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Abstract

In a recent work [3] the authors improved one of the most efficient interior-point approaches for
some classes of block-angular problems. This was achieved by adding a quadratic regularization
to the logarithmic barrier. This regularized barrier was shown to be self-concordant, thus fitting
the general structural optimization interior-point framework. In practice, however, most codes
implement primal-dual path-following algorithms. This short paper shows that the primal-dual
regularized central path is well defined, i.e., it exists, itis unique, and it converges to a strictly
complementary primal-dual solution.
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1. Introduction

Let us consider the linear programming problem

min cT x
s. to Ax= b

0 ≤ x ≤ u,
(1)

wherex, c,u ∈ R
n, b ∈ R

m, andA ∈ R
m×n. Note that any bounded problem can be formulated as

(1). The standard logarithmic barrier problem, used in interior-point methods, associated to (1)
is

min B(x, µ) , cT x+ µ
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n
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i=1

ln xi −

n
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i=1

ln(ui − xi)















s. to Ax= b,0 < x < u,

(2)

µ being the barrier parameter. Previously used regularized variants replacedB(x, µ) by

BP(x, µ) , cT x+ 1
2(x− x̄)T QP(x− x̄)

+ µ
(

−
∑n

i=1 ln xi −
∑n

i=1 ln(ui − xi)
)

,
(3)
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QP being a positive definite matrix and ¯x the current point obtained by the interior-point algo-
rithm. For instance,QP was the identity matrix in [6]; andQP was a diagonal matrix with small
entries—dynamically updated at each interior-point iteration—in [1]. Unfortunately, these prox-
imal point regularizations depend on the current point ¯x, and then they do not fit the general
theory of structural optimization for interior-point methods [5]. In [3] the authors suggested the
alternative regularized barrier problem

BQ(x, µ) , cT x+ µ
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(4)

Q being a diagonal positive semidefinite matrix. This regularized barrier function was shown to
be a self-concordant barrier [3] for upper-bounded problems and thus it fits the general interior-
point theory of [5]. It was shown in [3] than, due to this regularization term, the spectral proper-
ties of a preconditioned system were significantly improved. This allowed the efficient solution
of the normal equations of some very large primal block-angular problems by means of a scheme
that combines Cholesky factorizations and preconditionedconjugate gradients [2].

The KKT conditions for (2) are [7]:

Ax = b,
ATy+ z− w = c,

XZe = µe,
(U − X)We = µe,

(z,w) > 0, 0 < x < u;

(5)

e ∈ R
n is a vector of 1’s;y ∈ R

m, z,w ∈ R
n are the Lagrange multipliers (or dual variables) of

Ax = b, x ≥ 0 andx ≤ u, respectively; and matricesX,Z,U,W ∈ R
n×n are diagonal matrices

made up of vectorsx, z,u,w. The first two sets of inequalities of (5) impose, respectively, pri-
mal and dual feasibility; the last two impose complementarity. The solutions of system (5) for
differentµ values gives rise to an arc of strictly feasible primal-dualpoints known as the primal-
dual central path. Asµ tends to 0, the solutions of (5) converge to those of (1) and its dual. A
primal-dual path-following algorithm attempts to follow the primal-dual central path. This is the
algorithm implemented in packages like, e.g., CPLEX, XPress, MOSEK, etc.

The KKT conditions for (2) replacingB(x, µ) by the regularized version (4) are

Ax = b,
ATy− µQx+ z− w = c,

XZe = µe,
(U − X)We = µe,

(z,w) > 0, 0 < x < u.

(6)

Note (5) and (6) only differ in the dual feasibility. System (6) will be referred as thethe regular-
ized KKT conditions, and the arc of primal-dual solutions for differentµ values as the regularized
primal-dual central path.

