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Abstract. Minimum distance controlled tabular adjustment (CTA) is
an emerging perturbative method of statistical disclosure control for tab-
ular data. The goal of CTA is to find the closest safe table to some original
tabular data with sensitive information. Closeness is usually measured
by �1 or �2 distances. Distance �1 provides solutions with a smaller �0
norm than �2 (i.e., with a lesser number of changes with respect to the
original table). However the optimization problem formulated with �2
requires half the number of variables than that for �1, and it is more
efficiently solved. In this work a pseudo-Huber function (which is a con-
tinuous nonlinear approximation of the Huber function) is considered
to measure the distance between the original and protected tables. This
pseudo-Huber function approximates �1 but can be formulated with the
same number of variables than �2. It results in a nonlinear convex opti-
mization problem which, theoretically, can be solved in polynomial time.
Some preliminary results using the Huber-CTA model are reported.
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1 Introduction

The statistical disclosure control field aims at protecting sensitive information
when releasing statistical microdata or tabular data. A description of the state-
of-the-art in this field can be found in the monograph [17] and—only for tabular
data—in the survey [5].

Minimum-distance controlled tabular adjustment (CTA), introduced in [3,14],
is one of the available post-tabular perturbation approaches for tabular data. The
purpose of CTA is, given a table with sensitive cells, to compute the closest safe
table (i.e., sensitive cells are modified to avoid re-computation, the remaining
cells are minimally adjusted to satisfy the table equations) through the solu-
tion of an optimization problem using some particular distance in its objective
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function. CTA is considered an emerging technology for tabular data [17]. It has
been empirically shown that CTA in general exhibits a low disclosure risk [6]
and, at the same time, a high data utility [10,11].

CTA was originally formulated as a mixed integer linear programming (MILP)
problem [14], while the minimum distance formulation of [3] was continuous
(either a linear programming (LP) or a quadratic programming (QP) problem).
Continuous formulations, which can be obtained by a priori fixing the value of
the binary variables, provide faster optimizations, at the expense of reducing the
quality of the solution. A wrong assignment of binary variables may result in
an infeasible problem. The approach of [12,13] solves this situation by allowing
small changes in three different type of CTA constraints. Together with the
original objective, this results in a four-objective problem, which can be solved
by multiobjective optimization methods [12,13].

In this work we focus on the continuous formulation of CTA. Using �1 as the
distance in the objective function we obtain a LP whose number of variables is
twice the number of cells of the table. For �2 we obtain a QP with a number
of variables equal to the number of cells, which is in general more efficiently
solved than the LP of �1-CTA [3]. (This does not hold if binary variables are
considered: the MIQP �2-CTA is significantly harder than the MILP �1-CTA, as
noted in [9].) On the other hand, �1-CTA solutions have a lesser �0 norm (where
‖x‖�0 is the number of nonzero elements of x), i.e., the number of changes in
cell values with respect to the original table is smaller. The purpose of this
work is to present a new CTA model using a different objective function, whose
optimization problem is of the same dimension than the one formulated by �2-
CTA, but with a solution similar to that obtained with �1-CTA. We will see that
the pseudo-Huber function guarantees both properties.

The paper is organized as follows. Section 2 reviews the CTA formulation with-
out binary variables for �1 and �2. Section 3 presents a CTA variant based on a
pseudo-Huber function, and provides some of its properties. Section 4 discusses
the solution of the convex optimization problem formulated by the Huber-CTA
model by an interior-point polynomial time algorithm. Finally, Section 5 reports
very preliminary computational results with some midsize three-dimensional
tables.

