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■ Discuss different solution approaches for conic quadratic
optimization problems.
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■ Can the second order cone be approximated by a polynomial
number (O(n)) linear inequalities?

■ The answer is yes as proved by Ben-Tal and Nemirovski [1].

◆ Using an appropriate definition of approximated.

■ See also the ph.d. thesis of Francois Glineur [2].
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Definition 1 A set U ∈ Rn is said to be an ε−approximation of

the second-order cone Kq if and only if we have

Kq ⊆ U ⊆ Kε
q = {x ∈ Rn : x1(1 + ε) ≥ ‖x2:n‖}

Main idea:

■ Prove that there is ε− approximation for the 3 dimensional
quadratic cone.

■ Prove that any quadratic cone can be written using a
number of 3 dimensional cones.
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Define the set

Fk := {(r, α0, . . . , αk, β0, . . . βk) ∈ R2k+3 :

αi+1 = αi cos
(

π
2i

)

+ βi sin
(

π
2i

)

, i = 0, . . . , k − 1,

βi+1 ≥ βi cos
(

π
2i

)

− αi sin
(

π
2i

)

, i = 0, . . . , k − 1,

−βi+1 ≥ βi cos
(

π
2i

)

− αi sin
(

π
2i

)

, i = 0, . . . , k − 1,

r = αk cos
(

π
2k

)

+ βk sin
(

π
2k

)

}

Define

Gk := {x ∈ R3 : (x1, x2, α1, . . . , αk, x3, β1, . . . βk) ∈ F}.
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Lemma 1 Gk is an ε−approximation for K3
q where

ε = cos

(

π

2k

)−1

− 1

For a proof see [2].
Quite good result because

k ε ≤
2 0.5
4 0.02
8 1.0e-4
16 2.0e-9



The decomposition

Introduction

Solving conic
quadratic
optimization
problems

The Ben-Tal and
Nemirovski
linearization
What is meant by
approximation

The decomposition

Computational
results

The conic simplex
algorithm

Smooth convex
optimization
approach

Interior point
approaches

A primal
interior-point
approach to conic
quadratic
optimization

Summary

Exercises

9 / 47

Now

Kq =







x ∈ Rn : x2
1 ≥

n
∑

j=2

x2
j , x1 ≥ 0







Note
∑⌊n

2
⌋

j=2 x2
j ≤ y2

l ,
∑n

j=⌈n

2
⌉ x2

j ≤ y2
r ,

y2
l + y2

r ≤ x2
1,

0 ≤ x1, yl, yr.

is another representation of the quadratic cone.

■ The largest cone has about 1
2n variables in the new

representation.
■ Had to introduce 2 cones and 2 variables.
■ Recursive application of this idea will produce a problem with

about n 3 dimensional cones and n additional variables.
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■ If each 3 dimensional cone is ε−approximated then the
approximation for the big cone is

q
∏

l=1

(1 + ε) − 1.

where q ≈ log2(n).
■ Hence using O(1)n variables and O(1)n linear constraints it

is possible to build a ε− approximation to the quadratic cone.
■ Warning: Approximate an quadratic problem, then no bound

can be given on the quality of the objective value. [2].
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■ The results of Glineur suggests

◆ The linearized problems are very hard for the simplex
algorithm.

◆ The linearized problem can be solved using an
interior-point reasonably well.

◆ The primal-dual conic interior-point algorithm is much
better.

■ An interesting application in mixed integer conic
optimization is reported in [5].
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Observe that any

x ∈ Kq = {x ∈ Rn : x1 ≥ ‖x2:n‖}

can be represented by

x =
∑

j

λj x̄
j , λ ≥ 0

where
x̄j ∈ Kq.

■ x can be written as a positive sum of points in the cone.
■ Extreme rays are sufficient.
■ Nevertheless the sum may be infinite.
■ Leads to a column generation approach.
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■ Developed by Goldfarb in [3].
■ Not available in any commercial or academic code.
■ My experience is that it works poorly in practice.
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The conic quadratic constraint

x1 ≥ ‖x2:n‖

is equivalent to
x2

1 ≥ ‖x2:n‖2 , x1 ≥ 0

which in turn is equivalent to

x1 ≥ ‖x2:n‖2

x1
, x1 > 0.

almost. The function

f(x) =
‖x2:n‖2

x1
− x1

is a smooth, twice differentiable convex function on its domain.
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Hence,
f(x) ≤ 0

is a convex inequality.

