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Abstract. Given a set of points, the microaggregation problem aims to
find a clustering with a minimum sum of squared errors (SSE), where
the cardinality of each cluster is greater than or equal to k. Points in the
cluster are replaced by the cluster centroid, thus satisfying k-anonymity.
Microaggregation is considered one of the most effective techniques for
numerical microdata protection. Traditionally, non-optimal solutions to
the microaggregation problem are obtained by heuristic approaches.
Recently, the authors of this paper presented a mixed integer linear opti-
mization (MILO) approach based on column generation for computing
tight solutions and lower bounds to the microaggregation problem. How-
ever, MILO can be computationally expensive for large datasets. In this
work we present a new heuristic that combines three blocks: (1) a decom-
position of the dataset into subsets, (2) the MILO column generation
algorithm applied to each dataset in order to obtain a valid microag-
gregation, and (3) a local search improvement algorithm to get the final
clustering. Preliminary computational results show that this approach
was able to provide (and even improve upon) some of the best solutions
(i.e., of smallest SSE) reported in the literature for the Tarragona and
Census datasets, and k ∈ {3, 5, 10}.

Keywords: Statistical disclosure control · Microdata ·
Microaggregation problem · Mixed integer linear optimization ·
Column generation · Local search · Heuristics

1 Introduction

A microdata file of p individuals (people, companies, etc.) and d variables (or
attributes) is, in practice, a matrix A ∈ R

p×d whose element aij provides the
value of attribute j for individual i, and whose row ai gives the d attributes for
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individual i. Formally, a microdata file is a mapping M : S ⊆ P → V1 × . . .×Vt,
where P is a population, S is a sample of the population and Vi is the domain
of the attribute i ∈ {1, . . . , d}.

Microdata files must be protected before being released; otherwise, confi-
dential individual information would be jeopardized. Microaggregation [5,6] is
a statistical disclosure control technique, mainly for numeric variables, which is
related with k-anonymity [20].

The goal of microaggregation is to modify the values of the variables such
that the released microdata satisfies k-anonymity. Therefore, it first partitions
the individuals (or points in R

d) into subsets of size at least k, called clusters,
and it then replaces each point in the cluster with the centroid of the cluster in
order to minimize the loss of information, called spread. In practical cases, the
value of k is relatively small (e.g., 3 ≤ k ≤ 10, see [6]). A widely used measure
for evaluating the spread is the sum of squared errors (SSE) [6]:

SSE =
q∑

i=1

ni∑

j=1

(aij − ai)T (aij − ai), (1)

where q denotes the number of clusters, ni the size of cluster Ci = {aij , j =
1, . . . , ni}, and ai = 1

ni

∑ni

j=1 aij its centroid, for i = 1, . . . , q. An equivalent
measure that is also widely used in the literature is the information loss (IL),
which is defined as

IL =
SSE

SST
· 100, (2)

where SST is the total sum of squared errors for all the points, that is:

SST =
p∑

i=1

(ai − ā)�(ai − ā) where ā =
∑p

i=1 ai
p

. (3)

IL always takes values within the range [0, 100]; the smaller the IL, the better
the clustering. From now on, we will denote as feasible clustering a partition into
clusters of size at least k.

Finding the partition that minimizes IL (or SSE) and satisfies the cardinal-
ity requirement ni ≥ k for i = 1, . . . , q is a difficult combinatorial optimization
problem when d > 1 (multivariate data), which is known to be NP-hard [15].
For univariate data (that is, d = 1)—which in practice are the exception—
microaggregation can be solved in polynomial time using the algorithm of [11],
which is based on the shortest path problem.

Microaggregation differs from other related clustering problems, such as k-
medians or k-means [10], specifically in that it imposes a lower bound k on the
cardinality of each cluster, but no fixed number of clusters. On the other hand,
k in k-medians and k-means fixes the number of clusters, while imposing no
constraint on the cardinality of each cluster.

