example
Robust linear
optimization

A simple example
. - .

A statistical
interpretation

Portfolio
optimization

Summary

Notes

. . . 1
The optimal solution is (x1,x2) = (m,0>.
The optimal solution is in the interior of

{(z1,m2) 1 1 + 22 < 1}

for 6 > 0.

The robust version push the optimal solution into the interior
of the original feasible region.

Therefore, the optimal solution is still feasible even for small
changes in the problem data.

Clearly, there is a tradeoff between “robustness” and the
objective value.

18 / 56
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Introduction ASSU m ptions-
Robust optimization

Robust optimization m ;. are independent Gaussian random vectors i.e.

A motivating
example

Robust linear ;. ~ ‘Z\[(az7 ZZ)

optimization

A simple example

A statistical PrOblem: . T
interpretation 1111 cC T
Portfolio st Prob(a;.x <b;) > p,Vi.

optimization

Summary NOW

Prob(a;.x < b;) > p

Is equivalent to

19 / 56



maoseK

http://www.mosek.com

Introduction

Robust optimization

Robust optimization

A motivating
example

Robust linear
optimization

A simple example

A statistical
interpretation

Portfolio
optimization

Summary

where

Clearly

Hence,

where

Thus

= a;r and o; = HZ%SUH .
;T — Q3T
1 ~ N(O, 1).
‘Z%Zx
bi — a;x 1
— =2 (p)
|§%2x

20 / 56
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Introduction Equivalent problem:

Robust optimization

Robust optimization . T
A motivating min cC X

example .
Robu:t linear st C_LZZU —+ @_1 (p) Hzi/QﬁUH S bi, V1.

optimization

A simple example

Notes:

A statistical
= Forp> 0.5 then &1(p) > 0.

Portfolio . . .
optimization m Hence, is a conic quadratic problem for p > 0.5.

Summary m Is called chance constrained optimization.

21 / 56



MoseK

http://www.mosek.com

Portfolio optimization

22 / 56



maoseK

http://www.mosek.com

Introduction

Robust optimization

Portfolio
optimization
Formal definition
Tradeoff

Short selling

Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

The problem

Select a portfolio of assets i.e. stocks, bonds, etc.
Such that a large return with a low risk is obtained.
Assumptions:

0 An initial portfolio is available.
[1 A single period.
[1  One of the assets is risk free i.e. cash.

23 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem

Formal definition

Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk
Example model

References portfolio
optimization

Summary

Formal definition

Parameters:

m A portfolio can consist of n traded assets numbered 1,2, ...
held over a period of time
w? is the initial holding of asset j where Y w? > 0.

r; IS the return on asset j assumed to be a random variable.

r has a known mean  and covariance ..
Variables:
m 1z, Is the amount of asset j traded.

O If ; > 0, then the amount of asset j is increased (by
purchasing).

O If ; <0, then the amount of asset j is decreased (by
selling).

24 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition

Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Tradeoff
Observe
m  Return (expected return)

Elrt(w® + )] = 71 (w° + )
m Risk (variance)

Virt(w® + 2)] = (w® + 2)TS(w® + )
High return and a small risk i.e. small variance is desired.

m There is a trade-off between return and risk.

25 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition

Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk
Example model

References portfolio
optimization

Summary

Expected return and variance can be nontrivial to estimate.

By definition X is positive semi-definite and

Std. dev. = E%(w0+x)

where L is any matrix such that
> =LL"

I.e. for instance the Cholesky factor.

A low rank of X is advantageous from a computational point

of view.

26 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition

Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk
Example model

References portfolio
optimization

Summary

First model:

min  (w' + 2)! (v’ + x)
st (w4 )
el'x 0,

|
\,O"

where e := (1,...,1)7T.
Model:

Minimizes the variance.
While selecting a portfolio having an expected target return
of t.

m  Satisfying the budget or self-financing constraint.

Usage:

m  Solved for different values of t¢.
m Investor choose the portfolio that according to his/her
preferences has the best relation between risk and return.

27 / 56
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Introduction

Comments:

Robust optimization

Portfolio
optimization

Is a convex quadratic optimization problem.

The problem
Formal definition

Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk
Example model

References portfolio
optimization

Summary

Can be formulated as conic a quadratic optimization
problem.

28 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition

Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk
Example model

References portfolio
optimization

Summary

Conic quadratic reformulation:

min f
st E%(wOJr:L‘) —g = 0,
i (w? 4 ) =
el'x = 0,
f=lgll-

Minimizes the standard deviation instead of the variance.
Isla conic quadratic optimization problem.
>z can be replaced by any matrix L where ¥ = LLT. A low
rank L is computationally advantageous.

m If linear inequality constraints are added to the problem it
gets harder.

