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Abstract

The feasibility pump (FP) has proved to be a successful heuristic for finding feasible solutions of mixed integer
linear problems. Briefly, FP alternates between two sequences of points: one of feasible solutions for the relaxed
problem, and another of integer points. This short paper extends FP, such that the integer point is obtained by rounding
a point on the (feasible) segment between the computed feasible point and the analytic center for the relaxed linear
problem.
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1. Introduction

The problem of finding a feasible solution of a generic mixed integer linear problem (MILP) of the form

min
x

cT x

s. to Ax= b
x ≥ 0
x j integer ∀ j ∈ I,

(1)

where A∈ R
mxn,b ∈ R

m, c ∈ R
n andI ⊆ N = {1, . . . ,n}, is a NP-hard problem. In [5, 7] the authors proposed a

new heuristic approach to compute MILP solutions, named thefeasibility pump(FP). This heuristic turned out to be
successful in finding feasible solutions even for some hard MILP instances. A slight modification of FP was suggested
in [1], named theobjective feasibility pump, in order to improve the quality of the solutions in terms of the objective
value. The main difference between the two versions is that the objective FP, in contrast to the original version, takes
the objective function of the MILP into account during the execution of the algorithm. FP alternates between feasible
(for the linear relaxation of MILP) and integer points, hopefully converging to a feasible integer solution. The integer
point is obtained by applying some rounding procedure to thefeasible solution. This paper suggests an extension
of FP where all the points in a feasible segment are candidates to be rounded. The end points of this segment are
the feasible point of the standard or objective FP and some interior point of the polytope of the relaxed problem,
the analytic center being the best candidate (our approach will be named analytic center FP, or AC-FP). When the
end point of the segment in the boundary of the polytope is considered for rounding, we obtain the standard FP
algorithm. The motivation of this approach is that roundinga point of the segment closer to the analytic center may
increase the chances of obtaining an integer point in some instances, thus reducing the number of FP iterations. The
computational results with AC-FP show that, for some instances, taking a point in the interior of the feasible segment
may be more effective than the standard end point of the objective FP. A recent version of FP [8] introduced a new
improved rounding scheme based on constraint propagation.Although in this work we considered as base code a
freely available implementation of the objective FP, AC-FPcould also be used with the new rounding scheme of [8].
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1. initialize t := 0 andx∗ := arg min{cT x : Ax= b, x ≥ 0}
2. if x∗

I
is integerthen return(x∗) end if

3. x̃ := [x∗] (rounding ofx∗)
4. while time< TimeLimit do
5. x∗ := arg min{△ (x, x̃) : Ax= b, x ≥ 0}
6. if x∗

I
is integerthen return(x∗) end if

7. if ∃ j ∈ I : [x∗j ] , x̃ j then
8. x̃ := [x∗]
9. else

10. restart
11. end if
12. t := t + 1
13. end while
14. return(FP failed)

Figure 1: The feasibility pump heuristic (original version)

Interior-point methods have been applied in the past in branch-and-bound frameworks for MILP and mixed integer
nonlinear problems (MINLP) [3, 4, 11, 12]. However, as far aswe know, the only previous attempt to apply them
to a primal heuristic was [13]. (We were warned about the existence of this work—when it was a manuscript under
review—by an anonymous reviewer. That and our approach were independently developed, although they share the
idea of using the analytic center for obtaining MILP feasible solutions.) Although AC-FP and the approach of [13]
(named analytic center feasibility method (ACFM)) have thesame motivation (using the analytic center for getting
MILP feasible solutions), both approaches are significantly different, as shown at the end of Subsection 2.2. Briefly,
(i) AC-FP relies on FP, while ACFM is based on an analytic center cutting plane method; (ii) AC-FP only computes
one analytic center, while ACFM computes one per iteration;(iii) as a consequence of the previous point, ACFM can
be computationally expensive, while AC-FP is almost as efficient as FP.

The paper is organized as follows. The remainder of Section 1reviews the original FP version of [5, 7], the
modified objective FP of [1], and the ACFM of [13]. Section 2 introduces AC-FP, showing it is an extension of FP,
and comparing it with ACFM. Finally, Section 3 reports computational results on a subset of MILP instances from
MIPLIB 2003 [2], comparing the objective FP, ACFM and AC-FP.

