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Abstract

One of the best approaches for some classes of multicommodity flow
problems is a specialized interior-point method that solves the normal
equations by a combination of Cholesky factorizations and preconditioned
conjugate gradient. Its efficiency depends on the spectral radius—in
[0,1)—of a certain matrix in the definition of the preconditioner. In a
recent work the authors improved this algorithm (i.e., reduced the spec-
tral radius) for general block-angular problems by adding a quadratic
regularization to the logarithmic barrier. This barrier was shown to be
self-concordant, which guarantees the convergence and polynomial com-
plexity of the algorithm. In this work we focus on linear multicommodity
problems, a particular case of primal block-angular ones. General results
are tailored for multicommodity flows, allowing a local sensitivity anal-
ysis on the effect of the regularization. Extensive computational results
on some standard and some difficult instances, testing several regular-
ization strategies, are also provided. These results show that the regular-
ized interior-point algorithm is more efficient than the nonregularized one.
From this work it can be concluded that, if interior-point methods based
on conjugate gradients are used, linear multicommodity flow problems are
most efficiently solved as a sequence of quadratic ones.
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tioned conjugate gradient, regularizations, large-scale computational optimiza-
tion

1 Introduction

Multicommodity flows are widely used as a modeling tool in many fields as, e.g.,
in telecommunications and transportation problems. This kind of models are
usually very large linear programming problems, and some difficult instances
have shown to be challenging for state-of-the-art solvers [8]. For these difficult
instances, the specialized interior-point algorithm of [7] can be a competitive
option. In this work that approach is improved by adding a quadratic regular-
ization. In particular, as it will be shown, the quality of the preconditioner of
the PCG solver used by the algorithm is improved by the regularization. The
resulting multicommodity flow code is more efficient than the original nonreg-
ularized one of [7]. The new multicommodity algorithm relies on theoretical
results developed in [11] for a more general class of problems.

In the last two decades there has been a significant amount of research in the
field of multicommodity flows, mainly for linear problems. Some of the solution
strategies can be broadly classified into four main categories: simplex-based
methods [13, 20], decomposition methods [4, 15, 17], approximation methods
[5], and interior-point methods [4, 7, 17]. Some of the approaches for linear
multicommodity flows were compared in [14]. Significant advances have also
been made for nonlinear multicommodity flows. Among them we find active set
methods [13], ACCPM approaches [3, 17], interior-point methods for quadratic
problems [9], proximal point algorithms [23], and bundle-type decomposition
[19]. A description and empirical evaluation of additional nonlinear multicom-
modity algorithms can be found in the survey [24].

The specialized interior-point algorithm for multicommodity flows extended
in this work was first suggested in [7]. Given a directed network of n’ arcs and
m’ 4+ 1 nodes, the algorithm considers this general formulation for multicom-
modity flows:

k
min Z(CiTa:i + xZTQZa:Z) (1a)
i=0
N 0 x! bt
N 0 x2 b2
subject to : = (1b)
N 0 x¥ bk
I 1 I I 29 u
0<zi<u’® i=0,...,k (1c)
Vectors zt € R", i = 1,...,k, are the flows for commodity 4, while 20 € R™

are the slacks of capacity constraints. The node-arc incidence matrix of the
directed graph is N € R™ %" We assume N has full row-rank, which can
always be achieved by removing one of the redundant constraints associated to
some node. Note that N may represent any directed graph, thus the algorithm
is not tailored to some particular network and it can deal with any multicom-
modity flow problem. The identity matrix, used in the formulation of linking



constraints, is represented by I. The arc capacities for all the commodities are
u € R"l, while u’ € R”/,i = 1,...,n/, are the individual capacities per com-
modity; u® € R™ are the upper bounds of slacks x°, and in general we have
u% = u. Vectors b* € Rm/,i =1,...,k, are the node supply/demands for each
commodity. Vectors ¢’ € R”/,i =1,...,k, are the arc linear costs per commod-
ity, and the diagonal positive semidefinite matrices @; € R"/X"l,i =1,...,k,
denote the arc quadratic costs. Note that the algorithm can also deal with lin-
ear costs ¢® € R" and quadratic costs Qg € R >0/ (Qo diagonal and positive
semidefinite) for slacks; this can be useful for problems that involve quadratic
costs for the total flow on arcs, since Zle z' = u — 2. Clearly, for linear mul-
ticommodity problems @; = 0. However, the regularized algorithm will make
use of this quadratic term.

The structure of this paper is as follows. Section 2 outlines the special-
ized interior-point algorithm for primal block-angular problems, provides the
main theoretical results about the improvement due to a quadratic term, and
describes the regularized variant of the specialized algorithm and its main prop-
erties. Section 3 particularizes general results for primal block-angular problems
to multicommodity flows. Using these particular results, Section 4 performs a
sensitivity analysis to the addition of a quadratic regularization term. Section
5 evaluates several regularization strategies. Finally, Section 6 provides compu-
tational results with an implementation of the regularized algorithm.

2 Outline of the regularized interior-point algo-
rithm for multicommodity flows

The specialized algorithm, initially developed for multicommodity flows [7], was
extended for general primal block-angular problems in [10]. The improved reg-
ularized version [11] was developed for this more general formulation:

k

min Z(CiTxi + xZTQZz’) (2a)
i=0
N1 0 (El bl
N2 0 1‘2 b2
subject to = (2b)
Nk 0 l‘k bk
L1 L2 R Lk I :L'O bO
0<z'<u’  i=0,...,k (2c)

The main difference between (2) and (1) is that matrices N; € R™*™ and
L; € R™™ may have any structure, and be of different dimensions for each
i =1,...,k, | being the number of linking constraints. For some particular
matrices N; and L; it is possible to tailor general results of below Subsection
2.2 and Section 3. We also restrict our considerations to the separable case
where Q; € R"*"i ¢ =0,...,k, are diagonal positive semidefinite matrices.



2.1 The specialized algorithm
Problem (2) can be written as
min ¢’z + %xTQx

subject to Ax =10 (3)
0<zx<u

where ¢, z,u € R", A € R™*" @ € R"™™ and b € R™. Note that n = n +1
and m = m + [, where n = Zle n; and m = Zle my;; for the particular
case of multicommodity problems (1), 7 = kn/, m = km’ and | = n’, and thus
n = (k+1)n" and m = km’ + n’. Replacing inequalities in (3) by a logarithmic
barrier with parameter p > 0 we obtain the logarithmic barrier problem

1 n n
. AT T _ o
min B(z,pu) = c x+ 2% Qx + u (— E Inz, E In(u; x1)>
subject to Az =b.

