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A New Mathematical Optimization-Based Method

for the m-invariance Problem
Adrian Tobar, Jordi Castro, and Claudio Gentile

Abstract—The issue of ensuring privacy for users who share
their personal information has been a growing priority in a
business and scientific environment where the use of different
types of data and the laws that protect it have increased in
tandem. Different technologies have been widely developed for
static publications, i.e., where the information is published only
once, such as k-anonymity and ǫ-differential privacy. In the case
where microdata information is published dynamically, although
established notions such as m-invariance and τ -safety already
exist, developments for improving utility remain superficial.

We propose a new heuristic approach for the NP-hard
combinatorial problem of m-invariance and τ -safety, which is
based on a mathematical optimization column generation scheme.
The quality of a solution to m-invariance and τ -safety can be
measured by the Information Loss (IL), a value in [0,100], the
closer to 0 the better. We show that our approach improves by far
current heuristics, providing in some instances solutions with ILs
of 1.87, 8.5 and 1.93, while the state-of-the art methods reported
ILs of 39.03, 51.84 and 57.97, respectively.

Index Terms—Privacy, dynamic datasets, m-invariance, math-
ematical optimization, column generation

I. INTRODUCTION

THE statistical disclosure control [2] field is devoted to the

private-preserving publication of multiple forms of data.

In the microdata publication, a table with information at the

individuals level is published. The existing mechanisms for

protecting privacy and anonymity of respondents, that is, the

users that shared their data, can be broadly classified by two

main properties: the data publishing scenario and how they

achieve privacy.

Syntactic notions are those that enforce a particular structure

on the dataset. On the other hand, semantic notions are

those that base their privacy on enforcing certain properties

on the algorithms anonymizing the data. Since the inception

of statistical disclosure control the most studied publishing

scenario was the static data release. Examples of syntactic

notions for this framework are k-anonymity [3], [4], l-diversity
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[5] and t-closeness [6], [7] and examples of semantic notions

are ǫ-differential privacy [8]–[10] and their variations. A

notable difference between each approach is that syntactic

methods assume a classification of microdata in two types,

quasi-identifiers, that is, data that is not sensitive to the users

but may be used to partially identify them (age, sex, weight,

marital status,...) and sensitive data, i.e., the information that,

if associated with a user, would violate their privacy (medical

records, criminal history, salary,...). Broadly speaking semantic

methods assume stronger attackers and achieve better privacy

guarantees but at the expense of worsening significantly data

utility. On the other hand syntactic methods achieve a better

trade-off between privacy and utility at the cost of assuming

rigid attacker with limited information.

With the interest of using alternative data structures a new

umbrella of publishing scenarios has appeared, in particular

dynamic scenarios. These scenarios are defined by allowing

editions of data and the partial or total republication of data

in several independent publications.

Continuous data publishing [11] is a dynamic framework

where a dataset is periodically published and in-between

publications it is updated via insertion of new tuples, deletion

of existing ones, updates of microdata and reinsertion of

previously deleted tuples. There are three levels of dynamicity:

incremental, the dataset can be increased adding new users,

i.e., new rows; external dynamic, rows can be added and

deleted but a row from a deleted user cannot be reinserted;

fully dynamic, additions, deletions, reinsertions and updates

of microdata are possible.

Since the first proposal for continuous data publishing

due to Byun et. al. [11] several notions and algorithms

have been proposed [12]–[18] to handle various attackers

and publishing scenarios. Among them m-invariance [12]

appeared as the first clear notion that bounds the capacity

of an attacker. However m-invariance was limited to dynamic

datasets, i.e., datasets which only update inserting and deleting

tuples. To overcome these limitations, τ -safety [15], [19] was

proposed. Fundamentally τ -safety strengthens m-invariance

at the expense of stronger assumptions. The more recent

advancements in continuous data publishing [16], [17], [20]

are slight improvements of τ -safety and their implementations

with the exception of [18] which present a new enforcement

algorithm based on fuzzy clustering. Nevertheless the study

of enforcing m-invariance and τ -safety has been barely non-

existent and in most cases only improvements of the original

algorithm of m-invariance have been carried out. Furthermore,

no deep analysis of the combinatorial problem of obtaining m-

invariance has been performed so far.

m-Invariance and τ -safety are related to the microaggre-
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gation problem [21], a privacy preserving technique that

guarantees k-anonymity. Briefly, given a set of points, the

goal of microaggregation is to partition them into clusters

of a minimum size k (k being a parameter of the problem)

that minimize the information loss (IL) (to be defined later

in Section III). A partition satisfying the constraint on cluster

cardinality is referred as feasible clustering, and, of all the

feasible clusterings, the one minimizing IL is named the

optimal clustering. Microaggregation is known to be a NP-

hard problem [22].