29 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition

Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs
The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Alternative formulation

max 7 (w' + )

st Nri(w4a)—g =
f

GTZE

=gl

|
O\)O

m  Maximizes the expected return.

s While making sure the standard deviation is bounded by f

chosen by the investor.

30 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling

Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Short selling

Short selling is allowed i.e.

0

iIs allowed.
How does short selling works?

[]

1 O O

Borrow the asset from someone now and then sell it.

At the end of the period buy the asset back.

Return it to the lender with the return.

You make money if prices decrease and loose if they
Increase.

What is the potential loss of short selling?

31 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling

Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Short selling

Short selling is allowed i.e.

0

iIs allowed.
How does short selling works?

[]

1 O O

Borrow the asset from someone now and then sell it.

At the end of the period buy the asset back.

Return it to the lender with the return.

You make money if prices decrease and loose if they
Increase.

What is the potential loss of short selling?

[]

Infinite.
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Diversification

constraints f > HgH

Transaction costs
Linear transaction
costs

No fixed transaction m  Eliminates short selling completely by adding the constraint

costs

A patch 0

Fixed trading costs ’UJ] —+ .CCJ 2 0.
The market impact

term

Shortfall risk

Example model

References portfolio
optimization

Introduction NeW model

Robust optimization mln f

Portfolio 1 0

optimization St E 2 (w —|_ .CC) T g — 07

The problem fT(wO _|_ .CU) _ t
Formal definition T !

Tradeoff e — O,
h [

w? + z; > 0

Summary

32 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling

Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Alternatives:

Allow short selling of s; for asset j

0 . .
W +x; = —Sj.

Limits the total of the short positions to a fraction vy of the

total of the long positions.

2wy +x5) =
J
> hy <
j
ht,h= >

where h;r and hj_ are variables.

33 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling

Diversification
constraints
Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs
The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Diversification constraints

Limit the amount invested in each asset to b;:

Limit the relative amount invested in each asset to -;:

’LU;) + T < Y Z(wg —+ l“j).

0
w; + T; < bj.

J

Limit the relative amount invested in a group of assets ()

by ~:

> (W + ) <) (wj +xj).

jeT

J

34 / 56
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Introduction m

Robust optimization

Portfolio
optimization |

The problem
Formal definition
Tradeoff

Short selling

Diversification
constraints

Transaction costs

Linear transaction |
costs

No fixed transaction

costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Transaction costs

We have assumed no transactions cost i.e the cost of trading

s O.

According to [3] trans. cost has the form

bid

commission + — — spread + 6

ask

The market impact cost

0

trade volume

trade volume

daily volume

can be most significant term.

6 has to be estimated.

“daily volume” may be hard to know.

daily volume

35 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling
Diversification
constraints

Transaction costs
Linear transaction
costs

No fixed transaction
costs

A patch

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Linear transaction costs

Assume transaction cost can be approximated by a

(piecewise) linear function e.g.

T(x;) =

—C; Xy,

2

xj,

€L j < ()7
:Ijj>0.

An even more realistic assumption is linear transactions cost
plus a fixed trading cost i.e.

bj C; xj,
0,
b]+c T;,

ZI?j<O,
513]':0,
513]'>O.

36 / 56
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Introduction A model including linear transaction costs:

Robust optimization

Por.tfollio . mln f

optimization 1

The problem st Y2 (’I,UO + CC) —qg = O7
Formal definition

Tradeoff fT(wO + x) =
Short selling eTaZ i eTy — 0
- Y,

Diversification

constraints C_-|_ 37]

Transaction costs J
Linear transaction —C. s
costs J J

No fixed transaction f > Hg”
costs —

A patch
Fixed trading costs

The market impact m y; is the transaction cost associated with asset j.

term

Shortfall risk m  We should prove that one of the inequalities
Example model

References portfolio

optimization C;_I‘j < Y; and — Cj_ZUj < Yj;

Summary

hold as equality at optimum. Not true unfortunately!

37 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling
Diversification
constraints
Transaction costs
Linear transaction
costs

No fixed transaction
costs

Fixed trading costs

The market impact
term

Shortfall risk
Example model

References portfolio
optimization

Summary

A patch

Assuming a risk free asset with positive return then the model

max 7L (w? + )
st Z%(wOJr:U) —qg = 0,
f =

el'z+ely = 0,
¢l < v
—C; Tj < Y
f=1agll-

does not have the problem.