The KKT conditions of (4) are [27]:

Az = b, (5a)

Ay —Qr+z—w = ¢ (5b)
XZe = pe, (5¢)

(U-X)We = pe, (5d)

(z,w) > 0 u>xz>0. (5e)

Here, e € R™ is a vector of 1’s; y € R™, z,w € R" are the Lagrange mul-
tipliers (or dual variables) of Az = b, x > 0 and = < wu, respectively; and
matrices X, Z, U, W € R™ "™ are diagonal matrices made up of vectors x, z, u, w.
Equations (5a)—(5b) impose, respectively, primal and dual feasibility, while (5¢)—
(5d) impose complementarity. The normal equations for the Newton direction
(Az, Ay, Az) of (5) reduce to (see [10] for details)

(AeAh)ay = ¢ (6)
O = Q+U-X)"'wW+Xx12)7", (7)
for some right-hand-side g. For linear (i.e., @ = 0) or separable quadratic

problems © is a diagonal positive definite matrix and it can be easily computed.
Exploiting the structure of A and © in (2), the matrix of (6) can be written as

[ N1©;NT N6, LT 1
A@AT — Nk(akaT Nk@kLg
(8)
| LiONT ... LiONT | 00+ L;6,LT |
[ B ¢
¢t D




B ¢ R C ¢ R™ ! and D € R*! being the blocks of AOAT, and ©;,
1 =0,...,k, the submatrices of © associated with the k + 1 groups of variables
in (2), i.e., ©; = (Qi + (U; — X;)"'W; + X; ' Z;)~'. Appropriately partitioning
g and Ay in (6), the normal equations can be written as

¢’ D Ays g2 |
By eliminating Ay; from the first group of equations of (9), we obtain

(D-C"B™'C)Ays = (92—C"B7'g1) (10a)
BAy; = (g1 — CAy). (10b)

System (10b) is solved by a Cholesky factorization for each diagonal block
N;O;NT i=1...k, of B. This is a significant difference with interior-point ap-
proaches for single-commodity problems [16, 25], which solve N;0; NI by a pre-
conditioned conjugate gradient (PCG). The system with matrix D — CTB~1(C,
the Schur complement of (9), is solved by a PCG. The dimension of this system
is I, which is the number of linking constraints. In [7] it was proved that the
inverse of (D — CTB~1(C) can be computed as

(D-cTB'0)™! = (i(Dl(CTBlc’))Z) DL (11)

=0

The preconditioner M ~!, an approximation of (D — CTB~*(C)~1, is thus ob-
tained by truncating the infinite power series (11) at some term h. In practice,
h =0 or h = 1 provide the best computational results.

2.2 Effect of the quadratic term

The effectiveness of the preconditioner depends on the spectral radius of matrix
D~YCTB~1C), which is always in [0,1) [7, Theorem 1]. The farther away
from 1 is the spectral radius of D~1(CTB~1C), the better is the quality of the
approximation of (11) obtained by truncation with A = 0 or h = 1. The next
theorem and proposition from [11] show that the quadratic term in the objective
function effectively reduces this spectral radius.

Theorem 1. Let A be the constraint matriz of problem (2), with full row rank
matrices N; € R™iX"i 4 =1 ... k, and at least one full row rank matriz L; €
R>™i 4§ =1,... k. Let © be the diagonal positive definite matriz defined in (7),
and B € R™*™ (' € R™ ! and D € R the submatrices of AOAT defined in
(8). Then, the spectral radius p of D=Y(CTB=1C) is bounded by

0<p< max 27—]
j€{1 ,,,,, l} uj
<f> ©o; + 75

?)J

<1, (12)

where u is the eigenvector (or one of the eigenvectors) of D~ (CTB~1C) for
p; Vi, J=1,...,, and V = [V1... V], are respectively the eigenvalues and
matriz of columnwise eigenvectors of Zle L;O,L;T: v = VTu; and, abusing
of notation, we assume that for v; =0, (u;/vj)* = +oc0.



Proposition 1. Let assume the hypotheses of Theorem 1, and consider a linear
problem and a quadratic one obtained by adding (likely small) quadratic costs
Qi >0,i=1,..., k. Assume 4;/0; < u;/v;, j =1,...,1, where “hatted” and
“non-hatted” terms refer, respectively, to the linear and quadratic problems,
and v and v are defined as in Theorem 1. Then bound (12) is smaller for the
quadratic than for the linear problem.

The technical assumption 4,/0; < w;/vj, 7 = 1,...,1 in Proposition 1 is
needed to guarantee that the bound (12) is smaller if a quadratic term is added
to a linear problem. The fulfillment of this assumption is problem dependent,
and, for a general problem, it may not be easy to check. However, for the class
of problems where L;,i = 1,..., k, are diagonal matrices, this assumption holds.
This includes the class of multicommodity flow problems (see below Section 3
for details).

Preliminary computational results showed that the quadratic term in prac-
tice reduces the spectral radius, as predicted by the theory, and the overall num-
ber of PCG iterations and CPU time is significantly reduced. This explained
the empirical results of previous works [9], where the specialized algorithm was
more efficient for quadratic instances obtained from the linear ones by adding a
separable quadratic convex cost than for the original linear instances.

2.3 The regularized algorithm

To reproduce the good behaviour of quadratic problems in linear ones a quadratic
regularization term is added to the linear formulation (i.e., with @ = 0) of (3).
Previously used regularized variants replaced B(z, ) in (4) by a proximal point
regularization

Bp(z,p) = ch+%(x_j)TQp(x—;i)+u <—Zlnxi - Zln(ui - xl)> , (13)
i=1 i=1

Qp being a positive definite matrix and & the current point obtained by the
interior-point algorithm. For instance, @Qp was the identity matrix in [26]; and
Qp was a diagonal matrix with small entries—dynamically updated at each
interior-point iteration—in [2]. Unfortunately, these proximal point regulariza-
tions depend on the current point Z, and then they do not fit the general theory
of structural optimization for interior-point methods [21]. In [11] the authors
suggested the alternative regularized barrier problem

1 n n
Bo(z,p) 2 T +p <2xTQ33 - Zlnxi - Zln(ui - xl)> , (14)
i=1

i=1

@ being a diagonal positive semidefinite matrix. In this variant the regulariza-
tion affects to the variables x (flows and slacks of (1)) instead to the directions as
in (13). The regularized barrier function (14) was shown to be a self-concordant
barrier [11] for upper-bounded problems and thus it fits the general interior-
point theory of [21]. Since @ is diagonal, the self-concordant barrier

1 n n
Fo(z) = §ITQ:17 - Zlnzi - Zln(ui — ;)
i=1 i=1



of (14) can be written as a sum of self-concordant barriers for each component:

Fo(z) = ZFqi (z;) = Z (;qﬂf —Inz; — In(u; — xl)> , (15)

i=1 i=1

q; being the diagonal entry of ). The complexity of the interior-point algorithm
in number of iterations is O(y/v1n1/¢), where € is the accuracy of the solution,
and v is the parameter of the self-concordant barrier of (14), which can be
computed as v = Y1 , v;, where v; is the parameter of the barrier F, (x;) of
(15) for component i (see [21] for details). In [11] the following result about v;
was proved:

Proposition 2. The parameter of the self-concordant barrier Fy,(z;) of (15) in
its domain {x; : 0 < x; < u;} is

vi=1 if  0<aq<1/uf, 16
Vi = qiuy if g > 1/u;. (16)
The value v; = 1 is the lowest possible one for any self-concordant barrier [21,
Lemma 4.3.1], and therefore for small regularizations the regularized algorithm
is in theory as efficient as the standard interior-point one. When ¢; > 1/u?
the complexity increases, but, as will be shown in next subsections, there is a
wide range of values for which the number of interior-point iterations do not
increase with the regularization term. Since the regularization term means
less PCG iterations, the overall CPU time is reduced, making the regularized
algorithm an effective approach for primal block-angular problems. It is also
worth noting that the only (minor) change in the interior-point algorithm due
to the regularized barrier problem (14) is that the dual feasibility condition (5b)

is replaced by
ATy —uQz + 2 —w = c. (17)

For linear problems, (17) and (5b) are equivalent when u tends to zero. If the
proximal point regularization (13) is used, the dual feasibility becomes

ATy —Qpr—2)+2z—w=c. (18)

Although, for linear problems, (18) is equal to (5b) when z = Z, the expression
of © associated to (18) is

0=Qp+U-X)"'WH+X"12)71, (19)
while for (17) is
O0=wR+U-X)"'wW+x12)71 (20)

Note that when p tends to zero (20) is a better approximation than (19) of
the linear version of (7) (i.e., when @ = 0 in (7)). It has recently been proved
[12] that the regularized central path defined by (5a), (17), (5c)—(5e) is well
defined, i.e., it exists, it is unique, and it converges to a strictly complementary
primal-dual solution.