The purpose of m-invariance is also to find an optimal

clustering (m being the minimum cluster cardinality) with the

additional constraint that two points in the same cluster can

not have the same value for a particular (sensitive) attribute.

For instance, if this particular attribute is named the “color”

of the point, m-invariance finds an optimal clustering where

all the points of a cluster have a different color. If all the

points of the dataset have initially a different color, then m-

invariance reduces to microaggregation, and it is thus also a

NP-hard problem.

II. m-INVARIANCE AND τ -SAFETY

m-Invariance and τ -safety are privacy notions designed to

upper bound the probability that an attacker can correctly link

a sensitive attribute to a user participating in a dynamic dataset.

To present them we first introduce the necessary definitions.

A dataset T is a p× t matrix whose element i, j provides

the value of the attribute Vj of user i. The attributes Vj with

1 ≤ j < t are quasi-identifiers and Vt is considered to be the

sensitive attribute.

The classes of a dataset T are each set of the partition of

the rows of T in disjoint subsets such that all rows on each

class have common quasi-identifiers, particularly, a class Q
is a non-empty subset of users with common quantifiers. We

denote as SD(Q) the signature of Q, that is, the set of sensitive

attributes of a class Q.

In general we denote T to refer to a dataset and T ∗ to

refer to its anonymized version. If multiple publications of a

changing dataset T are done, we denote as T = {T1, ..., Tn}
the set of versions of T before each publication and T∗ =
{T ∗

1 , ..., T
∗
n} to the set of publications.

The row of microdata t, from now on tuple, of a user can

belong to several versions of T and T
∗. We denote as lifespan

of a tuple h as a set [x, y] = {x, x + 1, ..., y} that satisfies

h ∈ T ∗
i for all i ∈ [x, y] and h /∈ Tx−1, Ty+1. If a tuple is

deleted and reinserted later, then it can have more than one

lifespan. We also define Q(h, T ∗) as the class of h in T ∗.

We say that a dataset has arbitrary updates if whenever a

change of microdata is performed, it was not dependant on

the previous values.

With this previous definitions we are now able to state the

definitions of m-invariance.

Definition 2.1: (m-invariance) A dataset T ∗ is m-unique if

each class in T contains at least m tuples, and all tuples in the

class have different sensitive attributes. Let T∗ = {T ∗
1 , ..., T

∗
n}

be the distinct publications of an external dynamic dataset,

then T∗ is m-invariant if the following conditions hold:

• T ∗
i is m-unique for all i ∈ [1, n].

• For any tuple h with lifespan [x, y] it is satisfied

SD(Q(h, T ∗
i )) = SD(Q(h, T ∗

j )) for all i, j ∈ [x, y].

We state now the definition of τ -safety.

Definition 2.2: Let T∗ = {T ∗
1 , ..., T

∗
n} be the distinct

publications of a fully dynamic dataset with arbitrary updates,

then T∗ is τ -safe if the following conditions hold:

• T∗ is m-invariant.

• For any tuple h with lifespans [x, y], [z, t] it is satisfied

SD(Q(h, T ∗
y )) = SD(Q(h, T ∗

z )).

The motivation behind these definitions is ensuring that

the republication of data cannot allow the attacker to deduce

sensitive information of any user participating in the dataset.

We illustrate previous ideas with the following example of

intersection attack. Assume an attacker is searching informa-

tion of a participant with age = 18. From Table I deduces

that it has sensitive value HIV or FLU and from the Table II

that it has HIV or ACNE. Intersecting both cases, the attacker

deduces that the attacked tuple has HIV. Such attacks are

avoidable using m-invariance, in this case, publishing Table III

instead of Table II.

