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Abstract

The purpose of the traffic assignment problem is to obtain a traffic flow pattern given a set of origin-
destination travel demands and flow dependent link performance functions of a road network. In the
general case, the traffic assignment problem can be formulated as a variational inequality, and several
algorithms have been devised for its efficient solution. In this work we propose a new approach that
combines two existing procedures: the master problem of a simplicial decomposition algorithm is solved
through the analytic center cutting plane method. Four variants are considered for solving the master
problem. The third and fourth ones, which heuristically compute an appropriate initial point, provided
the best results. The computational experience reported in the solution of real large-scale diagonal
and difficult asymmetric problems—including a subset of the transportation networks of Madrid and
Barcelona—show the effectiveness of the approach.

Key words. Traffic assignment problem, variational inequalities, simplicial decomposition, analytic
center cutting plane method

1 Introduction

The purpose of the traffic assignment problem is to find the distribution of the traffic flow throughout a
network of routes. It is possible to formulate the problem by means of a network model that represents the
physical infrastructure and to compute the flows of one or more commodities on the links of the network,
each commodity being related to the flows for a particular origin-destination node pair.

Whenever congestion phenomena are present, the cost functional associated with the links of the network
model are nonlinear and strictly increasing with link flows. In most applications a monotone cost functional
is considered, since monotonicity is required for the existence of solutions, and for the equivalence between
solutions and weak solutions [31] (see Section 2). When interactions between network links are present,
the problem becomes non-separable, since link costs depend on the flow of other network links. If the cost
functional is a gradient mapping then an equivalent mathematical program exists, otherwise the problem
is known as the asymmetric traffic assignment problem and it can be formulated as a variational inequality
problem [6, 40].

The traffic assignment problem has received a lot of attention; partly because of its practical importance,
partly because the size of real life problems makes it a challenge for algorithmic development. Many
specialized strategies have been developed since [24], where an adaptation of the Frank-Wolfe method [12]
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was applied to its optimization formulation. Projection algorithms in the space of arc flows [7] and path
flows [5] have also been applied. Another projection strategy was developed in [13]. Alternative strategies,
i.e., diagonalization and linearization, were, respectively, explored in [11] and [1]. Dual cutting plane
methods were proposed in [34], and applied in [25] and [26] using a gap-descent approach. A dual variational
inequality formulation for traffic equilibrium problems with asymmetric cost was proposed in [14]. Newton-
type algorithms for solving the nonlinear minimum cost network flow problem were proposed in [20]. These
last algorithms belong to the class of feasible descent methods. A projection-type method for solving the
variational inequality problem was proposed in [41], when the function is monotone.

Some of the most successful approaches were the simplicial and restricted simplicial decomposition
algorithms (SD, RSD) introduced, respectively, in [22] and [23], and implemented in the RSDVI code for
large-scale networks [29, 30], where the link flow formulation and a variable metric projection method is
used in the master problem. On the other hand, the analytic center cutting plane method (ACCPM) for
variational inequalities —which belongs to the class of interior-point methods—was only applied in [8] to
very small traffic assignment problems. This approach was shown to be computationally prohibitive in [37]
for large and real instances, even exploiting the multicommodity structure of the problem. In the current
work we show that ACCPM can be a practical alternative when used within a RSD scheme.

The algorithm developed in this work combines the above two methods: it is based on the RSD scheme
implemented in RSDVI, but the resulting master problem is solved through ACCPM. Our main goal is to
solve real large-scale traffic assignment instances. For this purpose, four solution variants were considered
for the master problem. The third and fourth, which heuristically compute an initial point for ACCPM,
have shown to outperform the first two variants in some large-scale instances. The method compares well
against the efficient RSDVI solver [29, 30], and it turned out to be a fairly robust approach when the
asymmetry of the problem was increased.

The structure of the paper is as follows. Section 2 shows the formulation of the traffic assignment as a
variational inequality problem. Section 3 outlines the ACCPM for variational inequalities. In Section 4 we
develop an algorithm for the traffic assignment problem based on ACCPM and the SD. Section 5 reports
some computational experience with an implementation of this algorithm. Finally Section 6 presents our
conclusions.

2 Traffic assignment as a variational inequality problem

The modelling assumption considered in the traffic assignment problem was stated by Wardrop [43]. It
postulates that the journey times on all the routes actually used are equal or less than those which would
be experienced by a single vehicle on any unused route. The implication of this principle is that the routes
are shortest with respect to the current flow-dependent delays. The traffic flows that satisfy this principle
are usually referred to as “user optimized flows”, since each user chooses the route that he perceives the
best. In contrast “system optimized flows” are characterized by Wardrop’s second principle which states
that the total travel time is minimum [10,34].

Beckmann [4] was the first to consider an optimization formulation of the traffic equilibrium problem
and to present the necessary conditions for the existence and uniqueness of equilibria. The optimization
formulation exists if the partial derivatives of the link cost functions form a symmetric Jacobian. The
optimization formulation of the traffic equilibrium problem is known as the symmetric traffic assignment.
However, cost functions often become nonseparable and asymmetric and a solution to the Wardrop con-
ditions can then not be formulated as an optimization problem; instead, Wardrop conditions are stated
as variational inequality or complementarity models. This is the problem considered in this work, usu-
ally referred to as the asymmetric traffic assignment problem. We will focus on its variational inequality
formulation. An excellent reference on variational inequalities can be found in [9].

We will consider an arc-path formulation on a transportation network G = (V, A), V and A being a set
of n nodes and m links, respectively. The nodes represent origins, destinations and intersections of links.
The links represent the transportation infrastructure. The set of origin-destination (OD) node pairs will be
denoted as P .
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For each OD pair p ∈ P there is a known demand dp > 0 representing the traffic entering the network
at the origin and exiting at the destination. The demand dp is to be distributed among a given collection
Kp of simple directed paths joining the pair p.

Each directed link a ∈ A is associated with a positive travel time, or transportation cost Fa(y) : IRm →
IR, where y ∈ IRm is the vector of link flows over the entire network. The function F (y) = (Fa(y))a∈A :
IRm → IRm models the time delay for the journey on each arc a and is called the volume-delay function. F
is assumed in most applications to be monotone—i.e., it satisfies

[F (y′) − F (y′′)]T (y′ − y′′) ≥ 0, y′, y′′ ∈ Y,

Y being the feasible set—, and to be continuous and differentiable.
We denote by ya the flow of trips on a link a. Clearly ya =

∑
p∈P

∑
k∈Kp

δakhk for all a ∈ A, where hk

is the flow carried by the path k and

δak =

{
1 if link a belongs to path k
0 otherwise.