3 The case of multicommodity flow problems

The bound provided by Theorem 1 is difficult to compute for general primal
block-angular problems. However, for the particular case of multicommodity
flow problems it reduces to a simple and computable form. Indeed, since [ = n/,
N;=Nand L; =1 for i = 1,...,k we have that: (i) N; and L; have full row-
rank; (ii) Zle L0;L;" = Z§:1 ©; is a diagonal matrix, and its eigenvalues
are v; = Zle ©;; with eigenvectors V; = e; (e; being the jth column of I),
j=1,...,n; (i) V= [Vi...Vyy] = I, and then v = VTu = u, ie., uj/v; =1

for j = 1,...,n'. Therefore, for multicommodity problems bound (12) can be
written as
< max —=L <1, 21
P= el k 2y
O¢; + Z Oi;
i=1

where © was defined in (7).

In addition, for multicommodity flows the strong assumption u;/0; < u; /v,
of Proposition 1 is satisfied, since u;/v; = 1,/0; = 1. Therefore bound (21) is ef-
fectively reduced, if flows only are regularized, by adding even a small quadratic
term @; = 0,7 =1,...,k, to a linear multicommodity problem. The quadratic
term of the regularized algorithm thus guarantees such a reduction. Although a
reduction in the bound does not mean a reduction in the spectral radius (which
is the instrumental factor), we note that in the last interior-point iterations the
spectral radius is always observed to tend to one [7], and so does the upper
bound (21). Therefore, a reduction in the bound will also mean a reduction in
the spectral radius in these last, numerically expensive for PCG, interior-point
iterations. We remark that, although a smaller spectral radius means that theo-
retically the preconditioner is a better approximation of the inverse of the Schur
complement matrix, the practical effect of the regularization—i.e., the reduc-
tion in number of PCG iterations performed—has to be computationally tested
anyway. It is also worth noting that if N, the node-arc incidence matrix, is a
square matrix then

(D-Y(CTB-'C)) (0 + Xk, 0:) B (S 0T (NeiNT) ™ Moy

(ovi0)” (200,

which is equal to a diagonal matrix whose jth component is <@0j + Zle @ij> (Zle @Z-j) .
In this case, (21) does not actually provide a bound, but the true spectral radius.
Although problems with N square are not of practical interest (they have at
most one feasible solution), it shows how tight the bound is in a limit situation.
Another interesting observation from this result is that slacks are instrumen-
tal: otherwise ©¢ would be 0, and the bound would be one, independently of
the regularization performed. This suggests that, even for primal block-angular
(or multicommodity problems) with equality linking constraints (i.e. saturated
arcs) it is worth to consider slacks with negligible upper bounds. This justifies
what was empirically observed in [10], where a quadratic multicommodity flow



problem—from the statistical disclosure control field— with equality capacity
constraints (all arcs were saturated) was solved very efficiently with this algo-
rithm considering slacks with very small upper bounds. Additional arguments
on the benefits of the regularization term for decreasing the spectral radius are
provided by the computational results of next sections.

4 Approximate sensitivity analysis

The simple expression of bound (21) allows us to perform a local sensitivity
analysis on small regularizations. Let us consider that j € {1,...,n'} is the
index providing the maximum in (21). By (7), the elements ©;;, i =0,...,k,
are

1
Qij + (Uyj — Xi) Wiy + X5 Zij

Qi = (22)
where Q;;, Uij, Wij, Xi; and Z;; are scalars. For linear problems @Q;; = 0.
Adding a small quadratic regularization Q;; = d;, 1 = 0, ..., k, both the spectral
radius of matrix D~1(CT B~1C) and the bound (21) will change. Performing an
accurate sensitivity analysis on the spectral radius is not possible [18, Section
8.1.2], but it can be done for the bound. Defining t; = (U;; — X;;) "' Wi; +
Xingij > 0,7 =0,...,k, the bound (21) can be written as a continuous

function of § = (8, ..., d):

i :
i=1 0; +ti (23)
= 23
1 oo

_|_
8o + to ;&Z—Hi

We next show the effect of regularizing either the flows, slacks, or both of them.
Two different regularization schemes are considered: (¢) the regularization value
is the same for all the flows and/or slacks (i.e., §;,i = 0, ..., k is either 0 or 4); (%)
the regularization may be different for any flow and/or slack (i.e., ;,4 =0,...,k
may be different). Variants (35) and (37), and variants (36) and (38), of below
Subsection 5.4 belong, respectively, to these two different schemes.

(¢) The regularization value is the same for all the flows and/or slacks

We first remark that in this case (23) matches the more general expression

>y fi(3)
§) = &=t % 24
o) Yiso fi(6) 2

whose derivative (to be used later) is
fol) iy F(8) = fo(8) Sy £i(69)
2
(Zho i(9)

1(0) = : (25)



Let us first consider the regularization on flows only, thus §g = 0, and
0; =96,i=1,..., k. Then, from (25), (23) and its derivative are

S
= 0+t , to = (0 +1t;)
fl((s):ﬁv 1(0) = . 2" (26)

1 1
7_’_ -
to ;6+ti <t0+;5—|—ti>

Since to > 0, f1(0) < 0 and f1(9) is a monotonically decreasing function.
This holds not only for the jth component associated to the maximum in
(21), but for all the components. Therefore the bound is always reduced
if flows only are regularized. This is consistent with Proposition 1, which
only considered the addition of quadratic costs @Q; = 0, ¢ =1,..., k, with
Qo = 0.

In the second case, if we only regularize the slacks, i.e., g = 6 and §; = 0,

i=1,...,k, (23) and its derivative become
k k
1 1
f2 (5):ﬁ7 2 (0) = o 2" (27)
L 1
5+t0+;ti (1”5“0);“)

Since t; > 0, i = 1,...,k, f4(6) > 0, and thus f2(d) is monotonically
increasing, which means that locally the bound on the spectral radius will
get worse.