TABLE I
FIRST 2-DIVERSE PUBLICATION.

Id AGE S.V.

1 [18-20] HIV
2 [18-20] FLU

TABLE II
SECOND 2-DIVERSE BUT NOT 2-INVARIANT PUBLICATION.

Id AGE S.D.

1 [18-19] HIV
3 [18-19] ACNE
2 [20-21] FLU
4 [20-21] COUCH

TABLE III
SECOND 2-INVARIANT PUBLICATION.

Id AGE S.D.

1 [18-20] HIV
2 [18-20] FLU
3 [19-21] ACNE
4 [19-21] COUCH

A. Enforcing m-invariance and τ -safety

Most proposals to enforce m-invariance and τ -safety use

the same bucketization algorithm: classification, balancing,

assignment and partitioning. We present now the main ideas

behind these algorithms and where does our proposal improve

the state of the art.

A bucket is a data structure which uses the key values as

the indices of the buckets, for instance, given a bucket B then

B[sd] are the tuples in B with sensitive value sd. A bucket B
has signature SD(B), the set of its keys. A bucket is balanced

if for all keys it has the same number of tuples, otherwise it

is unbalanced. The bucket algorithms to obtain m-invariance

or τ -safety proceeds as follows.
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• Classification: the tuples in the dataset are categorized as

new (never published), and old (previously published).

This yields two datasets Tnew and Told. Data from Told

is stored in multiple bucket datasets in the following

manner: for each tuple h, if a bucket B with signature

SD(Q(h, T ∗))1 exists, add h to B, otherwise create a

bucket with that signature and add h to it.

• Balancing: for each bucket created in the classification

step, if it is unbalanced, add tuples from Tnew until it is

balanced, if none available add counterfeits.

• Assignment: divide the remaining tuples of Tnew in

balanced buckets of at least signature size m.

• Partitioning: for each bucket B divide it in groups of

tuples appropriately. Generalize each group into a class

and publish the dataset.

This algorithm structure allows for a republication which does

not increase drastically in time complexity as new versions are

published.

The bulk of the utility lost is due to steps of assignment

and partitioning. Only one method exists in the literature

for the assignment phase presented by Xiao and Tao in

[12]. Partitioning has two versions, being [15], [19] the only

improvements of the original version in [12]. Our work is an

alternative method that jointly performs the assignment and

partitioning steps in a single stage. Performing assignment

and partitioning together drastically improves the quality (i.e.,

reduction of IL) of the solutions computed.

III. INTEGER OPTIMIZATION MODELS

Here we adapt to m-invariance a formulation inspired by

the clique partitioning problem with minimum clique size of

[23]. Defining as C∗ = {C ⊆ {1, . . . , p} : m ≤ |C| ≤ 2m −
1, c(i) 6= c(j) for i, j ∈ C} the set of feasible clusters, where

c(i) is the color of element i, the m-invariance problem can

be formulated as:

min
∑

C∈C∗

wCxC

s. to
∑

C∈C∗:i∈C

xC = 1 i ∈ {1, . . . , p}

xC ∈ {0, 1} C ∈ C∗,

(1)

where xC = 1 means that feasible cluster C appears in the

m-invariance provided solution, and the constraints guarantee

that all the points are covered by some feasible cluster, and

only once, that is, a point can not belong to two different

clusters, thus having a partition of {1, . . . , p}.
A widely used measure for evaluating the quality of a

clustering is its spread or sum of squared errors (SSE) [21]:

SSE =
∑

C∈C∗:xC=1

SSEC (2)

where SSEC is the spread of cluster C which is defined as

SSEC =
∑

i∈C

(ai − aC)
⊤(ai − aC), (3)

ai being a point of the cluster and āC = 1
|C|

∑
i∈C ai its

centroid.

1Signature of the class of the last publication of h.

The cost wC of cluster C in the objective function of (1) is

wC =
1

2|C|

∑

i∈C

∑

j∈C

Dij , (4)

where Dij = (ai− aj)
⊤(ai− aj). Using, for every cluster C,

the following well-known equivalence (see [1]):

∑

i∈C

(ai− āC)
⊤(ai − āC) =

1

2|C|

∑

i∈C

∑

j∈C

(ai − aj)
⊤(ai− aj),

(5)

we have that wC = SSEC , and then the objective function of

(1) equals SSE.