The set of feasible flows can thus be written as

Y =

{
y = (ya) | ∃ h = (hk) ≥ 0 with ya =

∑
p∈P

∑
k∈Kp

δakhk, ∀a ∈ A

and
∑

k∈Kp
hk = dp, ∀p ∈ P

}
. (1)

The set Y accepts the following alternative node-arc formulation

Y =
{

y =
∑

p∈P yp |yp = (yp
a)a∈A ∈ IRm, Nyp = dp, yp ≥ 0

}
. (2)

(2) are the equations of a multicommodity network flow model, where N ∈ IRn×m denotes the node-arc
network matrix, yp ∈ IRm the flows for commodity p, and dp ∈ IRn the demand vector for OD pair p (i.e.,
dp

O = dp, dp
D = −dp and dp

v = 0 for the remaining nodes).
The traffic assignment problem can be formulated as the following variational inequality VI(F,Y):

Find y∗ ∈ Y such that F (y∗)T (y − y∗) ≥ 0, ∀y ∈ Y, (3)

F being a continuous, monotone cost function and Y the nonempty, closed, convex subset of IRm defined
in (1) or (2). The primal gap function g associated with VI(F,Y) is used to measure the progress and as a
stopping criterion:

g(y) = inf
z∈Y

F (y)T (z − y), y ∈ Y. (4)

A set of flow constraints defines a set which is closed and convex, but not bounded in general. For
networks that contain a cycle any feasible flow on a particular cycle can be increased without limit and still
maintain feasibility. However, for the traffic assignment problem F is usually positive for all feasible flows,
and an optimal solution cannot include cycles. Hence, one needs to consider only acyclic flows and thus, Y
may be assumed bounded, and therefore compact [33]. Thus, in the gap function (4), “inf”can be replaced
by a “min”, and g(y) can be evaluated by solving a linear optimization problem. In general g(y) ≤ 0 and in
particular y∗ is a solution of VI(F,Y) if and only if g(y∗) = 0. The point y is considered an ǫg-approximate
solution if y ∈ Y and g(y) ≥ −ǫg for a given ǫg tolerance. It must be noted that (4) is equivalent to the
solution of |P | shortest-path problems

min
zp

F (y)T zp subject to Nzp = bp, zp ≥ 0. (5)

The optimal point of (4) can be computed as z =
∑

p∈P zp.
In practice we can group all the OD pairs with the same origin in a single commodity, obtaining the

alternative set P ′ of commodities. That reduces the problem dimension and permits the efficient solution
of large-scale instances. The above discussion and formulation are still valid, replacing P by P ′.
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3 ACCPM for variational inequalities

ACCPM, initially developed as a nondifferentiable optimization algorithm [16], permits the solution of
generalized monotone variational inequalities [17]. The key idea is that under the assumptions that F is
a monotone and continuous mapping and that Y is a closed, convex and nonempty set, VI(F,Y) can be
formulated as a convex feasibility problem:

Find a point y∗ ∈ Y ∗,

where Y ∗ is a closed, convex and bounded set. The above result comes from the following definition and
theorem [2,31], originally due to Minty [28]:

Definition 3.1 Let F be a mapping. Let Y be a nonempty convex subset of IRm. Then a weak solution to
the VI(F,Y) problem, is a point y∗ such that

F (y)T (y − y∗) ≥ 0 ∀y ∈ Y. (6)

Theorem 3.1 Let Y be a nonempty, closed, convex subset of IRm, and let F be a single-valued and contin-
uous monotone mapping with domain dom(F ). If int(Y ) ⊆ dom(F ) ⊆ Y then, for the variational inequality
problem VI(F,Y), any weak solution is a solution and any solution is a weak solution.

The theorem above justifies the formulation of the solution set Y ∗ as the intersection of an infinite
number of half-spaces:

Y ∗ = {y∗ ∈ Y | F (y)T (y − y∗) ≥ 0, ∀y ∈ Y } (7)

which eventually might consist of a unique point. In other words, there is a convex feasibility formulation
of VI(F,Y), with the feasible set Y ∗ implicitly defined by the infinite family of cutting planes (6). Y ∗ ⊂ Y
ensures that Y ∗ is bounded, while (6) ensures both the convexity and closedness of Y ∗.

3.1 Analytic centers

Analytic centers, formally introduced by Sonnevend [42], are defined as centers of polyhedra. Given a set

Y = {y | AT y ≤ c, By = d} (8)

and the associated dual potential function

ϕD(y) =
∑

i

ln(ci − AT
i y),

where the index i refers to the components of c and the rows of AT , the analytic center yc of Y is defined
as the point maximizing the dual potential function over the interior of Y

yc = arg max
y∈int(Y )

ϕD(y). (9)

Note that the feasible set for the traffic assignment problem as defined in (1) or (2) matches (8) using
appropriate A and B matrices.

Problem (9) can be solved through the equivalent mathematical program

max
y,s

∑

i

ln si

subject to AT y + s = c
By = d
s > 0.

(10)

The first-order KKT optimality conditions of (10) are
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Ax + BT µ = 0 (11)

AT y + s = c (12)

By = d (13)

Xs = e (14)

x, s > 0 (15)

where x and µ are, respectively, the Lagrange multipliers associated with constraints AT y+s = c and By =
d, (11) impose primal feasibility, (12) and (13) impose dual feasibility, (14) are the centrality conditions,
(15) are the bounds of the variables, and e denotes a vector of ones of appropriate dimension. According to
this notation, the analytic center lies in the dual space. As usual in interior-point methods, system (11–15)
can be solved using a damped Newton method. In practice, the nonlinear complementarity conditions (14)
are usually relaxed, obtaining an approximate analytic center that satisfies ‖e−Xs‖ ≤ η < 1 for a given η
tolerance. More details about the solution of (11–15) can be found in [8].

3.2 An ACCPM algorithm for variational inequalities

The algorithm outlined in this subsection was fully described in [17] and [8]. The method generates a
sequence of shrinking sets Yk that converge to the solution set (7) of VI(F,Y):

Y0 ⊃ Y1 ⊃ ... ⊃ Yk ⊃ Yk+1 ⊃ Y ∗.

Each new set is obtained by adding a cutting plane to the current set. This cutting plane is computed from
the analytic center of the current set, and it is used to remove a region that does not contain any solution.
Algorithm 3.1 shows the main steps of this procedure.

Algorithm 3.1 ACCPM for VI(F,Y).

step 0: Initialization

Find an initial interior point and set k = 0, Y0 = Y
step 1: Analytic center

Find an approximate analytic center yk of Yk

step 2: New cut

Yk+1 := Yk

⋂
{y | F (yk)T y ≤ F (yk)T yk}

step 3: Termination Criterion

Compute gap g(yk)
if g(yk) ≥ −ǫg then

stop: yk is a solution of VI(F,Y)
else

k := k + 1 and return to step 1

A comprehensive explanation of the above procedure and its convergence properties can be found in
[8, 17, 32].

