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Abstract. Minimum-distance controlled tabular adjustment methods
(CTA), an its variants, are considered an emerging perturbative approach
for tabular data protection. Given a table to be protected, the purpose
of CTA is to find the closest table that guarantees protection levels for
the sensitive cells. We consider the most general CTA formulation which
includes binary variables, thus providing protected tables with a higher
data utility, at the expense of a larger solution time. The resulting model
is a Mixed Integer Linear Problem (MILP). The purpose of this work is
twofold. First, it presents and describes the main features of a package
for CTA which is linked to both commercial (Cplex and Xpress) and
open-source (Glpk, Cbc and Symphony ) MILP solvers. The particular
design of the package allows easy integration with additional solvers.
The second objective is to perform a computational evaluation of the
above two commercial and three open-source MILP solvers for CTA,
using both standard instances in the literature and real-world ones. Users
of tabular data confidentiality techniques in National Statistical Agencies
may find this information useful for the trade-off between the (more
efficient but expensive) commercial and the (slower but free) open-source
MILP solvers.

Keywords: statistical disclosure control, controlled tabular adjustment,
mixed integer linear programming, optimization software, open-source
software.

1 Introduction

According to the recent handbook [12], minimum-distance controlled tabular
adjustment methods (CTA) are considered an emerging technology for the pro-
tection of tabular data. CTA was initially suggested in [9] (for L1 distances and
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binary variables) and [1] (for L1, L2 and L∞ distances and with or without
binary variables), as an alternative to the well known cell suppression problem
(CSP) [2,13]. For a particular set of real instances, the quality of CTA solutions
was observed to be higher than that obtained with CSP [5]. A recent discussion
on these tabular data protection techniques can be found in the survey [4].

CTA was included in 2008 within a solution scheme for the protection of
European structural business statistics. The resulting package [6] was developed
within an Eurostat funded framework in collaboration with Statistics Germany
and Statistics Netherlands [11]. Initially this CTA package was only linked to the
state-of-the-art commercial solver Xpress, following the Eurostat requirements.
Later, it was also hooked to Cplex, one of the best commercial solvers. The
initial design of the code (meant only for the Xpress solver) forced to replicate
and particularize according to the solver most of the model definition, solution,
and solution retrieval interface routines. Although these routines are similar
for most solvers, this procedure is cumbersome and error-prone. It also makes
the maintenance of the CTA package difficult. This is specially relevant when
alternative, efficient enough, open-source MILP solvers are available, and want
to be tested by National Statistical Institutes (NSIs).

This work presents a new multisolver CTA package. The package is based on
an object oriented design and it uses the Open Solver Interface (OSI) abstract
base class, to be commented below, which allows easy integration with new avail-
able solvers. OSI is part of the COIN-OR project [14], sponsored by IBM. The
multisolver CTA package is currently linked to five solvers: two commercial ones
(Cplex and Xpress), and three open-source ones (Glpk, Cbc, and Symphony).
Package Glpk is part of the GNU project of the Free Software Foundation. Pack-
ages Cbc and Symphony are also part of the COIN-OR project. The package
is tested using a set of public and confidential real-world instances, which are
classified into two groups of small and medium-sized problems. The computa-
tional results show that for small instances all solvers are consistently efficient,
whereas for medium-sized instances there is a wider range of situations.

It is worth to note that, due to its object oriented design and the use of
the OSI, this CTA package can be “easily” adapted for a multisolver version of
the “continuous CTA” variant (i.e., without binary variables, thus formulating
a simpler linear programming (LP) problem), which can be solved much more
efficiently, at the expense of providing a lower quality solution. This approach
was originally introduced in [1], and it has been suggested as the basis for on-
line protection in tabular data servers [8]. Updating the current multisolver CTA
package for this simpler LP problem is one of the forthcoming tasks.

The paper is organized as follows. Section 2 reviews the CTA MILP formula-
tions for problems with both positive and negative protection levels. Section 3
describes the design and main features of the new package. Finally, Section 4 re-
ports the computational evaluation between the five solvers with both standard
instances found in the literature and real-world ones.
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2 The CTA Model

A CTA instance is defined by the following parameters: (i) a set of cells ai, i ∈
N = {1, . . . , n}, that satisfy some linear relations Aa = b (a being the vector of
ai’s); (ii) a lower and upper bound for each cell i ∈ N , respectively lai and uai ,
which are considered to be known by any attacker; (iii) a set S = {i1, i2, . . . , is} ⊆
N of indices of sensitive cells; (iv) and a lower and upper protection level for
each sensitive cell i ∈ S, respectively lpli and upli, such that the released values
satisfy either xi ≥ ai+upli or xi ≤ ai− lpli. The structure of the table is defined
by equations Aa = b, which can model any kind of table. We are not imposing
ai ∈ Z, then fractional cell values can be obtained. The model is thus valid for
magnitude tables, not frequency ones. However, in practice, it was observed that
perturbed cell values obtained are integer without imposing ai ∈ Z [1].