The purpose of this short paper is to show that the regularized primal-dual central path is well
defined for (primal and dual) feasible problems: it exists and it is unique (i.e., for anyµ there
is a solution to (6), and this solution is unique); and it converges to a strictly complementary
solution of (1). Section 2 shows the existence and uniqueness. Section 3 shows the convergence
to a primal-dual solution with strict complementarity. We extend previous results [4, 7, 8] for the
standard central path defined by (5) to the new regularized version (6).
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2. Existence and uniqueness of the regularized central path

To simplify the notation, we will consider that the bounded problem (1) has been trans-
formed to an equivalent problem without explicit upper bounds (i.e., adding slackss ∈ R

n, and
constraintsx+ s= u to Ax= b, and including slacks in the vector of variables):

min cT x
s. to Ax= b

x ≥ 0.
(7)

The dual of (7) is
min bTy

s. to ATy+ z= c
z≥ 0.

(8)

The simplified primal and dual regularized logarithmic barrier problems are, respectively,

min cT x+ µ
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2

xT Qx−
n
∑

i=1

ln xi















s. to Ax= b, x > 0,

(9)

and

max bTy+ µ
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1
2

xT Qx+
n
∑

i=1

ln zi















s. to ATy− µQx+ z= c, z> 0.

(10)

The simplified regularized KKT conditions for either (9) or (10) are

Ax = b,
ATy− µQx+ z = c,

XZe = µe,
(x, z) > 0.

(11)

The primal-dual feasible setF and the strictly feasible setF 0 are defined by

F =
{

(x, y, z)|Ax= b, ATy− µQx+ z= c, (x, z) ≥ 0
}

, (12)

F 0 =
{

(x, y, z)|Ax= b, ATy− µQx+ z= c, (x, z) > 0
}

. (13)

We start by proving the following preliminary Lemma, to be used later:

Lemma 1. If F 0
, ⊘ (i.e., the problem is strictly feasible) then for each K∈ R,K ≥ 0, the set

{

(x, z) | (x, y, z) ∈ F for some y, and xTz≤ K
}

(14)

is bounded.

Proof. Let (x̄, ȳ, z̄) be any point inF 0 and(x, y, z) be any point inF such thatxTz ≤ K. Since
Ax̄ = b andAx= b thenA (x̄− x) = 0. Similarly,AT (ȳ− y)+ (z̄− z)−µQ (x̄− x) = 0. Therefore,

(x̄− x)T (z̄− z) = (x̄− x)T
(

−AT (ȳ− y) + µQ (x̄− x)
)

= µ (x̄− x)T Q (x̄− x)
− (x̄− x)T AT(ȳ− y)
= µ (x̄− x)T Q (x̄− x) − 0 · (ȳ− y)
= µ (x̄− x)T Q (x̄− x) ,
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which can be recast as

x̄Tz+ z̄T x = x̄T z̄+ xTz− µ (x̄− x)T Q (x̄− x) .

SincexTz≤ K andµ (x̄− x)T Q (x̄− x) ≥ 0 becauseQ is positive semidefinite,

x̄Tz+ z̄T x ≤ K + x̄T z̄− µ (x̄− x)T Q (x̄− x) ≤ K + x̄T z̄. (15)

The valueξ = mini=1,...,n min(x̄i , z̄i) is positive, since(x̄, z̄) > 0. Then from (15) we have

ξeT (x+ z) ≤ x̄Tz+ z̄T x ≤ K + x̄T z̄,

which means

0 ≤ xi ≤
1
ξ

(

K + x̄T z̄
)

, 0 ≤ zi ≤
1
ξ

(

K + x̄T z̄
)

, i = 1, . . . ,n,

and hence (14) is bounded.

To show existence and uniqueness we first define the new set

H0 =
{

(x, z) | (x, y, z) ∈ F 0 for somey
}

.

We also define the barrier function

fµ(x, z) =
1
µ

xTz−
n
∑

i=1

ln (xizi) , (16)

with the following properties:

Lemma 2. 1. fµ tends to+∞ whenever(x, z) approaches the boundary ofH0, i.e., when any
x j or zj approaches0.