2 The CTA Formulation

Any CTA instance can be formulated from the following parameters: (i) a set
of cells ai, i ∈ N = {1, . . . , n}, that satisfy some linear relations Aa = b (a
being the vector of ai’s); (ii) a lower and upper bound for each cell i ∈ N ,
respectively lai and uai , which are considered to be known by any attacker; (iii)
nonnegative cell weights wi, i ∈ N , used for the distance between the original
and the perturbed released cell values; (iv) a set S = {i1, i2, . . . , is} ⊆ N of
indices of sensitive cells; (v) and a lower and upper protection level for each
sensitive cell i ∈ S, respectively lpli and upli, such that the released values must
be out of the interval(ai − lpli, ai + upli).
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CTA attempts to find the closest values zi, i ∈ N —according to some dis-
tance �(w), weighted by w— that make the released table safe. This involves the
solution of the following optimization problem:

min
z

||z − a||�(w) (1a)

s. to Az = b (1b)

lai ≤ zi ≤ uai i ∈ N (1c)

zi i ∈ S are safe values. (1d)

The formulation of (1d) depends on the particular controlled adjustment variant
considered. For instance, in the standard CTA approach, this constraint is

(zi ≤ ai − lpli) or (zi ≥ ai + upli) i ∈ S, (2)

which, by introducing a vector of binary variables y ∈ R
s can be written as

zi ≥ −M(1− yi) + (ai + upli)yi i ∈ S,
zi ≤ Myi + (ai − lpli)(1− yi) i ∈ S,
yi ∈ {0, 1} i ∈ S,

(3)

0 � M ∈ R being a large positive value. Constraints (3) impose either “upper
protection sense” zi ≥ ai + upli, when yi = 1, or “lower protection sense”
zi ≤ ai − lpli when yi = 0. The CTA problem (1a)–(1c), (3) is a (in general
difficult) MILP, but it provides solutions with a high data utility [11].

Formulating problem (1) in terms of cell deviations x = z − a, x ∈ R
n,

and fixing the binary variables, the resulting continuous CTA problem can be
formulated as the general convex optimization problem

min
x

||x||�(w)

s. to Ax = 0
l ≤ x ≤ u,

(4)

where

li =

{
upli if i ∈ S and yi = 1
lai − ai if (i ∈ N \ S) or (i ∈ S and yi = 0)

ui =

{−lpli if i ∈ S and yi = 0
uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1),

(5)

for i ∈ N .
Problem (4) can be specialized for several norms, �1 and �2 being the two

most relevant. For �1, defining x = x+ − x−, we obtain the following LP:

min
x+,x−

n∑
i=1

wi(x
+
i + x−

i )

s. to A(x+ − x−) = 0
l+ ≤ x+ ≤ u+

l− ≤ x− ≤ u−,

(6)
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x+ ∈ R
n and x− ∈ R

n being the vectors of positive and negative deviations in
absolute value, and l+, l−, u+, u− ∈ R

n lower and upper bounds for the positive
and negative deviations defined as

l+i =

{
upli if i ∈ S and yi = 1
0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+
i =

{
0 if i ∈ S and yi = 0
uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i =

{
lpli if i ∈ S and yi = 0
0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−
i =

{
0 if i ∈ S and yi = 1
ai − lai if (i ∈ N \ S) or (i ∈ S and yi = 0),

(7)

for i ∈ N . For �2, problem (4) can be directly recast as the following QP without
introducing additional variables:

min
x

n∑
i=1

wix
2
i

s. to Ax = 0
l ≤ x ≤ u.

(8)

Infeasibilities in continuous models (6), (8) due to pre-fixing the binary variables
can be dealt as in [12,13]. Problem (8) requires half the number of variables than
(6). In addition, the splitting of variables x = x+ − x− may create difficulties to
some optimization methods. On the other hand the �1 solutions are known to
change fewer cells than �2 solutions. The next Section introduces a new nonlinear
CTA model with the same number of variables that (8) and similar solutions to
those of (6).

3 Using a Pseudo-Huber Function as Objective Function

The Huber function [16] ϕδ : R → R, defined as

ϕδ(xi) =

{
x2
i

2δ |xi| ≤ δ
|xi| − δ

2 |xi| ≥ δ
(9)

approximates |xi| for small values of δ > 0 (the smaller δ the better the approx-
imation). ϕδ is a continuous and first-order differentiable function; but second
derivatives are not continuous at points |xi| = δ.