1.1. The original feasibility pump

The FP heuristic starts by solving the linear programming (LP) relaxation of (1)

min
x
{cT x : Ax= b, x ≥ 0}, (2)

and its solutionx∗ is rounded to an integer point ˜x, which may be infeasible for (2). The rounding ˜x of a givenx∗,
denoted as ˜x = [x∗], is obtained by setting ˜x j = [x∗j ] if j ∈ I and x̃ j = x∗j otherwise, where [¦] represents scalar
rounding to the nearest integer. If ˜x is infeasible, FP finds the closestx∗ ∈ P, where

P = {x ∈ R
n : Ax= b, x ≥ 0}, (3)

by solving the following LP
x∗ = arg min{△ (x, x̃) : Ax= b, x ≥ 0}, (4)

△ (x, x̃) being defined (using theL1 norm) as

△ (x, x̃) =
∑

j∈I

|x j − x̃ j |. (5)

Notice that continuous variables ˜x j , j < I, do not play any role. If△ (x∗, x̃) = 0 thenx∗j (=x̃ j) is integer for all j ∈ I,
sox∗ is a feasible solution for (1). If not, FP finds a new integer point x̃ from x∗ by rounding. The pair of points ( ˜x, x∗)
with x̃ integer andx∗ ∈ P are iteratively updated at each FP iteration with the aim of reducing as much as possible the
distance△ (x∗, x̃). An outline of the FP algorithm is showed in Figure 1. To avoid that the procedure gets stuck at the
same sequence of integer and feasible, there is a restart procedure when the previous integer point ˜x is revisited (lines
7–11 of algorithm of Figure 1). In a restart, a random perturbation step is performed.
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The FP implementation has three stages.Stage 1is performed just on the binary variables by relaxing the in-
tegrality conditions on the general integer variables. Instage 2FP takes all integer variables into account. The FP
algorithm exits stage 1 and goes to stage 2 when either (a) a feasible point with respect to only the binary variables
has been found; (b) the minimum△ (x∗, x̃) was not updated during a certain number of iterations; or (c) the maximum
number of iterations was reached. The point ˜x that produced the smallest△ (x∗, x̃) is stored and passed to stage 2 as
the initial x̃ point. When FP turns out to be unable to find a feasible solutionwithin the provided time limit, the default
procedure of the underlying MILP solver (CPLEX 12 [10] in this work) is started; this is namedstage 3.

1.2. The modified objective feasibility pump

According to [1], although the original FP heuristic of [5, 7] has proved to be a very successful heuristic for
finding feasible solutions of mixed integer programs, the quality of their solutions in terms of objective value tends
to be poor. In the original FP algorithm of [5, 7] the objective function of (1) is only used at the beginning of the
procedure. The purpose of the objective FP [1] is, instead ofinstantly discarding the objective function of (1), to
consider a convex combination of it and△ (x, x̃), reducing gradually the influence of the objective term. The hope is
that FP still converges to a feasible solution but it concentrates the search on the region of high-quality points. The
modified objective function△α (x, x̃) is defined as

△α (x, x̃) := (1− α) △ (x, x̃) + α
|| △ ||

||c||
cT x, α ∈ [0,1], (6)

where|| ¦ || is the Euclidean norm of a vector, and△ is the objective function vector of△ (x, x̃) (i.e., at stage 1 is the
number of binary variables, and at stage 2 is the number of integer (both general integer and binary) variables). At
each FP iterationα is geometrically decreased with a fixed factorϕ < 1, i.e.,αt+1 = ϕαt andα0 ∈ [0,1]. Notice that
the original FP algorithm is obtained usingα0 = 0. The objective FP algorithm is basically the same as the original
FP algorithm of Figure 1, replacing△ (x, x̃) by △αt (x∗, x̃) at line 5, performing at the beginning the initialization of
α0, and adding at the end of the loopαt+1 = ϕαt.

