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Topics:

■ Learn about the symmetric primal-dual algorithm of
Nesterov-Todd [5], [7].

■ What goes into a state of the art implementation.
■ See some computational results.

Major reference

■ Andersen et. al . [2]
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The primal problem

min
∑

k(c
k)T xk

st
∑

k Akxk = b,
xk ∈ Kk

(1)

and the dual problem

max bT y
st (Ak)T y + sk = ck,

sk ∈ (Kk)∗.
(2)
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Let us simplify the notation i.e.

c :=













c1

c2

...
cr













,

A :=
[

A1 A2 . . . Ak
]

,

K := K1 ×K2 × · · · × Kr,
K∗ := (K1)∗ × (K2)∗ × · · · × (Kr)∗.

and
A ∈ Rm×n.
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Moreover let

x :=













x1

x2

...
xr













and s :=













s1

s2

...
sr













.

Observe that

K∗ = {s ∈ Rn : xT s ≥ 0, ∀x ∈ K}.
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The primal problem

min cT x
st Ax = b,

x ∈ K,
(3)

and the dual problem

max bT y
st AT y + s = c,

s ∈ K∗.
(4)
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Weak duality: Let x be a feasible solution to (P ) and (y, s)
be a feasible solution to (D), then

cT x − bT y = xT s ≥ 0.

Strong duality: If (P ) is strictly feasible and its optimal
objective value is bounded or (D) is strictly feasible and its
optimal objective value is bounded, then (x, y, s) is an
optimal solution if and only if

cT x − bT y = xT s = 0

and x is primal feasible and (y, s) is dual feasible.
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Primal infeasibility: If

∃(y, s) : s ∈ K∗, AT y + s = 0, bT y > 0, (5)

then (P ) is infeasible.
Dual infeasibility: If

∃x : x ∈ K, Ax = 0, cT x < 0, (6)

then (D) is infeasible.
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Algorithm should:

■ Feasible case: Find an optimal solution.
■ Infeasible case: Find an infeasibility certificate.
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Generalized Goldman-Tucker homogeneous model:

(H) Ax − bτ = 0,
AT y + s − cτ = 0,

−cT x + bT y − κ = 0,
(x; τ) ∈ K̄, (s;κ) ∈ K̄∗

where
K̄ := K ×R+ and K̄∗ := K∗ ×R+.

■ The homogeneous model always have a solution
■ Partial list of references:

◆ Linear case: [4], [3], [8].
◆ Nonlinear case: [6].
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Lemma 1
Let (x∗, τ∗, y∗, s∗, κ∗) be any feasible solution to (H), then

i)
(x∗)T s∗ + τ∗κ∗ = 0.

ii) If τ∗ > 0, then
(x∗, y∗, s∗)/τ∗

is an optimal solution.
iii) If κ∗ > 0, then at least one of the strict inequalities

bT y∗ > 0 (7)

and
cT x∗ < 0 (8)

holds. If the first inequality holds, then (P ) is infeasible. If
the second inequality holds, then (D) is infeasible.
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Summary:

■ Compute a nontrivial solution to (H).
■ Provides required information in most cases.
■ Bad case:

τ∗ = κ∗ = 0.

■ Bad case cannot occur for linear problems.
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Definition 1

R+:
R+ := {x ∈ R : x ≥ 0}.

Quadratic cone:

Kq := {x ∈ Rn : x2
1 ≥ ‖x2:n‖2 , x1 ≥ 0}.

Rotated quadratic cone:

Kr := {x ∈ Rn : 2x1x2 ≥ ‖x3:n‖2 , x1, x2 ≥ 0}.

Notes:

■ Allowed cone types.
■ Are homogeneous and self-dual.



Some definitions

Introduction

A symmetric
primal-dual
algorithm

Recap.

Simplifying notation

Central theorem

Goals
A homogeneous
model

Quadratic cones

Some definitions

Complementarity

The central path

Neighborhood
definition

Algorithm outline

What is scaling?

Nesterov-Todd
scaling

The Nesterov-Todd
search direction
Properties of the
search direction
Practical stopping
criteria
Computation of
search direction
Can we use sparse
computations?

