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■ Who is the speaker.
■ What is conic quadratic optimization and why is it

interesting.
■ Some applications of conic quadratic optimization.
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The speaker:

■ Holds a ph.d. in Economics (read OR and optimization).
■ Main interest is algorithms for linear and convex optimization

problems.
■ Is CEO and lead developer at MOSEK ApS.
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■ A software package.
■ Solves large-scale sparse optimization problems.
■ Handles linear, conic, and nonlinear convex problems.
■ Stand-alone as well as embedded.
■ Used to solve problems with up to millions of constraints and

variables.
■ Version 1 release in 1999.
■ Version 5 released summer 2007.

For details about interfaces, trials, etc. see

http://www.mosek.com.
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(P ) min cT x

st Ax = b,

x ≥ 0.

Pros:

■ Huge number applications.
■ Powerful theory associated e.g. Farkas’ lemma and duality.
■ Highly efficient algorithms exists (simplex and interior-point).
■ Easy to represent the problem using c, A, and b.
■ Several solver software packages are available e.g. MOSEK,

CPLEX, Xpress.
■ Several modeling software packages are available e.g. GAMS,

AMPL, AIMMS.
■ In short: Linear optimization is easy to use.
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Cons:

■ The linearity assumption is restrictive.
■ For instance the unit ball

x2
1 + x2

2 ≤ 1

can only be approximated.

Question:

■ Is it possible to generalize linear optimization while keeping
all the good properties?
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(NO) min f(x)
st g(x) ≤ 0.

Pros:

■ Very general.

Cons:

■ Duality theory is somewhat fuzzy.
■ Lack of good algorithms.
■ Local versus global optimums.
■ Convexity (how to check).
■ Black box model.
■ How to compute gradients and Hessians.
■ How to handle f and g in software.
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The linear optimization problem involves the convex cone

{x ∈ R : x ≥ 0}

denoted the linear cone.
Recall a convex set K is a convex cone if

x ∈ K ⇒ λx ∈ K,∀λ ≥ 0.

A generalization of linear optimization is to allow more general
cones i.e the quadratic cone:







x ∈ Rn : x1 ≥
√

√

√

√

n
∑

j=2

x2
j






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The quadratic cone is also known as

■ The second order cone.
■ The Lorentz cone.
■ The ice cream cone.

An example:

min x5

st 2x1 + 3x2 − 1 = x3,

1x1 + 7x2 − 2 = x4,

x5 ≥
√

x2
3 + x2

4.
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Equivalent specifications:

■

{

x ∈ Rn : x1 ≥
√

n
∑

j=2
x2

j

}

■ {x ∈ Rn : x1 ≥ ‖x2:n‖}

■

{

x ∈ Rn : x2
1 ≥

n
∑

j=2
x2

j , x1 ≥ 0

}

■ {x ∈ Rn : x ºQ 0}
Notes:

■ All norms are 2 norms unless otherwise stated.
■ Conic optimization may be seen as a way of generalizing the

inequality (≥).
■ Many applications will be shown later.
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The generic conic optimization problem:

min
∑

k(c
k)T xk

st
∑

k Akxk = b,

xk ∈ Kk.

where

■ ck ∈ Rnk

.
■ Ak ∈ Rm×nk

.
■ b ∈ Rm.
■ Kk is a nonempty pointed convex cone i.e.

◆ (Convexity) Kk is a convex set.
◆ (Conic) x ∈ Kk ⇒ λx ∈ Kk, ∀λ ≥ 0.

◆ (Pointed) x ∈ Kk and − x ∈ Kk ⇒ x = 0.
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The linear optimization problem

min cT x

st Ax = b,

x ≥ 0
(1)

has the dual problem

max bT y

st AT y + s = c,

s ≥ 0.

(2)
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Let (x, y, s) be a primal and dual feasible solution then

cT x ≥ bT y

holds.
Comments:

■ How to interpretate this fact?
■ What can this fact be used to?
■ How to prove this fact?



Strong duality

Introduction

Motivation for conic
optimization

Conic optimization

The generic problem

A recap. of linear
duality

Weak duality

Strong duality

Conic duality

Conic quadratic
optimization

Applications

Summary

References

Exercises

17 / 53

Well-known facts:

■ (1) has an optimal solution if and only if a solution (x, y, s)
exist such that

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

cT x − bT y = 0.

■ (1) is primal infeasible if and only a (y, s) exists such that

AT y + s = 0, bT y > 0, s ≥ 0.