1.3. The analytic center feasibility method (ACFM)

ACFM [13] is a three-phase procedure that mainly relies on the analytic center cutting plane method. In phase-I it
computes (i) the analytic center ¯x of the bounded polyhedron

P∩ {x : cT x ≤ z} ∩C, (7)

zbeing an upper bound on the objective function andC a set of valid cuts (initially empty), and (ii) the minimizerx∗min
and maximizerx∗max of the objective functioncT x subject tox ∈ P. Actually, the formulation in [13] of the problem
for computing the analytic center is different from the above one, since it considers only inequalities, and it needs
a reformulation of equality constraints; our approach, detailed in Section 2 below, directly works with the original
formulation of the problem, as it can deal with equality constrained problems. Scanning the segmentsx̄ x∗min and
x̄ x∗max , phase-I tries to obtain the closest integer point to the analytic center by rounding the integer components of
different segment points—let us name ˜x such a rounded point—and adjusting the remaining continuouscomponents
by solving

min
x
{cT x : Ax= b, x ≥ 0, x j = x̃ j j ∈ I}. (8)

If (8) is feasible then an integer feasible solution is obtained. Whether this problem is feasible or not, phase-II is
started. If phase-I found a feasible integer point, the upper boundz on the objective is updated and we go to phase-I
again, to recompute the new analytic center (different from previous iteration, sincez, thus (7), changed). If no feasible
integer point was found at phase-I, then additional constraints (cuts) are added toC to move the analytic center towards
the interior of the integer feasible region, and phase-I is restarted again (computing a new analytic center for the new
polyhedron (7)). The procedure iterates Phase-I and Phase-II until some stopping criteria is satisfied (iteration limit—
20 iterations in [13]—, or quality of the solution). If no feasible solution is found the procedure switches to a phase-III
which is similar to the stage 3 of FP.
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2. The analytic center feasibility pump (AC-FP)

2.1. The analytic center

Given the LP relaxation (2), its analytic center is defined asthe pointx̄ ∈ P that minimizes theprimal potential
function−

∑n
i=1 ln xi , i.e.,

x̄ = arg min
x
−
∑n

i=1 ln xi

s. to Ax= b
x > 0.

(9)

Note that the analytic center is well defined only ifP is bounded. Note also that constraintsx > 0 could be avoided,
since the domain of ln are the positive numbers. Problem (9) is a linearly constrained strictly convex optimization
problem. It is easily seen that the arg min−

∑n
i=1 ln xi is equivalent to the arg max

∏n
i=1 xi . Therefore, the analytic

center provides the point that maximizes the distance to thehyperplanesxi = 0, i = 1, . . . ,n, and it is thus expected
to be well centered in the interior of the polytopeP. We note that the analytic center is not a topological property of
a polytope, and it depends on how the polytope is represented. That is, two different sets of linear inequalitiesP and
P′ defining the same polytope may provide different analytic centers. Other centers, such as the center ofgravity, are
not affected by different formulations of the same polyhedron (but they are computationally more expensive). In this
sense, redundant inequalities may change the location of the analytic center (i.e., if formulationP′ is obtained from
formulationP by adding redundant constraints, it will provide a different analytic center). Additional details can be
found in [14].

The analytic center may be computed by solving the KKT conditions of (9)

Ax = b
ATy+ s = 0

xi si = 1 i = 1, . . . ,n
(x, s) > 0,

(10)

y ∈ R
m ands ∈ R

n being the Lagrange multipliers ofAx= b andx > 0 respectively. Alternatively, and in order to use
an available highly efficient implementation, the analytic center was computed in this work by applying a primal-dual
path-following interior-point algorithm to the barrier problem of (2), after removing the objective function term (i.e.,
settingc = 0):

min
x
−µ
∑n

i=1 ln xi

s. to Ax= b
x > 0,

(11)

whereµ is a positive parameter (the parameter of the barrier) that tends to zero. The arc of solutions of (11)x∗(µ) is
named the primal central path. The central path converges tothe analytic center of the optimal set. Whenc = 0 (as in
(11)) the central path converges to the analytic center of the feasible setP [14].