Practical
implementation

16 / 52

i.) If Kk is R+, then

T k := 1 and Qk = 1.

ii.) If Kk is the quadratic cone, then

T k := Ink and Qk := diag(1,−1, . . . ,−1).
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iii.) If Kk is the rotated quadratic cone, then

T k :=



















√

1
2

√

1
2 0 · · · 0

√

1
2 −

√

1
2 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



















and

Qk :=

















0 1 0 · · · 0
1 0 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

















.
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■ Orthogonality:

QkQk = I and T kT k = I.

■ Linear and quadratic cone:

Kk = {xk ∈ Rnk

: (xk)T Qkxk ≥ 0, xk
1 ≥ 0}

■ Rotated quadratic cone:

Kk = {xk ∈ Rnk

: (xk)T Qkxk ≥ 0, xk
1, x

k
2 ≥ 0}.

■ Equivalence:
xk ∈ Kq ⇔ T kxk ∈ Kr.
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Definition:

V := mat (v) =

[

v1 vT
2:n

v2:n v1In−1

]

.

Given x, s ∈ K then

xT s = 0 ⇔ XkSkek = SkXkek = 0, i = 1, . . . , k,

where

Xk := mat
(

T kxk
)

and Sk := mat
(

T ksk
)

.

Definition:
X := diag(X1, . . . , Xk),
S := diag(S1, . . . , Sk).
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Let
(x(0), τ (0), y(0), s(0), κ(0))

be given such that

(x(0); τ (0)), (s(0);κ(0)) ∈ int(K̄).

Central path definition:

Ax − bτ = γ(Ax(0) − bτ (0)),

AT y + s − cτ = γ(AT y(0) + s(0) − cτ (0)),

−cT x + bT y − κ = γ(−cT x(0) + bT y(0) − κ(0)),

XSe = γµ(0)e,

τκ = γµ(0),

(9)
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where γ ∈ [0, 1] and

µ(0) :=
(x(0))T s(0) + τ (0)κ(0)

r + 1
and e :=







e1

...
ek






.

Observe:

■ For instance choose

(x(0), τ (0), y(0), s(0), κ(0)) = (e, 1, 0, e, 1).

■ That point is on the central path for γ = 1.
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Nesterov and Todd proves for (x; τ), (s, κ) ∈ int(K):

(xT s + τκ)

((

r
∑

k=1

(xk)T sk

(xk)T Qkxk(sk)T Qksk

)

+
1

τκ

)

≥ (r + 1)2

■ If the inequality holds as equality if the point is on the
central path.

If β ∈ (0, 1] and

(xk)T Qkxk(sk)T Qksk

(xk)T sk ≥ β xT s+τκ
r+1 , ∀k

τκ ≥ β xT s+τκ
r+1

then

(xT s + τκ)

((

r
∑

k=1

(xk)T sk

(xk)T Qkxk(sk)T Qksk

)

+
1

τκ

)

≤ 1

β
(r + 1)2.
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Central path neighborhood (N (β)):

min















(x1)T Q1x1(s1)T Q1s1

(x1)T s1

...
(xk)T Qkxk(sk)T Qksk

(xk)T sk

τκ















≥ βµ

and

µ :=
xT s + τκ

r + 1

where β ∈ [0, 1].
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■ Follow the central path to the optimum.

◆ I.e. stay in the neighborhood of the central path.

■ Use Newton’s method to compute points in the
neighborhood.
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Adx − bdτ = η(Ax(0) − bτ (0)),
AT dy + ds − cdτ = η(AT y(0) + s(0) − cτ (0)),

−cT dx + bT dy − dκ = η(−cT x(0) + bT y(0) − κ),
X(0)Tds + S(0)Tdx = −X(0)S(0)e + γµ(0)e,

τ (0)dκ + κ(0)dτ = −τ (0)κ(0) + γµ(0).

where η = γ − 1.
Problems:

■ The search direction is not well-defined everywhere.
■ Hard to prove polynomial convergence.
■ (The search direction is hard to compute because of lack of

symmetry. Makes the linear algebra expensive.)
■ Solution: Perform Newtons method in a scaled space.
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Definition 2 W k ∈ Rnk×nk

is a scaling matrix if it satisfies the
conditions

W k ≻ 0,
W kQkW k = Qk.

