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Abstract. In this paper we consider a minimum distance Controlled
Tabular Adjustment (CTA) model for statistical disclosure limitation
(control) of tabular data. The goal of the CTA model is to find the clos-
est safe table to some original tabular data set that contains sensitive
information. The measure of closeness is usually measured using �1 or
�2 norm; with each measure having its advantages and disadvantages.
Recently, in [4] a regularization of the �1-CTA using Pseudo-Huber func-
tion was introduced in an attempt to combine positive characteristics of
both �1-CTA and �2-CTA. All three models can be solved using appro-
priate versions of Interior-Point Methods (IPM). It is known that IPM
in general works better on well structured problems such as conic opti-
mization problems, thus, reformulation of these CTA models as conic
optimization problem may be advantageous. We present reformulation
of Pseudo-Huber-CTA, and �1-CTA as Second-Order Cone (SOC) opti-
mization problems and test the validity of the approach on the small
example of two-dimensional tabular data set.

Keywords: Statistical disclosure limitation (control) · Controlled tabu-
lar adjustment models · Pseudo-Huber Function · Convex optimization ·
Second-order cone optimization · Interior-Point Methods

1 Introduction

The statistical disclosure limitation (control) is the term that describes the the-
ory and methods of protecting sensitive information when releasing statistical
microdata or tabular data. An up-to-date overview of theory and methods of
this field can be found in the monograph [19] and, for tabular data only, in the
survey [8]. An excellent reference is also [27].
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Minimum-distance controlled tabular adjustment (CTA) methodology was
first introduced in [7,15]. As indicated in [4] CTA can be formulated as the fol-
lowing problem: Given a table with sensitive cells, compute the closest safe table
in which sensitive cells are modified to avoid re-computation, and the remaining
cells are minimally adjusted to satisfy the table equations. The closeness of the
original and modified table is measured by the weighted distance between the
tables with respect to a certain norm. Most commonly used norms are �1 and �2
norms. Thus, the problem can be formulated as a minimization problem with the
objective function being a particular weighted distance function and constraints
being table equations and lower and upper bounds on the cell values.

In general, CTA is Mixed Integer Optimization Problem (MIOP) which is
a difficult problem to solve especially for the large dimension problems. A pri-
ori fixing the values of binary variables reduces the problem to the continuous
optimization problem which is easier to solve, however, the quality of the solu-
tion may be reduced. In addition, the values of the binary variables have to be
assigned carefully otherwise the problem may become infeasible [12,13].

The objective function in continuous CTA is based on either the �1-norm or
�2-norm. The formulation of �2-CTA leads to the Quadratic Programing (QP)
problem, while �1-CTA can be formulated as the Linear Programming (LP)
problem. However, the resulting LP has the number of variables that is twice
the number of cells of the table as opposed to �2-CTA where the resulting QP
problem has a number of variables equal to the number of cells. In general, the
QP of �2-CTA is usually more efficiently solved than the LP of �1-CTA [4,7].

In [4] the Pseudo-Huber regularization of the �1-CTA is proposed. The
Pseudo-Huber approximation of the �1-norm objective function leads to the
convex optimization problem. However, the advantage is that the number of
variables in Pseudo-Huber formulation of the �1-CTA remains the same as the
number of cells. In [4] it is shown that Pseudo-Huber-CTA can be more efficiently
solved than LP �1-CTA for certain types of tables and using an appropriate
method that takes into account the structure of the problem.

All these models are solved using appropriate versions of the Interior-Point
Method (IPM). These methods have been developed in recent years to efficiently
solve different types of, often large, nonlinear (convex) optimization problems.
It has been shown both theoretically and numerically that IPMs perform better
on problems that have a certain structure, such as Conic Optimization (CO)
problems, which are LP problems where variables are elements of cones. Most
common cones are non-negative orthant, second order (quadratic) cone and semi-
definite cone [2,3,25].