There exist various papers on heuristic algorithms for feasible solutions
to multivariate microaggregation with reasonable IL. Heuristics like minimum
distance to average (MDAV) [6,8] and variable minimum distance to average
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(VMDAV) [19] sequentially build groups of fixed (MDAV) or variable (VMDAV)
size based on considering the distances of the points to their centroid. Other
approaches first order the multivariate points and apply the polynomial time
algorithm of [11] to the ordered set of points, such as in [7], which used several
fast ordering algorithms based on paths in the graph that is associated with the
set of points, whereas [14] used (slower) Hamiltonian paths (which involve the
solution of a traveling salesman problem). The heuristic of [16] also sequentially
builds a set of clusters attempting to locally minimize IL. Other approaches,
such as those of [2,13], are based on refining the solutions previously provided
by another heuristic.

To our knowledge, the only two papers in the literature to apply optimization
techniques to microaggregation and formulate it as a combinatorial optimiza-
tion problem are [1] and [4]. Both of them apply a column generation algorithm
inspired by the work in [9]. Those optimization approaches solve the linear relax-
ation of the integer microaggregation problem, thus computing a (usually tight)
lower bound for the problem. They also provide a (usually very good) upper
bound solution with an IL that is smaller than the ones reported by other
heuristics. Note that having a lower bound of the optimal solution is instru-
mental in order to know how good are the (upper bound) solutions computed
by heuristics, even to perform fair comparisons between them. For instance, the
heuristic introduced in [17] reported IL values below the certified lower bound—
thus, not possible—, which clearly indicates that the values of the datasets used
in that paper were different than those in the rest of the literature (likely due to
some sort of normalization of attributes).

The downside of those optimization based techniques is that, when the
dataset is large, the column generation may involve a large number of iterations,
thus making it computationally very expensive. The main difference between
the approaches in [1] and [4] is that the pricing problem of the former involves a
nonlinear integer problem while the latter requires a simpler linear integer prob-
lem. In practice this means that the pricing subproblem in [1] can be tackled
only by means of complete enumeration and only for small values of k, while [4]
theoretically offers more flexibility and can deal with larger values of k.

Since optimization-based methods can be inefficient for large datasets but
can provide high quality solutions in reasonable time for microdata with a small
number of points, this work suggests a new approach consisting of first partition-
ing the set of points, and then applying an optimization approach to each smaller
subset. The initial partitioning of the dataset is done according to a feasible clus-
tering previously computed with the MDAV/VMDAV heuristics. Additionally,
a local search improvement heuristic is also applied twice: first, to the solution
provided by the MDAV/VMDAV heuristics prior to the partitioning; and second,
to the final solution provided by the optimization approach.

This short paper is organized as follows. Section 2 outlines the optimization-
based decomposition heuristic. Sections 3 and 4 outline the two main building
blocks of the heuristic: the local search improvement algorithm and the mixed
integer linear optimization method based on column generation in [4]. Section 5
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shows the preliminary results from this approach with the standard Tarragona
and Census datasets used in the literature.

2 The Decomposition Heuristic

The decomposition heuristic comprises the following steps:

Input: Microdata matrix A0 ∈ R
p×d, minimum cluster cardinality k,

upper bound of the number of subsets s in which the microdata will be
decomposed.

1. Standardize attributes/columns of A0, obtaining matrix A ∈ R
p×d. Com-

pute the squared Euclidean distance matrix D ∈ R
p×p, where Dij =

(ai − aj)�(ai − aj), which is to be used in the remaining steps.
2. Apply MDAV and VMDAV microaggregation heuristics using D. Let C =

{C1, . . . , Cq} be the best of the two feasible clusterings provided by MDAV
and VMDAV (that is, the one with smallest IL). Here, q represents the
number of clusters, and Ci the set of points in cluster i.