4 ACCPM in a simplicial decomposition algorithm for variational

inequalities

There are two possible approaches for solving (3) using ACCPM. The first one is to apply Algorithm 3.1
to (3), considering the node-arc formulation (2) of the feasible set. This procedure was studied by the
authors in [37]. The second approach uses ACCPM within a SD algorithm for (3). This was the approach
adopted in this work. We solved (3) through a SD algorithm for variational inequalities, using ACCPM in
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the solution of the master problem that appears at each iteration. This master problem is itself a reduced
variational inequality. For optimization problems, ACCPM has already been successfully applied in the
master problem of alternative decomposition approaches [15, 18].

4.1 Simplicial decomposition algorithm

The SD algorithm, applied to the asymmetric traffic assignment problem in [5, 21, 22, 38, 39], is a column
generation method where feasible flows are written as convex combinations of the extreme points of Y
(see [35] for a detailed description of algorithmic alternatives). Let E ∈ IRm×t be a matrix with all the t
extreme flows of Y . Feasible flows can be written as

y = Eλ, λ ∈ Λ

where

Λ = {λ |

t∑

i=1

λi = 1, λi ≥ 0}. (16)

The traffic assignment problem (3) can thus be rewritten as

Find λ∗ ∈ Λ such that (F (Eλ∗)T E)(λ − λ∗) ≥ 0, ∀λ ∈ Λ. (17)

Since enumerating all the t extreme flows is impractical, the SD algorithm considers an initial set of
them and generates new ones as needed at each iteration. Algorithm 4.1 outlines the main steps of this
procedure. Ek in step 1 is the matrix with the tk extreme points at iteration k. The operator [Ek zk] of
step 4 adds column zk to matrix Ek.

Algorithm 4.1 A generic SD algorithm for (3).

step 0: Initialization

k = 0, E0 matrix with initial set of t0 extreme points
step 1: Find yk, solution of the master problem VI (F ,H (Ek ))

where H(Ek) = {y|y = Ekλ, λ ∈ Λk}, Λk defined as in (16) for t = tk
step 2: Find the new extreme point zk

where zk is the solution of the gap g(yk) defined in (4)
step 3: Stopping criteria

If g(yk) ≥ −ǫg then stop: yk is a solution of VI(F,Y)
step 4: Add the new extreme point

Ek+1 := [Ek zk]
k := k + 1 and return to step 1

Comprehensive descriptions of the SD method can be found in [22] and [19] for variational inequalities—
asymmetric traffic assignment—and nonlinear optimization—symmetric traffic assignment—problems, re-
spectively.

4.2 Solving the master problem through ACCPM

Theoretically, the master problem of step 1 of Algorithm 4.1 is as difficult as the original problem. However,
its particular structure makes it possible to be efficiently solved by any suitable method. In the past, pro-
jection methods [5] were considered as an efficient choice [22, 30]. In this work we applied ACCPM, which
means adapting Algorithm 3.1—originally formulated in the space of flows—to work in the space of λ’s.
As stated in [22], the convergence of Algorithm 4.1 is guaranteed if the master problem is approximately
solved by any convergent method. In [36], conditions for (3) are given in order to show that the local
rate of convergence of the SD algorithm is governed by the local convergence rate of the method applied
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for approximate master problem resolution. ACCPM has proved to be convergent for variational inequal-
ities under some monotonicity assumptions (e.g., pseudo-co-coercivity [8] and pseudo-monotonicity [17]).
Therefore the procedure here described combining SD and ACCPM converges to a solution

The master problem to be solved through ACCPM at iteration k of Algorithm 4.1, denoted as VI (F̃ ,Λk ),
can thus be stated as

find λ∗ such that F̃ (λ∗)(λ − λ∗) ≥ 0 ∀ λ ∈ Λk, where F̃ (λ) = (F (Ekλ)T Ek), (18)

and we define yk = Ekλ∗. Algorithm 4.2 details the main steps to be performed:

Algorithm 4.2 Detail of step 1 of Algorithm 4.1 solved through ACCPM

step 1: Find yk, solution of the master problem VI (F ,H (Ek )) through (18)
(i) Initialization

Find an initial interior point and set j = 0, Λ0 = Λk

(ii) Analytic center

Find an approximate analytic center λj of Λj

(iii) New cut

Λj+1 := Λj

⋂
{λ | F̃ (λj)

T λ ≤ F̃ (λj)
T λj}

(iv) Termination criterion

Compute gap g(λj) = min
z∈Λk

F̃ (λj)
T (z − λj)

if g(λj) ≥ −ǫg then
yk = Ekλj and go to step 2 of Algorithm 4.1

else
j := j + 1 and return to step (ii)

Iterations of Algorithm 4.1 are named in this work “major iterations”, whereas those of Algorithm 4.2 are
referred to as “minor iterations”.

Four variants of Algorithm 4.2 will be presented for solving (18). The first two variants are not efficient
and could be omitted. However, we think it is worth to give details of them to see their main differences with
the successful approaches. The first variant starts at step (i) for j = 0 from the center of the simplex which
is also the analytic center, whereas the second variant starts at step (i) for j = 0 from an infeasible point.
The first and the second variants also differ in the representation of the feasible set Λk. The third variant
considers the same representation of the feasible set as the second variant, but heuristically computes an
initial feasible point at step (i) for j = 0. The fourth variant projects the λ computed by the third variant
onto the feasible set (16), which guarantees a feasible link-flow solution. For all four variants and j > 0,
the last center λj−1 was used as a warm start at step (ii), performing additional primal-dual Newton steps
to recover both feasibility and centrality [8].

4.2.1 First variant

In the first variant the initial feasible set Λk, defined as in (16) considering t = tk, is represented as

Λk =
{
λ | AT λ ≤ c, Bλ = 1

}
, (19)

where AT = −Itk
∈ IRtk×tk is the minus identity matrix, c ∈ IRtk is a zero vector, and B ∈ IR1×tk is a row

vector of ones. The new inequalities computed at step (iii) of Algorithm 4.2 will be successively added to
matrix AT

j (initially AT
0 = AT ). At iteration j the dimension of AT

j is (tk + j) × tk.
This representation of the feasible set clearly matches (8), replacing y by λ. It can be shown (see [8]

for details) that if we solve the optimality conditions (11–15) of (10), each Newton iteration involves linear
systems with

∆ = AjS
−1XAT

j and H = B∆−1BT , (20)

where S and X are diagonal positive definite matrices derived from s and x. ∆ has dimension tk × tk,
independent of the number of cuts generated. The solution of the linear systems is performed by dense
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Cholesky factorization of ∆ because of the density of the j new cuts added to AT
j . To compute the scalar

H we need to perform an additional backward and forward substitution with the factorization of ∆.
For the computation of the initial point of each master problem, we considered that at j = 0 the initial

simplex is as follows
λ ≥ 0, eT λ = 1, (21)

where its dual constraints are
eµ = x, x ≥ 0

and the centrality condition is
Xλ = e.