Hence, motivated by the above comment, in this paper we develop a new
Second Order (Quadratic) Cone (SOC) formulation of the �1 and Pseudo-Huber-
CTA. It is shown on the small example of a two-dimensional table that SOC
CTA models are more efficiently solved than the original models. It is expected
that the same will be the case for larger and more complex tables. Extensive
numerical testing on various types of tables is beyond the scope of this paper;
however, it is needed and it is forthcoming as a part of future research.
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The paper is organized as follows. In Sect. 2 the general MIOP and then con-
tinuous CTA are formulated. Then the �1 and �2 continuous CTA are derived.
The Pseudo-Huber-CTA formulation is considered in Sect. 3. The new SOC for-
mulations of both Pseudo-Huber and �1 CTA are developed in Sect. 4. In Sect. 5
the SOC CTA models are applied to the small example of two-dimensional
table and these instances are solved using MOSEK SOC solver. The concluding
remarks are given in Sect. 6.

2 Formulation of the General CTA Model

The following CTA formulation is given in [4]: Given the following set of para-
meters:

(i) A set of cells ai, i ∈ N = {1, . . . , n}. The vector a = (a1, . . . , an)T satisfies
certain linear system Aa = b where A ∈ R

m×n is an m × n matrix and and
b ∈ R

m is m-vector.
(ii) A lower, and upper bound for each cell, lai

≤ ai ≤ uai
for i ∈ N , which are

considered known by any attacker.
(iii) A set of indices of sensitive cells, S = {i1, i2, . . . , is} ⊆ N .
(iv) A lower and upper protection level for each sensitive cell i ∈ S respectively,

lpli and upli, such that the released values must be outside of the interval
(ai − lpli, ai + upli).

(v) A set of weights, wi, i ∈ N used in measuring the deviation of the released
data values from the original data values.

A CTA problem is a problem of finding values zi, i ∈ N , to be released, such
that zi, i ∈ S are safe values and the weighted distance between released values
zi and original values ai, denoted as ‖z − a‖l(w), is minimized, which leads to
solving the following optimization problem

min
z

‖z − a‖l(w)

s.t. Az = b,
lai

≤ zi ≤ uai
, i ∈ N ,

zi, i ∈ S are safe values.

(1)

As indicated in the assumption (iv) above, safe values are the values that
satisfy

zi ≤ ai − lpli or zi ≥ ai + upli, i ∈ S. (2)

By introducing a vector of binary variables y ∈ {0, 1}s the constraint (2) can
be written as

zi ≥ −M (1 − yi) + (ai + upli) yi, i ∈ S,
zi ≤ Myi + (ai − lpli) (1 − yi) , i ∈ S,

(3)

where M � 0 is a large positive number. Constraints (3) enforce the upper safe
value if yi = 1 or the lower safe value if yi = 0.
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Replacing the last constraint in the CTA model (1) with (3) leads to a mixed
integer convex optimization problem (MIOP) which is in general a difficult prob-
lem to solve; however, it provides solutions with high data utility [11]. The alter-
native approach is to fix binary variables up front which leads to a CTA that is
acontinuous convex optimization problem. The continuous CTA may be easier
to solve; however, the obtained solution may have a lower data utility. Further-
more, a wrong assignment of binary variables may result in the problem being
infeasible. Strategies on how to avoid this difficulty are discussed in [12,13].

In this paper we consider a continuous CTA where binary variables are fixed
and vector z is replaced by the vector of cell deviations

x = z − a. (4)

The CTA (1) with constraints (3) reduces to the following convex optimiza-
tion problem:

min
x

‖x‖l(w)

s.t. Ax = 0,
l ≤ x ≤ u,

(5)

where upper and lower bounds for xi, i ∈ N are defined as follows:

li =

{
upli if i ∈ S and yi = 1
lai

− ai if (i ∈ N \ S) or (i ∈ S and yi = 0)
(6)

ui =

{
−lpli if i ∈ S and yi = 0
uai

− ai if (i ∈ N \ S) or (i ∈ S and yi = 1) .
(7)

The two most commonly used norms in problem (5) are the �1 and �2 norms.
For the �2-norm the problem, (5) reduces to the following �2-CTA model which
is a QP problem:

min
x

n∑
i=1

wix
2
i

s.t. Ax = 0,
l ≤ x ≤ u.