The purpose of CTA is to find the closest safe values xi, i ∈ N , according to
some distance L, that make the released table safe. This involves the solution of
the following optimization problem:

min
x

||x− a||L
s. to Ax = b

lai ≤ xi ≤ uai i ∈ N
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ S.

(1)

Problem (1) can also be formulated in terms of cell deviations. Defining zi =
xi − ai, i ∈ N —and similarly lzi = lxi − ai and uzi = uxi − ai—, (1) can be
recast as:

min
z

||z||L
s. to Az = 0

lzi ≤ zi ≤ uzi i ∈ N
zi ≤ −lpli or zi ≥ upli i ∈ S,

(2)

z ∈ R
n being the vector of deviations. Defining z = z+ − z−, (2) can be written

for the L1 distance as

min
z+,z−,y

n∑

i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
0 ≤ z+i ≤ uzi i �∈ S
0 ≤ z−i ≤ −lzi i �∈ S
upli yi ≤ z+i ≤ uzi yi i ∈ S
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi) i ∈ S
yi ∈ {0, 1} i ∈ S,

(3)

w ∈ R
n being the vector of cell weights, z+ ∈ R

n and z− ∈ R
n the vector of

positive and negative deviations in absolute value, and y ∈ R
s being the vector

of binary variables associated to protections senses. When yi = 1 the constraints
mean upli ≤ z+i ≤ uzi and z−i = 0, thus the protection sense is “upper”; when
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yi = 0 we get z+i = 0 and lpli ≤ z−i ≤ −lzi , thus protection sense is “lower”.
Model (3) is, in general, a (difficult) MILP.

If the problem has negative protection levels (i.e., lpli < 0 or upli < 0 for at
least one cell i), the optimization model (3) is no longer valid. Problems with
negative protection levels can be useful for the sequential protection of correlated
tables [3]. The following alternative model, introduced in [3], may be used for
these cases:

min
z+,z−,y

n∑

i=1

wi(z
+
i + z−i )

subject to A(z+ − z−) = 0
lz ≤ z+ − z− ≤ uz

z+i − z−i ≥ upliyi + lzi(1− yi) i ∈ S
z+i − z−i ≤ −lpli(1 − yi) + uziyi i ∈ S
(z+, z−) ≥ 0
yi ∈ {0, 1} i ∈ S.

(4)

The main difference between (4) and (3) is that (z+, z−) are not related to upper
and lower protection deviations in (4), but they are just auxiliary variables to
model the L1 distance. As a result, model (4) is valid for any kind of instance,
with either positive or negative protection levels. However, as shown in [3], it is
less efficient than model (3), and then, (3) is preferred for problems with only
positive protection levels. The multisolver CTA package described in the next
section implements both models (3) and (4).

3 The Multisolver CTA Package

There are three main options for implementing a CTA package linked to several
optimization solvers:

1. Developing ad hoc code for each particular solver. This was the choice for the
previous CTA package [6], which was only linked to Cplex and Xpress. This
is the most versatile and efficient option, but also the most time consuming
and difficult to maintain, since future extensions in the model should be
replicated in the particular code for each solver.

2. Using a generic modeling language (such as AMPL [10]), which is already
hooked to several solvers. This option allows quick development of models,
but it has two main drawbacks: good modeling languages are commercial
and proprietary software (in some cases, linked to only one particular solver);
and they are interpreted languages, so no compiler is available to generate
an efficient executable. This option is mainly appropriate for testing models
and prototypes.

3. A third option between the two above is using a generic model interface. This
was the choice. In particular, we considered the open-source Open Solver
Interface (OSI), a C++ generic base class to interface several optimization
solvers. OSI is developed within the COIN-OR project [14].
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Due to the use of the OSI, the new CTA package is written in C++ in an
object oriented design. The optimization model is formulated as a generic OSI
model, which can then be solved using some of the solvers interfaced to OSI.
The current implementation is linked to Cplex, Xpress (commercial ones), Glpk,
Cbc and Symphony (open-source ones). We remark that, although OSI provides
several interface routines to communicate with the solvers, it does not offer
the same flexibility than the option 1 above. Therefore, in practice, the CTA
package also implements for each solver ad hoc code for some features (such as,
for instance, restarting the optimization procedure after some time limit has been
reached). C++ virtual functions [15] were used (for each solver) for procedures
such as running the solver, closing the solver, getting full information about
the solution, and applying the tool to repair infeasible instances [7]. The use of
virtual functions allows clean separation between solvers, and an easy integration
of new ones. Although virtual functions mean an overhead to the execution time
[15], they are used only once—when the package has to deal with the particular
solver—during the run.