The solution of (21), with tk = dim(λ), is the centroid of the simplex and can be written as follows

λi = t−1
k i = 1, ..., tk

xi = tk, i = 1, ..., tk (22)

µ = tk,

which is also the analytic center. We use (22) as the starting point of each master problem.

4.2.2 Second variant

In the second variant the equality constraints of Λk are duplicated into two inequalities as follows

Λk =
{
λ | AT λ ≤ c

}

=




λ |




−Itk

B
−B


λ ≤




0

1
−1







,
(23)

where Itk
is the identity matrix of dimension tk, 0 is a zero vector of dimension tk, and B ∈ IR1×tk is a

vector of ones. At iteration j the dimension of matrix AT
j (initially AT

0 = AT ) is (tk + 2 + j) × tk. This
representation of the feasible set again matches (8), removing constraints By = d and considering variables
λ. To compute the analytic center of Λj we have to solve problem (10) without constraints By = d. The
optimality conditions of this problem are a subset of (11–15), i.e.,

Ax = 0 (24)

AT λ + s = c (25)

Xs = e (26)

x, s > 0. (27)

The solution of (24–27) through Newton iterations involves systems of equations with matrix

∆ = AjS
−1XAT

j .

This matrix has the same structure as that of the first variant. This second variant saves the computation
of H in (20).

It is important to note that this second variant can not provide a strictly feasible analytic center. Indeed,
the interior of the feasible set Λk =

{
λ, s ≥ 0 | AT λ + s = c

}
is empty, and system (24–27) is infeasible. To

overcome this inconvenience a feasibility tolerance ǫ was used in the range [10−6, 10−5] when performing
the primal-dual Newton iterations. This can be seen as finding a center λ such that 1− ǫ <

∑tk

i=1 λi < 1+ ǫ.
As it will be discussed later, the use of this feasibility tolerance did not have a great repercussion in the
quality of the solution found, for the traffic assignment problem.
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4.2.3 Third variant

The third variant also represents the feasible set by (23) and the optimality conditions of its analytic center
are (24–27). However, unlike the second variant, the starting point is heuristically obtained as

λi = 1/tk i = 1, . . . , tk
si = 1/tk i = 1, . . . , tk
xi = tk i = 1, . . . , tk
si = ǫ i = tk + 1, tk + 2
xi = 1/ǫ i = tk + 1, tk + 2,

(28)

for a fixed ǫ > 0 tolerance, where tk is the master problem dimension in the simplicial space. The above
point satisfies

Ax = tke
AT λ + s = c + ǫ(0T , 1, 1)T

Xs = e
x, s > 0,

(29)

where 0 and e are vectors of dimension tk of, respectively, zeros and ones. Considering a feasibility tolerance
of ǫ, this point satisfies the dual feasibility optimality condition (25), and it can be considered a dual ǫ-
feasible starting point.

Equations (29) are approximately the optimality conditions (24–27), but for the primal feasibility.
Indeed, it can be easily proved that (29)—setting ǫ = 0—are the optimality conditions of the perturbed
analytic center problem

max
λ,s

tk+2∑

i=1

ln si + tkeT λ

subject to AT λ + s = c
s > 0.

(30)

(28) can thus be considered a fairly good approximation to the analytic center. In practice this variant
provided by far the best computational results.

Through the ǫ feasibility parameter of the starting point it is possible to perform a trade-off between
the quality of the solution and the computation time. Small values (e.g., ǫ = 10−7) provide (almost) the
exact solution of (18) but large execution times. Values about 10−2 have empirically shown to provide good
enough approximate solutions very efficiently for some instances. Such large feasibility tolerances were not
appropriate for the previous second variant: execution times were not reduced, even some numerical insta-
bilities were found. However, in combination with the heuristically computed initial point, they provided
the fastest execution times.

The use of this ǫ feasibility parameter means that the master problem provides solutions such that∑tk

i=1 λi 6= 1 (indeed, the constraints impose 1− ǫ <
∑tk

i=1 λi < 1+ ǫ). Therefore, the point yk computed in
Algorithm 4.1—which eventually will be reported as the solution of the traffic assignment problem—only
satisfies approximately the demands for the different OD pairs. It is not difficult to bound the infeasibilities
due to this ǫ value by induction. Indeed, yk is computed as yk =

∑tk

i=1 λizi, zi being the solutions
(extreme flows) obtained at previous iterations when computing the gaps. The extreme flows zi, i = 1, . . . , t0
considered at the beginning of the algorithm are feasible, and thus NP zi = d (NP being the multicommodity
network matrix and d the demand vector, for all the OD pairs). Assuming that at iteration k we can bound
NP zi for all extreme flow i = 1, . . . , tk computed in previous iteration by d(1− ǫ)k−1 < NP zi < d(1+ ǫ)k−1,
then, since NP yk =

∑tk

i=1 λiNP zi, we have d(1 − ǫ)k < NP yk < d(1 + ǫ)k. From the computational results
of Section 5, the number of major iterations k is in general not very large. Relative perturbations can
then be made arbitrarily small (e.g, ǫ = 10−7 will provide in practice a feasible solution). The ǫ value
can thus be viewed as a relative feasibility tolerance. In this sense, we can state that we are solving a
traffic assignment problem with slightly perturbed demands at the OD pairs. Moreover, in practice OD
demands are approximations of real unknown values, the error in the data likely being higher that the
infeasibilities incurred by the ǫ value considered in this algorithm. In addition, we empirically observed
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that the patterns of flows of the approximate solution for such a large value as ǫ = 10−2 are similar to those
reported as optimal in Section 5 using, for asymmetric problems, a very small value —ǫ = 10−7— with this
third variant, and the code of references [29, 30]; and for symmetric problems, in addition to previous two
approaches, the Bar-Gera origin based algorithm [3]. This third variant can thus be seen as a fast method
for computing approximations of the main patterns of flows in the traffic assignment problem. Moreover,
the balance between the quality of the solution and the performance through the ǫ feasibility parameter
makes the method a versatile tool. As a drawback, while departing from a primal feasible scheme, the primal
gap function can theoretically not be computed, since it is defined from a current feasible point that it is
not available in this third version. A pseudo-gap has to be introduced (computed from the current slightly
infeasible point) in order to present computational results. The monitoring of the global SD algorithm is
also affected and hence the computational results when using the third ACCPM variant and comparing it
to the other variants or the original RSDVI implementation should be considered with caution, if a large
ǫ value is used. For small ǫ values, the results obtained with this third version are comparable to those of
other approaches.