38 / 56
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling
Diversification
constraints
Transaction costs
Linear transaction
costs

No fixed transaction
costs

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

The Mitchell and Braun model

Mitchell and Braun [2] suggests to minimize

E%(wo + x) std. dev.

el'wd —ely  invested amount

i.e. minimize the standard deviation per invested $. Seems quit

reasonable.

39 / 56
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Introduction Model

Robust optimization min %

Portfolio 1

optimization st 2.2 (’U}O -+ ZC) —qg = O,

The problem =T 0 —

Formal definition r T(w —l_T:C) o t’

Tradeoff e'x+ety = 0,

Short selling +

Diversification Cj ‘:U] S y]?
constraints —C_CU . < _

Transaction costs 7 <] — y] )
Linear transaction GTUJO o eTy — U,
costs

No fixed transaction

costs v > O’

f>19l -

Fixed trading costs
The market impact

term m v Is variable and is the invested amount.
Shortfall risk

Example model

References portfolio
optimization

Summary
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Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling
Diversification
constraints
Transaction costs
Linear transaction
costs

No fixed transaction
costs

Fixed trading costs

The market impact
term

Shortfall risk

Example model

References portfolio
optimization

Summary

Define

and similarly for all the other variables. Also multiply each

X

constraint by 7. New model:

T

T

41 / 56



maoseK

http://www.mosek.com

Introduction

Robust optimization

Portfolio
optimization

The problem
Formal definition
Tradeoff

Short selling
Diversification
constraints
Transaction costs
Linear transaction
costs

No fixed transaction
costs

Fixed trading costs

The market impact
term

Shortfall risk
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s homogeneous.
Has a linear fractional objective.
Therefore, we can arbitrarily fix v to 1.
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Diversification
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Transaction costs A
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No fixed transaction €T’UJOT — eTy

costs
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Example model
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Formal definition T 0
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Short selling T T _
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constraints b . clror. <
Transaction costs b'] J —|— 7 T
Linear transaction L — C._Qj . <
costs J~J 7 7 -
No fixed transaction T <
costs J _
A patch —Z‘j S

|
ZJ S {07 1}

The market impact

term > H H
Shortfall risk f ~ 11911 -
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Vi,
Yi,
Ujzj,
LjZj,
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l; and u; are known parameters such that

In theory a very hard problem. Tight bounds [; and u; help.

Various heuristics can be designed. See [1].
Or branch and bound can be used.
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nirerueion m If you sell (buy) a lot of asset the price is likely to go down

Robust optimization
(up).

Portfolio

optimization m This is captured by the market impact term
The problem

Formal definition

Tradeoff trade volume

Short selling 0 ~ Mj\/ Ty

Diversification da | |y VOl ume

constraints
Transaction costs

Linear transaction m; has to be estimated.

costs
No fixed transaction

costs Market impact cost can be included as follows
A patch
Fixed trading costs . f

The market impact min
term

1

5 0
Shortfall risk st Y2 (w' +x)—g
Example model =T 0
References portfolio r (w —l_ x)
optimization eT.fC _|_ eTy
Summary 1

a5l (mylas3) <y

f=lgll-

|
O+ O
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costs GTCU + mTy

A patch 13/2
‘%‘ /

Fixed trading costs

The market impact > H H
£ gl

Shortfall risk
Example model
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I
O+ O

VAN
$|
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The set

can be modeled by

4jsSjsYj, Vi, Qg

IAIATATA

[V
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Transaction costs
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Now
Prob(W > Whw) > p
implies
W — Wlow .
Prob A > H <1l-—n
o o
where
/0 1 0
pw=7r(w +x)and o = HZ2(w +:1:)H
Now

_W—p

—E ~ N(o, 1)

zZ
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Given

T on

B(2) = / e 124t

the shortfall risk constraint is equivalent to

or

(@ + x) — Wiev
o o)

o' (n) <

L (n) Hz%(wo + x)H <7 (w0 + z) — Whow.

Is a conic quadratic constraint for n > 0.
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Formal definition T
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Diversification CI)_1<77) (,r (’UJ _I_ ZC) W ) 2 f
constraints f > HgH
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Linear transaction
costs
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Example model
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Robust optimization is an important application for conic
quadratic optimization.

[0 Can be given a nice chance constrained interpretation.

The Markowitz portfolio model and its variants can be
formulated as quadratic optimization problem.

[1  Probably the most commercially most important
application of conic quadratic optimization as of 2006.
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