2.2. Using the analytic center in the feasibility pump heuristic

Once the analytic center has been computed, it can be used to (in theory infinitely) increase the number of feasible
points candidates to be rounded. Instead of rounding, at each FP iteration, the feasible pointx∗ ∈ P, points on the
segment

x(γ) = γx̄+ (1− γ)x∗ γ ∈ [0,1] (12)

will be considered. Note that the segment is feasible, sinceit is a convex combination of two feasible points.
AC-FP first considers astage 0(which is later applied at each FP iteration) where severalx(γ) points are tested,

from γ = 0 to γ = 1 (i.e, from x∗ to x̄ ). Eachx(γ) is rounded to ˜x(γ). If x̃(γ) is feasible, then a feasible integer
solution was found and the procedure is stopped at the stage 0. Otherwise the algorithm proceeds with the next stage
of FP, considering two different options:

a) using the point ˜x(0) = [x∗] (optionγ = 0);
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1. initialize t := 0,α0 ∈ [0, 1], ϕ ∈ [0, 1], andx∗ := arg min{cT x : Ax= b, x ≥ 0}
2. compute analytic center ¯x := arg min

{

−
∑n

i=1 ln xi : Ax= b, x > 0
}

3. { Beginning of stage 0}
4. for γ ∈ [0, 1] do
5. x(γ) := γx̄+ (1− γ)x∗

6. x̃(γ) := [x(γ)] (rounding ofx(γ))
7. if x̃(γ) is feasiblethen return(x̃(γ)) end if
8. end for
9. { End of stage 0}

10. select ˜x from the set{x̃(γ)}
11. while time< TimeLimit do
12. x∗ := arg min{△αt (x, x̃) : Ax= b, x ≥ 0}
13. for γ ∈ [0, 1] do
14. x(γ) := γx̄+ (1− γ)x∗

15. x̃(γ) := [x(γ)] (rounding ofx(γ))
16. if x̃(γ) is feasiblethen return(x̃(γ)) end if
17. end for
18. select ˆx from the set{x̃(γ)}
19. if x̂I , x̃I then
20. x̃ := x̂
21. else
22. restart
23. end if
24. αt+1 := ϕαt

25. t := t + 1
26. end while
27. return(FP failed)

Figure 2: The AC-FP heuristic

b) using the point ˜x(γ) that minimizes||x̃(γ) − x(γ)||∞ (optionL∞).

If the first option is applied at each FP iteration, and no feasible x̃(γ) for γ > 0 is found, AC-FP behaves as the standard
FP algorithm. In the second option, if no feasible ˜x(γ) is found, the procedure selects thex(γ) which is closer to [x(γ)]
according to theL∞ norm. The aim is to select the point with more chances to become both integer and feasible, in an
attempt to reduce the number of FP iterations. This second option provided better results in general and it was used
in the computational results of Section 3. It is worth to notethat if the rounding of severalx(γ) points is feasible, the
procedure selects the one with the lowestγ, i.e., the one closest tox∗ (instead of the one closest to the analytic center
x̄), since this point was computed considering the objective function (forα > 0). An outline of the algorithm is shown
in Figure 2.

From Figure 2 it is clear that AC-FP only computes one analytic center (that ofP) at line 2 of the algorithm, unlike
ACFM [13] which computes one analytic center (for a modified polyhedron) at each iteration. This is computationally
the most significant difference between AC-FP and ACFM: since the computation of analytic centers can be expensive,
AC-FP is more efficient than ACFM. It is also seen that AC-FP and ACFM are completely different approaches: the
former is an extension of FP, the latter is based on computinganalytic centers of modified polyhedrons obtained by
adding cutting planes toP.

Both procedures, AC-FP and ACFM, consider the feasible segment between the analytic center ¯x and a solution
of the relaxed problem (x∗ in AC-FP,x∗min andx∗max in ACFM) for rounding purposes. It is worth to note that in AC-FP
the analytic center is the same for all the iterations andx∗ is different at each iteration, whereas the opposite holds for
ACFM: it computes a different analytic center at each iteration whereasx∗min andx∗max are uniquely determined at the
beginning. In addition, AC-FP and ACFM use the rounded pointx̃(γ) in a different manner. AC-FP checks if ˜x(γ) is
feasible, and stops the procedure once the first feasible ˜x(γ) is found (which is indeed the criterion considered by FP).
On the other hand, ACFM, which may obtain a rounded feasible point at its phase-I, keeps on iterating with phase-I
and phase-II until some stopping criteria (i.e., time limitor quality of the solution) is satisfied. In addition, after
obtaining the rounded point, ACFM solves (8) for adjusting the remaining continuous components (this is not done
by AC-FP, which relies on the overall FP procedure for performing a similar adjustment at line 12 of the algorithm of
Figure 2). Since AC-FP may obtain a feasible point at stage 0 close to the analytic center ˜x and far from the feasible
point x∗ ∈ P, this point may provide a very large objective function value. An extension would be to save this point
and keep on looking for new feasible points of higher quality(as done by ACFM).