■ (1) is dual infeasible (i.e. (2) is infeasible) if and only a x

exists such that

Ax = 0, cT x < 0, x ≥ 0.
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Duality theory is very powerful:

■ Makes it easy to verify optimality.
■ Makes it easy to certify that a problem is infeasible.

◆ Think about how to prove you speak english.
◆ And how you prove you do not speak english.

■ Employed extensively within algorithms.
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Given a convex cone K then the dual cone K∗ is given by

K∗ := {s : sT x ≥ 0, ∀x ∈ K}.

Given the primal conic optimization

min
∑

k(c
k)T xk

st
∑

k Akxk = b,

xk ∈ Kk.

(3)

then the corresponding dual problem is

max bT y

st (Ak)T y + sk = ck,

sk ∈ (Kk)∗.
(4)
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Observe the dual cone corresponding to the linear cone

{x ∈ R : x ≥ 0}

is
{s ∈ R : s ≥ 0}.

■ The linear cone is self-dual i.e.

K = K∗.

■ In the linear case conic duality is equivalent to the usual
linear optimization duality.
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Observe

■ Weak duality holds:

∑

k(c
k)T xk − bT y =

∑

k((A
k)T y + sk)T xk − bT y

= bT y +
∑

k(x
k)T sk − bT y

=
∑

k(x
k)T sk

≥ 0.

■ All the usual duality relations holds ALMOST in the conic
case.

■ More details later.
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■ Conic optimization is a way to generalize linear optimization.
■ The nonlinearity is placed in the cone.
■ Hence, a way of generalizing what is meant by inequality.
■ A conic problem has a meaningful dual problem just as in the

linear case.
■ The problem is completely specified by c, A, and b plus some

simple information about the cone structure.
■ Hence, conic optimization is almost like linear optimization.
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Lemma 1 The set is

Kq =







x ∈ Rn : x1 ≥
√

√

√

√

n
∑

j=2

x2
j







is convex cone.

Lemma 2 The quadratic cone is self dual i.e.

Kq = K∗
q .
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■ One dimensional quadratic cone:

{x ∈ R1 : x1 ≥ 0}.

■ Two dimensional quadratic cone:

{x ∈ R2 : x1 ≥ ‖x2‖} = {x ∈ R2 : x1 ≥ |x2|}.

Conclusion:

■ Linear optimization is a special case of conic quadratic
optimization.
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Consider the set
1

2
‖x‖2 + fT x ≤ g

which is equivalent to

z + fT x = g,

y = 1,

‖x‖2 ≤ 2zy, z, y ≥ 0.

Next define

z =
u + v√

2
and y =

u − v√
2

.

This implies
2zy = u+v√

2
u−v√

2

= u2 − v2.
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Hence we obtain

u+v√
2

+ fT x = g,
u−v√

2
= 1,

‖x‖2 + v2 ≤ u2, u ≥ 0.

Clearly,
‖x‖2 + v2 ≤ u2, u ≥ 0.

is the standard quadratic cone.
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Comments:

■ The set






x ∈ Rn : 2x1x2 ≥
n

∑

j=3

x2
j , x1, x2 ≥ 0







is called the rotated quadratic cone.
■ The rotated quadratic cone is identical to the quadratic cone

under a linear transformation.
■ Implies we can use the rotated quadratic whenever we like.
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Quadratic optimization

min 0.5||Q0x||2 + cT x

st 0.5||Qix||2 + ai:x ≤ bi,∀i = 1, 2, . . . .

Conic quadratic equivalent:

min cT x + t0
st ti + ai:x = bi, ∀i = 1, 2, . . . ,

Qix − yi = 0, ∀i = 0, 1, . . . ,

zi = 1, ∀i = 0, 1, . . . ,

||yi||2 ≤ 2tizi, ∀i = 0, 1, . . . .

Because
1

2
||Qix||2 ≤ ti, ∀i = 0, 1, . . . .
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Applications:

■ Finance.
■ Approximation of more general nonlinear problems.
■ Constrained linear least squares.

Notes:

■ The model contains fixed variables naturally.

◆ Eliminating the fixed variables destroys the duality.
◆ Fixed variables can be exploited computationally.