Information loss IL is an equivalent measure to SSE,

defined as

IL =
SSE

SST
· 100, (6)

where SST is the total sum of squared errors for all the points:

SST =

p∑

i=1

(ai − ā)⊤(ai − ā) where ā =

∑p
i=1 ai
p

. (7)

IL always takes values within the range [0, 100]; the smaller

the IL, the better the clustering. Therefore, the optimal solution

of (1) provides the feasible clustering that minimizes the

information loss.

It is worth noting that in the definition of C∗ only clusters

of cardinality |C| ≤ 2m− 1 are considered, since, as proved

in [21], a cluster of cardinality |C| = 2m can be divided in

two smaller clusters of m points, thus improving the IL.

The number of feasible clusters in C∗—that is, the number

of variables in the optimization problem (1)— can be huge,

so its direct solution by optimization methods is unpractical

at least for large sizes. Therefore we resort to heuristics based

on two ingredients:

• decomposition,

• column generation,

that will be detailed in next two sections

IV. DECOMPOSITION

The decomposition heuristic is an extension of the heuristic

initially developed for the microaggregation problem in [24].

The decomposition heuristic is based on partitioning the

initial set of points P = {1, . . . , p} in s subsets Pk, k =
1, . . . , s, such that ∪sk=1Pk = P , and Pk ∩ Pl = ∅ for

all k, l : k 6= l. This initial partitioning is obtained by first

finding a feasible clustering using the two existing heuristics

for m-invariance (namely, the classical approach [12] and the

τ -safety proposal [15], [19]). Then, points in different clusters

of this initial clustering are sequentially added, obtaining the

initial partitioning Pk, k = 1, . . . , s.

For each subset Pk, k = 1, . . . , s, we then consider the

(smaller) optimization problem (1) replacing the feasible set

C∗ by C∗k = {C ⊆ Pk : m ≤ |C| ≤ 2m − 1, c(i) 6=
c(j) for i, j ∈ C}. These s optimization problems, though

smaller than the original problem (1), may still have a very

large number of optimization variables and are solved using

the column generation technique described below in Section

V. Each of the s optimization problems will provide a set of
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feasible clusters Ok ⊆ C∗k for the subset of points Pk, and

therefore its union O = ∪sk=1Ok will be a feasible clustering

for P (suboptimal, but in general of good quality—that is,

small information loss).

Additionally, the feasible clustering O is further improved

by applying a local search heuristic based on a two-swapping

procedure. In short, this procedure analyzes all the feasible

swappings between two points i and j located in different

clusters Ci and Cj , such that c(i) 6= c(h) for each h ∈ Cj

and c(j) 6= c(h) for each h ∈ Ci, performing the swapping

of the pair (i, j) that minimizes the objective function of (1).

This is repeated until there is no improvement in the objective

function. The cost per iteration of this procedure is O(p2/2).
The two-swapping heuristics can also be optionally used

to obtain the initial partitioning Pk, k = 1, . . . , s, of points.

Indeed, two-swapping can be applied to the initial clustering

found by the m-invariance heuristics, obtaining a new cluster-

ing with a smaller objective function. This new clustering is

then used to obtain the initial partitioning.

The main steps of the decomposition heuristic can be

summarized as follows:

1) Apply m-invariance heuristics to get an initial feasible

clustering.

2) Optionally, apply the two-swapping heuristic to this

initial feasible clustering.

3) Compute the initial partitioning Pk, k = 1, . . . , s, of

points from the initial feasible clustering.

4) Apply the column generation optimization algorithm to

each set of points Pk, obtaining a feasible clustering Ok

for all k = 1, . . . , s. Note that this step can be performed

in parallel for all the sets k = 1, . . . , s.

5) Compute O = ∪sk=1Ok, which is a feasible clustering

for P .

6) Finally, apply the two-swapping heuristic to the feasible

clustering O.

