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Abstract. Protection levels on sensitive cells—which are key parame-
ters of any statistical disclosure control method for tabular data—are
related to the difficulty of any attacker to recompute a good estimation
of the true cell values. Those protection levels are two numbers (one
for the lower protection, the other for the upper protection) imposing a
safety interval around the cell value, that is, no attacker should be able
to recompute an estimate within such safety interval. In the symmet-
ric case the lower and upper protection levels are equal; otherwise they
are referred as asymmetric protection levels. In this work we empirically
study the effect of symmetry in protection levels for three protection
methods: cell suppression problem (CSP), controlled tabular adjustment
(CTA), and interval protection (IP). Since CSP and CTA are mixed inte-
ger linear optimization problems, it is seen that the symmetry (or not)
of protection levels affect to the CPU time needed to compute a solution.
For IP, a linear optimization problem, it is observed that the symmetry
heavily affects to the quality of the solution provided rather than to the
solution time.
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1 Introduction

The three statistical disclosure control methods for tabular data considered in
this work (namely: cell suppression problem (CSP) [5,10], controlled tabular
adjustment (CTA) [2,4,13], and interval protection (IP) [8,11]) belong to the
family of post-tabular data protection methods, which modify or suppress table
cells once the table have been built (in contrast to pre-tabular methods, which
change microdata files, and therefore, although being faster, may not guarantee
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table additivity if the true values of marginal or total cells want to be preserved).
More details can be found in the monograph [14] and the survey [6].

Each method protects sensitive cells in a different way. CSP removes sensitive
cells; other additional cells have also to be removed to avoid recomputing the
original value of sensitive cells. CSP results in a large and difficult mixed integer
linear problem, which can be solved optimally (using Benders decomposition
as done in [10]) or heuristically (e.g., using shortest paths for some hierarchical
tables as in [5]). IP (or partial cell suppression, which was its original name coined
in [11]) can be seen as a linear version of CSP, where cell values are replaced
by intervals containing the true value. IP, unlike CSP, is a linear optimization
problem, and therefore—at least theoretically—it can be solved in polynomial
time by efficient interior-point methods [17]. CTA replaces sensitive values by
safe values (i.e., outside the safety interval), thus forcing changes in other cells
to preserve the table additivity. CTA is also formulated as a mixed integer linear
optimization problem, which can be solved optimally by general purpose solvers
[9], or heuristically [2,13]. This work provides a formulation of CSP, CTA and
IP from the same set of parameters.

One of the key parameters for the optimization models for CSP, CTA and IP
are the lower and upper protection levels: these two numbers define a protection
interval around the cell value, such that no attacker should be able to obtain
an estimation of the true value within such interval. When the lower and upper
protection levels are equal, we have a symmetric interval around the true value;
otherwise we refer to the asymmetric case. A priori, asymmetric intervals could
benefit the solution of mixed integer linear optimization problems, such as CTA
and CSP. Indeed, some results along these lines were obtained in [9] for CTA
with quadratic objectives. Another objective of this work is to check if such
behaviour is observed for CTA and CSP in the solution of a set of hierarchical
tables.

For IP, being a linear optimization model, such symmetry is not expected
to provide faster executions. However, as it will be shown in the computational
results, the use of asymmetric protection levels is instrumental to avoid the
disclosure of the true cell values.

This short paper is organized as follows. Section 2 shows a formulation of CSP,
CTA and IP using a unified set of parameters. Section 3 reports and compares
the results obtained on a set of generated hierarchical instances, using symmetric
and asymmetric protection levels, for the three tabular data protection methods.

2 Formulation of CSP, CTA and IP for Tabular Data

The parameters that define any CSP, CTA or IP instance are:

— A general table, consisting of a set of n cells and a set of m linear relations
Aa = b, where A € R™*"™ is the matrix defining the table structure, a =
(ai,...,a,)" € R"is the vector of cell values, and the right-hand side b € R™
is usually 0 if the table is additive.
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— Upper and lower bounds u € R™ and [ € R™ for the cell values, which are
assumed to be known by any attacker: I < a < wu (e.g., Il =0, u = 400 for a
positive table).

