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Abstract. Minimum distance controlled tabular adjustment (CTA) is a
perturbative technique of statistical disclosure control for tabular data.
Given a table to be protected, CTA looks for the closest safe table by
solving an optimization problem using some particular distance in the
objective function. CTA has shown to exhibit a low disclosure risk. The
purpose of this work is to show that CTA also provides a low informa-
tion loss, focusing on two-way tables. Computational results on a set of
midsize tables validate this statement.
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1 Introduction

Minimum-distance controlled tabular adjustment (CTA in short) was suggested
in [2,12] as a post-tabular perturbation approach for statistical disclosure con-
trol. A description of the state-of-the-art in the statistical disclosure field can be
found in the monograph [20] and the survey [3]. Briefly, given a table with sen-
sitive information, the goal of CTA is to compute the closest safe table through
the solution of an optimization problem using some particular distance in its
objective function. CTA is being considered an emerging technology for tabu-
lar data protection [20]. CTA can be applied to both frequency and magnitude
tables (i.e., tables providing, respectively, either cell counts or aggregated infor-
mation for another variable). This work only considers frequency tables, i.e., cell
values are integer. For two-way tables CTA will always provide integral values,
such that integrality constraints are not needed, and the two information loss
measures used in this paper (one of them requiring integrality of cell values) can
be applied.

� Supported by grants MTM2012-31440 of the Spanish Ministry of Economy and Com-
petitiveness, SGR-2014-542 of the Government of Catalonia, and DwB INFRA-2010-
262608 of the FP7 European Union Program.

�� Corresponding author.

J. Domingo-Ferrer (Ed.): PSD 2014, LNCS 8744, pp. 11–23, 2014.
c© Springer International Publishing Switzerland 2014



12 J. Castro and J.A. González

Several recent papers have been devoted to CTA. Some of them focused on the
solution of the optimization problem formulated [5,7,16], whereas others dealt
with quality and confidentiality issues of the computed solution [6,10].

A tabular data protection method can be seen as a map F such that F (T ) =
T ′, i.e., table T is transformed to another table T ′. Two are the main require-
ments for F : (1) the output table T ′ should be “safe”, and (2) the information
loss should be small, i.e., T ′ should be a good replacement for T . The disclosure
risk can be analyzed through the inverse map T = F−1(T ′): if not available or
difficult to compute by any attacker, then we may guarantee that F is safe. It
was empirically observed in [4] that estimates T̂ = F̂−1(T ′), F̂−1 being an esti-
mate of F−1 for CTA, were not close to T for some real tables, concluding that
CTA was a safe method for these tables. However, a similar analysis regarding
the utility of T ′ has not been performed for CTA (though it was for some mi-
crodata methods, as reported in [13]). Other methods (random record swapping
and semi-controlled random rounding) have been compared using a table from
the 2001 UK Census in [24]. The purpose of this work is then to fill this gap by
performing a computational analysis on the data utility of two-way tables pro-
tected with CTA. The same procedure may be extended to multidimensional,
hierarchical or linked tables but, due to its higher complexity, is out of the scope
of this work and part of the further research to be done in this field.

The paper is organized as follows. Section 2 reviews the CTA formulation
used in this work. Section 3 shows the methodology developed for analyzing
the information loss. Finally, Section 4 reports computational results with some
midsize two-way tables.

2 The CTA Formulation

Given (i) a set of cells ai, i = 1, . . . , n, that satisfy some linear relations Aa = b (a
being the vector of ai’s); (ii) a lower and upper bound for each cell i = 1, . . . , n,
respectively lai and uai , which are considered to be known by any attacker; (iii)
positive cell weights wi, i = 1, . . . , n, associated to the cost of perturbing cell
values; (iv) a set S = {i1, i2, . . . , is} ⊆ {1, . . . , n} of indices of sensitive cells; (v)
and a lower and upper protection level for each sensitive cell i ∈ S, respectively
lpli and upli, such that the released values musty satisfy either xi ≥ ai+ upli or
xi ≤ ai − lpli; the goal of CTA is to find the closest safe values xi, i = 1, . . . , n,
according to some distance �, that makes the released table safe. This is achieved
by the solution of the following optimization problem:

min
x

||x− a||�
s. to Ax = b

lai ≤ xi ≤ uai i = 1, . . . , n
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ S.

