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■ Important applications of conic quadratic optimization.

◆ Robust linear optimization.
◆ Portfolio optimization.
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■ A very important application of conic quadratic optimization
is robust optimization.

■ Robust optimization assumes the problem data e.g. A is not
known exactly.

■ Tries to compute a robust solution.
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Consider the toy linear optimization problem:

A company produces two kinds of drugs, DrugI and
DrugII, containing a specific active agent A, which is
extracted from raw materials which should be
purchased on the market. The drug production data
are as follows:

Drug Selling price, Content of agent A,
$ per 1000 packs g per 1000 packs

DrugI 6,200 0.500
DrugII 6,900 0.600

Drug Production expenses per 1000 packs
manpower,

hours
equipment,

hours
operational

costs, $
DrugI 90.0 40.0 700
DrugII 100.0 50.0 800
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There are two kinds of raw materials, RawI and
RawII, which can be used as sources of the active
agent. The related data are as follows:

Raw material Purchasing price, Content of agent A,
$ per kg g per kg

RawI 100.00 0.01
RawII 199.90 0.02

Finally, the per month resources dedicated to
producing the drugs are as follows:

Budget, $ Manpower, hours Equipment, hours
Capacity of raw

materials storage, kg
100,000 2,000 800 1,000
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The problem is to find the production plan which
maximizes the profit of the company.

The problem can be immediately posed as the following linear
programming program:
maximize

− (100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ) (cost)
+ (6200 · DrugI + 6900 · DrugII) (income)
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subject to

0.01 · RawI + 0.02 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0
RawI + RawII ≤ 1000

90.0 · DrugI + 100.0 · DrugII ≤ 2000
40.0 · DrugI + 50.0 · DrugII ≤ 800

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000
RawI, RawII, DrugI, DrugII ≥ 0

Explanation of constraints:

■ balance of active agent
■ storage restriction
■ manpower restriction
■ equipment restriction
■ budget restriction
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The optimal solution:

*** Optimal value: 8819.658

*** Optimal solution:

RawI: 0.000

RawII: 438.789

DrugI: 17.552

DrugII: 0.000

Comments

■ The company makes a profit 8819 on a budget of 100,000
i.e. 8.8%.

■ The balance constraint is active as could have been guessed.
■ Is there anything wrong with the solution?
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■ Is it likely that RawI contains exactly 0.01 g per kg of agent
A?
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■ Is it likely that RawI contains exactly 0.01 g per kg of agent
A? No.

■ Reasonable assumption: The contents of the active agent aI

in RawI and aII in RawII in the raw materials are random
variables.

■ Assume instead:

aI =

{

0.0095, p = 0.5
0.0105, p = 0.5

and

aII =

{

0.0196, p = 0.5
0.0204, p = 0.5

where p is a probability.
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■ The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.
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■ The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.

■ That will be an infeasible plan with probability of 0.5.
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■ The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.

■ That will be an infeasible plan with probability of 0.5.
■ In that case we can only produce 17201 packs leading to a

profit of 6889.
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■ The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.

■ That will be an infeasible plan with probability of 0.5.
■ In that case we can only produce 17201 packs leading to a

profit of 6889. A 21% decrease in the profit.
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■ The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.

■ That will be an infeasible plan with probability of 0.5.
■ In that case we can only produce 17201 packs leading to a

profit of 6889. A 21% decrease in the profit.
■ The expected profit is 7854.
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■ The optimal solution says buy 438.8 kg of RawII and
produce 17552 packs of drug DrugII.

■ That will be an infeasible plan with probability of 0.5.
■ In that case we can only produce 17201 packs leading to a

profit of 6889. A 21% decrease in the profit.
■ The expected profit is 7854.
■ Conclusion:

We see that in our toy example pretty small (and unavoidable
in reality) perturbations of the data may make the optimal
solution infeasible, and a straightforward adjustment to the
actual solution values may heavily affect the solution quality.
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The standard linear optimization problem:

min cT x

st ai:x ≤ bi, ∀i.

Assume:

aT
i: ∈ Ei := {z : z = āT

i: + H iy, ‖y‖ ≤ 1},

where
H i ∈ R

n×li .

Observe:

■ Ei is an ellipsoid.
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For a fixed x we have

max
ai:∈Ei

ai:x = max
‖y‖≤1

xT (āT
i: + H iy)

= āi:x + max
‖y‖≤1

xT H iy

= āi:x +
∥

∥

∥(H i)T x
∥

∥

∥ .

(Why does the last equality holds?)
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Therefore,

min cT x

st ai:x ≤ bi, aT
i: ∈ Ei, ∀i

and
min cT x

st āi:x +
∥

∥

∥(H i)T x
∥

∥

∥ ≤ bi, ∀i

are equivalent.
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Consider
min −x1

st a1x1 + a2x2 ≤ 1,

x1, x2 ≥ 0.