3. Apply the local search improvement algorithm (described in Sect. 3) to
C, obtaining the updated clustering C′ = {C′

1, . . . , C′
q}. The updated

clustering C′ has the same number of clusters q as C, but the points in
subsets C′

i and Ci can be different.
4. Partition the microdata and distance matrices A and D in s′ ≤ s subsets

Si, i = 1, . . . , s′, according to the clustering C′. For this purpose we com-
pute p̄ = round(p/s), the minimum number of points in each subset of
the partition, and build each subset Si by sequentially adding points of
clusters C′

j , j = 1, . . . , q until the cardinality p̄ is reached.
5. Apply the mixed integer linear optimization method based on column

generation in [4] to each microaggregation subproblem defined by ASi

and DSi
, i = 1, . . . , s′. Obtain feasible clustering Oi for points in Si,

i = 1, . . . , s′.
6. Perform the union of clusterings O = O1 ∪ · · · ∪ Os′ . O is a feasible

clustering for the original microdata A.
7. Finally, once again apply the local search improvement algorithm from

Sect. 3 to O in order to obtain the final microaggregation O′.
Return: Clustering O′.

Step 3 of the algorithm can be skipped, thus obtaining the partition in Step 4
with the clustering C from Step 2. However, we have observed that better results
are generally obtained if the local search improvement heuristic is applied in both
Steps 3 and 7, not only in Step 7. Indeed, if efficiency is a concern, it is possible
to stop the whole procedure after Step 3, which thus returns cluster C′ as a
solution and, in general, significantly outperforms the solution obtained in Step
2. In this way, it is possible to avoid Step 5, which is usually computationally
expensive.

Note also that the clustering C′ obtained in Step 3 is used only in Step
4 to decompose the microdata into subsets, but not as a starting solution for
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Fig. 1. Two-swapping local search improvement heuristic

the optimization procedure in Step 5. Therefore, the clustering computed in
Steps 5–6 by the optimization procedure might have a larger SSE than C′. On
the other hand, by not starting the optimization procedure in Step 5 with the
solution C′ we have some chances to obtain a different and possibly better local
solution. In the current implementation, C′ is not used as a starting solution for
the optimization algorithm.

The larger the value of s, the faster the algorithm will be, since the minimum
number of points p̄ = round(p/s) in each subset Si, i = 1, . . . , s′ will be smaller,
and therefore the optimization algorithm of [4] will be more efficient. However,
the final IL (SSE) of the final clustering O′ also increases with s. Therefore
parameter s can be used as a trade-off between efficiency and solution quality.

In the next two sections, we outline the local search improvement heuristic
used in Steps 3 and 7, as well as the mixed integer linear optimization method
in Step 5.

3 The Local Search Improvement Heuristic

Given a feasible clustering for the microaggregation problem, a local search algo-
rithm tries to improve it by finding alternative solutions in a local neighborhood
of the current solution. The local search considered in this work is a two-swapping
procedure; in addition to its simplicity, it has proven to be very effective in prac-
tice. Briefly, the two-swapping heuristic performs a series of iterations, and at
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each iteration it finds the pair of points (i, j) located in different clusters that
would most reduce the overall SSE if they were swapped. This operation is
repeated until no improvement in SSE is detected. The cost per iteration of
the heuristic is O(p2/2). Similar approaches have been used in other clustering
techniques, such as in the partitioning around medoids algorithm for k-medoids
[12]. The two-swapping algorithm implemented is shown in Fig. 1.

4 The Mixed Integer Linear Optimization Algorithm
Based on Column Generation

In this section we quickly outline the optimization method presented in [4].
Additional details can be found in that reference.

The formulation of microaggregation as an optimization problem in [4] is
based on the following property of the SSEh of cluster Ch = {ahi

, i = 1, . . . , nh}
(see [4, Prop. 3] for a proof):

SSEh =
nh∑

i=1

(ahi
− ah)�(ahi

− ah)

=
1

2nh

nh∑

i=1

nh∑

j=1

(ahi
− ahj

)�(ahi
− ahj

) =
1

2nh

nh∑

i=1

nh∑

j=1

Dhihj
.

(4)

That is, for computing SSEh, we do not need the centroid of the cluster, but
only the distances between the points in the cluster.