4.2.4 Fourth variant

In this variant the solution obtained by the third one is projected onto the feasible set (16). The new
projected point is used for the calculation of a pattern of feasible link-flows.

Let λ̂ be the solution obtained in the third variant, and consider the projection matrix onto the feasible
set (16)

P =

(
I −

eet

n

)
.

The fourth variant returns as solution of the master problem the feasible point λ = P λ̂ + e/n:

λ = λ̂ + e

(
1 − etλ̂

n

)
.

The feasible link-flows used at step 2 of Algorithm 4.1, which eventually will be reported as the solution, are
computed through the above point. Observe that it is possible to use other projection operators, like that
obtained with the norm weighted by the diagonal of the Jacobian matrix at the current point. In this work,
only a two-norm projection has been tested, but the good results make a subject of future development the
study of adapted projection norms to recover feasibility.

This fourth variant leads to a competitive approach for the global asymmetric traffic equilibrium prob-
lem (3) in a SD scheme. Since SD is a primal feasible algorithm, theoretically, the overall procedure
becomes consistent and the primal gap function can be fully applied to monitor the progress and eventual
convergence. It solves the main drawback of the third variant, while still being competitive.

5 Computational experience

The four ACCPM variants of the previous Section have been implemented in C and included in the Fortran
code RSDVI for large-scale general traffic assignment problems. Implementation details of RSDVI can be
found in [29, 30], and its general trends were originally proposed in [5, 22]. That code customizes several
variants of a restricted version of the SD algorithm. It solves the master problem through several particular
projection methods allowing the use of variable metric, which for separable problems is roughly equivalent to
a second order approximation. To avoid possible convergence problems in the RSD scheme for asymmetric
problems [22], an unrestricted strategy is set for all the computational tests, i.e., no extreme flow of Y
generated by Algorithm 4.1 is discarded for matrix E; in addition, a variable metric is considered, which
uses at each linear approximation a symmetrization of the Jacobian matrix at the current point projected
into the current simplicial space (defined by the current working set).
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5.1 Test problems

We considered the model for transportation networks of Sioux Falls, Winnipeg, Barcelona and Madrid.
Table 1 reports the dimensions of these networks, e.g., number of nodes, links and OD node pairs. Col-
umn “centroids” gives the number of nodes with nonzero demands/supplies (i.e., transport zones in the
underlying network model).

Problem Nodes Centroids Links OD pairs

Sioux Falls 48 24 124 528
Barcelona 930 110 2522 7922
Winnipeg 1017 154 2976 4345
Madrid 2776 490 6871 26037

Table 1: Test networks dimensions

For each network of Table 1 we developed two different categories of traffic assignment instances (using a
slightly improved version of the specialized routines of [30]): diagonal and asymmetric problems. Diagonal
problems involve separable cost functions (e.g., the Jacobian of the travel cost function F (y) is diagonal).
The asymmetric problems were artificially built by including additional link interactions among incoming
links at junctions. The Jacobian of F (y) is asymmetric. Neither modal networks, nor modal interactions
were considered.

We used a general form of the standard BPR (Bureau of Public Roads) cost function. It provides the
journey time for each link of the network. For a diagonal problem, it can be written as

Fa(ya) = t0

(
1 + α

(
ya

ca

)β
)

, (31)

where ca is the capacity of link a, and t0 is the travel time through this link when it is empty (zero flow).
Parameters α and β were set to the standard values of, respectively, 0.15 and 4.

For real world instances, the estimation of exact asymmetric cost functions is a difficult task. We there-
fore generated asymmetric problems by adding interactions between incoming links at junctions through
the term

∑
b∈Ia

wabyb. For each link a we considered the following asymmetric cost function:

Fa(y) = t0

(
1 + α

(∑
b∈Ia

wabyb

ca

)β
)

, (32)

where Ia is the set of links interacting with link a, and wab are the weight interaction factors between links a
and b, with waa = 1. Let γ =

∑
b6=a wab be the asymmetry/nonmonotonicity coefficient. If γ < 1, then the

diagonal dominance of the Jacobian matrix of F is guaranteed at any point, and thus, it is positive definite
and the F mapping is strictly monotone. If γ = 0 then a symmetric and diagonal instance of the traffic
assignment problem holds. For γ > 1 a nondiagonal dominant matrix is obtained and thus monotonicity of
F is not guaranteed. In general, the pattern of interactions used in the computational tests of this work led
to sparse Jacobian matrices whose asymmetric level, as defined by some authors [27], can be very high [29].

The wab weights for flows on links b interacting with the current link a are equal and proportionally
computed in order to satisfy a preselected γ value. This versatile family of F mappings, together with other
patterns of interactions available in the RSDVI program, were proposed and widely discussed in [29]. That
implementation was slightly improved in this work for the generation of the asymmetric functions.

5.2 Computational results

Tables 2–3 report the results obtained, respectively for, diagonal and asymmetric instances. For the asym-
metric instances the asymmetric coefficient γ was set to .95. Columns “SIO”, “BCN”, “WIN” and “MAD”

11



Transportation network
Master SIO BCN WIN MAD

LPM .182e+03 .669e+04 .369e+02 .126e+04
ACCPM-V1 .182e+03 .669e+04 .369e+02 .126e+04

initial rel. gap ACCPM-V2 .182e+03 .669e+04 .369e+02 .126e+04
ACCPM-V3 .180e+03 .636e+04 .359e+02 .122e+04
ACCPM-V4 .180e+03 .669e+04 .369e+02 .126e+04

LPM .875e+00 .989e+00 .832e+00 .897e+00
ACCPM-V1 .875e+00 .989e+00 .832e+00 .897e+00

final rel. gap ACCPM-V2 .706e+00 .990e+00 .938e+00 .936e+00
ACCPM-V3 .925e+00 .999e+00 .880e+00 .956e+00
ACCPM-V4 .988e+00 .999e+00 .924e+00 .955e+00

LPM 29 81 16 41
ACCPM-V1 29 81 16 41

major it. ACCPM-V2 30 85 15 41
ACCPM-V3 20 54 10 28
ACCPM-V4 33 108 18 59

LPM 4.24 3.09 3.18 3.34
ACCPM-V1 180.17 462.76 111.5 247.12

minor it. ACCPM-V2 99.53 216.41 58.53 112.71
ACCPM-V3 18.35 21.72 7.8 14.33
ACCPM-V4 16.96 15.43 7.55 11.64