2. fµ is strictly convex onH0.
3. fµ is bounded below onH0.

4. Givenµ > 0, and anyκ ∈ R, points(x, z) of the level setLκ =
{

(x, z) ∈ H0 | fµ(x, z) ≤ κ
}

satisfy
xi ∈ [Ml ,Mu] , zi ∈ [Ml ,Mu] , i = 1, . . . ,n, (17)

for some positive numbers Ml and Mu, and thus they are contained in compact subsets.

Proof. (We remark that the regularization term does not intervene in proofs of properties 1, 3
and 4, and they are the same than for the standard central path; anyway, we recall them here for
completeness).

Property 1 is straightforward.
For property 2, note that the second term−

∑n
i=1 ln (xizi) is strictly convex (since its Hessian is

positive definite). The first term is shown to be convex onH0. Indeed, ifx̄ is any point for which
Ax̄ = b, we have for any (x, z) ∈ H0 that xTz = xT(c− ATy+ µQx) = cT x− x̄T ATy+ µxT Qx =
cT x− x̄T(c− z+ µQx) + µxT Qx= cT x− cT x̄+ x̄Tz− µx̄T Qx+ µxT Qx, which is convex in (x, z)
sinceQ º 0. Hence,fµ(x, z) is the sum of a convex and a strictly convex function, thus itis
strictly convex.
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To show property 3, we defineg(t) = t − ln t − 1 and rewritefµ(x, z) as

fµ(x, z) =
n
∑

j=1

g

(

x jzj

µ

)

+ n− n ln µ. (18)

Functiong(t) is strictly convex in(0,∞), g(t) ≥ 0 for t ∈ (0,∞), and tends to∞ when either
t → 0 or t → ∞. Usingg(t) ≥ 0 in (18) we have

fµ(x, z) ≥ n− n ln µ = n (1− ln µ) ,

i.e., fµ(x, z) is bounded below.
Property 4 is shown by noting that by (18)fµ(x, z) ≤ κ if and only if

n
∑

j=1

g

(

x jzj

µ

)

≤ κ̄,

whereκ̄ = κ − n+ n ln µ. Choosing a particular indexi = j, and using thatg(t) ≥ 0, we have

g

(

xizi

µ

)

≤ κ̄ −
∑

j,i

g

(

x jzj

µ

)

≤ κ̄.

Therefore, using thatg(t)→ ∞ when eithert → 0 or t → ∞, there exists a valueM such that

1
M
≤ xizi ≤ M, i = 1, . . . ,n. (19)

Adding the terms in this expression we get

xTz=
n
∑

i=1

xizi ≤ nM. (20)

By (20) and the boundedness established by Lemma 1 we know there exists a numberMu such
that xi ∈ (0,Mu] andzi ∈ (0,Mu] for all i = 1, . . . ,n. Using (19), we have thatxi ≥ 1/ (Mzi) ≥
1/ (MMu) for all i; for zi we obtain the same lower bound. (17) holds by settingMl = 1/ (MMu).

Finally, next Theorem 1 shows that for anyµ > 0 the barrier functionfµ(x, z) defined by (16)
reaches its minimum inH0, that the minimizer is unique, and that this means that the regularized
KKT conditions (11) have a unique solution.

Theorem 1. If F0
, ⊘ andµ > 0, then fµ(x, z) has a unique minimizer inH0, and (11) has a

unique solution.

Proof. By property 4 of Lemma 2 we have that level setsLκ =
{

(x, z) ∈ H0
∣

∣

∣ fµ(x, z) ≤ κ
}

of

fµ(x, z) are contained in a compact subset ofH0, and thusfµ(x, z) has a minimizer inH0. By
property 2 of Lemma 2,fµ(x, z) is strictly convex, thus the minimizer will be unique.