From (4), defining binary variables xij , i, j = 1, . . . , p (which are 1 if points i
and j are in the same cluster, 0 otherwise), then the microaggregation problem
can be formulated as:

min SSE � 1
2

p∑

i=1

∑p
j=1,j �=i Dijxij∑p
j=1,j �=i xij + 1

(5a)

s. to xir + xjr − xij ≤ 1 i, j, r = 1, . . . , p, i �= j, r �= j, i �= r (5b)
p∑

j=1,j �=i

xij ≥ k − 1 i = 1, . . . , p (5c)

xij = xji, xij ∈ {0, 1}, i, j = 1, . . . , p. (5d)

Constraints (5b) are triangular inequalities, that is, if points i and r, and r
and j are in the same cluster, then points i and j are also in the same cluster.
Constraints (5c) guarantee that the cardinality of the cluster is at least k. The
denominator in the objective function (5a) is the cardinality of the cluster that
contains point i. Unfortunately, (5) is a difficult nonlinear and nonconvex integer
optimization problem (see [4] for details).

A more practical alternative is to consider a formulation inspired by the clique
partitioning problem with minimum clique size of [9]. Defining as C∗ = {C ⊆
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{1, . . . , p} : k ≤ |C| ≤ 2k − 1} the set of feasible clusters, the microaggregation
problem can be formulated as:

min
∑

C∈C∗
wCxC

s. to
∑

C∈C∗:i∈C
xC = 1 i ∈ {1, . . . , p}

xC ∈ {0, 1} C ∈ C∗,

(6)

where xC = 1 means that feasible cluster C appears in the microaggregation
solution provided, and the constraints guarantee that all the points are covered
by some feasible cluster.

From (4), the cost wC of cluster C in the objective function of (6) is

wC =
1

2 |C|
∑

i∈C

∑

j∈C
Dij . (7)

The number of feasible clusters in C∗—that is, the number of variables in the
optimization problem (6)—is

∑2k−1
j=k

(
p
j

)
, which can be huge. For instance, for p =

1000 and k = 3 we have |C∗| = 8.29 · 1012. However, the linear relaxation of (6)
can be solved using a column generation technique, where the master problem is
defined as (6) but it considers only a subset C̄ ⊆ C∗ of the variables/clusters. The
set C̄ is updated at each iteration of the column generation algorithm with new
clusters, which are computed by a pricing subproblem. The pricing subproblem
either detects that the current set C̄ contains the optimal set of columns/clusters
or, otherwise, it generates new candidate clusters with negative reduced costs.
For small datasets and values of k, the pricing subproblem can be solved by
complete enumeration; otherwise, an integer optimization model must be solved.
The master problem requires the solution of a linear optimization problem. Both
the linear and integer optimization problems were solved with CPLEX in this
work. The solution of the linear relaxation of (6) provides a lower bound to the
microaggregation problem (usually a tight lower bound). In addition, solving the
master problem as an integer problem allows us to obtain a feasible solution to
the microaggregation problem (usually of high quality). A thorough description
of this procedure, and of the properties of the pricing subproblem, can be found
in [4] and [18].

5 Computational Results

The algorithm in Sect. 2 and the local search heuristic in Sect. 3 have been imple-
mented in C++. We used the code of [4] (also implemented in C++) for the
solution of the mixed integer linear optimization approach based on column gen-
eration, as described in Sect. 4. A time limit of 3600 s was set for the solution of
each subproblem with the column generation algorithm in Step 5 of the heuristic
in Sect. 2. We tested the decomposition algorithm with the datasets Tarragona
and Census, which are standard in the literature [3]. The results for Tarragona
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and Census are shown, respectively, in Tables 1–2 and 3–4. These tables show,
for each instance and value k ∈ {3, 5, 10}, the IL and CPU time for the main
steps of the decomposition heuristic in Sect. 2. We also tried the different values
s ∈ {40, 20, 10, 5, 2} for partitioning the dataset in Step 5. For Step 2, the tables
also show which of the MDAV or VMDAV algorithms reported the best solution.
The difference between Tables 1 and 2 (also between Tables 3 and 4) is that the
former show results with the Step 3, while in the latter this step was skipped.
We remind the reader that the decomposition algorithm could be stopped after
Step 3 with a feasible and generally good solution. However, the best IL values
for each k, which are marked in boldface in the tables, are obtained after Step
7, although this means going through the usually more expensive Step 5.