— Vector of nonnegative weights w € R"™, associated to either the cell sup-
pressions for CSP, the cell perturbations for CTA, or the width of interval
replacing cells for IP. That is, w;,¢ = 1,...,n measures the cost (or data
utility loss) associated to hiding the true value of cell i. If w; = 1 for all
i =1,...,n, the same cost is given to any cell; if w; = 1/a; a relative cost is
considered depending on the cell values; other options are possible, such as,
for instance, w; = 1/,/a;.

— Set S C {1,...,n} of sensitive cells, decided in advance by applying some
sensitivity rules.

— Lower and upper protection levels for each sensitive cell Ipls and uply s € S
(usually either a fraction of as or directly obtained from the sensitivity rules).
No sliding protection is considered, unlike in [10].

2.1 Formulation of Cell Suppression Problem (CSP)

CSP aims at finding a set C of complementary cells to be removed such that for
all s € S
as <as—Iply and a@; > as + upls, (1)

as and @y being defined as

a; = m'}n T Gs; = max Xy
s.to Az =b . and s.to Az =b - 2)
li<xz;<wu; 1€ SUC ;i <x;<wu; 1€SUC
IZZQZZ¢SUC a:i:a,»igSUC.

The classical model for CSP, originally formulated in [15], considers two sets of
variables: (1) y; € {0,1},4 = 1,...,n, is 1 if cell ¢ has to be suppressed, and 0
otherwise; (2) two auxiliary vectors z"* € R™ and z%* € R, for all s € S, to
impose as constraints that the solutions to problems (2) would satisfy (1). The
resulting model is

n
min g Wil
i=1

L,s E
y,xls xuss

s. to

Axbs =0

(i —ai)y < SC%’S <(u;—a))y; i=1,....,n
x® < —lpls

Vses (3)

Az™® =0

(lz_az)y’b < x;t,s < (uz_al)yl = 17"'7”
xy® > upl

y, €{0,1} i=1,...,n.
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When y; = 1, the inequality constraints of (3) with both right- and left-hand
sides impose bounds on the deviations :L'i»’p and z;"" for cell i; these deviations
are prevented when y; = 0, that is, when the cell is published (non-suppressed).
Formulation (3) gives rise to a mixed integer linear optimization problem of n
binary variables, 2n|S| continuous variables, and 2(m + 2n + 1)|S| constraints.

2.2 Formulation of Controlled Tabular Adjustment (CTA)

Instead of suppressing cells, CTA computes an alternative safe table z: the closest
to a using some particular distance £(,,) based on cell weights w. In this context
safe means that the values of sensitive cells are outside the protection interval
[as — Ipls, as + uplg] for all s € S. The optimization problem to be solved is:

min {[z — al|g(uw)

S. tOAI:b (4)
[ <zx<u
Ty < as—Ipls or xs > as+uply s€S.

Defining cell deviations z = ¢ —a, [, =1 —a and u, = u — a, (4) can be
reformulated as:
Inzin HZHK(w)
s.to Az =0 (5)
l. <z<u,
zs < —=lpls or zg > uply s €S.

The “or” constraints of (5) can be modeled using binary variables ys € {0,1},
s € S, such that ys = 1 if cell s is “upper protected” (i.e., zs > upls), and
ys = 0 if it is “lower protected” (zs < —lIpls). For distance ¢;, the resulting
mixed integer linear optimization formulation is

n
min sz(zj—i—zf)
=1

Z+7Z_ 3
1=
s.to Azt —27)=0
ngjguzi 1€ 8 (6)

0<z <=1, i¢gS

upliy; < 2 <wuyy; i€S

pli(1—y;) <2z <L, (1-y) i€S

y; €4{0,1} i€eS.
where z;, i =1,...,n, is split as z; = z;” — z;, such that |z;| = z;” +2;". Problem
(6) has |S| binary variables, 2n continuous variables and m + 4|S| constraints.