A scaled point x̄, s̄ is obtained by the transformation

x̄ := ΘWx and s̄ := (ΘW )−1s,

where
W := diag(W 1, . . . ,W k),
Θ := diag(θ11n1 ; . . . ; θk1nk).

and θk > 0.
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Lemma 2

i) (xk)T sk = (x̄k)T s̄k.
ii) θ2

k(x
k)T Qkxk = (x̄k)T Qkx̄k.

iii) θ−2
k (sk)T Qksk = (s̄k)T Qks̄k.

iv) x ∈ K ⇔ x̄ ∈ K (x ∈ int(K) ⇔ x̄ ∈ int(K)).
v) Given a β ∈ (0, 1) then

(x, τ, s, κ) ∈ N (β) ⇒ (x̄, τ, s̄, κ) ∈ N (β).
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Comments:

■ Many choices for a scaling has been suggested.
■ Many of them leads polynomial complexity.
■ The most satisfactory one is the Nesterov-Todd scaling

which chooses the scaling such that

ΘWx = x̄ = s̄ = (ΘW )−1s

or equivalently
s = WΘ2Wx.
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Assume that xk, sk ∈ int(Kk) then

θ2
k =

√

(sk)T Qksk

(xk)T Qkxk
. (10)

Moreover, if Kk is

i) the positive half-line R+, then:

W k =
1

θk

((Xk)−1Sk)
1
2 .
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ii) a quadratic cone, then:

W k =









wk
1

(

wk
2:nk

)T

wk
2:nk I +

wk

2:nk

(

wk

2:nk

)T

1+wk

1









= −Qk +
(ek

1+wk)(ek

1+wk)T

1+(ek

1)T wk

(11)

where

wk =
θ−1
k sk + θkQ

kxk

√
2

√

(xk)T sk +
√

(xk)T Qkxk(sk)T Qksk

. (12)

Furthermore,

(W k)2 = −Qk + 2wk(wk)T . (13)
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iii) a rotated quadratic cone, then:

W k = −Qk +
(T kek

1 + wk)(T kek
1 + wk)T

1 + (ek
1)

T T kwk
(14)

where wk is given by (12). Furthermore,

(W k)2 = −Qk + 2wk(wk)T . (15)
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Lemma 3
(θkW

k)−2 = θ−2
k Qk(W k)2Qk.

Notes:

■ W k can be stored using a nk dimensional vector.
■ Multiplications with W k and (W k)−1 can be carried out in

O(nk) complexity.
■ (W k) has the simple structure

−Qk + 2wk(wk)T .
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Adx − bdτ = η(Ax(0) − bτ (0)),
AT dy + ds − cdτ = η(AT y(0) + s(0) − cτ (0)),

−cT dx + bT dy − dκ = η(−cT x(0) + bT y(0) − κ),
X̄(0)T (ΘW )−1ds + S̄(0)TΘWdx = −X̄(0)S̄(0)e + γµ(0)e,

τ (0)dκ + κ(0)dτ = −τ (0)κ(0) + γµ(0).

where η := γ − 1.
New iterate:















x(1)

τ (1)

y(1)

s(1)

κ(1)















=















x(0)

τ (0)

y(0)

s(0)

κ(0)















+ α















dx

dτ

dy

ds

dκ















.
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Lemma 4

Ax(1) − bτ (1) = (1 + αη)(Ax(0) − bτ (0)),
AT y(1) + s(1) − cτ (1) = (1 + αη)(AT y(0) + s(0) − cτ (0)),

−cT x(1) + bT y(1) − κ(1) = (1 + αη)(−cT x(0) + bT y(0) − κ(0)),
dT

x dT
s + dτdκ = 0,

(x(1))T s(1) + τ (1)κ(1) = (1 + αη)((x(0))T s(0) + τ (0)κ(0)).

Observations:

■ The complementarity gap is reduced by a factor of
(1 + αη) ∈ [0, 1).

■ The infeasibility is reduced by the same factor.
■ High advantageous property.
■ Implies convergence.
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■ Step-size computation

◆ Back-tracking line search type.
◆ Computational cheap.

■ Mehrotra predictor-corrector extension.

◆ Estimate γ.
◆ High-order correction.
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■ A solution

(x, y, s) = (x(k), y(k), s(k))/τ (k)

is said to be primal dual optimal solution if

∥

∥

∥Ax(k) − bτ (k)
∥

∥

∥

∞
≤ εp(1 + ‖b‖∞)τ (k),

∥

∥

∥AT y(k) + s(k) − cτ (k)
∥

∥

∥

∞
≤ εd(1 + ‖c‖∞)τ (k),

|cT x(k)−bT y(k)|

τ (k)+max(|cT x(k)|,|bT y(k)|)
≤ εg

where εp, εd and εg all are small user specified constants.
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■ If

bT y(k) > 0 and bT y(k)εp ≥
‖b‖∞

∥

∥

∥AT y(k) + s(k)
∥

∥

∥

∞

max(1, ‖c‖∞ , |aij |)

the problem is denoted to be primal infeasible and the
certificate is (y(k), s(k)) is reported.