Assuming that a1 = a2 = 1 then the optimal solution is

x1 = 1 and x2 = 0.

Notes

■ The optimal solution is on the boundary (holds generically).
■ The optimal solution is infeasible if a1 > 1 and therefore not

robust.
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Next consider the robust version

min −x1

st a1x1 + a2x2 ≤ 1, ∀(a1, a2) ∈ E
x1, x2 ≥ 0.

where

E := {(a1, a2) : (a1, a2) = (1, 1) + θy, ‖y‖ ≤ 1}

and θ is a fixed nonnegative number. Equivalent robust version

min −x1

st x1 + x2 + θ ‖(x1, x2)‖ ≤ 1,

x1, x2 ≥ 0.
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Notes

■ The optimal solution is (x1, x2) =
(

1
1+θ , 0

)

.

■ The optimal solution is in the interior of

{(x1, x2) : x1 + x2 ≤ 1}

for θ > 0.
■ The robust version push the optimal solution into the interior

of the original feasible region.
■ Therefore, the optimal solution is still feasible even for small

changes in the problem data.
■ Clearly, there is a tradeoff between “robustness” and the

objective value.
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Assumptions:

■ ai: are independent Gaussian random vectors i.e.

ai: ∼ N(āi:,Σi).

Problem:
min cT x

st Prob(ai:x ≤ bi) ≥ p,∀i.

Now
Prob(ai:x ≤ bi) ≥ p

is equivalent to

Prob

(

ai:x − µ

σi
≤ bi − µ

σi

)

≥ p
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where
µ = ā:ix and σi =

∥

∥

∥Σ
1

2 x
∥

∥

∥ .

Clearly
ai:x − ā:ix

∥

∥

∥

∥

Σ
1

2

i x

∥

∥

∥

∥

∼ N(0, 1).

Hence,
bi − ā:ix
∥

∥

∥

∥

Σ
1

2

i x

∥

∥

∥

∥

≥ Φ−1(p)

where

Φ(z) :=
1

2π

∫ z

−∞
e−t2/2dt.

Thus

bi ≥ ā:ix + Φ−1(p)

∥

∥

∥

∥

Σ
1

2

i x

∥

∥

∥

∥

.
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Equivalent problem:

min cT x

st āi:x + Φ−1(p)
∥

∥

∥Σ
1/2
i x

∥

∥

∥ ≤ bi,∀i.

Notes:

■ For p ≥ 0.5 then Φ−1(p) ≥ 0.
■ Hence, is a conic quadratic problem for p ≥ 0.5.
■ Is called chance constrained optimization.
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■ Select a portfolio of assets i.e. stocks, bonds, etc.
■ Such that a large return with a low risk is obtained.
■ Assumptions:

◆ An initial portfolio is available.
◆ A single period.
◆ One of the assets is risk free i.e. cash.
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Parameters:

■ A portfolio can consist of n traded assets numbered 1, 2, . . .

held over a period of time
■ w0

j is the initial holding of asset j where
∑

j w0
j > 0.

■ rj is the return on asset j assumed to be a random variable.
r has a known mean r̄ and covariance Σ.

Variables:

■ xj is the amount of asset j traded.

◆ If xj > 0, then the amount of asset j is increased (by
purchasing).

◆ If xj < 0, then the amount of asset j is decreased (by
selling).
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Observe

■ Return (expected return)

E[rT (w0 + x)] = r̄T (w0 + x)

■ Risk (variance)

V [rT (w0 + x)] = (w0 + x)T Σ(w0 + x)

■ High return and a small risk i.e. small variance is desired.
■ There is a trade-off between return and risk.
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■ Expected return and variance can be nontrivial to estimate.
■ By definition Σ is positive semi-definite and

Std. dev. =
∥

∥

∥Σ
1

2 (w0 + x)
∥

∥

∥

=
∥

∥

∥LT (w0 + x)
∥

∥

∥

where L is any matrix such that

Σ = LLT

i.e. for instance the Cholesky factor.
■ A low rank of Σ is advantageous from a computational point

of view.
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First model:

min (w0 + x)T Σ(w0 + x)
st r̄T (w0 + x) = t,

eT x = 0,

where e := (1, . . . , 1)T .
Model:

■ Minimizes the variance.
■ While selecting a portfolio having an expected target return

of t.
■ Satisfying the budget or self-financing constraint.