LPM 31 83 18 43
ACCPM-V1 31 83 18 43

max{tk} ACCPM-V2 32 87 17 43
ACCPM-V3 22 56 12 30
ACCPM-V4 35 110 20 61

LPM 0.5 201.9 7.4 342.9
ACCPM-V1 484.1 361764.5 79.1 3940.5

Global-CPU ACCPM-V2 105.0 27740.8 29.0 1231.8
ACCPM-V3 1.3 60.7 4.7 202.2
ACCPM-V4 3.9 262.0 8.1 430.3

LPM 0.5 186.6 3.3 111.2
ACCPM-V1 484.0 361748.9 75.1 3713.8

M.P.-CPU ACCPM-V2 104.9 27724.2 25.1 996.4
ACCPM-V3 1.3 49.8 1.7 33.7
ACCPM-V4 3.8 241.1 3.5 90.5

Table 2: Results for the diagonal traffic assignment problems
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Transportation network
Master SIO BCN WIN MAD

LPM .985E+02 — .212E+03 .589E+04
ACCPM-V1 .985E+02 .834E+06 .212E+03 .589E+04

initial rel. gap ACCPM-V2 .985E+02 .834E+06 .212E+03 .589E+04
ACCPM-V3 .992E+02 .783E+06 .204E+03 .570E+04
ACCPM-V4 .101E+03 .824E+06 .213E+03 .588E+04

LPM .702E+00 — .880E+00 .887E+00
ACCPM-V1 .702E+00 .841E+00 .880e+00 .954E+00

final rel. gap ACCPM-V2 .701E+00 .866E+00 .892E+00 .877E+00
ACCPM-V3 .887E+00 .978E+00 .921E+00 .918E+00
ACCPM-V4 .966E+00 .982E+00 .998E+00 .993E+00

LPM 16 — 25 59
ACCPM-V1 16 82 25 58

major it. ACCPM-V2 16 84 26 55
ACCPM-V3 11 58 16 41
ACCPM-V4 17 146 30 53

LPM 6.94 — 4.32 7.20
ACCPM-V1 112.44 269.23 162.44 182.67

minor it. ACCPM-V2 62.75 225.63 88.31 155.35
ACCPM-V3 13.27 32.71 14.25 31.39
ACCPM-V4 13.41 19.26 12.93 75.45

LPM 18 — 27 61
ACCPM-V1 18 84 27 60

max{tk} ACCPM-V2 18 86 28 57
ACCPM-V3 13 60 18 43
ACCPM-V4 19 148 32 55

LPM 0.4 — 28.4 1797.3
ACCPM-V1 35.6 22898.7 377.6 3296.2

Global-CPU ACCPM-V2 8.9 21873.4 121.8 2704.2
ACCPM-V3 0.3 122.4 10.4 374.1
ACCPM-V4 0.6 1083.8 19.6 1016.5

LPM 0.4 — 22.1 1454.5
ACCPM-V1 35.5 22878.9 115.5 2973.3

M.P.-CPU ACCPM-V2 8.9 21850.7 14.1 2389.3
ACCPM-V3 0.3 108.0 5.9 148.0
ACCPM-V4 0.6 1052.5 12.4 718.8

Table 3: Results for the asymmetric traffic assignment problem
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Figure 1: Evolution of gap and CPU of master problem for all the variants in the asymmetric Winnipeg
traffic assignment problem

show the results for the transportation networks of Sioux Falls, Barcelona, Winnipeg and Madrid, respec-
tively. Column “Master” gives the method used for the solution of the master problem: a linear projection
method (“LPM”) implemented in the RSDVI program [30], and the four variants based on ACCPM de-
scribed in previous Section (“ACCPM-V1”, “ACCPM-V2”, “ACCPM-V3” and “ACCPM-V4”). The ǫ
feasibility parameter of the third and fourth ACCPM variants was set to 10−2 for all the instances, except
for Madrid with the fourth ACCPM variant, which was set to 10−3.

For each transportation network and solution method the following information is provided. Rows
“initial rel. gap” and “final rel. gap” show the relative gap, respectively for, the first and last major
iterations (thus, “final rel. gap” is the gap of the solution provided). This relative gap was computed as
suggested in [22], but in percentage:

F (yk)T (yk − zk)

F (yk)T zk

· 100,

zk and yk being the points computed respectively by Algorithms 4.1 and 4.2. Notice that for ACCPM-V3
we used a “pseudo-gap” function, since we are using approximations of the main patterns of flows. Row
“major it.” gives the number of major iterations performed. Row “minor it.” provides the average number
of minor iterations required for each master problem. Row “max{tk}” is the maximum number of extreme
points considered in the SD procedure (i.e., maximum dimension of the master problems). Since we are
using an unrestricted SD method and an initial simplex of dimension two was selected for all the executions,
this row is always the number of major iterations plus two. “Global-CPU” gives the total execution time
in seconds. “M.P.-CPU” is the execution time spent in the solution of the master problems, in seconds.
The execution times for solving the shortest paths can thus be computed as the difference between the
Global-CPU and the M.P.-CPU. Executions marked with a ”—” could not be solved with the particular
method for the master problem. All runs were carried on a Sparc Sun-4 workstation with a 198 MHz CPU.

From Tables 2–3 it can be concluded that the first two ACCPM variants are not competitive compared
to the projection method. However, the third ACCPM variant provides significantly better execution times
for the largest and most difficult instances. Although it performed, on average, more minor iterations
than the linear projection method, it required much less major iterations to reach a solution. This good
behavior was observed for the two categories of instances (diagonal and asymmetric). In the case of the
fourth ACCPM variant, with the diagonal category, we observed that it needs slightly more execution times
than the linear projection method. However, for the asymmetric category and the largest instances, it also
provides significantly better execution times in comparison with the linear projection method. Figure
1 shows the decrease of the gap versus major iterations and MP-CPU versus major iterations, for the
asymmetric Winnipeg instance. From Figure 1 it is clear that all the algorithms decrease the gap function
in a similar way, but they require different execution times to solve the master problems.