■ The quadratic cone can be handled with a convex inequality.
■ Solve the problem using any algorithm/software for smooth

convex optimization e.g. conopt, loqo and Minos.
■ The x1 > 0 constraint can(read will) cause problems for

active set methods.
■ A constraint of the form x1 > ε can introduce infeasibilities.
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The linear optimization problem:

min cT x

st Ax = b,

x ≥ 0.

(1)

Assumptions:

■ A ∈ Rm×n is of full row rank.
■ ∃x0 such that Ax0 = b and x0 > 0.
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The function
B(x) = − log(x)

is called a barrier function for the cone

Kl = {x ∈ R : x ≥ 0}.

A barrier function is any function such that

lim
x→0+

B(x) = +∞.
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min cT x − µ
n
∑

j=1
ln(xj)

st Ax = b.

(2)

■ µ is a given positive parameter.
■ Clearly, any feasible solution to (2) is a feasible solution to

(1).
■ Claim: As µ goes to 0 the optimal solution to (2) converge

to the true optimal solution.
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Define the Lagrange function

L(x, y) := cT x − µ
n

∑

j=1

ln(xj) − yT (Ax − b)

then the optimality conditions to (2) are

∇xL(x, y) = c − µX−1e − AT y = 0,

∇yL(x, y) = −Ax + b = 0,

x > 0

where
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X−1 = diag(x−1
1 , . . . , x−1

n ) =













x1 0 . . . 0
0 x2
...

. . . 0
0 xn













−1

and
e = (1, . . . , 1)T .
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Now define
s := µX−1e.

then the optimality conditions can be written as

c − AT y − s = 0,

−Ax + b = 0,

s − µX−1 = 0,

or equivalently
c − AT y − s = 0,

−Ax + b = 0,

Xs = µe.

(3)
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Observe
Xs = µe

is equivalent to
xjsj = µ.

The optimality conditions (3) says:

■ Dual feasibility.
■ Primal feasibility.
■ Perturbed complementarity.
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Observe that

cT x − bT y = cT x − (Ax)T y

= (c − AT y)T x

= sT x

= eT Xs

= µeT e

= µn.

■ Conclusion: Find a solution to the barrier problem (2) for µ

sufficiently small using Newton’s method.
■ The barrier term gets rid of the inequalities!
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Define (x(µ), y(µ), s(µ)) as the solution to

c − AT y − s = 0,

−Ax + b = 0,

Xs = µe.

■ (x(µ), y(µ), s(µ)) defines a continuous curve parameterized
by µ,

■ Called the central path.
■ Algorithmic idea.

◆ Follow the central path to the optimum.
◆ Leads to polynomial complexity.
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Define

F p
µ(x, y, s) =







c − AT y − s

−Ax + b

s − µX−1e






.

Assume we are given a (x0, y0, s0) such that

Ax0 = b and x0 > 0.

Also let
µ0 > 0

be given.
Solve

F
p

γµ0(x, y, s) = 0 (4)

approximately where
0 < γ < 1.
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How to solve (4) approximately? Use Newtons method i.e.

∇F
p

γµ0(x
0, y0, s0)







dx

dy

ds






= F

p

γµ0(x
0, y0, s0)

and






x+

y+

s+






=







x0

y0

s0






+ α







dx

dy

ds







for suitable chosen step size α ∈ (0, 1] i.e.

x+ > 0.
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The explicit Newton equation system

−AT dy − ds = −(c − AT y0 − s0),
−Adx = −(−Ax0 + b),

ds − γµ0(X0)−2dx = −(s0 − γµ0(X0)−1)

■ Easy fact:
Ax+ = b.

■ For suitable chosen starting point and γ:

◆ α = 1 is allowed.
◆ Leads to convergence of order 1√

n
.

◆ Polynomial complexity (O(
√

n) iterations).
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Assume we are given a (x0, y0, s0) such that

Ax0 = b, x0 > 0,

AT y0 + s0 = c, s0 > 0.

i.e. a primal-dual feasible interior solution.
Define

F pd
µ (x, y, s) =







c − AT y − s

−Ax + b

Xs − µe






.