■ A problem size expansion may occur when stating the
problem on conic form.
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Consider the minimum sum of norms problem

min
∑

k

∥

∥

∥xk
∥

∥

∥

st
∑

k Akxk = b,

Conic quadratic reformulation

min
∑

k tk
st

∑

k Akxk = b,

tk ≥
∥

∥

∥xk
∥

∥

∥

Applications:

■ Image denoising.
■ Location problems.
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The dual problem is

max bT y

st (Ak)T y + sk = ck,

uk = 1,

uk ≥
∥

∥

∥sk
∥

∥

∥

where uk and sk are dual variables corresponding to tk and xk

respectively.
Equivalent dual problem after eliminating u is

max bT y

st (Ak)T y + sk = ck,
∥

∥

∥sk
∥

∥

∥

2
≤ 1.

Observe how easily the last dual problem was obtained using
conic duality.
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■ Assume k customers are given each located at position dk.
■ Assume we want to place a new facility at position x such

that
min

∑

k

∥

∥

∥x − dk
∥

∥

∥

i.e. the total distance to the costumers are minimized.
■ A special case of the minimizing a sum of norms problem.
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■ A n × n image is represented by n × n matrix.
■ Let

F ∈ R
n×n

be the observed image.
■ Let

U ∈ R
n×n

be the original image.
■ Let

V ∈ R
n×n

be some noise in the image.

We have
U + V = F.

Problem:

■ U and V are unknown.
■ How to estimate V ?
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The model:

∑

ij ti,j
U + V = F,

∥

∥

∥

∥

∥

ui,j − u(i+1),j

ui,j − ui,(j+1)

∥

∥

∥

∥

∥

≤ ti,j ,

‖V ‖F ≤ σ

where

‖V ‖F :=
√

∑

i,j

v2
i,j

and σ is user specified constant. Usually chosen related to
amount of expected amount of noise.
See [3] for more details.
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Consider the problem of minimizing the maximum of some norms

min maxk

∥

∥

∥Akxk + bk
∥

∥

∥

Conic quadratic reformulation

min v

st Akxk + bk = −yk,

tk ≤ v,

tk ≥
∥

∥

∥yk
∥

∥

∥ .
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Consider the problem

min
∑

j

cj

xj

st Ax = b,

x ≥ 0,

where cj > 0.
Conic quadratic reformulation:

min
∑

j

cjtj

st Ax = b,

zj =
√

2,

z2
j ≤ 2xjtj ,

x ≥ 0.
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Applications:

■ Equilibrium in TCP networks.
■ Stratified sampling.
■ Stock optimization models.
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Consider √
x ≥ |t|,
x ≥ 0,

where both t and x are variables. CQ reformulation

t2 ≤ 2xz,

z = 0.5,

x, z ≥ 0.
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Given cj > 0 then

∑

j cj
√

xj ≥ v,

x ≥ 0

is equivalent to
∑

j cjtj ≥ v,

t2j ≤ 2xjzj ,

zj = 0.5,

xj , zj , ≥ 0.

(tj < 0.0 may occur but does it matter?).
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Consider
x1.5 ≤ t,

0 ≤ x.

Note the simple fact

x1.5 =
x2

√
x

.

First define the set
x2 ≤ 2st,

s, t ≥ 0.

Now if we can make sure that

2s ≤
√

x,

then we have the desired result because this implies
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x1.5 =
x2

√
x
≤ x2

2s
≤ t.

Observe s can be chosen freely and
√

x = 2s is a valid choice.
Let

x2 ≤ 2st,

w2 ≤ 2vr,

x = v,

s = w,

r = 1
8 ,

s, t, v, r ≥ 0,

(5)

then
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s2 = w2

≤ 2vr

= v
4

= x
4

Moreover,
x2 ≤ 2st,

≤ 2
√

x
4 t

leading to the conclusion

x1.5 ≤ t.
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Consider the problem

max x

st t = 1,

z = 1,

x2 ≤ 2tz,

■ The optimal solution is x =
√

2.
■ All data are rational but the solution is irrational.
■ Has important implications for complexity.
■ For linear optimization rational data implies a rational

solution.
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■ The conic optimization model has been introduced.

◆ Is a generalization of linear optimization.
◆ The ≥ is generalized.

■ The special case of conic quadratic optimization is
introduced.

◆ Some applications has be shown.

■ A lot material for this lecture is available in [1, 2, ?, 4].
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1. Assume f(x) is a twice differentiable convex function. What
holds about the Hessian?

2. Given the function

f(x) = 0.5xT Hx + cT x + b

then specify under which conditions on H, v and b

■ The set {x : f(x) = 0} is convex.
■ The set {x : f(x) ≤ 0} is convex.
■ The set {x : f(x) ≥ 0} is convex.
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