Table 4 shows the results obtained for diagonal instances with the state-of-the-art TAP-OB implemen-
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Instance Iterations Minor iterations final gap Obj. Global-CPU∗

Sioux Falls 12 501 1.4E-07 4231335.28 0.53 · 35 = 18.6
Barcelona 77 5135 2.7E-06 3807082.05 541.6 · 35 = 18956.0
Winnipeg 27 570 4.3E-08 702010.60 46.6 · 35 = 1631.0
∗ original CPU time times 35, the ratio between the workstations used for executions in Tables 2 and 4

Table 4: Results for the symmetric traffic assignment problem using the origin-based algorithm

tation of Bar-Gera origin-based algorithm [3]. The particular input format of our implementation could be
converted to TAP-OB format for all the instances but for Madrid. For each instance, Table 4 reports the
number of main and minor iterations required by TAP-OB, the final gap obtained, the optimal objective
function, and the CPU time required. These executions were performed on a PC with one AMD Athlon
4400+ 64 bits dual core processor, which is roughly 35 times faster than the Sun-4 workstation used for the
other runs. CPU times of Table 4 are affected by this ratio for the purpose of comparison. It is worth noting
that the origin-based algorithm solves the optimization problem associated to a diagonal traffic assignment
problem, whereas our approach solves the variational inequality formulation. Therefore, although TAP-OB
consistently provides solutions with smaller final gaps, these are not directly comparable with those of Table
2 because of the different formulations. For instance, for Barcelona, TAP-OB reported a solution with a
final gap of 2.7 · 10−6 while the final relative gap for ACCPM-V4 was 9.9 · 10−3 (the value in Table 2 has
been divided by 100 because it is a percentage). The optimization formulation of the origin-based algorithm
also explains column “Obj.” in Table 4. Indeed, it is possible to compare the objective function provided
by TAP-OB and the other codes using the results of Table 5 of next Subsection for Winnipeg instance:
TAP-OB obtains a solution with objective 702010.60, whereas ACCPM-V3, ACCPM-V4 and LPM report
respectively 705277.2, 705287.0 and 705277.2 in a fraction of the time needed by TAP-OB. TAP-OB requires
8 · 35 = 280 seconds to reach an objective value below 706000.0. ACCPM-V3 and ACCPM-V4 are thus
competitive against TAP-OB to obtain approximate solutions, although, relying on a SD scheme, they can
not provide very accurate ones. Since the origin-based algorithm is based on the optimization formulation,
asymmetric instances of Table 3 could not be solved with TAP-OB.

5.2.1 Analysis of the third and fourth ACCPM variant

The approximate solutions of the equilibrium problem provided by the global SD scheme while using the
third ACCPM variant and those provided under the linear projection method show similar flow patterns.
In general, the discrepancies on the solutions in the link flows tend to decrease as the link flows increase.

As stated before, the ǫ feasibility parameter of the third ACCPM variant can be used to balance
efficiency and accuracy. To show this fact, we solved the diagonal Winnipeg problem for several values
of ǫ, in order to compare solutions according to the objective function in the equivalent optimization
formulation of the equilibrium problem. Table 5 reports the results obtained, for the third ACCPM variant
with different ǫ values (columns“ACCPM-V3”), for the fourth ACCPM variant with ǫ = 10−4 and for
the linear projection method (column “LPM”). Row “Obj(y∗)” provides the objective function value of
the equivalent optimization problem formulation. The objective value of column “LPM” is assumed to
be that of the optimal solution. Row “final rel. gap” is the gap of the solution provided. Rows “major
it.” and “minor it.” show the major and average minor iterations, respectively. Row “Global-CPU”
gives the overall execution time. Clearly, the smaller the ǫ, the better the objective cost of the solutions
provided by ACCPM-V3. On the other hand, execution times tend to considerably increase for small values.
However, for ǫ = 10−2 a solution with a good enough objective value was already obtained—the relative
error is 1.5 ·10−3—in a fraction of the time required by the fourth variant and the linear projection method.
However, it is worth noting that for ACCPM-V3 and large ǫ values the objective function is being evaluated
at slightly infeasible points. For ACCPM-V4 the objective function is always evaluated at feasible points,
because of the projection onto the feasible set by this fourth variant. If a feasible link-flows solution is
required we are forced to use either the third variant with a small ǫ or the fourth variant. Although for
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diagonal problems these feasible ACCPM variants may be outperformed by alternative procedures, they
are competitive for asymmetric instances, as shown in Table 3 and Subsection 5.2.2.

ACCPM-V3 ACCPM-V4 LPM
ǫ = 10−2 ǫ = 10−4 ǫ = 10−6 ǫ = 10−7 ǫ = 10−4

final rel. gap .880 .732 .832 .832 .757 .832
major it. 10 16 16 16 16 16
minor it. 7.8 42.87 79.18 96.5 42.75 3.18
Global-CPU 4.7 22.2 46.1 61.8 22.1 7.4
Obj(y∗) 704207.8 705252.4 705277.1 705277.2 705287.0 705277.2

Table 5: accuracy vs. efficiency for the diagonal Winnipeg instance

It could be argued that the good behavior of the third ACCPM variant shown in Table 5 is merely due
to the use of a greater feasibility and optimality tolerances than the linear projection method. However,
the linear projection method did not perform better when such tolerances were relaxed.

5.2.2 Using different levels of asymmetry

Asymmetric instances with different levels of asymmetry were obtained by considering the cost function
(32) with different weight interaction factors between links. For those instances we only compared the third
and fourth ACCPM variants with the linear projection method.

Tables 6–9 report the results obtained for, respectively, Sioux Falls, Barcelona, Winnipeg and Madrid
asymmetric instances. Column “Master” gives the method used for the solution of the master problem. The
ǫ feasibility parameter of the third and fourth ACCPM variants was set to 10−2 for all the instances, except
for Madrid with the fourth ACCPM variant, which was set to 10−3, and for Winnipeg using the fourth
ACCPM variant, with γ = 2, 3, 10, which was set to 10−3. Columns “Asymmetric Coefficient” provide the
different levels of asymmetry that were tested. The information provided by the rows has the same meaning
as in Tables 2 and 3.

Asymmetric Coefficient
Master .25 .75 1 2 3 10

LPM .686E+02 .109E+03 .965E+02 — — —
initial gap ACCPM-V3 .676E+02 .108E+03 .964E+02 .654E+02 .468E+02 .350E+02

ACCPM-V4 .679E+02 .110E+03 .980E+02 .661E+02 .473E+02 .355E+02
LPM .768E+00 .928E+00 .956E+00 — — —

final gap ACCPM-V3 .956E+00 .983E+00 .709E+00 .641E+00 .664E+00 .306E+00
ACCPM-V4 .991E+00 .972E+00 .979E+00 .992E+00 .932E+00 .686+E00

LPM 20 16 15 — — —
major it. ACCPM-V3 15 12 12 12 12 18

ACCPM-V4 26 20 17 17 14 21
LPM 4.85 6.17 6.33 — — —

minor it. ACCPM-V3 14.8 13.25 13.75 14.25 16.58 39.61
ACCPM-V4 13.53 13.1 13.58 13.7 32.5 56.0

LPM 0.5 0.4 0.4 — — —
Global-CPU ACCPM-V3 0.5 0.4 0.3 0.4 0.5 4.6

ACCPM-V4 1.5 0.8 0.6 0.7 1.7 13.1
LPM 0.4 0.3 0.3 — — —

M.P.-CPU ACCPM-V3 0.5 0.3 0.3 0.3 0.4 4.5
ACCPM-V4 1.4 0.8 0.6 0.7 1.7 13.0

Table 6: Results for the asymmetric Sioux Falls traffic assignment problem
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Asymmetric Coefficient
Master .25 .75 1 2 3 10