V. COLUMN GENERATION APPROACH

Column generation is a well-known approach in mathe-

matical optimization for the solution of linear programming

problems with a large number of variables [25]. Given a

general linear programming problem

min
∑

j∈V

cjxj

s. to
∑

j∈V

Ejxj = b

xj ≥ 0 j ∈ V,

(8)

where Ej ∈ R
r is the vector with the contribution of variable

xj to the r constraints of the problem (we assume that

|V| > r), the simplex method optimizes (8) by finding a set of

variables B ⊂ V (named set of basic variables) such that: (i)

|B| = r; (ii) the r vectors Ej , j ∈ B, are linearly independent;

(iii) and for any variable j ∈ N = V\B (named set of nonbasic

variables), we have that the values µj = cj − λ⊤Ej (named

reduced costs) are non-negative, where λ = (E⊤
B )−1cB ∈ R

r

is the set of dual variables or Lagrange’s multipliers of the

constraints of (8), and EB and cB are respectively a matrix

and vector formed by the vectors Ej and coefficients cj such

that j ∈ B.

When the number of variables |V| is very large, we can

initially consider a subset V̄ ⊆ V of variables. Problem (8)

can thus be solved with the simplex method replacing V by

V̄ , obtaining the sets of basic and nonbasic variables B̄ and

N̄ . The simplex method guarantees that µj ≥ 0 for j ∈ N̄ .

If in addition µj ≥ 0 for j ∈ V \ V̄ we can certificate that

the current solution is also optimal for (8). Otherwise, there is

some j ∈ V \ V̄ with µj < 0. Column generation then solves

the subproblem

min cj − λ⊤Ej , j ∈ V \ V̄ , (9)

where λ is the vector of dual variables provided by the

previous solution of (8) using V̄ , and cj represents the cost

of the variable associated to column Ej . The solution of (9)

provides both a new column Ej and its associated reduced

cost µj . If the reduced cost is non-negative, we conclude that

the current solution (xB̄, xN̄ ) is optimal. Otherwise, if the

reduced cost is negative, we add the new column Ej to the

set of already generated columns (that is, V̄ ← V̄ ∪ {j}),
and reoptimize again (8). This procedure is repeated until (9)

provides a non-negative reduced cost.

Applying the previous procedure to the m-invariance prob-

lem, the column generation approach enables us to solve the

continuous relaxation of (1) considering only a subset C̄ of

C∗:
min

∑

C∈C̄

wCxC

s. to
∑

C∈C̄:i∈C

xC = 1 i ∈ P

xC ∈ [0, 1] C ∈ C̄,

(10)

where the original binary constraints xC ∈ {0, 1} have been

relaxed and replaced by xC ∈ [0, 1]. At each iteration we test

if the solution of (10) is optimal for the continuous relaxation

of (1) by solving the following optimization problem for each

size η ∈ {m, . . . , 2m− 1}:

min 1
2η

∑
(i,j)∈A Dijzij −

∑
i∈P

λi

η−1yi
s. to yi =

∑
(j,i)∈δ

−

i

zji +
∑

(i,j)∈δ
+

i

zij i ∈ P∑
(i,j)∈A zij = η(η − 1)/2

yi − (η − 1)zij ≥ 0 ij ∈ A
zij ∈ {0, 1} ij ∈ A

(11)

where A = {(i, j)|i, j ∈ P , i < j, c(i) 6= c(j)}, δ+i =
{(i, j) ∈ A}, δ−i = {(j, i) ∈ A}, and λi is the value of the

dual variable with respect to constraint for point i in (10). The

objective function (11) is the reduced cost of a new feasible

cluster represented by binary variables zij (which are 1 if

points i, j are in the cluster, and 0 otherwise).

Problem (11) is solved by adapting the method described

in [1] to the m-invariance case by simply fixing to zero zij
when (i, j) /∈ A.

Within the decomposition approach of Section IV, problem

(10) is solved for each subset of points Pk, k = 1, . . . , s, and

a subset Ak of A is defined accordingly.

The previous column generation algorithm provides an

optimal solution to the continuous relaxation of (1). If all
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the variables xC are either 0 or 1, this solution is optimal

for the integer optimization model (1). If some variables xC

are fractional, some rounding heuristic is needed to obtain a

(suboptimal but in general good quality) binary solution. In

most cases, the best binary solution was obtained by solving

(10) with the last set of clusters C̄ computed, and replacing

bounds xC ∈ [0, 1] by binary constraints xC ∈ {0, 1}.