We next show this unique minimizer corresponds to the uniquesolution of (11). This mini-
mizer solves the linearly constrained minimization problem

min fµ(x, z) s. toAx= b,ATy+ z− µQx= c, (x, z) > 0. (21)
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From the Lagrangian

L(x, y, z, v,w) = fµ(x, z) + vT(Ax− b)
+wT(ATy+ z− µQx− c)

we obtain the KKT conditions of (21)

dL
dx

=
d fµ
dx
+ ATv− µQw

=
1
µ

Ze− X−1e+ ATv− µQw= 0,

dL
dy

= Aw= 0,

dL
dz

=
d fµ
dz
+ w =

1
µ

Xe− Z−1e+ w = 0.

(22)

By combining the first and third equalities of (22) we obtain

ATv = X−1e−
1
µ

Ze+ µQ(Z−1e−
1
µ

Xe). (23)

By combining the second and third we find that

A(Z−1e−
1
µ

Xe) = 0,

which means

(Z−1e−
1
µ

Xe)T ATv = 0.

Using the above result in (23) we have

(Z−1e−
1
µ

Xe)T(X−1e−
1
µ

Ze+ µQ(Z−1e−
1
µ

Xe)) = 0,

or equivalently,

(Z−1e−
1
µ

Xe)T(X−1e−
1
µ

Ze)

+ (Z−1e−
1
µ

Xe)TµQ(Z−1e−
1
µ

Xe) = 0.
(24)

The first term of (24) can be written as

(Z−1e−
1
µ

Xe)T(X
−1
2 Z

1
2 )(X

1
2 Z

−1
2 )(X−1e−

1
µ

Ze) =

(X
−1
2 Z

−1
2 e−

1
µ

X
1
2 Z

1
2 e)T(X

−1
2 Z

−1
2 e−

1
µ

X
1
2 Z

1
2 e) =

∥

∥

∥

∥

∥

(XZ)−1/2e−
1
µ

(XZ)1/2e
∥

∥

∥

∥

∥

2

2
≥ 0,

‖ ‖2 being the Euclidean norm. SinceQ º 0 andµ > 0, the second term of (24) is greater or
equal than zero. Therefore (24) holds if and only if

∥

∥

∥

∥

∥

(XZ)−1/2e−
1
µ

(XZ)1/2e
∥

∥

∥

∥

∥

2

2
= 0, (25)

(Z−1e−
1
µ

Xe)TµQ(Z−1e−
1
µ

Xe) = 0. (26)
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From (25) we have (XZ)−1/2e = 1
µ
(XZ)1/2e, and thereforeXZe = µe. XZe = µe if and only

if Z−1e− 1
µ
Xe = 0, and then (26) holds. Therefore, the unique minimizer of (21) satisfies not

only the feasibility conditions of (11), but also theµ-complementarity condition, and the proof
is complete.

3. Convergence of the regularized central path

Two properties are first proved. The first one shows the regularized central path is bounded.

Proposition 1. Let (x(µ), y(µ), z(µ)) be on the regularized central path defined by (11). Then
(x(µ), z(µ)) is bounded for all0 < µ < µ̄ and any given0 < µ̄ < ∞.

Proof. Since (x(µ), y(µ), z(µ)) solves (11),xT(µ)z(µ) = nµ. Therefore, using Lemma 1, (x(µ), z(µ))
is bounded.

The second property shows the evolution of the objectivescT x andbTy, and the regularized
barriersPQ(x) , 1

2 xT Qx−
∑n

i=1 ln xi andDQ(x, z) , − 1
2 xT Qx+

∑n
i=1 ln zi of, respectively, (9)

and (10), along the regularized central path.

Proposition 2. Let(x(µ), y(µ), z(µ)) be on the regularized central path defined by (11). Therefore,
for any0 < µ2 < µ1,

cT x(µ2) < cT x(µ1), PQ(x(µ2)) > PQ(x(µ1)),
bTy(µ2) > bTy(µ1), DQ(x(µ2)) < DQ(x(µ1)).