Finally, the more general case considers a regularization on both the flows
and slacks, i.e., 6; = 0, ¢ = 0,...,k. In this case, using again (25), (23)
and its derivative are

k

. (t: — to)
- o
;‘”ti : 5+t02; §+1)
) = — £ = ! - (28)
_|_
5§+ to ;(Sﬂi <5+t0+25 )
In this case f4(d) can be either positive or negative depending on ZZ ) (;_;tt())% .
This situation is discussed later, in paragraph containing (32).
(i) The regularization may be different for any flow and/or slack.
In this case the effect of a particular regularization point 5= (00,01, ..,0k)
can be analyzed by studying the directional derivative of f(J) along the
non-negative direction vector w = (wp,w1, . ..,wk), i.e
=0/ (3)
vwf((;) - Wi, (29)
= 9%




where

1 Z 1
. 2
of(6) (8o +to)” = di +ti
e = : - 5 >0, (30)
<50+t0 151+t2>
1 1
5 S0 tto (6, +t;)2
85((5) _ ottt (6 +1t;) S <0 i=1,...,k (31)
, k
7 1 1
<5o+t0+;5i+ti>

)
From (30) the term ag(g )wo of (29) is positive, while from (31) the re-

maining terms of (29) are negative. Then we have: (i) the bound is always
reduced if flows only are regularized; (ii) the bound increases if regulariza-
tion is only applied to slacks; (iii) if both flows and slacks are regularized,
the contribution to the slacks term in (29) increases the bound, inde-
pendently of the sign of (29); if (29) is negative, it would become more
negative if slacks were not regularized. We conclude that the regulariza-
tion of slacks never improves (i.e., locally never decreases) the bound on
the spectral radius.

It is worth noting that the results (26)—(28) for the regularization scheme
(i) (i-e., regularization is the same for slacks and/or flows) can be derived from
(29)—(31). Indeed, fi(d) in (26) and f5(5) in (27) are equal to the evaluation
of (29) along, respectively, the directions w = (0,1,...,1) and w = (1,0,...,0)
when 0; = §. Similarly, when both slacks and flows are regularized, f5(J) in
(28) is equal to the evaluation of (29) along the direction w = e (i.e., w; = 1,i =
0,...,k):

-

k
= 1o}
V. f(6=6e) = gé)
i=0 g
T L1 T k ~ 5% GHT
(6+t0)2 4—~i=1 6+t; 0+to (6+t:)?

2 2
1 k 1 — 1 k 1
(6+t0 +2 i 5+ti> =t <6+t0 +2 i 6+ti)

1 k S+t; S+t k 1
(5+t0)* 21 (0+t:)2  (6+to)? 2im1 (6+t:)?

1 k 1 2
(6+t0 + Zi:l 5+ti>

1 k  (ti—to)
(5+t0)? 2im1 (5+t:)°

1 k 1
(5+t0 + Zi:l 6+ti>

Therefore, whether f}(0) is positive or negative (as we questioned after (28)) is
irrelevant: from (32) it is clear that the regularization of slacks always increases
the bound on the spectral radius in f4(4).

The above discussion can be summarized in the following result:

5 = f3(0). (32)

11



Proposition 3. For the more general regularization scheme with different 6;:

1. The bound on the spectral radius is locally reduced if only the flows are
regularized.

2. The bound on the spectral radius locally increases if only the slacks are
regularized.

3. The local reduction (if any) of the bound on the spectral radius is larger if
only the flows are regularized, instead of the flows and slacks.

(};’rgoflThis /i: immediate from (29) by noting that %f—éf)wo > 0 and %{@wi é
i=1,...,k.

According to Proposition 3, the safest option for multicommodity flow prob-
lems is to perform a regularization on the flows only. This is the default option
in the implementation developed and tested in next Section. It is worth not-
ing, however, that, first, this sensitivity analysis is local; and second, it is only
valid for the bound on the spectral radius, not the spectral radius. Therefore,
it might happen that for some instances the regularization of both slacks and
flows provides better results. This will be observed in some instances of Table
8 of below Subsection 5.4.

5 Evaluating the regularized algorithm

5.1 Problem instances

We considered three kind of problems. They are used both in this Section 5 and
next Section 6.

The first type corresponds to the well-known PDS problems [6]. Problems
obtained with this generator are denoted as PDSt, where t is associated to the
planning horizon in days of a military logistic problem. The PDS instances can
be retrieved from http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.
The second kind was obtained with the implementation of [15] of the Mnet-
gen generator [1]. It can be retrieved from the above URL. These instances
will be denoted as m/-k-d, where m’ is the number of nodes, k& the number
of commodities, and d is related to the density of the network; the larger
d the denser is the network. The last set of instances was obtained with
the Tripartite generator and with a variation for multicommodity flows of the
Gridgen generator. They are known to be difficult linear programming in-
stances, and interior-point algorithms outperformed simplex variants on them
[5, 8]. Five such test examples are available. They can be obtained from
http://www-eio.upc.es/~jcastro/mmcnf_data.html.

5.2 Implementation details

The original code IPM [7] implementing the specialized interior-point algorithm
for multicommodity flows has been extended with the regularized barrier (14).
The new code will be denoted as RIPM. RIPM is mainly written in C, with
only the sparse Cholesky factorization routines coded in Fortran [22]. RIPM is
available from the authors on request. The three main parameters to be adjusted
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in the algorithm are h, the number of terms (minus one) of the power series
(11) considered in the preconditioner; €g, the initial PCG tolerance requested,
which is updated at each interior-point iteration; and @, the diagonal positive
semidefinite regularization matrix of (14). As for IPM, the default values for h
and €y in RIPM are 0 and 102 respectively. They have been used in all the
computational results of Section 6, excluding some few that are clearly marked.
For the third and new parameter, an empirical study—based on the results
of Subsection 2.2—has been performed for an appropriate choice of @Q; this is
shown in below Subsection 5.4.

The termination criterion for RIPM is the same than for IPM, but including
the effect of matrix u@ due to the quadratic regularization. The code stops when
the current primal and dual feasible point (i.e., it solves (5a), (5b)—replacing
Q@ by pQ—, and (5e)) has a relative optimality gap

|cTa + 2T (uQ)z — (bTy — u'w — 327 (uQ)x)|
1+ (o1 37 (uQ)a)
_ |cTe — (bTy — uTw) + 27 (uQ)x| (33)
B 1+ |(cTz + 327 (uQ)z)|

below some optimality tolerance (by default 107%). The numerator of (33)
is the (absolute) duality gap; it differs from the duality gap of the original
linear problem in the quadratic term z7(u@)z. In practice this value should
be negligible, since p in (5¢) and (5d) is close to zero in an optimal solution.
Anyway, RIPM checks that .

z” (pQ)x (34)

1+ |cTx|
is below some tolerance (by default 107¢) to warn the user if the regularization
term 27 (uQ)x is large. If this warning appears, the problem could be solved
again by reducing or removing the regularization term, or increasing the code
tolerances (optimality tolerance and €y). An automatic reoptimization by the
code from the current point, discarding the regularization term, could be another
option, but this was not implemented; indeed, (34) was larger than 10~% only
in one of the executions of Section 6.