To avoid this discontinuity in second derivatives, we may consider the pseudo-
Huber function φδ : R → R:

φδ(xi) =
√
δ2 + x2

i − δ. (10)
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Fig. 1. Pseudo-Huber function for some δ, and |x|

Fig. 2. Graph of φδ, φ
′
δ and φ′′

δ for δ = 0.01

This function has been recently successfully used in other �1-regularization prob-
lems [15]. φδ ∈ C2, with first and second derivatives

φ′
δ(xi) =

xi√
δ2 + x2

i

φ′′
δ (xi) =

δ2

(δ2 + x2
i )

3/2
. (11)

As shown in Figure 1, φδ is a better approximation of |xi| as δ approaches 0.
Figure 2 plots the graph of φδ, φ

′
δ and φ′′

δ for δ = 0.01. As shown in [15], the
first and second derivatives are bounded and Lipschitz continuous.
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a

10(3) 15 11 9 45
8 10 12 15 45
10 12 11 13(5) 46

28 37 34 37 136

(a)

�1
13 15 11 6 45
10 10 12 13 45
5 12 11 18 46

28 37 34 37 136

(b)

φ

13.88 15.17 11.18 4.77 45
8.21 10.30 12.27 14.22 45
4.91 11.53 10.55 18 46

28 37 34 37 136

(c)
�2

13 15.03 11.03 5.94 45
7.66 11.14 13.14 13.06 45
7.34 10.83 9.83 18 46

28 37 34 37 136

(d)

Fig. 3. Results with �1, φ0.001, and �2 (tables (b), (c) and (d)) for the small two-
dimensional small table (a) (rounded to two decimal positions). The optimal value of
||x||1 for �1 and φ0.001 is 20, while for �2 is 20.69.

Therefore we can replace ||x||�1 by f(x) =
∑n

i=1 φδ(xi), and the �1-CTA
problem (6) can be approximately solved by the convex optimization problem

min
x

f(x) =
∑n

i=1 φδ(xi)

s. to Ax = 0
l ≤ x ≤ u.

(12)

This optimization problem has the same space of variables and feasible region
than (8), but with a strictly convex nonlinear function instead of a quadratic
one.

Figure 3 shows the solutions obtained with �1, �2 and φδ=0.001 with a small
two-dimensional table. In this small table both φ and �2 changed most of the
cells, whereas �1 only changed a few of them. However, the optimal objective
functions with �1 and φδ=0.001 were exactly the same (||x||1 = 20), whereas
||x||1 = 20.69 for �2. The φδ function thus provided the same objective function
that �1, but cell deviations were distributed among more cells. This is explained
by the different optimization algorithms used for the solution of �1 and φδ (which
needs a nonlinear optimization method, as discussed in next Section). A more
extensive study with larger and more complex tables is out of the scope of this
work.

4 Solution of the Huber-CTA Model

The Huber-CTA model (12) is a nonlinear convex optimization problem. In
theory, this kind of problems are polynomially solved with interior-point methods
[18,19], with a best bound of O(

√
n log 1/ε), n being the number of variables and

ε the optimality tolerance (discussed below). The complexity of CTA with �1 or
φδ is thus the same if solved by an interior-point algorithm.
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Broadly speaking, interior-point methods attempt to solve a perturbation
of the first-order optimality conditions (named Karush-Kuhn-Tucker or KKT
conditions) of (12):

Ax = b
A�λ+ λl − λu −∇f(x) = 0

(X − L)Λle = μe
(U −X)Λue = μe

u ≥ x ≥ l, (λl, λu) ≥ 0,

(13)

where λ ∈ R
m, λl, λu ∈ R

n are the Lagrange multipliers of respectively the
equality constraints and lower and upper bounds, e ∈ R

n is a vector of 1’s,
and matrices X,Λl, Λu, L, U ∈ R

n×n are diagonal matrices made from vectors
x, λl, λu, l, u. The set of unique solutions of (13) for each μ value is known as
the central path, and when μ → 0 these solutions converge to those of (12). The
nonlinear system (13) is usually solved by a damped version of Newton’s method,
reducing the μ parameter at each iteration, until μ ≤ ε, ε being the required op-
timality tolerance. This procedure is known as the path-following interior-point
algorithm. An excellent discussion about the theoretical and practical properties
of this interior-point algorithm can be found in [20].