2.3 Formulation of Interval Protection (IP)

The purpose of IP is to replace cell values a; by feasible intervals [lb;, ub;], i =
1,...,n—where feasible means that [; < [b; and ub; < u;, such that estimates of
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as, s € S, computed by any attacker should be outside the protection interval
[as — Ipls, as + upls]. This means—similarly to what is was done for CSP—that

% S as — lpls and as Z as + uplsa (7)

as and a; being defined as

as = min Ty s = max Ts
- x x
s.to Az =b and s.to Ar =b
lbigxigubiizl,...,n lblﬁxlﬁublzzl,,n

(8)

Like in CSP, the previous problem can be formulated as a large-scale (linear
in that case, instead of mixed integer linear) optimization problem. For each
sensitive cell s € S, two auxiliary vectors z* € R and 2%* € R™ are introduced
to impose, respectively, the lower and upper protection requirement of (7). The
resulting optimization problem is:

1b,ub
s.to

min Z wj (ub; — 1b;)
i=1

Axbs = b
b < b <ub; i=1,...,n

7
ml,s

s <as— lpls

Vses )
Ax™s =D

b, < x;"° < ub; i=1,...,n
TP > ag + uplg

li SlbZ Sai i=1,...,n
a; <ub; <wu; i=1,...,n.
Problem (9) is very large, with 2n(|S| 4+ 1) continuous variables and 2(m +
2n 4 1)|S| constraints. On the other hand, unlike CSP, it is linear (no binary, no
integer variables), and thus theoretically it can be efficiently solved in polynomial
time by general or by specialized interior-point algorithms. As far as we know,
no efficient implementation has been developed yet for IP, and there are only
some preliminary prototypes [8]. Some related heuristics for variations of this
problem were considered in [16].

3 Computational Experience

To study the effect of symmetric and asymmetric protection levels for CSP, CTA
and IP we generated a set of six hierarchical tables using the generator introduced
in [5]. Two versions of each table were considered: one with symmetric protection
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Table 1. Instances dimensions.

Instance | n |S| |m |nnz

14441135171 | 2964
2544 1237|303 | 5216
2108 | 196 | 243 | 4318
14441216 | 152 | 2945
1488 | 220 | 173 | 3040
1411|209 | 168 | 2890

DO x| W N

levels, the other with asymmetric ones. In the symmetric case a 20% of the cell
value was considered, while a 5% and 20% were used for respectively the lower and
upper protection levels for asymmetric instances. A priori bounds | and u were
0 and a large value, respectively (so they were always inactive). Table 1 reports
the number of cells, sensitive cells, table linear relations, and number of nonzero
entries of matrix A, for each instance. For CSP and CTA we used the efficient
(C++) implementations described in [1, 7], respectively. For IP the prototype code
(a Benders decomposition implemented in AMPL [3,12]) of [8] was used.

Solution times for CSP and CTA appear in Table 2. Since the IP prototype
is quite inefficient, their times are not reported. The optimality gap (i.e., the
relative distance between the upper and lower bound of the optimization prob-
lem) required in both methods was 0.1%. Two symmetric tables exceeded the
one hour time limit for CSP, so the final gap reached (in brackets) is notably
higher than the required one. From Table2, CTA is clearly more efficient for
asymmetric than for symmetric instances; this is consistent with the results of
[9], albeit they were for a quadratic version of CTA (i.e., using the ¢ Euclidean
instead of the ¢; distance in the objective function). For CSP the pattern is not
so definitive: asymmetric instances 4, 5 and, specially, 6 were slower than the
corresponding symmetric variants. However, for the two largest instances (2 and
3) the symmetric cases were clearly outperformed by the asymmetric ones.

Table 2. Computation times, in seconds.