An alternative termination criterion would be to consider the primal feasi-
bility, dual feasibility and relative optimality gap of the original linear problem
without the regularization term. The primal feasibility conditions of both the
original and regularized problem are the same. The dual feasibility of the orig-
inal problem ATy + z — w = c differs from (5b) in the vector —(u@Q)z < 0
(considering the regularization matrix u@ instead of Q). Fixing y, a dual fea-
sible solution for the original problem can be obtained by removing —(uQ@)x
and then either decreasing z or increasing w. Unfortunately this is not always
possible: for variables x; strictly between bounds we have z; ~ 0 and w; ~ 0
near the solution, and thus z; and w; can not be changed due to the comple-
mentarity conditions. Similarly, if x; ~ 0 < u;—thus z; > 0 and w; ~ 0—and
uQiix; > z;, it is not possible neither to make zero z; and to increase w;, nor to
increase w;, otherwise complementarity conditions would be violated. However,
near the optimal solution pQx is expected to be not significant, such that the
above adjustments on z and w can likely be performed in practice (though it
has to be checked).
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Table 1: Comparison of the two stopping criteria

linear quadratic
instance it. PCG CPU it. PCG CPU
PDS1 28 333 0.06 42 551 0.09
PDS5 65 1420 2.01 64 1363 1.91
PDS10 88 3089 11.2 80 2221 8.73
PDS15 95 3500 24.9 84 2587 20.0
PDS20 117 6264 67.0 96 3246 40.7
PDS25 129 6209 102 | 126 5804 97.6
PDS30 133 6156 151 | 121 4744 130
32-32-12 38 1150 0.42 33 708 0.29
64-64-12 47 1931 2.00 52 2658 2.45

128-64-12 55 3523 11.1 52 2647 8.75
256-64-12 73 7772 64.2 63 3453 32.9
256-256-12 | 103 4714 184 99 4218 168

tripartl 133 3304 3.47 | 142 3899 3.74
tripart2 193 10030 39.4 | 136 2983 16.2
tripart3 109 5683 53.1 | 104 6099 53.8
tripart4 125 3557 105 | 131 4049 112

The two above stopping procedures were implemented and compared. Table
1 shows the results obtained with them. Columns “linear” and “quadratic”
correspond to the criteria of the original linear problem and the regularized
problem, respectively. For each variant the number of interior point iterations
(columns “it.”), PCG iterations (columns “PCG”) and CPU time (columns
“CPU”) are reported. The computational environment and the 16 instances
tested are the same than will be used later in Subsection 5.4. Details about
these instances are provided in Subsection 5.1. From Table 1 it can be seen
that, in general, there are not significant differences between the two stopping
criteria, though the one that considers the quadratic regularization matrix seems
to provide slightly faster executions. This stopping criterion has been used in
all the computational results of this work.

5.3 Effect of () on the number of iterations

According to Proposition 1 and Section 4, the bound on the spectral radius
is reduced if a regularization is considered, and we can expect a reduction in
the number of PCG iterations needed. On the other hand, by Proposition 2,
the diagonal elements Q;;, i@ = 1,...,k, j = 1,...,n/, of the regularization
matrix should be less or equal than 1/ ufj to have the same complexity result
in number of iterations than the nonregularized interior-point algorithm, wu;;
being the capacity of arc j for commodity . The complexity increases for larger
Qi; values. In many instances the term 1/ u?j would be very small—almost
negligible—, causing no reduction in the spectral radius.

Fortunately, in practice it has been observed that there is wide range of
regularization values (much larger than 1/ug;) that maintain the number of
interior-point iterations; this number of iterations only increases when large
regularizations are used. For instance, let us consider problem PDS1, one of the
smallest instances considered, and the simple regularization matrix @ = 61 for
some d € R, § > 0. Figure 1 shows the number of iterations for several . Note
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Figure 1: Interior-point iterations for instance PDS1 using @ = 61

IP iterations

6 (log scale)

Figure 2: Ratio between PCG and interior-point iterations for instance PDS1
using @ = 61
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that for many arcs of PDS1, the value l/ufj was about 10~7, which is much
smaller than the values used in Figure 1.

It is also worth noting how @ affects to the number of PCG iterations. Fig-
ure 2 shows the average number of PCG iterations needed per interior-point
iteration, again for instance PDS1 and the simple regularization matrix @ = 61
for several §. It is shown that for small regularizations this average ratio is kept
constant, it decreases for § between 10~! and 102, and it significantly increases
when § > 5-102. This does not contradict that the regularization term de-
creases the number of PCG iterations; indeed, the significant increment of PCG
iterations happened in the last interior-point iterations, when the regularization
term is very small. This is observed in Figure 3 which shows the evolution
of the number of PCG iterations (in percentage of overall PCG iterations) for
instance PDS1 using both RIPM (regularized algorithm with rule @ = 61 and
§ = 10*) and IPM (nonregularized algorithm). As stated before, the number of
PCG iterations for RIPM only increased significantly (i.e., with the same slope
that for IPM) in last iterations; the overall number of interior-point iterations
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Figure 3: Evolution of PCG iterations (in percentage of overall PCG iterations)
for instance PDS1
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of RIPM was also much larger due to the too large regularization considered.
Indeed, this example suggests that such large initial regularizations should be
avoided in practice.

5.4 Selection of a static ()

For the selection of a good rule for matrix @ in RIPM, four alternatives were
evaluated. According to Proposition 3 these four alternatives only regular-
ize flows. (A comparison between the best of these four regularizations both
regularizing only flows, and flows and slacks is presented at the end of this
Subsection.) The first regularization alternative, the simplest one, is

Q= 6/pol, (35)

where § € R is a positive value, and pg is the value of the centrality parameter
at the first iterate: since @ is multiplied by u, this term guarantees that at the
first iteration pu@Q = 01.

The second variant computed the regularization matrix as

Q=6/uX(Z®)~1, (36)

where the diagonals of X and Z(© are the starting values of  and z. This
choice satisfies that, excluding the upper bounds term of (7), © = (Q+X12)~!
will be initially well conditioned (since @ is large when (X°)~12° is small, and
vice-versa).

The third and fourth variants are obtained from (35) and (36) by multiplying
them by the iteration counter, i.e., they are, respectively,

QY =15/pol, (37)

and
QW =15/u X (27, (38)

t being the number of interior-point iteration. Note that the definition of @
changes with ¢t. These two variants are justified because it was observed that
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Figure 4: Evolution of jus/po, tie/po and t2p /po for instance PDS1 and Q =
1/pol
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the effect of the regularization term (which is multiplied by u) could disappear
too early when the solution is being reached (i.e., u approaches zero). For
instance, Figure 4 shows for instance PDS1 and @ = 1/uol the evolution of
e/ po, tpe/ o and t2pe /1o, using a log scale for the vertical axis. Compared
to put/ o, tie/po provides a smoother decrement at last iterations, and it does
not result in a very large regularization term, mainly at first iterations, unlike
e/ po.

Other variants were tried, but are not reported here since they did not im-
prove the nonregularized algorithm in IPM. One of them, based on Proposition
2, consisted on Q = U~2, such that the parameter of the regularized barrier
would be 1, the best possible one. In practice, it provided poor results, since in
many instances this resulted in a negligible regularization.