VI. COMPUTATIONAL TESTS

The column generation algorithm for m-invariance intro-

duced in this paper has been implemented in C++. The

solution of the linear optimization problems (10) and integer

optimization subproblems (11) of the column generation algo-

rithm were computed with the CPLEX solver. Alternatively,

subproblems (11) can also be solved, for small values of m,

using the implicit enumeration scheme of [26]. A parallel

version of Step 4 of the decomposition approach of Section

IV was implemented using OpenMP.

The implementation was tested with the “Adult” [27] and

the “IPUMS USA” [28] datasets. Both datasets have been used

in several previous works on syntactic privacy for dynamic

data publishing. From the “Adult” dataset the attributes age,

sex and education-num have been used as quasi-identifiers

and occupation as sensitive attribute (that is, “occupation” is

the “color” attribute according to the notation of Section III).

For the “IPUMS” dataset we considered a data extract with

columns sex, age, educ and occupation, using occupation as

sensitive attribute and the rest as quasi-identifiers. We used

samples of 1500 and 1000 randomly selected users for Adult

and IPUMS respectively.

These two datasets were considered for their prevalent

appearance in the related literature and to reflect two scenarios

depending on the number of unique sensitive values. The

Adult dataset has 13 unique sensitive values while IPUMS

has 281 unique sensitive values. We tested the performance

of our approach in comparison with the implementations of

assignment and partitioning of [12] (denoted as “Classic”),

and [19] (denoted as “Tau”). These implementations are the

two main approaches in the existing literature.

A. Results

Tables IV and V show the results obtained for, respectively,

the “Adult” and “IPUMS” datasets. Each dataset was solved

for the cluster sizes m ∈ {3, 5, 7} and number of subsets

s ∈ {40, 20, 10, 5, 2}, which amounts to 15 runs of the

algorithm with each dataset. The runs were carried out on

a DELL PowerEdge R7525 with two 2.4 GHz AMD EPYC

7532 CPUs (128 total cores), under a GNU/Linux operating

system (openSuse 15.3).

The columns of the tables provide results for the different

steps of the decomposition algorithm: step 1: m-invariance

heuristics (used to partition the set of points in step 3); step 4:

optimization with column generation for each subset of points;

step 5: two-swapping heuristic. The execution of the two

state-of-the-art m-invariance heuristics (“Classic” and “Tau”)

is independent of s, then the values of these columns are

common to all the rows with the same m. For each step we

provide the computational time, and the information loss (IL)

obtained (which monotonically decreases with the steps). For

step 1, the results with the “Classic” and “Tau” heuristic are

given; “Tau” always outperformed “Classic” in terms of IL,

then it was chosen as the initial clustering to partition the set of

points in s subsets. Executions of the optimization stage were

multithreaded using OpenMP, the number of threads being

equal to the number of subsets s. For this reason, times in the

table refer to “wall-clock” time, instead of CPU time. We set

a time limit of two hours for each column generation process,

which was only reached in one of the most difficult instance

(“Adult”, m = 5, s = 2).

From Tables IV and V it is seen that the current state-of-the-

art heuristics “Classic” and “Tau” provide very poor solutions,

with large IL values. The combination of the optimization

step followed by the local search two-swapping heuristic

significantly improves the quality of the m-invariance solution.

When m is small it is observed that clusterings with IL close

to 0 can be obtained. In general, the IL values computed for

“IPUMS” are much better than for the “Adult” dataset; this is

explained by the much larger number of values of the sensitive

variable (281 vs 13). It is also seen, as expected, that the

smaller s, the better IL, at the expense of a larger overall

solution time.

VII. CONCLUSIONS

The new method suggested in this paper for the m-

invariance and τ -safety NP-hard problems (based on a column

generation technique used in mathematical optimization for the

solution of large-scale problems) significantly outperformed

current state-of-the-art heuristics in terms of quality of the

solution (IL). A potential drawback of our approach is the

excessive computational time of the optimization step when

m is large and s is small. Reducing the solution time of the

column generation algorithm would be part of the further work

to be done.
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