Proof. For notational simplicity, let us denote by (xi , yi , si) the point (x(µi), y(µi), z(µi)) on the
regularized central path. Sincex1 andx2 solve (9) for, respectively,µ1 andµ2, and the objective
function of (9) is strictly convex, we have

cT x1 + µ1PQ(x1) < cT x2 + µ1PQ(x2) (27)

and
cT x2 + µ2PQ(x2) < cT x1 + µ2PQ(x1). (28)

Adding (27) and (28), we obtain

(µ2 − µ1)(PQ(x1) − PQ(x2)) > 0. (29)

Sinceµ2 < µ1, from (29) we have
PQ(x2) > PQ(x1). (30)

Using (30) in (28), we see thatcT x2 < cT x1.

Similarly, since (x1, y1, z1) and (x2, y2, z2) solve (10) for, respectively,µ1 andµ2, and the
objective of (10) is strictly concave on the feasible region(i.e., the reduced Hessian—pre and
post multiplied by the Jacobian of constraints—is negative definite), we have

bTy1 + µ1DQ(x1, z1) > bTy2 + µ1DQ(x2, z2) (31)

and
bTy2 + µ2DQ(x2, z2) > bTy1 + µ2DQ(x1, z1). (32)

Adding (31) and (32), and using thatµ2 < µ1, we conclude thatDQ(x2) < DQ(x1). Using this
result in (32), we finally obtain thatbTy2 > bTy1
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Next proposition shows the regularized central path converges to an optimal solution.

Proposition 3. The regularized central path sequence(x(µ), y(µ), z(µ)) converges to an optimal
solution of (7) and (8) asµ→ 0.

Proof. By Proposition 1, (x(µ), z(µ)) is bounded and then it has a limit point (x(0), z(0)) asµ→ 0.
Any (x(µ), z(µ)) in the subsequence whose limit is (x(0), z(0)) satisfies (11), i.e.,Ax(µ) = b,
c− z(µ)+µQx(µ) ∈ range(AT), x(µ)Tz(µ) = nµ, (x(µ), z(µ)) ≥ 0. Sincerange(AT) is a closed set,
asµ → 0 there is ay(0) such thatAx(0) = b, c− z(0) = ATy(0), x(0)Tz(0) = 0, (x(0), z(0)) ≥ 0,
and thus (x(0), y(0), z(0)) is an optimal solution of (7) and (8).

A significant difference between the standard central path defined by (5) and the regularized
central defined by (6) is that the regularized central path isnot guaranteed to converge to the
analytic center of the optimal set for any regularization matrix Q. This can be illustrated by the
following small example. Consider the maximization ofx1 over the unit square [0,1]2 defined
by constraints 0≤ x1 ≤ 1, and 0≤ x2 ≤ 1. This problem is formulated in standard form as

min −x1

s. to x1 + x3 = 1
x2 + x4 = 1
xi ≥ 0 i = 1, . . . ,4.

(33)

Considering a diagonal regularization matrixQ = diag(q1,q2,q3,q4), qi ≥ 0, i = 1, . . . ,4, condi-
tions (11) for this problem are

x1 + x3 = 1
x2 + x4 = 1

y1 − µq1x1 + z1 = −1
y2 − µq2x2 + z2 = 0
y1 − µq3x3 + z3 = 0
y2 − µq4x4 + z4 = 0

xizi = µ i = 1, . . . ,4
(xi , zi) > 0 i = 1, . . . ,4.

(34)

If Q = 0, i.e., there is no regularization, the solution of (34) forx1 andx2 is shown to be

x1 =
1− 2µ +

√

4µ2 + 1
2

, x2 =
1
2
.