■ If

−cT x(k) > 0 and − cT x(k)εd ≥
‖c‖∞

∥

∥

∥Ax(k)
∥

∥

∥

∞

max(1, ‖b‖∞ , |aij |)

is said denoted to be dual infeasible and the certificate is
x(k) is reported.
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The computational most expensive operation in the algorithm is
the search direction computation:

Adx − bdτ = f1,
AT dy + ds − cdτ = f2,

−cT dx + bT dy − dκ = f3,

X̄(0)T (ΘW )−1ds + S̄(0)TΘWdx = f4,

τ (0)dκ + κ(0)dτ = f5

where f i represents an arbitrary right-hand side.
This implies

ds = (X̄(0)T (ΘW )−1)−1(f4 − S̄(0)TΘWdx)

= (X̄(0)T (ΘW )−1)−1f4 − WΘ2Wdx,

dκ = (τ (0))−1(f5 − κ(0)dτ ).
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Hence,

Adx − bdτ = f1,

AT dy − WΘ2Wdx − cdτ = f̂2,

−cT dx + bT dy + (τ (0))−1κ(0)dτ = f̂3,

and
dx = −(WΘ2W )−1(f̂2 − AT dy + cdτ ).

Thus

A(WΘ2W )−1AT dy − (b + A(WΘ2W )−1c)dτ =

(b − A(WΘ2W )−1c)T dy + (cT (WΘ2W )−1c + (τ (0))−1κ(0))dτ =
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Given

M = A(WΘ2W )AT =
r

∑

k=1

θ−2
k Ak(W k)−2(Ak)T ,

and
Mv1 = (b + A(WΘ2W )−1c),

Mv2 = f̂1

we reach the easy solvable linear system

dy − v1dτ =

(b − A(WΘ2W )−1c)T dy + (cT (WΘ2W )−1c + (τ (0))−1κ(0))dτ =
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■ The hard part is the linear equation systems involving M .
■ Observe that:

M = A(WΘ2W )−1AT =
r

∑

k=1

θ−2
k Ak(W k)−2(Ak)T ,

where

Ak(W k)−2(Ak)T = AkQk(−Qk + 2wk(wk)T )Qk(Ak)T

= −AkQk(Ak)T

+2(AkQkwk)(AkQkwk)T ,

■ M = MT .
■ M is positive definite.
■ Use Cholesky factorization M = LLT .
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■ Is M sparse? Yes, if

−AkQk(Ak)T

and
(AkQkwk)(AkQkwk)T

is sparse. Likely to be the case if

◆ Ak is sparse.
◆ Ak contains no dense columns.
◆ wk is not high dimensional.

■ M is usually very sparse in the linear case.

Problematic:

■ Big cones and/or dense columns in A are trouble some.
■ It is possible to deal with dense columns and large cones see

[1] for details.
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■ Employs presolve to reduce problem size.
■ Exploit problem structure:

◆ Upper bounds on linear variables: xj ≤ uj .
◆ Fixed variables: xj = uj .

■ Sparse Cholesky (minimum degree or GP ordering).
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■ MOSEK.
■ Windows X64.
■ AMD 64bit 2.21 Ghz, 4GB RAM.
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Presolved
Name Constraints Variables Constraints Variables
arkadi-bug 5 13 5 13
arkadi1 1 4 1 4
arkadi6 758 1452 758 1452
bart1 14 33 14 33
c-glineur3 698 1049 698 1049
c-nql180 42300 106622 42300 106622
c-qssp180 64799 261364 64799 261364
c-qssp90 16199 65884 16199 65884
c-traffic-36 4035 6730 4035 6730
clinton3 17208 30741 17208 30741
dsNRL 405 15897 405 15897
dttd13-13-2 14744 84708 14744 84708
ex4-mark 23 32 23 32
firL1 301 17766 301 17766
firL1Linfalph 302 35532 302 35532
firL1Linfeps 5867 11532 5867 11532
firL2L1alph 5868 9612 5868 9612
firL2Linfeps 6086 14711 6086 14711
firLinf 402 11886 402 11886
ivor1 900 2709 900 2709
nb 121 2379 121 2379
nb L1 913 3172 913 3172
nb L2 120 4191 120 4191
nb L2 bessel 122 2639 122 2639
rjabr1 210 344 210 344
sched 100 100 scaled 8337 18238 8337 18238
sched 100 50 scaled 4843 9744 4843 9744
sched 200 100 scaled 18086 37887 18086 37887
sched 50 50 scaled 2526 4977 2526 4977
than-x1-1 1270 1422 1270 1422
wbNRL 459 18295 459 18295
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Name Con- Quad. Varia- Cone Bnd. cone
straints cones bles var. var.