Table 1. Results for the Tarragona dataset considering Step 3 of the algorithm. The
best IL for each k is marked in boldface.

Instance k Step 2 Step 3 Step 5 Step 7

Alg IL CPU IL CPU s IL CPU IL CPU

Tarragona 3 VMDAV 15.85 0.6 15.00 1.9 40 14.96 0.2 14.85 0.1

20 14.83 0.4 14.81 0.1

10 14.68 0.9 14.65 0.3

5 14.57 2.8 14.53 0.4

2 14.51 4.2 14.50 0.2

Tarragona 5 MDAV 22.46 0.5 20.74 5.2 40 20.74 1.0 20.73 0.5

20 20.74 7.9 20.73 0.3

10 20.47 103.8 20.40 1.5

5 20.32 1119.6 20.25 1.6

2 21.06 7207.8 20.46 4.0

Tarragona 10 MDAV 33.19 0.3 30.77 25.6 40 30.77 12119.7 30.77 0.1

20 33.03 61600.3 30.87 9.0

10 31.80 88899.1 30.56 13.4

5 33.32 9.8 30.79 17.4

2 33.20 22.8 30.80 17.2

From Tables 1, 2, 3 and 4 we conclude that:

– In general, the smaller the k and larger the s, the faster the decomposition
heuristic. In a few cases, however, smaller values of s also meant smaller CPU
times; for instance, this is observed for Census, k = 10, and values s = 20 and
s = 10. The explanation is that the maximum time limit was reached in some
pricing subproblems in those runs, and therefore the CPU time increased
with s.

– In general, smaller ILs are obtained for smaller s values, as expected.
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Table 2. Results for the Tarragona dataset without Step 3 of the algorithm. The best
IL for each k is marked in boldface.

Instance k Step 2 Step 5 Step 7

Alg IL CPU s IL CPU IL CPU

Tarragona 3 VMDAV 15.85 0.6 40 15.15 0.2 14.95 1.7

20 14.86 0.3 14.73 1.3

10 14.75 1.0 14.66 1.2

5 14.58 1.9 14.54 0.7

2 14.51 4.6 14.50 0.4

Tarragona 5 MDAV 22.46 0.5 40 21.81 0.9 21.18 4.7

20 21.14 7.9 20.59 4.7

10 20.62 86.2 20.36 3.8

5 20.37 894.5 20.29 2.1

2 21.01 7208.1 20.77 6.0

Tarragona 10 MDAV 33.19 0.3 40 32.05 12597.2 30.82 19.9

20 33.18 60243.5 30.81 20.8

10 32.23 230644.6 30.55 20.9

5 33.20 13.0 30.84 20.9

2 33.21 21.2 30.83 20.6

Table 3. Results for the Census dataset considering Step 3 of the algorithm. The best
IL for each k is marked in boldface.

Instance k Step 2 Step 3 Step 5 Step 7

Alg IL CPU IL CPU s IL CPU IL CPU

Census 3 VMDAV 5.66 1.2 5.25 3.3 40 5.21 0.1 5.20 0.2

20 5.20 0.2 5.19 0.1

10 5.21 0.6 5.18 0.3

5 5.12 3.2 5.07 0.8

2 4.85 5.2 4.79 0.4

Census 5 VMDAV 8.98 1.1 8.12 8.7 40 8.12 2.4 8.12 0.2

20 8.12 22.5 8.11 0.2

10 8.14 247.0 8.09 0.8

5 7.96 5334.6 7.84 2.0

2 9.36 7209.3 8.19 8.5

Census 10 VMDAV 14.04 0.8 12.36 38.4 40 12.36 8452.7 12.36 0.4

20 12.96 77221.1 12.32 7.0

10 12.84 37037.7 12.40 14.5

5 13.49 7310.4 12.63 28.8

2 14.45 26.3 12.46 37.1
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Table 4. Results for the Census dataset without Step 3 of the algorithm. The best IL
for each k is marked in boldface.