(1)

Problem (1) can also be formulated in terms of deviations from the current cell
values. Defining zi = xi − ai, i = 1, . . . , n —and similarly lzi = lxi − ai and
uzi = uxi − ai—, (1) can be recast as
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min
z

||z||�
s. to Az = 0

lzi ≤ zi ≤ uzi i = 1, . . . , n
zi ≤ −lpli or zi ≥ upli i ∈ S,

(2)

z ∈ R
n being the vector of deviations. Using the �1 distance, considering the

splitting z = z+ − z−, and after some manipulation, (2) can be written as

min
z+,z−,y

n∑

i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
0 ≤ z+i ≤ uzi i �∈ S
0 ≤ z−i ≤ −lzi i �∈ S
upli yi ≤ z+i ≤ uzi yi i ∈ S
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi) i ∈ S
yi ∈ {0, 1} i ∈ S,

(3)

w ∈ R
n being the vector of positive cell weights, z+ ∈ R

n and z− ∈ R
n the

vector of positive and negative deviations in absolute value, and y ∈ R
s being

the vector of binary variables associated to protections directions. When yi = 1
the constraints mean upli ≤ z+i ≤ uzi and z−i = 0, thus the protection direction
is “upper”; when yi = 0 we get z+i = 0 and lpli ≤ z−i ≤ −lzi , thus protection
direction is “lower”. Model (3) is a (in general difficult) mixed integer linear
optimization problem, but it may provide better quality solutions than other
CTA variants without binary variables (e.g., [8,9]). In this work tables have
been protected by solving (3) by the CTA package [17] recently improved within
the Data without Boundaries INFRA-2010-262608 FP7 project.

3 Assessment of Information Loss

In [13] the information loss was measured by comparing several statistics on
the original and protected microdata. We followed a similar approach, but re-
stricting the analysis to a few available statistics for two-way tables to measure
the association between the row and column variables. A simple statistic as the
correlation between the values of the cells of the original and perturbed table
ai and ai + zi, i = 1, . . . , n, is avoided, since it is meaningless: in practice it is
almost 1 and it does not capture the relationship between the row and column
categories. The assessment methodology is outlined in next subsections.

3.1 Generation of Tables

The analysis was restricted to two-way tables, which were randomly generated
by the following algorithm:

– Input: r, number of categories for row variable (rows of the table); c, number
of categories for column variable (columns of the table); N : total number of
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observations or respondents; ρ: correlation between both variables (a number
in [−1, 1]).

– Output: a contingency table of dimensions r× c; table margins may also be
provided.

– Step 1. We obtain a binormal random sample of N points, say (xi, yi), i =
1 . . .N , with zero mean and covariance matrix

(
1 ρ
ρ 1

)
.

– Step 2. The variables are discretized into r and c categories, respectively.
The cutpoints are randomly chosen so that very small frequencies are not
possible; to be precise, at least 10 observations are required in the marginal
cell of each row and column (though internal cells may be below 10).

– Step 3. A two-way table is created by cross-tabulation of both discretized
variables. If required, a margin row and a margin column are created, as well
as a grand-total cell (equal to N).

The software package used to produce the tables, obtain the measures de-
scribed below and analyze the results was R, release 2.15 [23]. In order to get
two samples with the given correlation and normal distribution we used the
function rmvnorm from the R package ’mvtnorm’ [14,15].

3.2 Measures

Contingency tables summarize the information coming from cross-tabulation of
two or more categorical variables, and there are several analytical ways to rep-
resent them through numerical estimators. Although single measures are usu-
ally too simple to catch the dependence structure underlying the variables—
especially in high dimensional tables—we have chosen a few of them to allow
the comparison between the original and protected tables.

Some of the most used measures of association are based on the well-known
Pearson’s coefficient

χ2 =

n∑

i=1

(oi − ei)
2

ei
,

where n is the number of cells in the table, oi means an observed frequency,
and ei an expected frequency, normally under independence of the variables.
The Pearson’s chi-squared test is based on the assumption that it follows a χ2

probability distribution, with known number of degrees of freedom ((r−1)(c−1)
in two-way tables), depending on some conditions and whenever the variables
are independent.

We considered the coefficient known as Cramér’s V [11], computed as

V =

√
χ2

N ·min(r − 1, c− 1)
.
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Cramér’s V ranges from 0 (in case of no association between the variables) to 1
(maximum association), being only 1 when the variables are identical. Cramér’s
V is invariable to changes in the order of the categories of the variables. This
measure was computed using the function assocstats from the R package ’vcd’
[21]. Cramér’s V was one of the measures employed in [24].