As µ→ ∞ the central path point tends to (x1, x2)→ (1/2,1/2), the analytic center of the feasible
set. Asµ → 0, the optimal solution (x∗1, x

∗
2) → (1,1/2) is obtained, which coincides with the

analytic center of the optimal face (the segment(1,0)(1,1)).
If Q , 0, the solution of (34) forx1 andx2 is provided by the cubic equations

µ(q1 + q3)x3
1 − (2µq3 + µq1 + 1)x2

1 + (µq3 − 2µ + 1)x1 + µ = 0
(q2 + q4)x3

2 − (2q4 + q2)x2
2 + (q4 − 2)x2 + 1 = 0.

Note thatx2 does not depend onµ, and for someQ, x2 may be different than 1/2, i.e., the optimal
point does not converge to the analytic center of the optimalface. For instance, for the particular
valuesqi = 10i, i = 1, . . . ,4 we obtainx2 = 0.64548. Asµ → ∞, x1 → 0.70178, and as

8



Figure 1: Central path and regularized central for problem (33) on (x1, x2) space.

µ → 0, x1 → 1. The other two solutions of each cubic equation are discarded since they do
not satisfy some equations of (34). Figure 1 shows the central path and the regularized central
path, for the previous particularQ, on the (x1, x2) space. Note, however, that for someQ the
regularized central path, not only converges to the analytic center of the optimal solution set, but
also coincides with the central path. For instance, in this example, this happens ifq1 = q2 = q3 =

q4.
It is also worth to mention that for problems with a unique optimal point, both the regularized

and standard central path converge to this point, but, depending onQ, with different trajectories.
However, in practice, since small regularizations are used, these trajectories are similar. To
illustrate this situation, consider the simple problem

min x1 + x2

s. to x1 ≥ 0, x2 ≥ 0,
(35)

with a unique optimal solution. Conditions (11) for this problem are

−µqi xi + zi = 1 i = 1,2
xizi = µ i = 1,2

(xi , zi) > 0 i = 1,2.
(36)

If Q = 0, the central path is (x1 = µ, x2 = µ, z1 = 1, z2 = 1). If Q , 0, the regularized central
path is

xi =
−1+

√

1+ 4µ2qi

2µqi
i = 1,2

zi =
2µ2qi

−1+
√

1+ 4µ2qi

i = 1,2.

Asµ→ 0, thenxi → 0 andzi → 1, i = 1,2, thus the regularized central path provides the optimal
solution. However, the trajectories of the central path andregularized central path are different,
as shown in Figure 2 forq1 = 1 andq2 = 25. Note that asµ → ∞, (x1, x2) → (∞,∞) in the
central path, whereas (x1, x2)→ (1,1/5) in the regularized central path.

The previous discussion can be summarized in the following result.
9



Figure 2: Central path (only part betweenµ = 0.5 andµ = 0) and regularized central path for problem (35) on (x1, x2)
space.

Proposition 4. The regularized central path sequence(x(µ), y(µ), z(µ)) is not guaranteed to con-
verge to the analytic center of the optimal set asµ→ 0 (unlike the standard central path).

Proof. The above problem (33) is a counterexample that proves this proposition.

Finally, the below result shows that, like the central path,the regularized central path con-
verges to a strictly complementary primal-dual solution.

Theorem 2. The regularized central path sequence(x(µ), y(µ), z(µ)) converges to a strictly com-
plementary primal-dual solution asµ→ 0.

Proof. By the Goldman-Tucker theorem, there exists a strictly complementary solution (x∗, y∗, z∗),
i.e., x∗ solves (7), (y∗, z∗) solves (8), andxB > 0, xN = 0, zB = 0, zN > 0, where

B =
{

i ∈ {1, . . . ,n} : x∗i > 0
}

,

N =
{

i ∈ {1, . . . ,n} : z∗i > 0
}

.