As stated in Subsection 1.3, ACFM computes two linear feasible pointsx∗min andx∗max, the minimizer and maxi-
mizer ofcT x within P, and it considers the two segments that join the analytic center of the current ACFM iteration
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with those two points. On the other hand, AC-FP only considers one segment between ¯x andx∗. Actually, we ini-
tially also considered two segments: the current onex̄ x∗, and a second one joining ¯x with the farthest feasible point
from x̄ in the direction ¯x − x∗ (name itx∗f ). Note that this point is easily computed asx∗f = x̄ + β∗(x̄ − x∗), where
β∗ = min{ −xi

(x̄−x∗)i
: (x̄− x∗)i < 0, i = 1, . . . ,n}. The computational benefit of usingx∗f instead ofx∗max is that the solution

of an extra LP problem is avoided. However, in practice, using the second segment̄x x∗f was not useful, and it was
discarded in the final AC-FP implementation.

3. Computational results

AC-FP was implemented using the base code of the objective FP, freely available fromhttp://www.or.deis.
unibo.it/research_pages/ORcodes/FP-gen.html. The base FP implementation was extended for computing
the analytic center using three different interior-point solvers, CPLEX [10], GLPK [9] and PCx [6]. The new code
is available fromhttp://www-eio.upc.es/~dbaena/sw/2010/fp_analytic_center.tgz. CPLEX integrates
better with the rest of the FP code, which also relies on CPLEX, and it also turned out to be significantly more
efficient than GLPK and PCx. On the other hand, even deactivatingall the preprocessing options and removing the
crossover postprocess, CPLEX was not always able to providethe analytic center ofP because of its aggressive
reduced preprocessing (which can not be deactivated as we were told by CPLEX developers). For instance, for
P = {x :

∑n
i=1 xi = n, x ≥ 0}, the barrier option of CPLEX did not apply the interior-point algorithm, not providing

an interior solution (i.e., it providedxi = n, x j = 0, j , i), whereas both GLPK and PCx reported the right analytic
centerxi = 1, i = 1, . . . ,n. Of the other two solvers, PCx turned out to be much more efficient than GLPK. Indeed,
PCx may handle upper bounds implicitly (i.e., 0≤ x ≤ 1 from linear relaxations ofx ∈ {0,1}) in its interior-point
implementation, whereas GLPK transforms the problem to thestandard form (replacingx ≤ 1 by x + s = 1, s ≥ 0),
significantly increasing the size of the Newton’s system to be solved at each interior-point iteration.

The AC-FP implementation was applied to a subset of MIPLIB2003 instances, whose dimensions are shown in
Table 1. Columns “rows”, “cols”, “nnz”, “int”, “bin” and “con” provide respectively the number of constraints,
variables, nonzeros, general integer variables, binary variables, and continuous variables of the instances. Column
“objective” shows the optimal objective function. Unknownoptimal objectives are marked with a “?”.

Table 2 shows the results obtained with AC-FP using PCx and CPLEX-12.1. For the two AC-FP variants, Table 2
reports the number of FP iterations (columns “niter”), the objective value of the feasible point found (“fobj”), the gap
between the feasible and the optimal solution (“gap%”), andthe FP stage where the feasible point was found (“stage”).
Columns “tFP(tAC)” report separately the CPU time spent in stages 1 to 3 (“tFP”) and the time for computing the
analytic center before stage 0 (in brackets, “tAC”); the total time is the sum of “tFP” and “tAC”. Columns “AC value”
show the value of the original objective function evaluatedat the analytic center. Differences are due to different
computed analytic centers because both solvers apply very distinct preprocessing strategies.

Table 3 compares AC-FP with ACFM using the subset of nine MIPLIB2003 instances solved in [13]. For ACFM,
Table 3 reports the number of ACFM iterations needed to reachthe feasible solution (“niter“), the feasible solution
(column “fobj”), and the gap between the solution found by ACFM and the optimal solution (column “gap%”).
Column “tt(tAC)” reports the total CPU time of the ACFM algorithm, including the amount of CPU time in seconds
spent on calculating the analytic centers (in brackets, “tAC”). The best result (i.e., execution with the lowest gap) is
highlighted in boldface.