The primal-dual search direction

∇F
pd

γµ0(x
0, y0, s0)







dx

dy

ds






= F

pd

γµ0(x
0, y0, s0)
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Or explicitly

−AT dy − ds = −(c − AT y0 − s0),
−Adx = −(−Ax0 + b),

X0ds + S0dx = −(X0s0 − γµ0e)

■ (x+, y+, s+) is computed the same way as in the primal
algorithm

◆ Except s+ > 0 is required too.

■ Primal and dual feasibility are preserved.
■ Is the basis for all commercially available interior-point based

software for linear optimization.
■ Target: Generalize this algorithm to conic quadratic

optimization.
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Primal problem:

min cT x

st Ax = b,

x1 − ‖x2:n‖2

x1
≥ 0,

x1 ≥ 0.

(5)

■ We assume ONE cone for simplicity.
■ The barrier function:

B(x) = −1

2

(

ln

(

x1 −
‖x2:n‖2

x1

)

+ ln(x1)

)

.
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Primal barrier problem:

min cT x − µ
2

(

ln
(

x1 − ‖x2:n‖2

x1

)

+ ln(x1)
)

Ax = b,

■ µ is positive parameter.
■ The optimum is in the interior for µ > 0.
■ Claim: For µ → 0 the optimum converges to the true

optimum.
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Optimality conditions:

Ax = b,

c1 − µ

2(x1− ‖x2:n‖2

x1
)
(1 + ‖x2:n‖2

x2
1

) − µ
2 x−1

1 − aT
:1y = 0,

c2:n + µ

x1− ‖x2:n‖2

x1

x2:n

x1
− AT

:(2:n)y = 0.
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■ Solve optimality conditions using Newton’s method.
■ While decreasing µ.
■ Given the right assumptions it leads to polynomial

complexity.
■ Does not exploit primal-dual structure.
■ A primal-dual algorithm should work better.
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Define:
ȳ := µ

2(x1− ‖x2:n‖2

x1
)
,

s1 := µ
2x1

.

Reformulated system:

Ax = b,

c1 − ȳ(1 + ‖x2:n‖2

x2
1

) − aT
:1y − s1 = 0,

c2:n + ȳ x2:n

x1
− AT

:(2:n)y = 0,

ȳ(x1 − ‖x2:n‖2

x1
) = µ

2 ,

x1s1 = µ
2 .

Observations:

■ Is perturbed KKT system to (5).
■ ȳ and s1 are dual multipliers.
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■ Solve system using Newton’s method.
■ While decreasing perturbation.
■ Authors suggesting this idea:

◆ McCormick,
◆ Vial, Vial and Anstreicher,
◆ Andersen and Ye,
◆ Vanderbei.
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Study
min x1

s.t.
x2
2

x1
≤ x1,

x1 ≥ 0.

Perturbed primal-dual system:

1 − ȳ(1 +
x2
2

x2
1

) − s1 = 0,

ȳ x2

x1
= 0,

ȳ(x1 − x2
2

x1
) = µ

2 ,

x1s1 = µ
2 .
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Observations:

■ One solution

(x1, x2, ȳ, s1) = (ǫ, βǫ, 0, 1)

where β ∈ (0, 1). Is not strictly complementarity.
■ The nonsymmetric primal-dual algorithm converge to

(x1, x2, ȳ, s1) = (ǫ, βǫ, 0.5, 0.5)

for “bad” starting points. Point is strictly complementarity.
■ See also the discussion of this example in [4].
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■ Implies dual feasibility is not achieved.
■ Computational results indicates:

◆ It works for nice problems.
◆ Computes primal optimal solution.
◆ Has severe problems with dual feasibility.
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■ Shown that conic quadratic problems can be approximated
by a linear problem.

◆ Is inefficient in most applications.
◆ Generates hard problems for the simplex methods.

■ Outline the conic simplex algorithm.

◆ But has not proven to be efficient in practice.

■ Discussed a couple of interior-point approaches.

◆ Primal interior-point methods works well at least in
theory.
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Mathematiqué et de Recherche Opérationelle, Faculté
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1. Prove that the function

f(x) =
‖x2:n‖2

x1
− x1

is convex on its domain.
2. Consider the problem

min x1

st x2
1 + x2

2 ≤ 1.

■ Rewrite the problem as conic quadratic optimization
problem.

■ Specify an linear relaxation that is ε = 1.0e− 3 accurate.
■ Solve the linear relaxation using you favorite software.

3. Implement the primal-dual interior-point algorithm for linear
problems in MATLAB.
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