are the sets of the complementarity partition (i.e.,B ∪ N = {1, . . . ,n}, andB ∩ N = ∅). Let
(x(µ), y(µ), z(µ)) be a point of the regularized central path for someµ, i.e., this point solves
(11). Since the complementary solution (x∗, y∗, z∗) solves the KKT conditions of (7) and (8),
namely,Ax∗ = b, ATy∗ + z∗ = c, (x∗)Tz∗ = 0, (x∗, z∗) ≥ 0, we haveA(x∗ − x(µ)) = 0 and
z∗ − z(µ) = −AT(y∗ − y(µ)) − µQx(µ). Therefore

(x∗ − x(µ))T(z∗ − z(µ)) = −µ(x∗ − x(µ))T Qx(µ). (37)

Since (x∗ − x(µ))T(z∗ − z(µ)) also satisfies

(x∗ − x(µ))T(z∗ − z(µ)) = nµ − (x∗)Tz(µ) − (z∗)T x(µ), (38)

combining (37) and (38) we have

0 ≤ (x∗)Tz(µ) + (z∗)T x(µ) = µ
(

n+ (x∗ − x(µ))T Qx(µ)
)

.
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Sincex∗ is bounded, and by Proposition 1x(µ) is also bounded for all 0< µ < µ̄ and any given
0 < µ̄ < ∞, there exists a bounded value inR, 0 ≤ C < ∞ such that

C ≥
{

(x∗ − x(µ))T Qx(µ) : x∗ solves (7),

x(µ) solves (11), 0< µ < µ̄
}

,
(39)

for any given 0< µ̄ < ∞. Then

0 ≤
∑

i∈B

x∗i zi(µ) +
∑

i∈N

z∗i xi(µ) ≤ µ(n+C), (40)

wheren+C ≥ n. Sincexi(µ)zi(µ) = µ, i = 1, . . . ,n, (40) can be rewritten as

0 ≤
∑

i∈B

x∗i
xi(µ)

+
∑

i∈N

z∗i
zi(µ)

≤ (n+C). (41)

Thus we have

xi(µ) ≥
x∗i

n+C
> 0 i ∈ B, zi(µ) ≥

z∗i
n+C

> 0 i ∈ N .

Therefore, asµ → 0, xB(0) > 0 andzN (0) > 0, i.e., the regularized central path converges to a
strictly complementary primal-dual solution.

As a corollary of Theorem 2, we have that under some conditions, the regularized central
path is guaranteed to converge to the analytic center of the optimal face, like the standard central
path.

Corollary 1. Let (x∗, y∗, z∗) be the analytic center of the primal and dual optimal set. If C= 0,
C defined in (39), then the regularized central path sequence(x(µ), y(µ), z(µ)) converges to the
analytic center of the optimal set(x∗, y∗, z∗).

Proof. The analytic center of the optimal set (x∗, y∗, z∗) is a strictly complementary solution.
Then, by (41), and using thatC = 0, we have

∑

i∈B

x∗i
xi(µ)

+
∑

i∈N

z∗i
zi(µ)

n
≤ 1.

Therefore, by the inequality of arithmetic and geometric means of positive numbers,














∏

i∈B

x∗i
xi(µ)































∏

i∈N

z∗i
zi(µ)

















≤ 1,















∏

i∈B

x∗i































∏

i∈N

z∗i

















≤















∏

i∈B

xi(µ)































∏

i∈N

zi(µ)

















.

Of all the points on the optimal face, the analytic center is the unique maximizer of
(∏

i∈B xi
) (∏

i∈N zi
)

,
and then, asµ→ 0, we must have















∏

i∈B

x∗i































∏

i∈N

z∗i

















=















∏

i∈B

xi(0)































∏

i∈N

zi(0)

















,

i.e., xB(0) = x∗
B

andzN (0) = z∗
N

.
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For instance, note that the conditions of Corollary 1 hold inexample (35):x∗ = 0 is the
unique solution—thus the analytic center—of the optimal set,andC = 0 ≥ −x(µ)T Qx(µ), since
Q º 0.
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