The four regularization variants (35)—(38) were implemented and applied
to a subset of 16 instances of the PDS, Mnetgen and Tripartite suite. The
dimensions of these 16 instances are provided in Table 2: columns k, m’ and
n' provide the number of commodities, nodes, and arcs, respectively; columns
n and m show the overall number of variables and constraints of the result-
ing linear problem. The four regularizations were tested for 10 different val-
ues of § € {1078,1077,...,1,10'}, and two values for the PCG tolerance
€0 € {1072,1073}. Each resulting combination was also solved with the prox-
imal point regularization barrier problem (13), defining Qp = p@, and com-
puting @ using the four previous regularization variants; that implementation
will be denoted by PIPM. This way, RIPM and PIPM are compared under the
same conditions, being the only differences the dual feasibility conditions (17)
and (18), and the definitions of © (19) and (20)—theoretically, there is an im-
portant difference: the barrier in RIPM is self-concordant, unlike that of PIPM.
This amounts to 2560 executions. Tables 3—6 show respectively for each regular-
ization variant, the best results obtained (i.e., best combination of § and €j) for
each instance, and for both RIPM and PIPM. Columns “it.” and “PCG” report
the number of interior-point and overall number of PCG iterations. Columns
“CPU” provide the CPU time; all the executions were carried on a Linux SUN
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Table 2: Dimensions of the subset of 16 instances

/

/

Instance k m n n m
PDS1 11 126 372 4464 1758
PDS5 11 686 2325 27900 9871
PDS10 11 1399 4792 57504 20181
PDS15 11 2125 7756 93072 31131
PDS20 11 2857 10858 130296 42285
PDS25 11 3554 13580 162960 52674
PDS30 11 4223 16148 193776 62601
32-32-12 32 32 486 16038 1510
64-64-12 64 64 511 33215 4607
128-64-12 64 128 1171 76115 9363
256-64-12 256 64 2320 150190 18030
256-256-12 256 256 2204 566428 67740
tripartl 16 192 2096 35632 5168
tripart2 16 768 8432 143344 20720
tripart3 20 1200 16380 343980 40380
tripart4 35 1050 24815 893340 61565

Table 3: Best results for regularization (35): Q = 6/uol

RIPM PIPM
instance 4 €0 it. PCG CPU 4 €0 it. PCG CPU
PDS1 10T 102 38 463 0.08 [ 1072 1072 39 489  0.08
PDS5 10-1 1072 59 965 1.54 | 1071 1072 56 863  1.42
PDS10 102 102 76 1601  7.13 | 1073 1072 77 1536 6.84
PDS15 1072 1072 8 2304 19.0 | 101 1072 89 2481  19.4
PDS20 10-1 1072 105 4333 49.7 | 1073 102 107 3877  47.2
PDS25 1 1072 105 2374  55.6 1 1072 108 2882  67.7
PDS30 101 1072 113 3050 92.0 | 1072 102 111 2808  89.6
32-32-12 10~ 102 48 2309  0.66 1 1072 37 1213 0.42
64-64-12 1071 1072 63 1445 1.87 | 1072 1072 48 700 1.14
128-64-12 10~ 1072 70 3793 123 | 101 1072 66 2632  9.19
256-64-12 102 10°8 62 3762  34.7 | 1072 1073 62 3964  35.9
256-256-12 | 10! 102 115 3820 165 | 10~ 1072 113 3905 165
tripartl 10~3 102 74 3711 278 | 100t 1072 63 2682  2.07
tripart2 10-1  10-3 67 2894 11.8 | 101 1072 72 2368 109
tripart3 10-1 1072 97 5233 472 | 1072 1072 83 5490  48.0
tripart4 1 1072 123 4381 113 1 1072 127 8313 178
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Table 4: Best results for regularization (36): Q = ¢/ X (Z()~1

RIPM PIPM
instance ) €0 it. PCG CPU €0 it. PCG CPU
PDS1 1 102 43 506  0.09 10—2 41 479 0.09
PDS5 10t 1072 57 726 1.33 10—2 61 962  1.61
PDS10 1072 102 74 1294  6.18 | 10~ 102 73 1481  6.93
PDS15 10-1  10~2 77 1610  14.3 | 10~ 102 89 2326  18.7
PDS20 1072 102 96 2947  38.0 1072 106 4899  56.0
PDS25 101 102 98 1741 44.3 1072 112 3808  73.2
PDS30 1073 1072 118 3568 102 1072 118 3852 109

32-32-12 1073 102 39 1179  0.43
64-64-12 10-3 102 53 947 1.41
128-64-12 1072 102 60 2304  8.42

40 1523  0.48
10—2 81 5649  4.80
10—2 68 2968  10.4

el el T e T S S Y
—
o
|
N

256-64-12 1 1072 86 5149  48.3 10—2 96 8886  74.9
256-256-12 1 1072 113 3774 164 10-2 115 3855 167
tripartl 10~% 102 53 1646  1.46 102 71 2440  2.14
tripart2 10=2 102 79 3368 135 10-2 119 11162  36.6
tripart3 10-2 102 80 4401  39.6 10—2 94 5055  46.5
tripart4 10-1 1072 131 5835 138 1072 124 7107 153

Table 5: Best results for regularization (37): Q) = t6/uol

RIPM PIPM
instance 4 €0 it. PCG CPU 4 €0 it. PCG CPU
PDS1 102 102 43 579  0.11 | 1072 102 47 563  0.09
PDS5 102 102 57 911 1.46 | 102 102 63 1262 1.82
PDS10 1073 1072 78 1784  7.51 | 1072 1072 73 1481  6.58
PDS15 1073 102 84 2494 194 | 1072 10~2 85 2036  17.0
PDS20 1072 1072 106 4260 49.1 | 10-1 10=2 103 4408 51.8
PDS25 10~4 1072 114 3929 733 | 1072 1072 113 3625 722
PDS30 1072 1072 120 4275 116 | 1073 1072 115 3235 96.5
32-32-12 10-3 1072 38 1260  0.42 1 1072 40 924  0.36

64-64-12 104 102 54 1173 1.52 | 101 102 54 1203 2.11
128-64-12 10=2 1072 65 2301 9.65 | 10°1 1072 64 1736  7.00

256-64-12 1 1072 85 3108 36.0 | 1075 102 82 3849 385
256-256-12 | 5() 1072 113 2965 140 10 1072 114 2764 135
tripartl 10-1 1072 86 1305  1.87 1 1072 88 1662  2.01
tripart2 10-% 1072 79 3517 139 | 1072 102 75 3036 12.5
tripart3 1072 1072 95 2935 326 | 1073 1072 80 4154  38.2
tripart4 1072 1072 131 5065 126 | 101 1072 124 6438 148

() using § = 10 check (34) failed, i.e., 27 (uQ)x/(1 + [cTz]) > 106
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Table 6: Best results for regularization (38): Q® = t6/po X () (Z(0)~1
RIPM PIPM
instance d €0 it. PCG CPU 4 €0 it. PCG CPU
PDS1 10-3 1072 38 472 0.08 1 102 42 413 0.08
PDS5 10-4 1072 56 927 147 1 1072 54 755  1.31
PDS10 1071 1072 7T 1777 744 | 1002 1072 73 1481  6.58
PDS15 1 1072 81 1607  14.8 1 1072 84 1961  16.5
PDS20 1 1072 96 2364  33.9 1 1072 97 3036  38.6
PDS25 1 1072 94 1633 424 1 102 100 2116  49.0
PDS30 1 1072 99 1667  64.5 1 1072 121 4388 116
32-32-12 1 103 35 1165 0.38 | 1072 102 41 1137 0.40
64-64-12 10 1073 45 1235 1.45 | 101 102 54 1203 1.54
128-64-12 10 1073 51 1833  6.79 1 1072 65 2557  9.06
256-64-12 10 103 59 2112 22.8 1 1072 86 4071  39.8
256-256-12 10 103 98 3772 154 1 1072 110 3354 148
tripart1 1 1073 142 3844 3.7 1 1072 86 1907  2.01
tripart2 1 1072 80 2121  10.5 1 1072 125 5371  21.3
tripart3 1 1072 114 1755  28.0 1 1072 115 7857  66.0
tripart4 0.01 1072 127 6222 146 1 1072 149 8191 176
Table 7: Comparison of regularizations: CPU time (seconds)