Although theoretically the same interior-point path-following algorithm should
be as efficient for �1 than for φδ, in practice the Huber function requires a more
robust solver. Some early tests with general tables using the convex interior-
point algorithm of [2] show that even small instances can be difficult with φδ if
the solver is not appropriately tuned. In this sense, reformulations of the model
as a second order conic optimization problem could be preferable [1].

However, for some interior-point methods specialized to particular structures,
such as block-angular problems, φδ may be more efficiently solved than �1: the
technical explanation is that, since the Hessian of φ is nonzero, unlike for the
LP formulated by �1, the internal linear systems of equations may require less
iterations of the preconditioned conjugate gradient [7]. For instance, this may
happen for three-dimensional tables, whose constraints exhibit a block-angular
structure [8]. Next Section shows a few preliminary computational results with
some three-dimensional tables using such a specialized interior-point solver.

5 Computational Results

Preliminary results have been obtained for a set of eight three-dimensional tables
of r rows, c columns and l levels (where rows, columns and levels refer to each of
the table dimensions). Table 1 shows the problem dimensions for each instance;
n and m denote the number of variables and constraints of problems (12) and
(8) for φ and �2 (which are of the same size), and (6) for �1. Tables were obtained
with the same generator used in [8].

These eight instances have been solved with an efficient implementation of
the specialized interior-point method described in [4] including the quadratic
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Table 1. Dimensions of some 3D CTA optimization problems for pseudo-Huber, �1
and �2

φ, �2 �1

r c l n m n m

25 25 25 16250 1875 31875 1875
25 25 50 31875 3125 63125 3125
25 50 25 32500 3125 63750 3125
25 50 50 63750 5000 126250 5000
50 25 25 32500 3125 63750 3125
50 25 50 63750 5000 126250 5000
50 50 25 65000 5000 127500 5000
50 50 50 127500 7500 252500 7500

Table 2. Results for 3D CTA using pseudo-Huber, �1 and �2

φ �1 �2

r c l obj. CPU obj. CPU obj. CPU

25 25 25 101096 1.68 101572 4.37 4161290 0.09
25 25 50 104706 4.59 105409 10.94 3915100 0.19
25 50 25 104030 4.54 104720 13.87 3969550 0.27
25 50 50 110537 8.71 111679 9.72 3915150 0.55
50 25 25 107138 4.87 107832 23.9 4107990 0.26
50 25 50 109068 7.67 110199 5.54 3832800 0.54
50 50 25 106173 8.17 107309 4.15 3666090 0.9
50 50 50 113858 15.68 116279 67.91 3678810 1.84

regularization strategy of [7]. Table 2 reports for each of the three CTA variants—
using φ, �1 and �2—, the optimal objective function achieved and the CPU time.
All runs were carried out on a Fujitsu Primergy RX300 server with 3.33 GHz
Intel Xeon X5680 CPUs, under a GNU/Linux operating system (Suse 11.4),
without exploitation of parallelism capabilities. It is clearly seen that �2 provides
the fastest executions; this is consistent with the results of [3] obtained with a
generic solver. However, the objective function with �2 naturally differs from that
obtained with �1. On the other hand both φ and �1 provide very similar objective
function values, φ being more efficiently solved in six of the eight instances. In
particular the largest instance required 67.91 seconds with �1 and only 15.68
with φ.

6 Conclusions

We have presented a CTA model which replaces the usual �1 distance in the ob-
jective by the pseudo-Huber function. Although the resulting problem is convex
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and nonlinear, it requires half the number of variables than the �1-CTA LP. It
has been observed that for certain classes of tables (i.e., some three-dimensional
tables) the Huber-CTA model can be more efficiently solved than �1-CTA using
and appropriate interior-point solver.

The preliminary results reported in this work are non-conclusive, but just
a first step in the solution of the Huber-CTA model. Among the future tasks
to be done in this direction we mention: (i) the application of the Huber-CTA
model to other classes of structured tables (real-world linked or hierarchical
tables); (ii) a more detailed analysis of the disclosure risk and data utility of
tables protected by the Huber function, comparing them with tables protected
with �1- and �2-CTA; (iii) an efficient implementation for general tables, not just
three-dimensional ones; (iv) and the tuning or implementation of second-order
interior-point solvers for the highly efficient solution of the Huber-CTA problem.
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