Usage:

■ Solved for different values of t.
■ Investor choose the portfolio that according to his/her

preferences has the best relation between risk and return.
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Comments:

■ Is a convex quadratic optimization problem.
■ Can be formulated as conic a quadratic optimization

problem.
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Conic quadratic reformulation:

min f

st Σ
1

2 (w0 + x) − g = 0,

r̄T (w0 + x) = t,

eT x = 0,

f ≥ ‖g‖ .

■ Minimizes the standard deviation instead of the variance.
■ Is a conic quadratic optimization problem.
■ Σ

1

2 can be replaced by any matrix L where Σ = LLT . A low
rank L is computationally advantageous.

■ If linear inequality constraints are added to the problem it
gets harder.
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Alternative formulation

max r̄T (w0 + x)

st Σ
1

2 (w0 + x) − g = 0,

f = f̂ ,

eT x = 0,

f ≥ ‖g‖ .

■ Maximizes the expected return.
■ While making sure the standard deviation is bounded by f̂

chosen by the investor.
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■ Short selling is allowed i.e.

w0
j + xj < 0

is allowed.
■ How does short selling works?

◆ Borrow the asset from someone now and then sell it.
◆ At the end of the period buy the asset back.
◆ Return it to the lender with the return.
◆ You make money if prices decrease and loose if they

increase.

■ What is the potential loss of short selling?
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■ Short selling is allowed i.e.

w0
j + xj < 0

is allowed.
■ How does short selling works?

◆ Borrow the asset from someone now and then sell it.
◆ At the end of the period buy the asset back.
◆ Return it to the lender with the return.
◆ You make money if prices decrease and loose if they

increase.

■ What is the potential loss of short selling?

◆ Infinite.
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New model
min f

st Σ
1

2 (w0 + x) − g = 0,

r̄T (w0 + x) = t,

eT x = 0,

w0
j + xj ≥ 0,

f ≥ ‖g‖ .

■ Eliminates short selling completely by adding the constraint

w0
j + xj ≥ 0.
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Alternatives:

■ Allow short selling of sj for asset j

w0
j + xj ≥ −sj .

■ Limits the total of the short positions to a fraction γ of the
total of the long positions.

∑

j
(wj + xj) = h+ − h−,

∑

j
h−

j ≤ γ
∑

j
h+

j ,

h+, h− ≥ 0,

where h+
j and h−

j are variables.
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■ Limit the amount invested in each asset to bj :

w0
j + xj ≤ bj .

■ Limit the relative amount invested in each asset to γj :

w0
j + xj ≤ γj

∑

j

(w0
j + xj).

■ Limit the relative amount invested in a group of assets (J )
by γ:

∑

j∈J

(w0
j + xj) ≤ γ

∑

j

(w0
j + xj).
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■ We have assumed no transactions cost i.e the cost of trading
is 0.

■ According to [3] trans. cost has the form

commission +
bid

ask
− spread + θ

√

trade volume

daily volume
.

■ The market impact cost

θ

√

trade volume

daily volume

can be most significant term.
■ θ has to be estimated.
■ “daily volume” may be hard to know.
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■ Assume transaction cost can be approximated by a
(piecewise) linear function e.g.

T (xi) =

{

−c−j xj , xj ≤ 0,

c+
j xj , xj > 0.

■ An even more realistic assumption is linear transactions cost
plus a fixed trading cost i.e.

T (xi) =











bj − c−j xj , xj < 0,

0, xj = 0,

bj + c+
j xj , xj > 0.
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A model including linear transaction costs:

min f

st Σ
1

2 (w0 + x) − g = 0,

r̄T (w0 + x) = t,

eT x + eT y = 0,

c+
j xj ≤ yj ,

−c−j xj ≤ yj ,

f ≥ ‖g‖ .

■ yj is the transaction cost associated with asset j.
■ We should prove that one of the inequalities

c+
j xj ≤ yj and − c−j xj ≤ yj

hold as equality at optimum. Not true unfortunately!
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Assuming a risk free asset with positive return then the model

max r̄T (w0 + x)

st Σ
1

2 (w0 + x) − g = 0,

f = f̂ ,

eT x + eT y = 0,

c+
j xj ≤ yj ,

−c−j xj ≤ yj ,

f ≥ ‖g‖ .

does not have the problem.
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Mitchell and Braun [2] suggests to minimize

Σ
1

2 (w0 + x)

eT w0 − eT y
=

std. dev.

invested amount

i.e. minimize the standard deviation per invested $. Seems quit
reasonable.
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Model
min f

v

st Σ
1

2 (w0 + x) − g = 0,

r̄T (w0 + x) = t,

eT x + eT y = 0,

c+
j xj ≤ yj ,

−c−j xj ≤ yj ,

eT w0 − eT y = v,

v > 0,

f ≥ ‖g‖ .