Reg. (35) Reg. (36) Reg. (37) Reg. (38) No Reg.
instance RIPM PIPM | RIPM PIPM | RIPM PIPM | RIPM PIPM IPM
PDS1 0.08 0.08 0.09 0.09 0.11 0.09 0.08 0.08 0.09
PDS5 1.54 1.42 1.33 1.61 1.46 1.82 1.47 1.31 1.66
PDS10 7.13 6.84 6.18 7.92 7.51 6.58 7.44 6.58 7.25
PDS15 19 19.4 14.3 19.9 19.4 17 14.8 16.5 21.9
PDS20 49.7 47.2 38 56 49.1 51.8 33.9 38.6 56.5
PDS25 55.6 67.7 44.3 73.2 73.3 72.2 42.4 49 74.6
PDS30 92 89.6 102 109 116 96.5 64.5 116 111
32-32-12 0.66 0.42 0.43 0.48 0.42 0.36 0.38 0.4 0.44
64-64-12 1.87 1.14 1.41 4.8 1.52 2.11 1.45 1.54 1.49
128-64-12 12.3 9.19 8.42 10.4 9.65 7 6.79 9.06 13.2
256-64-12 59.6 47.1 35.9 74.9 36 38.5 22.8 39.8 62.4
256-256-12 165 165 164 167 158 135 154 148 203
tripart1 2.78 2.07 1.46 2.14 1.87 1.01 3.7 2.01 1.7
tripart2 15.5 10.9 13.5 36.6 13.9 12.5 10.5 21.3 17.3
tripart3 47.2 48 39.6 46.5 32.6 38.2 28 66 62.4
tripart4 113 178 138 153 126 148 146 176 265
Sum 643 694 609 764 647 629 538 692 900
Reg. (35): @ =d/pol
Reg. (36): Q = 8/poX (0 (Z(0)-1
Reg. (37): QM) =t5/uol

)
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Table 8: Comparison of regularization (38) for only flows vs. flows and slacks,
using g = 1073 and § = 1 (unless otherwise stated)

RIPM (flows) RIPM (flows+slacks) PIPM(flows) PIPM (flows+slacks)
instance it. PCG CPU it. PCG CPU it. PCG CPU it. PCG CPU
PDS1 42 551 0.09 41 511  0.08 37 437  0.08 37 442 0.08
PDS5 64 1363 1.91 64 1340 1.93 56 1183 1.66 57 1239 1.71
PDS10 80 2221 8.73 82 2432 9.34 76 2519 9.19 75 2501 9.27
PDS15 84 2587 20.0 85 2560 19.8 84 3385 23.3 38 3740 25.3
PDS20 96 3246  40.7 95 3638 43.4 | 101 5018 54.5 103 5083 55.3
PDS25 126 5804 97.6 123 4883 91.3 | 117 7257 120 111 5663 92.3
PDS30 121 4744 130 134 7122 165 | 116 6460 147 113 5285 128
32-32-12 33 708  0.29 45 1827 0.59 32 860 0.32 35 1216 0.40
64-64-12 52 2658 2.45 50 1939 1.98 50 1812 1.88 47 1412 1.59
128-64-12 52 2647 8.75 54 3574 11.0 52 2668 8.77 53 2910 9.36
256-64-12 63 3453 32.9 62 3476 32.9 62 3641 33.7 64 4437 39.5
256-256-12 99 4218 168 101 4610 180 | 101 4310 171 101 4513 176
tripartl 142 3899 3.74 | > 400 — — 95 2894  2.73 | > 400 — —
tripart2 136 2983 16.2 | > 400 — — | 120 7821 27.3 | > 400 — —
tripart3 (*) | 104 6099 53.8 112 6084 55.0 82 9406 71.3 82 10284 76.7
tripart4 (*) | 131 4049 112 126 3307 99.9 | 126 10006 192 141 11870 225

5=0.1

Fire V20Z server, credited of 367 Mflops, with two AMD Opteron 2.46GHz
processors and 8 GB of RAM (multiprocessor capabilites were not exploited in
these runs).

Looking at Tables 36 there is not a definitive best approach: neither RIPM
nor PIPM always outperformed the other approach; and any of the four reg-
ularizations was the most efficient choice for some instance. To have a clearer
picture, the results of Tables 3—6 are summarized in Table 7. Table 7 shows the
CPU time of the best variant for both RIPM and PIPM, and the CPU of the
nonregularized algorithm IPM obtained by setting (2 = 0. The fastest execution
is marked in boldface. Last row reports the total time for all the instances. It is
clearly shown that the regularization that provided more “fastest executions” is
(38); it is also the variant with the minimum total CPU time. This was chosen
as the default option in RIPM for the computational results of Section 6.

Proposition 3 showed the bound on the spectral radius is more effectively
reduced when only flows are regularized, instead of flows and slacks. To check
this assertion, Table 8 shows the results with (38) for RIPM and PIPM, both
regularizing only flows, and flows and slacks. Default parameters eg = 1073 and
0 = 1 were used for all the executions, but for two clearly marked instances.
The fastest execution is marked in boldface. It can be seen that the option with
more fastest executions was RIPM regularizing only flows. In some cases the
regularization of slacks and flows provided better results, although these cases
are very few and the difference was not significant. This does not contradict
Proposition 3, since it only deals with the bound on the spectral radius, but
not the spectral radius. However, in general, it seems to be more effective to
regularize only flows. In particular, regularizing flows and slacks caused the
failure of two instances (“tripartl” and “tripart2”), while the regularization of
flows was a more robust option.
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Figure 5: PCG iterations of RIPM and PIPM for different §, in problem PDS5
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This section is concluded by noting that, from previous tables, and for
these multicommodity instances, the quadratic self-concordant regularization
in RIPM was slightly more efficient than the proximal point one in PIPM;
and both of them outperformed the nonregularized algorithm. Although RIPM
seems to be more efficient for larger problems, in general, however, there is not
a significant difference between the two regularized approaches, and the results
may be different by tuning some of the parameters. For instance, looking at
the number of PCG iterations required for RIPM and PIPM for the particular
instance PDS5, for different § values ranging from 0 to 5000, the results of Fig-
ure 5 are obtained. The (unexpected) oscillatory behaviour of RIPM and PIPM
shows there is not a definitive better approach, though it is worth noting that
the minimum and maximum number of PCG iterations are achieved by RIPM
and PIPM, respectively.