Instance k Step 2 Step 5 Step 7

Alg IL CPU s IL CPU IL CPU

Census 3 VMDAV 5.66 1.2 40 5.56 0.1 5.19 3.2

20 5.51 0.3 5.19 2.8

10 5.44 0.9 5.19 2.1

5 5.26 2.3 5.10 1.4

2 4.87 4.9 4.81 0.7

Census 5 VMDAV 8.98 1.1 40 8.94 2.2 8.14 8.3

20 8.84 22.3 8.10 8.2

10 8.63 218.6 8.10 5.9

5 8.22 4050.7 7.90 3.9

2 9.13 7210.2 8.19 8.1

Census 10 VMDAV 14.04 0.8 40 13.88 7647.9 12.47 31.8

20 14.10 77388.6 12.45 35.1

10 14.05 50960.1 12.68 33.1

5 14.02 8802.5 12.55 36.8

2 14.59 24.6 12.42 41.9

– When k = 10, Step 5 is faster for s = 2 or s = 5, which was initially unex-
pected. The reason is that, when k is large and s is small, the column gen-
eration optimization algorithm generates new columns heuristically, reaching
the maximum allowed space of 3000 columns; thus the solution of the diffi-
cult mixed integer linear pricing subproblems is never performed. However,
in those cases, poorer values of IL were obtained.

– In general, the best IL values are obtained when using Step 3, with the excep-
tion of Tarragona and k = 10, whose best IL was given in Table 4 without
Step 3. This can be due to the randomness associated with partitioning the
dataset into s subsets.

– The solution times in Step 5 are generally longer when k is large and s is
small.

Finally, Table 5 summarizes the best IL results obtained with the new app-
roach, comparing them with—to our knowledge—the best values reported in the
literature by previous heuristics (citing the source), and the optimization method
of [1]. The approaches implemented by those other heuristics were commented
in Sect. 1 of this paper. It can be seen that the new approach provided a better
solution than previous heuristics in all the cases. In addition, for k ∈ {3, 5}, the
new approach also provided IL values close to the ones provided by the opti-
mization method of [1], usually while requiring fewer computational resources.
For instance, with our approach, the solutions for Tarragona and k = 3 and
k = 5 required, respectively, 7 and 1127 s; whereas the optimization method of
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Table 5. Comparison of best IL values obtained with the new approach vs. those
found in the literature (citing the source).

Instance k New heuristic Previous heuristics Optimization method of [1]

IL IL IL

Tarragona 3 14.50 14.77 [14] 14.46

5 20.25 20.93 [2] 20.16

10 30.55 31.95 [2] —

Census 3 4.79 5.06 [14] 4.67

5 7.84 8.37 [13] 7.36

10 12.32 12.65 [13] —

[1] (running on a different—likely older—computer) needed, respectively, 160
and 4779 s. For Census and k = 3 and k = 5, the solution times with our app-
roach were, respectively, 10 and 5346 s, whereas that of [1] required, respectively,
3868 and 6788 s. The optimization method of [1] is unable to solve problems with
k = 10, and in this case our new approach reported—as far as we know—the
best IL values ever computed for these instances.

6 Conclusions

We have presented here the preliminary results from a new heuristic approach for
the microaggregation problem. This method combines three ingredients: a par-
tition of the dataset; solving each subset of the partition with an optimization-
based approach; and a local search improvement heuristic. The results have
shown that our new approach provides solutions that are as good as (and in
some cases even better than) those reported in the literature by other heuristics
for the microaggregation problem, although it may generally require longer exe-
cutions times. Future research will investigate improving Step 5 of the heuristic
algorithm and will further consider more sophisticated large-neighborhood search
improvement heuristics.

References

1. Aloise, D., Hansen, P., Rocha, C., Santi, É.: Column generation bounds for numer-
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