CTA CSP

Instance | Symm. | Asymm. | Symm. Asymm.
1 2.03 |0.35 39.12 37.11

2 12.23 10.53 3600 (73%) | 638.42
3 10.44 |0.65 3600 (74%) | 513.61

4 4.66 |0.84 20.88 73.17
5 5.15 |1.20 25.99 88.06
6

530 |1.14 53.31 693.1
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As for IP, not being a mixed integer linear problem, we do not expect dif-
ferences in CPU times between symmetric and asymmetric instances (and, in
addition, we would need an efficient IP code to check them, which is not the
case). However we can perform a comparison between the quality of the inter-
vals obtained for symmetric and asymmetric variants. In this respect, we first
observed that most of the cells were not replaced by an interval, that is, [b; and
ub; were the same value. Table 3 shows the number and percentage of cells which
have been replaced in each instance by an interval, that is, one with different
endpoints [b; and ub;. About 9.3% of cells are sensitive in instances 1 to 3, so
one out of two interval-replaced cells is non-sensitive in the symmetric cases.
Instances 4 to 6, with higher proportion of sensitive cells (about 15%), show
lower rates of non-sensitive cells among all the interval-replaced cells. In all the
instances, the number of cells replaced by an interval increases slightly for the
asymmetric cases.

Table 3. Count and percentage of cells which have been replaced by an interval by IP.

Symmetric Asymmetric
Instance | N. of cells | (%) | N. of cells | (%)
1 263 18.2 ] 309 21.4
2 471 18.5| 529 20.8
3 403 19.1 /451 21.4
4 334 23.1|387 26.8
5 377 25.3 1412 27.7
6 360 25.5 401 28.4

The quality of the protection is given by its difficulty to disclose the original
cell values. In principle, an interval should be safe since any value inside it has
the same chance to be the value sought by the attacker. However, we (some-
how unexpectedly) found that an instance with symmetric protection levels is
far more vulnerable. Table4 describes the proportion of cells that have been
replaced with an interval whose midpoint is exactly the original value (repre-
sented here by the zero value). The intervals have been standardized to have a
width of 100. The five classes represented are given by the midpoint position: for
instance, —50 means that the interval is [—100, 0], that is, the rightmost value
is equal to the original cell value; (—50,0) means that the original cell value is
located somewhere strictly between the midpoint and the right endpoint. The
proportion of cells lying in the midpoint (0) is very large among the symmetric
cases, and represents a real risk of disclosure, since just taking the average of the
interval has many chances to guess the original cell value. On the other hand,
the proportion of such cases in instances with asymmetric protection levels is
negligible. Figure 1 compares a typical instance (number 3), showing graphically
the benefit of dealing with asymmetric protection levels. The other instances
studied exhibited a similar behaviour.
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Fig. 1. Instance number 3, showing standardized intervals in both symmetric and asym-
metric cases. The cells have been ranked in each case according to their interval (so
the position along the z-axis is usually different in the two plots).
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Table 4. Percentage distribution of intervals position.

Instance | —50 | (=50, 0) 01(0,50) |50
Symm. |1 2.7 5.7 87.1 4.6 0
2 4 6.4 85.4 4 0.2
3 4 94 77.9 6 2.7
4 4.2 6.6 80.8 6.6 1.8
5 64 |74 77.5 6.9 1.9
6 4.7 |81 76.9 8.3 1.7
Asymm. |1 5.8 3.9 2.9 60.8 |26.2
2 2.3 |45 2.3 59.2 314
3 3.1 |89 1.1 59.2 277
4 1.6 |44 2.1 68.7 |23
5 3.6 |58 1 67.7 |21.6
6 2 6 3.5 67.3 209

4 Conclusions

From the computational results in the solution of a set of six hierarchical tables,
using efficient implementations of CSP and CTA, and a prototype code for IP,
we conclude:

— For the mixed integer linear problems CTA and CSP, symmetry of protection
levels has an impact on the solution time. For CTA this assertion was always
true: asymmetric instances were faster than symmetric ones. For CSP this
fact was not so conclusive: only for the largest instances tested asymmetry
provided faster executions.

— For IP asymmetric protection levels affected the quality of the solution, rather
than solution times. In general, symmetric protection levels provided very
poor intervals, and in most cases their midpoints disclosed the true cell value.
Therefore, the use of asymmetric protection levels in IP should be highly
recommended.

— Protection levels automatically provided by sensitivity rules are always sym-
metric: this practice should be reconsidered according to the results of this
work.

A similar analysis to that done for IP could be performed for the intervals
obtained by the auditing phase of the CSP; this is part of the future work to be
done.
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