(8)

For the �1-norm the problem, (5) reduces to the following �1-CTA model:

min
x

n∑
i=1

wi |xi|
s.t. Ax = 0,

l ≤ x ≤ u.

(9)

The above �1-CTA model (9) is a convex optimization problem; however, the
objective function is not differentiable at x = 0. Since most of the algorithms,
including IPMs, require differentiability of the objective function, problem (9)
needs to be reformulated. The reformulations that have been considered in [4]
are reviewed in the next section.
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3 LP and Pseudo-Huber Formulation of �1-CTA

The �2-CTA model (8) is a standard QP problem that can be efficiently solved
using IPM or other methods. However, as noted at the end of the previous
section, the �1-CTA model (9) needs reformulation in order to be efficiently
solved by IPM or some other method. The standard reformulation is the trans-
formation of model (9) to the following LP model:

min
x−,x+

n∑
i=1

wi

(
x+

i + x−
i

)
s.t. A

(
x+

i − x−
i

)
= 0,

l+ ≤ x+ ≤ u+,
l− ≤ x− ≤ u−,

(10)

where

x+ =

{
x if x ≥ 0
0 if x < 0,

x− =

{
0 if x > 0
−x if x ≤ 0,

(11)

and lower and upper bounds for x−
i and x+

i , i ∈ N are as follows:

l+i =
{

upli if i ∈ S and yi = 1
0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+
i =

{
0 if i ∈ S and yi = 0
uai

− ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i =
{

lpli if i ∈ S and yi = 0
0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−
i =

{
0 if i ∈ S and yi = 1
ai − lai

if (i ∈ N \ S) or (i ∈ S and yi = 0).

(12)

Problem �1-CTA (10) is an LP problem; however, it has twice the number
of variables as the QP problem (8) and twice the number of box constraints. As
indicated in [4], the splitting of the variables x = x+ − x− and the increased
dimension of the model may cause problems. In order to overcome these difficul-
ties in [4] it was suggested to use a regularization of problem (9) by approximat-
ing absolute value with the Pseudo-Huber function that has the same number
of variables as in the QP formulation (8).

The original Huber function ϕδ : R −→ R+ is defined as

ϕδ(xi) =

{
x2
i

2δ |xi| ≤ δ

|xi| − δ
2 |xi| ≥ δ.

(13)

It approximates |xi| for small values of δ > 0; the smaller the δ, the better
the approximation. The Huber function is continuously differentiable; however,
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the second derivative is not continuous at |xi| = δ which may cause problems
when this function is used in second order optimization algorithms, such as IPMs.
Hence, it is better to consider the Pseudo-Huber function φδ : R −→ R+

φδ(xi) =
√

δ2 + x2
i − δ (14)

whose first and second derivatives are bounded and Lipschitz continuous [17].
Again, the smaller the δ the better the approximation.

Now, the �1-CTA problem (9) can be approximated by the following convex
optimization problem

min
x

∑n
i=1 wiφδ(xi)

s.t. Ax = 0,
l ≤ x ≤ u.

(15)

The advantage of the Pseudo-Huber-CTA model (15) is that it has the same
number of variables as �2-CTA and the same feasible region, the only difference
is that the quadratic objective function is replaced by a strictly convex function.

Optimization problems (8), (10) and (15) can be solved with appropriate
versions of the Interior-Point Methods (IPM). Since IPMs are the methods of
choice to solve different CTA models, in the rest of the section we describe
the main ideas of IPMs, only on a conceptual level, and then we discuss their
application on given CTA models.