Table 4 compares AC-FP with the objective FP. For the objective FP we report the number of FP iterations (column
“niter”), the objective value of feasible point found (“fobj”), the gap between the feasible and the optimal solution
(“gap%”), the FP stage where the feasible point was found (“stage”) and the total CPU time (column “tt”). The best
result (i.e. that with the lowest gap if obtained in stages 0–2), is highlighted in boldface. Note that for instance
“swath” objective FP is considered the best approach, though the gap is greater than for AC-FP, since the solution
with objective FP was found at stage 2, while AC-FP failed andit needed stage 3. This same argument was applied
for instance “dano3mip”, of unknown gap. For instance “liu”AC-FP with PCx provided a better objective function,
though the gap is also unknown. If two approaches provide thesame gap, but one is significantly more efficient, this
is marked as the best result (as in instance “ds”).

The default FP settings were used as suggested in [1]. All runs were carried on a Dell PowerEdge 6950 server with
four dual core AMD Opteron 8222 3.0 GHZ processors (without exploitation of parallelism capabilities) and 64 GB
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Instance rows cols nnz int bin con objective
10teams 230 2025 12150 0 1800 225 924
a1c1s1 3312 3648 10178 0 192 3456 11503.40
aflow30a 479 842 2091 0 421 421 1158
aflow40b 1442 2728 6783 0 1364 1364 1168
air04 823 8904 72965 0 8904 0 56137
air05 426 7195 52121 0 7195 0 26374
arki001 1048 1388 20439 96 415 877 7580810
atlanta-ip 21732 48738 257532 106 46667 1965 90.00
cap6000 2176 6000 48243 0 6000 0 -2451380
dano3mip 3202 13873 79655 0 552 13321 ?
danoint 664 521 3232 0 56 465 65.66
disctom 399 10000 30000 0 10000 0 -5000
ds 656 67732 1024059 0 67732 0 93.52
fast0507 507 63009 409349 0 63009 0 174
fiber 363 1298 2944 0 1254 44 405935
fixnet6 478 878 1756 0 378 500 3983
gesa2-o 1248 1224 3672 336 384 504 25779900
gesa2 1392 1224 5064 168 240 816 25779900
glass4 396 322 1815 0 302 20 1200010000
harp2 112 2993 5840 0 2993 0 -73899800
liu 2178 1156 10626 0 1089 67 ?
manna81 6480 3321 12960 3303 18 0 -13164
markshare1 6 62 312 0 50 12 1
markshare2 7 74 434 0 60 14 1
mas74 13 151 1706 0 150 1 11801.20
mas76 12 151 1640 0 150 1 40005.10
misc07 212 260 8619 0 259 1 2810
mkc 3411 5325 17038 0 5323 2 -563.84
mod011 4480 10958 22254 0 96 10862 -54558500
modglob 291 422 968 0 98 324 20740500
msc98-ip 15850 21143 92918 53 20237 853 19839500
mzzv11 9499 10240 134603 251 9989 0 -21718
mzzv42z 10460 11717 151261 235 11482 0 -20540
net12 14021 14115 80384 0 1603 12512 214
noswot 182 128 735 25 75 28 -41
nsrand-ipx 735 6621 223261 0 6620 1 51200
nw04 36 87482 636666 0 87482 0 16862
opt1217 64 769 1542 0 768 1 -16
p2756 755 2756 8937 0 2756 0 3124
pk1 45 86 915 0 55 31 11
pp08aCUTS 246 240 839 0 64 176 7350
pp08a 136 240 480 0 64 176 7350
protfold 2112 1835 23491 0 1835 0 -31
qiu 1192 840 3432 0 48 792 -132.87
roll3000 2295 1166 29386 492 246 428 12890
rout 291 556 2431 15 300 241 1077.56
set1ch 492 712 1412 0 240 472 54537.80
seymour 4944 1372 33549 0 1372 0 423
sp97ar 1761 14101 290968 0 14101 0 660706000
swath 884 6805 34965 0 6724 81 467.40
timtab1 171 397 829 94 64 239 764772
timtab2 294 675 1482 164 113 398 1096560
tr12-30 750 1080 2508 0 360 720 130596
vpm2 234 378 917 0 168 210 13.75
?: Unknown value