The package implements several options which can be controlled by the user.
Describing all of them is out of the scope of this work. Most of them are common
to the previous CTA package, whose full details can be found in [6]. The most
important parameters are:

– Solver to be used.
– Whether to stop at the first feasible solution.
– Several optimization tolerances (e.g., feasibility and integrality tolerance).
– Time limit of the optimization procedure (the default value is a very large

time limit, i.e., one day of CPU time).
– Model to be used, either (3) or (4) [3].
– Whether to apply the “repair infeasibility” tool [7].
– Whether to make additive non-additive tables [3].
– The (percentage) optimality gap, which is computed as gap = obj−lb

1+|obj| · 100,
where obj is the objective function and lb is the lower bound provided by
the solver. The default value is a 5% optimality gap.

To avoid biased results, the default values for these parameters were used for
all the solvers in the computational evaluation of next section (but for the time
limit, which was reduced). Of course, tuning some parameters it could be possible
to speed up the solution process, but the goal of this work was to make a fair
comparison between the five solvers.

4 Computational Results

We have considered a set of 33 instances, divided into two groups of “small” and
“medium-sized” instances. Table 1 shows the main dimensions of these instances:
number of cells (column n), number of sensitive cells (s), number of tabular linear
relations (m), number of variables and constraints of formulation (3) (“vars” and
“cons”), and percentage of binary variables (“%bin”). Instances with a large
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Table 1. Dimensions of the test instances: number of cells n, number of sensitive
cells s, number of tabular constraints m, number of variables and constraints of the
optimization problems “vars.” and “cons.”, percentage of binary variables “%bin”

instance n s m vars. cons. %bin

Small instances

idescat1 126 30 45 282 165 11.90
idescat2 126 27 45 279 153 10.71
idescat3 126 15 45 267 105 5.95
idescat4 126 12 45 264 93 4.76
idescat5 126 7 45 259 73 2.78
idescat6 126 35 45 287 185 13.89
MM140 m03m04 87 5 35 179 55 2.87
MM140 m04m05 87 5 35 179 55 2.87
MM140 m05m06 87 5 35 179 55 2.87
MM140 m06m07 87 5 35 179 55 2.87
MM140 m07m08 87 5 35 179 55 2.87
MM140 m08m09 87 5 35 179 55 2.87
MM140 m09m10 87 5 35 179 55 2.87
MM140 m10m11 87 5 35 179 55 2.87
MM140 m11m12 87 5 35 179 55 2.87
osorio 10201 7 202 20409 230 0.03
table7 624 17 230 1265 298 1.36
table8 1271 3 72 2545 84 0.12
targus 162 13 63 337 115 4.01

Medium-sized instances

australia ABS 24420 918 274 49758 3946 1.88
cbs 11163 2467 244 24793 10112 11.05
dale 16514 4923 405 37951 20097 14.91
destatis 5940 621 1464 12501 3948 5.23
hier13 2020 112 3313 4152 3761 2.77
hier16 3564 224 5484 7352 6380 3.14
sbs2008 C 4212 1135 2580 9559 7120 13.47
sbs2008 E 1430 382 991 3242 2519 13.36
table1 1584 146 510 3314 1094 4.61
table3 4992 517 2464 10501 4532 5.18
table4 4992 517 2464 10501 4532 5.18
table5 4992 517 2464 10501 4532 5.18
table6 1584 146 510 3314 1094 4.61
toy3dsarah 2890 376 1649 6156 3153 6.51
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number of cells, but only a few of them sensitive, such as “osorio”, “table7”
and “table8” are classified as small. Instances “australia ABS” (provided by the
Australian Bureau of Statistics), “idescat*” (provided by the Statistical Institute
of Catalonia), “MM140 m*m*” (provided by Eurostat), “destatis” (provided by
the German Federal Statistical Office), and “sbs2008 *” (provided by Eurostat)
are confidential real-world ones; the remaining ones are public and have been
previously used in the literature [1,3,4].

These 33 instances were run with the five solvers in the CTA package, the
commercial Cplex and Xpress, and the open-source Glpk, Cbc and Symphony.
A time limit of 10000 seconds was set for all the executions. The default values
were used for the remaining parameters, the most relevant being the optimality
gap (5%) and the solution of model of formulation (3) (instead of model (4)).
All runs were carried out on a Fujitsu Primergy RX300 server with 3.33GHz
Intel Xeon X5680 CPUs and 144 GB of RAM, under a GNU/Linux operating
system (Suse 11.4), without exploitation of parallelism capabilities. Because of
their relatively small dimensions, these instances can also be solved in a much
smaller laptop or desktop PC.