IPMs have in many ways revolutionized the optimization theory and practice
in the past three decades since the appearance of the Karmarkar’s breakthrough
paper [20]. Since then, the field of IPMs has been a very active area of research
with literary thousands of papers published as well as numerous excellent mono-
graphs and textbooks. The general theory of IPMs for convex optimization prob-
lems can be found in the seminal monograph of Nesterov and Nemirovskii [26]. In
addition to this monograph, and without any attempt to be complete, we men-
tion a few other relevant references [22,28,29]. The reason for such an interest is
that IPMs have proven to be very efficient in solving large linear and non-linear
(convex) optimization problems which were previously hard to solve. Now-days
almost every relevant optimization software, whether commercial or open source,
contains an IPM solver which is capable of solving at least LP problems and in
many cases QP problems, and, less frequently, conic optimization problems. In
the case of LP there are plenty of numerical studies showing that IPMs are at
least as efficient, if not more, as the classical Simplex Method (SM) on large
scale LP problems.

The basic idea of path-following IPMs, that are most commonly used and
studied, is centered around approximately following the parametric trajectory
that is called central path which leads to the solution of the problem when a para-
meter is approaching zero. The points on the central path are called μ-centers
and are obtained as solutions of the Karush-Kuhn-Tucker (KKT) optimality
conditions of the problem where a (the) complementarity equation(s) is (are)
perturbed by a positive parameter μ > 0. In particular, the perturbed KKT
system for Pseudo-Huber-CTA is explicitly listed in [4].
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The solution of the problem, which is obtained when μ = 0, is found by trac-
ing the central path while gradually reducing μ to zero. However, tracing the
central path exactly would be prohibitively inefficient. The main achievement of
IPMs have been to show that it is sufficient to trace the central path approx-
imately; as long as the iterates are in the certain neighborhood of the central
path, it is still possible to prove global convergence and, moreover, show that
the ε-approximate solution of the problem, according to the appropriate proxim-
ity measure, can be obtained in polynomial number of iterations with the best
theoretical upper bound being O

(√
n log n

ε

)
, where n represents the number of

variables of the problem at hand.
However, practical behavior of IPM heavily depends on many factors, such

as the structure of the problem, the starting point, the accuracy needed, etc.
As reported in [4], Pseudo-Huber-CTA (15) can be difficult to solve with a
general convex optimization solver even for small instances if the solver is not
‘appropriately tuned’. However, for problems that exhibit a special structure
such as 3-D tables whose constraints have a block-angular structure, the special-
ized block-angular IPM of J. Castro [5,9,10] solves Pseudo-Huber-CTA more
efficiently than �1-CTA while �2-CTA has by far the best CPU time. Hence,
Pseudo-Huber-CTA is a viable option for solving �1-CTA; however, the IPM
have to be implemented with care and, in addition, the specialized IPM may not
work efficiently for other types of tables. As indicated in [4], modifications and
tuning of the Block-angular IPM so it can handle large and complex tables of
different types is a direction for future research.

Another direction in searching how to efficiently solve Pseudo-Huber-CTA
and �1-CTA is to investigate whether these models can be transformed into the
conic optimization (CO) problems. The motivation for such investigation comes
from the fact that it has been established both theoretically and numerically
that IPMs perform better on the well structured problems such as CO problems
than on general convex optimization problems [2,3,25]. CO problems are LP
problems over cones, that is, variables belong to certain types of cones. Most
common cones are either non-negative orthant, second-order (quadratic) cone
or semidefinite cone definitions; of which are listed in the next section. Thus,
formulating Pseudo-Huber and �1-CTA as CO problems would be advantageous.
In the next section we develop SOC formulation of both Pseudo-Huber and
�1 CTA.

4 SOC Formulation of Pseudo-Huber and �1 CTA

In this section we investigate how Pseudo-Huber and �1 CTA can be formulated
as SOC models.

The CO problems can be formulated as

min
x

cT x

s.t. Ax = b,
x ∈ K,

(16)
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where K is a cone of the following three types:

1. The linear cone or non-negative orthant:

K = R
n
+ := {x ∈ R

n : xi ≥ 0, i = 1, . . . , n}.

2. The positive semidefinite cone:

K = Sn
+ := {X ∈ Sn : X 
 0},

where 
 means that X is positive semidefinite matrix and Sn is a set of
symmetric n-dimensional matrices.