The second technique considered in this work to explore the relationships
between the two variables of the table is correspondence analysis (CA). CA
is frequently employed as an exploratory tool, with the aim to identify more
detailed ways of association between the variables, instead of a single measure
of the strength of such a relationship. For our purposes, we used the variant for
two-way contingency tables named Simple Correspondence Analysis (SCA).

SCA reduces the high dimensionality of the original data (given by the number
of categories of our variables) to a low-dimensional space which retains as much
information as possible. Briefly, SCA involves the generalized singular value de-
composition [18] of a matrix M computed as follows. Denoting by T the matrix
containing the r × c entries of the two-way contingency table, by et the column
vector of 1’s of dimension t, and by diag(v) a diagonal matrix containing the
elements of vector v in its diagonal positions, M is computed as

M = R− erc
� where R = diag(Tec)

−1T and c = (e�r Tec)
−1(e�r T ).

Denoting

Wr = diag(e�r Tec)
−1(Tec) and Wc = diag(c)−1

then M is decomposed by the generalized singular value decomposition as

M = UΣV where U�WrU = Ir and V �WcV = Ic,

where It is the t×t identity matrix, U and V contain the row and column singular
vectors, and Σ ∈ R

r×c contains l nonzero singular values (where l ≤ min(r, c)) in
its diagonal entries (see, for instance, [19] for a comprehensive description). The
rows of the two-way table can be projected onto the singular vectors U , obtaining
the factor scores. The variance of the factor scores for a given dimension is equal
to the squared singular value of this dimension. The squared singular values
of M are equal to the eigenvalues of MM� [18]. It is worth to remind that
the concept of inertia is equal to the χ2 statistic divided by N , that the sum
of all the eigenvalues of MM�,

∑l
i=1 λi, is equal to the inertia, and that a few

dimensions (or directions, or eigenvectors) related to the largest eigenvalues may
explain most of the information in the table.

In this work we focus on the larger eigenvalue (λ1) from the SCA, and the

contribution of λ1 among all the eigenvalues, i.e., the ratio λ1/
∑l

i=1 λi between
λ1 and the inertia as a percentage, denoted as π1. The relation between V and
the contribution of λ1 is not straightforward, and much less between V and π1.
The singular values were computed with the function ca, from the R package of
the same name [22].
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3.3 Description of the Experiments

Two experiments have been designed. They are independent since different tables
have been considered for them. Alternatively, the same tables could have been
used in both experiments, but we decided to consider two different sets. The
procedure is similar in both cases:

– Set the parameters of the instances: Percentage of sensitive cells in the ta-
bles, and correlation ρ; other factors have been fixed; 15 instances will be
generated for each combination of percentage of sensitive cells and ρ.

– For each instance:

◦ generate a table with random r, c and N ;

◦ compute the measures from the original table;

◦ write the table in a format allowed by the CTA package;

◦ run the CTA package, and write the protected table;

◦ computed the measures from the protected table;

◦ save the results;

– Read the results file, and compare the outcomes.

The optimality gap is a bound for the maximum relative difference allowed
between the computed and the optimal solutions. The value considered for all
the executions, 2.5%, was chosen after some exploration with different values.
It became apparent that the CTA procedure was robust (i.e., there were no
large deviations between the original and the protected tables) even with large
gaps such as 50%. However, the number of sensitive cells protected upwards
was significantly higher with those larger gaps, while smaller gaps produced
tables with a good balance among the protection directions of their sensitive
cells (i.e., the number of sensitive cells upper and lower protected was similar,
which reduces the disclosure risk against an attacker). On the other hand, very
small gaps may result in large CTA executions for the solution of (3). We set a
limit time of 300 seconds for all the executions, which was enough for most of
the cases. In particular, CTA took more than one minute in 78 tables (3.42%
of the overall 2280 tables protected—720 tables for the first experiment with
Cramér’s V , and 1560 tables for the second experiment with SCA), and 25
(1.1% of tables) reached the maximum limit of five minutes. Median time to
solution was 0.22 seconds.