Tables 2 and 3 show the results obtained with, respectively, the commercial
and open-source solvers, again differentiating between small and medium-sized
instances. For the commercial solvers Cplex and Xpress, and the open-source
solver Glpk, the following information is provided: objective value of the solution
found (column “obj”), percentage optimality gap of the solution found (“gap”),
the percentage “primal gap” (“pgap”, defined below), the CPU time needed for
the solution (“time”), and the number of unprotected cells (“unprot”). For the
open-source solvers Cbc and Symphony the same information is provided ex-
cluding the “gap” column (since the information about the lower bound of the
solution can not be currently obtained from neither Cbc nor Symphony). Ex-
ecutions that reported no feasible solution are marked with “—”. The “primal
gap” is computed by comparing the objective function obj of each solver with
the best lower bound found by the five solvers lbbest, i.e., pgap = obj−lbbest

1+|obj| · 100,
providing a global measure of the quality of the solution found (instead of the lo-
cal measure given by “gap”). Unprotected cells are usually obtained when large
or big-M values appear in the constraints involving binary variables of model
(3). For instance, if uzi is very large (e.g., 109) and yi = 10−8 ≈ 0 then the
constraint z+i ≤ uziyi imposes z+i ≤ 10 (instead of the right constraint z+i ≤ 0),
likely resulting in an unprotected cell. Big values (e.g., big cell bounds) should
be avoided by users of CTA. Alternative approaches as logical “indicator con-
straints” (available in Cplex and Xpress) partially fix this issue, but significantly
increase the solution time.

The following comments can be drawn from tables 2 and 3:

– As mentioned above, some executions provide a number of unprotected cells.
This more often happens for the medium-sized than for the small instances.
The number of executions with unprotected cells for each solver was: Cplex
12; Xpress 9; Glpk 7; Cbc 3; and Symphony 11. Surprisingly, this number
of underprotected cells is larger for the two commercial solvers than for the
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open-source ones. Though there is not a clear explanation, it might be due
to the more aggressive heuristics used by commercial solvers.

– The “pgap” of some executions is negative, i.e., the objective function found
by the solver is less than the best (i.e., highest) lower bound by the five
solvers. Obviously, this should never happen in theory. However, we observe
that this occurs in executions with unprotected cells, i.e, by violating the
protection requirement of some sensitive cells the solver may provide objec-
tive functions below the lower bound obtained by another solver. Negative
“pgaps” are mainly obtained for the medium-sized instances. The number
of executions with negative “pgaps” for each solver was: Cplex 6; Xpress
2; Glpk 3; Cbc 0; and Symphony 6. The worst cases were executions with
Xpress and Symphony for instance dale, which provided pgaps of −100%
and −3900%, respectively.

– Some executions present strangely large gaps at optimal solutions, (com-
puted without exhausting the time limit). One is instance toy3dsarah with
Cplex (gap of 100% in the optimal solution found). In this case no lower
bound was computed, since this problem was heuristically solved by Cplex.
However, the other four solvers reported this instance as infeasible with the
default infeasibility tolerances. Large gaps are also provided by Glpk at the
optimal solutions of instances table8, MM140 m04m05, MM140 m08m09:
the cause seems to be that the solver did not internally update the lower
bound when the branch-and-cut tree was emptied.

– About the efficiency, Cplex exhausted the time limit in 4 executions (and
it provided a solution for all the instances, though some unprotected, as
discussed above); Xpress reached the time limit in 1 run (but it did not solve
3 instances); Glpk in 9 (and it did not solve 2 instances); Cbc in 11 (with 1
unsolved instance); and Symphony in 5 (with 2 unsolved instances). All the
executions that reached the time limit were for medium-sized instances.

5 Conclusions

From the computational results of this work we can conclude that for small
instances, both commercial and open-source solvers behave similarly. On the
other hand, there is a slight advantage for commercial solvers in larger instances,
which increases with the size of the problem. However, models (3) and (4) are
difficult MILP problems. If the values of the binary variables y are a priori fixed,
formulations (3) and (4) become continuous optimization problems, which can
be solved much more efficiently, at the expense of providing a lower quality
solution. This approach was introduced in [1], and it has been suggested as the
basis for on-line protection in tabular data servers [8]. Updating the multisolver
CTA package of this work for this simpler problem is part of the future tasks to
be done. The gap between the commercial and open-source solvers is expected
to be reduced for the continuous CTA problem.
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7. Castro, J., González, J.A.: A Tool for Analyzing and Fixing Infeasible RCTA In-
stances. In: Domingo-Ferrer, J., Magkos, E. (eds.) PSD 2010. LNCS, vol. 6344, pp.
17–28. Springer, Heidelberg (2010)
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