3. The quadratic or second-order cone:

K = Ln = {x ∈ R
n : xi ≥

√
x2
1 + · · · + x2

i−1 + x2
i+1 + · · · + x2

n}.

More generally, K can be a Cartesian product of the above mentioned cones.
It is also worth mentioning that the cones defined above are examples of sym-
metric cones, thus problem (16) can be considered in a more general framework
of Symmetric Optimization (SO) problems, see [16,18,24] and references therein.

In what follows, we present a reformulation of Pseudo-Huber-CTA problem
(15) as a SOC problem. Consider Pseudo-Huber Function (14)

φδ(xi) =
√

δ2 + x2
i − δ.

Let’s define
ti :=

√
δ2 + x2

i and yi := δ, i = 1, . . . , n. (17)

Hence, we have

ti =
√

x2
i + y2

i

which is the boundary of the second-order (quadratic) cone

Ki =
{

(xi, yi, ti) ∈ R
3 : ti ≥

√
x2

i + y2
i

}
.

Now, the reformulation of the Pseudo-Huber-CTA (15) as a SOC problem
follows

min
x

∑n
i=1 wi (ti − yi)

s.t. Ax = 0,
yi = δ; i = 1, . . . , n,
(xi, yi, ti) ∈ Ki; i = 1, . . . , n,
l ≤ x ≤ u.

(18)

This model is valid even for δ = 0. In that case we obtain a SOC formulation
of the l1-CTA (9)

min
x

∑n
i=1 witi

s.t. Ax = 0,
(xi, ti) ∈ Ki; i = 1, . . . , n,
l ≤ x ≤ u.

(19)
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This model could have been obtained directly from l1-CTA (9) because the
absolute value has an obvious second-order cone representation since the epi-
graph of the absolute value function is exactly second-order cone, that is,

ti = |xi| −→ Ki =
{

(xi, ti) ∈ R
2 : ti ≥

√
x2

i

}
.

It is well known that the solutions of SOC problems (18) and (19) achieve solu-
tions at the boundary of the cones, hence, Eq. (17) will hold at the solution [2,3].
Thus, it is not necessary to enforce these equations in SOC models; in fact, their
inclusion would lead to noncovex problems that would be difficult to solve.

An IPM for SOC can now be used to find an ε-approximate solutions to SOC
Pseudo-Huber and �1 CTA models. We have used MOSEK SOC solver [1] that
is considered one of the best, if not the best, SOC solver available on the market
today.

5 Numerical Results for the Small Example

In this section an example of the small two-dimensional table stated in Fig. 3
in [4] is considered. The table is listed in Fig. 1 below as the table (a).

The continuous CTA model based on the table (a) is formulated in the fol-
lowing way:

– The linear constraints are obtained from the requirement that the sum of
the elements in each row (or column) remains constant and is equal to the
corresponding component in the last column (or row) of table (a).

– The sensitive cells are cells a1 and a12. For both of them the upper safe values
are enforced, which are listed in the parentheses in the lower right corners
of the cells, upl1 = 3 and upl12 = 5 respectively. Hence, in the transformed
tables the upper safe value of the cell a1 should be 13 or above and for a12

the upper safe value should be 18 or above.
– For the nonsensitive cells the lower and upper bounds are set to be zero and

positive infinity respectively, that is, lai
= 0 and uai

= inf for i = 2, . . . , 11.
– The weights in the objective function are set to have the value one, that is,

wi = 1 for i = 1, . . . , 12.

From this basic CTA model different CTA models discussed in the paper were
formulated and then these models were solved using appropriate IPM solvers.
The results are listed in Fig. 1.

In [4] it was observed that �2-CTA had the fastest execution. Hence, we
replicated the solution of the �2-CTA instance of the example and compared its
performance with SOC models instances. The calculations were carried out on
a Lenovo ThinkPad W530 computer with Intel(R) CORE i7-3740QM 2.70 GHz
processor. The results are given in Table 1.