arkadi-bug 5 13 3 11 0
arkadi1 1 4 1 3 0
arkadi6 758 1452 270 1164 0
bart1 14 33 5 25 1
c-glineur3 698 1049 1 350 0
c-nql180 42300 106622 32400 97199 0
c-qssp180 64799 261364 65341 261364 0
c-qssp90 16199 65884 16471 65884 0
c-traffic-36 4035 6730 1365 4025 1330
clinton3 17208 30741 3614 13609 3621
dsNRL 405 15897 5254 15897 0
dttd13-13-2 14744 84708 28236 84708 0
ex4-mark 23 32 1 24 0
firL1 301 17766 5922 17766 0
firL1Linfalph 302 35532 11844 35532 0
firL1Linfeps 5867 11532 3844 11532 0
firL2L1alph 5868 9612 1923 9611 1
firL2Linfeps 6086 14711 2943 14711 0
firLinf 402 11886 3962 11886 0
ivor1 900 2709 4 1808 0
nb 121 2379 793 2379 0
nb L1 913 3172 793 2379 793
nb L2 120 4191 839 4191 0
nb L2 bessel 122 2639 839 2637 0
rjabr1 210 344 57 238 41
sched 100 100 scaled 8337 18238 1 8236 2592
sched 100 50 scaled 4843 9744 1 4742 1553
sched 200 100 scaled 18086 37887 1 17885 5655
sched 50 50 scaled 2526 4977 1 2475 808
than-x1-1 1270 1422 487 1422 0
wbNRL 459 18295 9 1118 0
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Name Primal Sig. Iter. Time
obj. fig.

arkadi-bug 4.097343e-001 10 7 0.00
arkadi1 -1.414214e-001 10 8 0.01
arkadi6 9.627900e+006 9 25 0.12
bart1 1.348270e+002 9 14 0.01
c-glineur3 1.842864e-004 9 11 0.03
c-nql180 -9.276925e-001 9 21 64.46
c-qssp180 -6.639490e+000 10 21 61.76
c-qssp90 -6.594398e+000 11 22 9.73
c-traffic-36 -5.390246e+003 10 26 0.71
clinton3 -3.295814e-005 10 28 5.35
dsNRL -5.574582e-005 9 34 166.45
dttd13-13-2 1.917137e+004 9 40 10.59
ex4-mark -1.098362e+000 9 9 0.01
firL1 -3.522637e+000 13 17 58.93
firL1Linfalph -3.181250e+000 12 26 180.37
firL1Linfeps -1.556303e-002 10 63 13.96
firL2L1alph -2.328451e-001 9 11 3.31
firL2Linfeps -1.033366e-002 6 22 25.25
firLinf -1.006898e-002 7 28 111.31
ivor1 -1.801961e-001 8 18 23.39
nb -5.070309e-002 9 20 1.96
nb L1 -1.301227e+001 9 17 1.79
nb L2 -1.628972e+000 8 13 3.31
nb L2 bessel -1.025695e-001 9 11 1.18
rjabr1 3.397210e+000 9 9 0.01
sched 100 100 scaled 2.733459e+001 8 41 2.59
sched 100 50 scaled 6.716503e+001 9 31 1.04
sched 200 100 scaled 5.181196e+001 8 48 8.23
sched 50 50 scaled 7.852038e+000 10 21 0.34
than-x1-1 -2.275539e+001 9 18 0.12
wbNRL -4.149784e-005 9 22 152.43
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■ The symmetric primal-dual algorithm of Nesterov-Todd is
theoretical attractive algorithm for conic quadratic
optimization.

■ The algorithm is works very well in practice.
■ Hence, large-scale sparse conic quadratic problems can be

solved efficiently.
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