Sensitive cells were chosen at random, and protection levels were 10% of the
cell value, rounded to the nearest integer. The dimensions of the table were
taken at random between 10 and 40. The table margins were included as cells
for convenience, but we don’t allow them to differ from the original value. The
total number of observations N is dependent of r and c, so larger tables usually
have more observations. The percentage of zero cells in the generated tables is
approximately 5%; the percentage of cells with one respondent is also 5%. By
construction a complete row or column cannot be empty. Zero cells are preserved
in the protected table.
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Table 1. Summary of dimensions and V for generated tables

median min max

cells 600 121 1640
sensitive cells 57 2 309
N 29640 7050 94831
original V 0.0666 0.0181 0.1825

Fig. 1. Boxplots of D for different ρ values

4 Computational Results

4.1 Cramér’s V

We generated 720 tables, with a percentage of sensitive cells between 5% and
19%, and values of ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. A summary of the dimensions
of these tables and their V values is reported in Table 1.

The median of V was 0.0680 in the protected tables, ranging between 0.0197
and 0.1839. Since V is highly correlated with ρ and moderately related to N ,
we studied the difference D = Vprot − Vorig. Relative differences were discarded
because the original quantities can be close to zero, especially for uncorrelated
variables, and V ranges from 0 to 1, thus absolute differences can be easily
interpreted. Figure 1 reports boxplots of D for different ρ values, showing that
D increases when ρ is close to 0. The change is small in magnitude, compared
with its variability, as shown in Table 2.

The tables with larger deviations in the Cramér’s V measure are small tables
(300 cells in average) with a high percentage of sensitive cells (16%). The most
significant factors by a general linear model for D are: the correlation ρ (coeffi-
cient −3 · 10−3), the percentage of sensitive cells (coefficient 8.3 · 10−5), and the
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number of cells (coefficient 8 · 10−7). However, these factors explain only 25.8%
of the total variability observed in D.

4.2 Simple Correspondence Analysis

For this second experiment we generated 1560 tables, using values of ρ ∈
{−0.6,−0.5, . . . , 0, . . . , 0.5, 0.6}. Unlike for the Cramér’s V, we considered neg-
ative correlations for if they might influence the results. For each original and
protected table the measures λ1 and π1 were computed. Table 3 shows a sum-
mary of collected values.

Fig. 2. Boxplots of Y for different ρ values

We studied the singular value
√
λ1 instead of the eigenvalue because it ap-

peared to be proportional to |ρ| and it showed a greater stability in variance.
As before, the effect observed after the protection performed by CTA is studied
through the change Y =

√
λ1,prot−

√
λ1,orig. As for D, Y is defined as an abso-

lute difference since the original eigenvalues λ1,orig are close to zero, especially
with null ρ (relative differences are used below in Table 4). Figure 2 shows box-
plots of Y for the different ρ values. The outlier at ρ = 0 appearing on top of

Table 2. Mean and standard deviation of D with respect to ρ

ρ 0 0.1 0.2 0.3 0.4 0.5

mean 0.0017 0.0015 0.0012 0.0009 0.0004 0.0004
std. dev. 0.0012 0.0012 0.0013 0.0011 0.0012 0.0014
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Table 3. Summary of λ1 and π1 for original and protected tables

median min max

orig. λ1 0.0875 0.0011 0.3586
prot. λ1 0.0881 0.0014 0.3587
orig. π1 76.33% 9.5% 92.6%
prot. π1 75.45% 9.6% 90.9%

Table 4. Bounds for the intervals containing 90% of relative changes in the singular
value, expressed as Y/

√
λ1,orig · 100

|ρ| 0 0.1 0.2 0.3 0.4 0.5 0.6

Lower (%) 0.27 -4.30 -2.47 -1.33 -1.27 -0.86 -0.56
Upper (%) 24.23 7.64 3.86 2.20 1.43 1.27 0.80

the figure was produced by a table of 392 cells, whose eigenvalues λ1 before and
after protection were 0.001074 and 0.006043, respectively; it was the table with
the smallest λ1. Aside from this outlier, it can be seen that in general changes
due to the protection were small.

Table 4 shows the intervals which include 90% of the relative changes, ex-
pressed as Y/

√
λ1,orig · 100, in the singular values, depending on ρ. The sign of

ρ is not important for the analysis, so we considered only its absolute value. It is
shown that relevant changes only appear for ρ = 0 (as large as, e.g. 25%). Indeed,
the 95% confidence interval for the mean of Y when ρ = 0 was (0.0032, 0.0046).
For nonzero correlations there is no evidence of change. Moreover, from Table 4
it is clear that relative changes in

√
λ1 are a decreasing function of |ρ|.