■ v is variable and is the invested amount.
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Define

x =
x̂

τ

and similarly for all the other variables. Also multiply each
constraint by τ . New model:

min f̂
v̂

st Σ
1

2 (w0τ + x̂) − ĝ = 0,

r̄T (w0τ + x̂) = tτ,

eT x̂ + eT ŷ = 0,

c+
j x̂j ≤ ŷj ,

−c−j x̂j ≤ ŷj ,

eT w0τ − eT ŷ = v̂,

v̂, τ > 0,

f̂ ≥ ‖ĝ‖ .
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■ Is homogeneous.
■ Has a linear fractional objective.
■ Therefore, we can arbitrarily fix v to 1.
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Final model:

min f̂

st Σ
1

2 (w0τ + x̂) − ĝ = 0,

r̄T (w0τ + x̂) = tτ,

eT x̂ + eT ŷ = 0,

c+
j x̂j ≤ ŷj ,

−c−j x̂j ≤ ŷj ,

eT w0τ − eT ŷ = v̂,

v̂ = 1,

τ > 0,

f ≥ ‖g‖ .

■ Is a conic quadratic optimization problem.
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A model including linear transaction costs:

min f

st Σ
1

2 (w0 + x) − g = 0,

r̄T (w0 + x) = t,

eT x + eT y = 0,

bjzj + c+
j xj ≤ yj ,

bjzj − c−j xj ≤ yj ,

xj ≤ ujzj ,

−xj ≤ ljzj ,

zj ∈ {0, 1}
f ≥ ‖g‖ .
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■ lj and uj are known parameters such that

lj ≤ xj ≤ uj

■ In theory a very hard problem. Tight bounds lj and uj help.
■ Various heuristics can be designed. See [1].
■ Or branch and bound can be used.
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■ If you sell (buy) a lot of asset the price is likely to go down
(up).

■ This is captured by the market impact term

θ

√

trade volume

daily volume
≈ mj

√
xj .

mj has to be estimated.

Market impact cost can be included as follows

min f

st Σ
1

2 (w0 + x) − g = 0,

r̄T (w0 + x) = t,

eT x + eT y = 0,

|xj |(mj |xj |
1

2 ) ≤ yj ,

f ≥ ‖g‖ .
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Now define the variable transformation

yj = mj ȳj

then we obtain

min f

st Σ
1

2 (w0 + x) − g = 0,

r̄T (w0 + x) = t,

eT x + mT ȳ = 0,

|xj |3/2 ≤ ȳj ,

f ≥ ‖g‖ .
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The set
|xj |3/2 ≤ ȳj

can be modeled by

xj ≤ zj ,

−xj ≤ zj ,

z2
j ≤ 2sj ȳj ,

u2
j ≤ 2vjqj ,

zj = vj ,

sj = uj ,

qj = 1
8 ,

qj , sj , ȳj , vj , qj ≥ 0.
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■ Assume
r ∼ N(r̄,Σ).

■ May not be a totally reasonable assumption.
■ Shortfall risk constraint

Prob(W ≥ W low) ≥ η

where η ≥ 0.5 and W low > 0. Both chosen by the investor.
■ I.e. the wealth should be greater than a lower threshold with

a high probability.
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Now
Prob(W ≥ W low) ≥ η

implies

Prob

(

W − µ

σ
≥ W low − µ

σ

)

≤ 1 − η

where
µ = r̄(w0 + x) and σ =

∥

∥

∥Σ
1

2 (w0 + x)
∥

∥

∥

Now

z =
W − µ

σ
∼ N(0, 1).
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Given

Φ(z) :=
1

2π

∫ z

−∞
e−t2/2dt.

the shortfall risk constraint is equivalent to

Φ−1(η) ≤ r̄T (w0 + x) − W low

∥

∥

∥Σ
1

2 (w0 + x)
∥

∥

∥

or
Φ−1(η)

∥

∥

∥Σ
1

2 (w0 + x)
∥

∥

∥ ≤ r̄T (w0 + x) − W low.

■ Is a conic quadratic constraint for η ≥ 0.
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A model with a single shortfall risk constraint:

max r̄T (w0 + x)

st Σ
1

2 (w0 + x) − g = 0,

eT x = 0,
1

Φ−1(η)
(r̄T (w0 + x) − W low) ≥ f

f ≥ ‖g‖ .

■ Multiple shortfall constraints are possible.
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■ [3] deals with portfolio optimization.
■ [1] contains a lot the material presented here.
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■ Robust optimization is an important application for conic
quadratic optimization.

◆ Can be given a nice chance constrained interpretation.

■ The Markowitz portfolio model and its variants can be
formulated as quadratic optimization problem.

◆ Probably the most commercially most important
application of conic quadratic optimization as of 2006.
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