5.5 Dynamic @)

Regularizations (35)—(38) do not fully exploit the expression (21) and the sen-
sitivity results of Section 4. The following dynamic regularization, which takes
as a basis the best static regularization (38), has been successfully tried:

0) [ ,(0)\—1 . -
QE;):tﬁij(S/uoXi(j)(Zi(j)) Vi=1,...,n i=1,... k. (39)

Expression (39) differs from (38) in the factor 3;; > 1, which is > 1 if j is the
arc that provides the maximum in (21) (i.e., regularization is increased in this
arc in an attempt to reduce the spectral radius), and it is 1 for the other arcs.
For the arc j' associated to the maximum in (21), 3;; was heuristically set as

2

are, respectively, the greater and second greater

-

9f(9)
9d(k)

£ (9)
0d(r—1)

ﬂij/ = min {10,

of(3) 9f(3)
where ‘35%) ‘ and ‘85@71)

partial of (31) for this arc (in absolute value). It aims at increasing the regu-
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Table 9: Instances dimensions

Instance k m’ n’ n m
PDS10 11 4792 1399 53526 16192
PDS20 11 10858 2857 121137 33115
PDS30 11 16148 4223 180027 48841
PDS40 11 22059 5652 245848 65360
PDS50 11 27668 7031 308281 81263
PDS60 11 33388 8423 371945 97319
PDST70 11 38369 9750 427663 12546
PDS80 11 42472 10989 472863 126539
PDS90 11 46161 12186 513635 139899
128-64-10 64 128 1182 76566 9046
128-64-11 64 128 1201 77786 9050
128-128-12 128 128 1204 155044 17188
256-64-10 64 256 2336 151293 18109
256-64-11 64 256 2334 151154 18098
256-64-12 64 256 2320 150190 18030
512-128-12 128 512 4786 616189 68989
512-256-12 256 512 4810 1234949 134405
512-512-12 512 512 4786 2454022 265222
tripartl 16 192 2096 35632 5168
tripart2 16 768 8432 143344 20720
tripart3 20 1200 16380 343980 40380
tripart4 35 1050 24815 893340 61565
gridgenl 340 1025 3072 986112 331072
larization when ‘%((i)‘ is large, dividing by ‘8‘2?;(5)1) ‘ to obtain a relative value

greater than one. A maximum of 10 was set to avoid very large regularizations,
which would increase the number of interior-point iterations. For this same rea-
son, f3;;» was set to one in the last interior-point iterations. In general, as it will
be shown in the computational results of Section 6, this dynamic regularization
scheme outperformed the static regularization (38).

6 Computational results

From the empirical analysis of Section 5, for the computational results we have
considered RIPM with the regularized version (38) and its dynamic variant
(39), and g = 1072 as default options. For the static regularization (38) the
parameter § was set to 1 for the Mnetgen and Tripartite/Gridgen instances,
while it was 0.1 for the PDS ones. For the dynamic regularization (39), 6 was
50 for the Mnetgen instances, and was 1 for the remaining ones. These default
settings have been used for all the runs of this Section, unless otherwise stated
for a couple of executions (due to numerical issues associated to PCG). Note that
tuning those parameters it is possible to obtain better results (as in Section 5).
However, the purpose of this Section is to show that RIPM with default values
may be an efficient interior-point approach for some multicommodity flows,
even more than the nonregularized algorithm. Executions were performed on
the same machine used for the computational results of Section 5.

Table 9 reports the dimensions of the PDS, Mnetgen and Tripartite/Gridgen
instances tested. Table 10 shows the results obtained with IPM, RIPM and the
dual simplex and barrier algorithms of CPLEX-11. The hybrid and primal sim-
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plex CPLEX-11 variants were also tried, but they never improved either the
dual or the barrier, so their results are not reported. Like for RIPM, default
settings were used for CPLEX-11, including the automatic selection of the bar-
rier ordering scheme, which is one of the most instrumental parameters of the
interior-point algorithm; indeed, results did not improve by manually setting
either the minimum degree or nested dissection ordering schemes. The meaning
of the columns is the same than in previous tables. The fastest of the five ex-
ecutions for each instance is marked in boldface. If RIPM did not provide the
fastest execution, then the fastest of its two regularization variants is marked in
italic.

From Table 10, the dynamic regularization (39) of RIPM was more effi-
cient than the static scheme (38) in 14 of the 23 instances. The dynamic reg-
ularization was significantly more efficient in the largest Mnetgen and Tripar-
tite/Gridgen instances, while it was outperformed by the static regularization
in the largest PDS instances. Table 10 also clearly shows that RIPM was more
efficient than ITPM in all the instances. The efficiency is more notable in the
Tripartite/Gridgen instances, where for the two largest problems RIPM was
about three and seven times faster. In some instances the benefit added by
the regularization term to the solution of systems with PCG is substantial: in
the largest Mnetgen instance 512-512-12, IPM required an average number of
67 PCG iterations per interior-point iteration, while RIPM with the dynamic
regularization only needed 11.

It is known than interior-point methods are not the best approach for PDS
and Mnetgen instances. This is clearly observed in Table 10 were the dual
simplex was the most efficient option in most instances. For the PDS instances
not only the dual, the fastest CPLEX-11 option, outperformed RIPM, but also
the generic barrier did. This can be explained by the highly efficient ordering
and factorization routines in CPLEX-11. For the Mnetgen instances, the dual
simplex is also the fastest CPLEX-11 option. However, in those problems the
barrier solver is significantly slower than RIPM (an academic code with standard
factorization routines), specially for the larger instances, which exceeded a time
limit of 3000 seconds. On the other hand, the Tripartite/Gridgen instances
are known to be difficult instances for simplex-like methods, and interior-point
algorithms outperform them. It can be seen that the barrier solver was by far
the most efficient CPLEX-11 approach. However, RIPM (and also IPM) was
significantly faster than the CPLEX-11 barrier. As far as we know, up to now
IPM was the most efficient algorithm for these difficult instances [8]; this no
longer holds, since RIPM is a more efficient approach. This result shows that
RIPM may be a promising approach for the solution of nonlinear smooth convex
separable multicommodity flow problems. Indeed, for these problems simplex-
like algorithms are not competitive against interior-point algorithms, and RIPM
seems to compare very well against generic state-of-the-art barrier solvers. The
regularization of a convex nonlinear objective function in RIPM may be used
to gurantee strict convexity, thus improving the quality of the preconditioner.

As stated above, the results for RIPM were obtained with default options,
since this was the purpose of this Section. However, we note they are not the
best results that can be obtained with RIPM; especially for the larger instances,
there is room for improvement by tuning the parameters. For instance, problem
PDS60 could be solved in 147 iterations, 5954 PCG iterations and 610 seconds
(instead of the 1100 seconds of Table 10); and problem PDS90 could be solved
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in 140 iterations, 6018 PCG iterations and 1280 seconds (instead of the 2180
seconds of Table 10). However, even with these significant improvements, RIPM
is still outperformed by CPLEX-11. On the other hand, problem “gridgenl”
was solved in 219 iterations, 5703 PCG iterations and 618 seconds, reducing the

1080 seconds of Table 10, thus making it even more competitive against general
solvers like CPLEX-11.

7 Conclusions

From the results of this work, it is clear that the new regularized version out-
performs the specialized interior-point method for multicommodity flows im-
plemented in IPM. This means that linear multicommodity flow problems are
more efficiently solved by specialized interior-point methods based on PCG, if
they are dealt with as a sequence of quadratic multicommodity flow problems.
However, for some standard classes of multicommodity flow problems, as the
PDS and Mnetgen ones, dual simplex algorithms are still more efficient than
the new regularized approach. On the other hand, for some classes of difficult
multicommodity problems, interior-point methods outperform simplex variants;
for those instances, the regularized specialized interior-point algorithm could be
considered one of the most efficient available approaches. The application of
the regularized algorithm to nonlinear smooth convex separable multicommod-
ity flow problems is part of the future research we intend to pursue.
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