As for the percentage π1 explained by the first dimension, we observed: a) a
symmetrical pattern with respect to ρ = 0, b) small values of π1 for ρ = 0 (about
16%), quickly increasing with |ρ| until approximately |ρ| = 0.4 (about 83%), and
decreasing slowly beyond that point, both before and after the table protection.
Figure 3 shows the ratio Z = π1,prot/π1,orig. The outlier at ρ = 0 appearing on
top of the Figure 2 was not drawn in Figure 3, since it modified π1 from 18.6%
to 53.4% (Z ≈ 3 is out of the range of the vertical axis of Figure 3).

Changes in π1 can be analyzed through Figure 3 and Table 5, which report
the intervals with 90% of observed Z for different ρ. In general, the π1 of the
protected table tends to decrease for small |ρ| values, though the trend in un-
correlated factors points to an increase; for large |ρ| the change in π1 can be
negligible.

Table 5. Lower and upper bounds for the intervals containing 90% of the ratios Z

|ρ| 0 0.1 0.2 0.3 0.4 0.5 0.6

Lower 0.936 0.885 0.945 0.967 0.972 0.970 0.969
Upper 1.180 1.031 1.001 0.998 1.004 1.013 1.018
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Fig. 3. Boxplots of Z for different ρ values

CTA provided solutions with well balanced sensitive cells with respect to the
direction of the deviation. The percentage of sensitive cells protected upwards
lied between 41.7% and 58.8% in 90% of the tables, which makes the procedure
unpredictable, thus safer.

5 Conclusions

Through the measures considered in this work, we may conclude that a two-way
table protected with CTA experiment a slight information loss. It was observed
that only the tables from independent factors could suffer significant alteration
in Cramér’s V or in indicators related to SCA. For V , we have found that
the chance of change is higher in small tables or tables with a high percentage
of sensitive cells. Anyway, in absolute numbers V barely changed: an average
increase of 0.0017 if uncorrelated factors were present.

With respect to SCA, relative changes in λ1 were significant only when ρ = 0.
However, we have found that the absolute change in

√
λ1 is usually insignificant:

while the average first singular value is 0.052, it increases at most (in 95% of
cases) by 0.0093. Differences tend to increase for π1: for ρ = 0 the variation of
π1 can be large, normally above the original value; for ρ �= 0 the variation of π1

is lesser though usually below the original value. It should be kept in mind that,
even when ρ = 0, the absolute changes in π1 were small: only two tables —1 out
of 1000— modified by more than 10% the original π1 value.

There is not a conclusive explanation of why the greatest information loss
occurred for ρ = 0. One possible reason could be that, since for ρ = 0 cells
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values are evenly scattered through the table, the number of additional cells
with deviations (aside from the sensitive ones) increases; whereas in two-way
tables from correlated variables it might be easier to compensate deviations due
to protection levels just using sensitive cells. However, a deeper analysis is part
of the additional work to be done.

A more exhaustive study considering also real-world tables is needed, and
part of the further work to be done. Some preliminary results with two stan-
dard two-way tables used in the literature (named “table8” and “dale”) confirm
that changes in measures increase with the size of the table and the percentage
of sensitive cells. For instance, for the 40 × 30 “table8” instance with only 3
sensitive cells, the V statistic was almost the same before and after protection
(0.09270563 vs 0.09280493). On the other hand, for the 358× 45 “dale” instance
with a 30% of sensitive cells the change in V was significant: from 0.0692391 to
0.1093475. However, for “dale”, the information loss was small according to the
other measure: λ1,orig = 0.09809 and λ1,prot = 0.10264.

Alternative measures could have been applied. One of them would be hy-
pothesis testing on the independence of the two variables using Pearson’s χ2

test. However, even for original independent tables, it is likely that the null hy-
pothesis is rejected for CTA-protected tables, since sensitive cells are forced to
be “significantly” perturbed, and this perturbation affects quadratically to the
Pearson’s χ2 statistic. This effect may increase with the percentage of sensi-
tive cells. Some preliminary tests with synthetic independent tables confirmed
this assertion. Anyway, hypothesis testing might not be a suitable measure
in this context: data may not come from random sampling and, furthermore,
there is considerable debate around the hypothesis testing nature and the use of
p-values [1].

In summary, it can be concluded that the data utility of the CTA-protected
tables used in this work is in general acceptable/high and comparable to that of
the original tables. Among the further lines of work we find:

– Extension of the above measures to higher-dimensional, hierarchical and
linked real-world tables.

– Extension to magnitude tables, using other information loss measures (e.g.,
generalized linear models).

– Joint analysis of the data utility and disclosure risk of CTA-protected tables,
likely in the form of risk-utility plots.
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