From Table 1 we can observe that SOC versions are comparable to the �2
version both in number of iterations and CPU time; SOC �1 was slightly faster
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a

10(3) 15 11 9 45
8 10 12 15 45
10 12 11 13(5) 46

28 37 34 37 136

(a)

LP 1

13 15 11 6 45
10 10 12 13 45
5 12 11 18 46

28 37 34 37 136

(b)

φδ=0.001

13.88 15.17 11.18 4.77 45
8.21 10.30 12.27 14.22 45
4.91 11.53 10.55 18 46

28 37 34 37 136

(c)

2

13 15.03 11.03 5.94 45
7.66 11.14 13.14 13.06 45
7.34 10.83 9.83 18 46

28 37 34 37 136

(d)

SOC 1

13.47 15.26 11.22 5.05 45
8.19 10.43 12.43 13.95 45
6.34 11.31 10.35 18 46

28 37 34 37 136

(e)

SOC φδ=0.001

13.03 15.39 11.39 5.19 45
8.37 10.41 12.41 13.81 45
6.60 11.20 10.20 18 46

28 37 34 37 136

(f)

Fig. 1. Results of the small example (rounded to two decimal places).

Table 1. Results for �2 and SOC CTA

CTA model Obj. funct. It. no. CPU

�2 20.69 6 0.08

SOC-�1 20 7 0.07

SOC Pseudo-Huber 20 9 0.09

than �2 while SOC Pseudo-Huber was slightly slower, which is the expected
result. Hence, the SOC models are more effective than the LP �1 and Pseudo-
Huber-CTA models for this example.

Furthermore, for LP �1, Pseudo-Huber φ0.001, SOC �1, and SOC Pseudo-
Huber φ0.001 CTA instances the optimal values of their respective objective func-
tions are the same, namely, the value is 20, while for �2-CTA instance it is 20.69.
Thus, the objective values for SOC Pseudo Huber and �1-CTA instances are the
same as for the original non-SOC instances, namely 20, which was expected.

These results are in line with plenty of other evidence that it is advantageous
to solve the SOC formulation of the problem by IPM, rather than using IPM
to the original formulation of the problem (see for example [2,3,23,25]). We are
confident that the advantages of the SOC models will be even more visible when
applied to larger tabular data sets. Moreover, the SOC IPM is robust and flexible
enough to handle different types of tables.

6 Concluding Remarks

The main goal of the paper is mainly theoretical, that is, to present a Second
Order Cone (SOC) formulation of the Pseudo-Huber and the �1 CTA models,
(18) and (19) respectively as an alternative to the original Pseudo-Huber and LP
�1 CTA models, (15) and (10) respectively. The application of the SOC models
to the small example in Sect. 5 shows promise to be an effective alternative to the
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application of the original models to the small example. More numerical testing
is needed and is forthcoming as a future research topic where SOC models would
be implemented and tested on the different types of tables of large dimensions
mentioned in Conclusion of [4].

From Fig. 1, it can be observed that the resulting tables for all the models
except LP �1 change most of the cells of the original table (a) that are not
fixed. The reason lays in the nature of IPMs. In these methods, the iterates
approximately follow the central path that converges to the analytic center of
the optimal set which implies that most of the cells will be changed, while the
IPM with crossover or alternatively the Simplex Method, for LP �1 finds the basic
solution which implies fewer cells will be changed. Hence, if there is a requirement
to minimize the number of non-sensitive cells that are changed, then the LP �1
models solved with SM or IPM with crossover is the right approach. However, if
the number of nonsensitive cells changed is not an issue such as for certain types
of magnitude tables, then the suggested approach is to use either the SOC �1
model or the �2 model because they are faster. Unless prior regularization of the
�1 model is necessary, which then leads to the Pseudo-Huber model and related
SOC Pseudo-Huber model, it is more efficient to use the SOC �1 model directly.

As noted in [4], it has been empirically shown that CTA in general exhibits
a low disclosure risk [6] and, at the same time, high data utility [13,14] (see
also [21]). However, the study of the disclosure risk and data utility of tables
protected by the Pseudo-Huber-CTA model and the SOC CTA models is lacking
and is certainly an interesting future research topic.
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