LPM .140E+05 — .110E+07 — — —
initial gap ACCPM-V3 .132E+05 .733E+04 .104E+07 .827E+06 .112E+10 .138E+09

ACCPM-V4 .141E+05 .765E+04 .109e+07 .945E+06 .113E+10 .148E+09

LPM .980E+00 — .982E+00 — — —
final gap ACCPM-V3 .980E+00 .982E+00 .954E+00 .808E+00 .495E+01 .969E+05

ACCPM-V4 .994E+00 .969E+00 .998e+00 .985E+00 .898E+01 .197E+05

LPM 84 — 81 — — —
major it. ACCPM-V3 52 52 56 64 188 278

ACCPM-V4 105 107 127 268 241 258

LPM 4.77 — 10.82 — — —
minor it. ACCPM-V3 20.17 23.55 29.03 58.7 67.2 50.1

ACCPM-V4 14.17 16 21 32.04 47.9 98.2

LPM 587.5 — 908.4 — — —
Global-CPU ACCPM-V3 60.8 67.9 100.7 372.6 28655.7 121140.3

ACCPM-V4 247.0 297.8 691.3 38429.3 63413.2 212104.4

LPM 570.4 — 890.4 — — —
M.P.-CPU ACCPM-V3 46.5 52.7 84.2 352.7 28609.5 121069.3

ACCPM-V4 225.2 274.7 663.5 38370.5 63356.9 212037.8

Table 7: Results for the asymmetric Barcelona traffic assignment problem

Asymmetric Coefficient
Master .25 .75 1 2 3 10

LPM .604E+02 .180E+03 .206E+03 .224E+04 — —
initial gap ACCPM-V3 .581E+02 .173E+03 .198E+03 .218E+04 .401E+04 .975E+04

ACCPM-V4 .604E+02 .179E+03 .206E+03 .224E+04 .410E+04 .973E+04

LPM .725E+00 .845E+00 .926E+00 .951E+00 — —
final gap ACCPM-V3 .751E+00 .879E+00 .806E+00 .916E+00 .814E+00 .999E+01

ACCPM-V4 .978E+00 .987E+00 .984E+00 .950E+00 .948E+00 .998E+02

LPM 20 23 23 41 — —
major it. ACCPM-V3 13 16 18 30 53 221

ACCPM-V4 20 27 28 38 73 209

LPM 3.45 4.08 4.29 5.85 — —
minor it. ACCPM-V3 8.76 12.5 13.68 27.97 57.92 76.2

ACCPM-V4 8.45 11.62 13.62 63.45 89.63 98.1

LPM 15.8 22.7 24.5 124.4 — —
Global-CPU ACCPM-V3 6.9 9.8 11.8 37.7 255.9 50774.5

ACCPM-V4 10.2 16.1 18.6 151.2 1234.4 86870.6

LPM 10.7 17.2 19.0 114.7 — —
M.P.-CPU ACCPM-V3 3.0 5.4 7.0 30.1 239.8 50687.8

ACCPM-V4 4.8 9.6 12.1 141.8 1213.6 86769.9

Table 8: Results for the asymmetric Winnipeg traffic assignment problem
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Asymmetric Coefficient
Master .25 .75 1 2 3 10

LPM .179E+04 .296E+04 .804E+04 — — —
initial gap ACCPM-V3 .175E+04 .291E+04 .739E+04 .752E+05 .397E+04 .118E+03

ACCPM-V4 .179E+04 .296E+04 .797E+04 .776E+05 .402E+04 .120E+03

LPM .898E+00 .939E+00 .941E+00 — — —
final gap ACCPM-V3 .958E+00 .846E+00 .947E+00 .884E+00 .910E+00 .880E+00

ACCPM-V4 .948E+00 .948E+00 .966E+00 .977E+00 .968E+00 .982E+00

LPM 50 56 56 — — —
major it. ACCPM-V3 33 42 41 39 28 22

ACCPM-V4 43 54 55 45 39 62

LPM 4.44 6.41 10.05 — — —
minor it. ACCPM-V3 15.57 26.45 31.95 45.64 47.14 64.0

ACCPM-V4 52.65 70.83 77.13 75.02 74.87 91.27

LPM 755.1 1359.2 1549.6 — — —
Global-CPU ACCPM-V3 243.1 365.2 387.0 477.1 410.8 690.1

ACCPM-V4 541.7 979.4 1071.2 782.0 707.5 2162.9

LPM 497.9 1063.8 1251.5 — — —
M.P.-CPU ACCPM-V3 55.8 128.5 152.8 210.3 131.7 140.3

ACCPM-V4 307.4 684.1 770.7 512.1 387.1 1340.4

Table 9: Results for the asymmetric Madrid traffic assignment problem

It can be observed from Tables 6–9 that the third ACCPM variant provided the best computational
results for finding good enough approximate solutions. In general, the fourth ACCPM variant reported
better execution times than the linear projection method. Moreover, we can conclude that the third
and fourth ACCPM variants become more efficient than the linear projection method as the asymmetric
coefficient is increased. The results confirm that the weak conditions of ACCPM contribute to a better
convergence of the instances with “less monotonicity” of the asymmetric cost function, i.e., when the
asymmetric coefficient γ is greater than one. When that happens (γ > 1), the linear projection method
is not guaranteed to converge since, roughly speaking, strong monotonicity is required. Since the master
problem governs the convergence of the global SD scheme, no global equilibrium solution can be computed
in most of the nonmonotone instances when a projection method is used.

6 Conclusions

It has been shown that, even though ACCPM was not designed to deal directly with problems in a high
dimensional space, it can be used to solve large-scale traffic assignment problems in a effective way within a
SD scheme. From the computational experience reported, it can be stated that the third and fourth ACCPM
variants provide competitive solution times for all the tested instances and, in general, significantly better
execution times than the linear projection method, for the largest asymmetric instances. Moreover, when
the asymmetric coefficient was increased the linear projection method could not find a solution. It is worth
emphasizing that the fourth ACCPM variant is less efficient but computes feasible equilibrium solutions
whereas the third one, being the most efficient, can provide primal-infeasible ones if a large ǫ feasibility
parameter is used. In that case, through the ǫ feasibility parameter it is possible to control the trade-off
between the quality of the solution and the computation time, which makes the method a versatile tool. The
procedures introduced in this work thus open a new way for the solution of large-scale difficult asymmetric
transportation assignment problems. Among the future tasks to be done we mention the study of the effect
of other projection operators in the fourth ACCPM variant.
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