Table 1: Characteristics of the subset of MILP instances from MIPLIB 2003
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AC-FP with PCx AC-FP with CPLEX ACFM
Instance tFP(tAC) gap% tFP(tAC) gap% niter fobj tt(tAC) gap%
mas74 0(0) 484618022.50 0(0) 423649728.01 7 15026.47 8.89(8.26) 434.75
mas76 0(0) 67000682.38 0(0) 124980840.41 1 44877.42 2.55(2.1) 12.18
misc07 3(0) 40.02 2(0) 21.34 13 4795 9.28(8.71) 70.64
noswot 0(0) 61.90 0(0) 23.81 3 -37 2.51(2.11) 9.76
pk1 0(0) 625 0(0) 6000 1 28.99 0.75(0.72) 163.55
pp08aCUTS 0(0) 122.98 0(0) 194.82 1 8458 2.81(2.25) 15.07
pp08a 0(0) 115.63 0(0) 150.85 1 9048.56 2.07(1.5) 23.11
rout 1(0) 52.56 1(0) 24.08 4 1111.88 101.95(100.58) 3.18
vpm2 0(0) 106.78 0(0) 67.8 6 15.5 28.43(27.31) 12.73

Table 3: Comparison of AC-FP (PCx and CPLEX) with ACFM only forthe instances solved in [13]

AC-FP with PCx AC-FP with CPLEX objective FP
Instance tFP(tAC) gap% tFP(tAC) gap% niter fobj tt stage gap%

Problems with only binary variables
10teams 26(0) 10.59 25(0) 14.27 278 1014 19 3 9.73
a1c1s1 0(0) 306.43 0(0) 232 351 22714.68 8 2 97.45
aflow30a 1(0) 228.13 2(0) 381.36 41 2355 0 1 103.28
aflow40b 12(0) 610.09 2(0) 503.25 21 2329 1 1 99.32
air04 1220(2) 28.43 1147(0) 26.87 45 58229 181 1 3.73
air05 162(1) 43.73 148(0) 35.73 3 26930 2 1 2.11
cap6000 1(0) 0.35 1(0) 0.35 31 -2442163 0 1 0.38
dano3mip 1892(17) ? 1947(4) ? 70 763.97 361 1 ?
danoint 4(0) 15.50 9(0) 29.75 96 74 3 1 12.50
disctom 3(1) 0 4(0) 0 3 -5000 3 1 0
ds 1945(10) 5633.77 1(2) 5633.77 446 5418.56 9495 3 5633.77
fast0507 131(4) 6691.43 2(1) 57.71 8 184 51 1 5.71
fiber 0(0) 1496.68 0(0) 675.45 41 6481506.12 0 1 1496.68
fixnet6 0(0) 863.91 0(0) 2341.58 67 41304 0 1 936.77
glass4 2(0) 775 1(0) 316.67 374 12700154400 1 3 958.34
harp2 3(0) 45.02 1(0) 32.67 138 -60669440 3 1 17.90
liu 4(5) ? 5(0) ? 119 3286 1 1 ?
markshare1 0(0) 30100 0(0) 364250 65 725 0 1 36200
markshare2 0(0) 46200 0(0) 525550 65 963 0 1 48100
mas74 0(0) 484618022.50 0(0) 423649728.01 109 16534.04 0 1 40.10
mas76 0(0) 67000682.38 0(0) 124980840.41 106 46242.57 1 1 15.59
misc07 3(0) 40.02 2(0) 21.34 188 3690 1 1 31.31
mkc 1(0) 50.79 1(1) 106.69 13 -288.96 0 1 48.67
mod011 3(1) 31.30 3(0) 34.84 12 -45633967.33 1 1 16.36
modglob 1(0) 5.16 0(0) 296.53 60 22995521.33 0 1 10.87
net12 10(86) 57.21 8(27) 57.21 216 337 12 2 57.21
nsrand-ipx 367(2) 404.05 265(0) 296.56 132 211040 5 2 312.38
nw04 9(8) 9 120(2) 265.54 10 17858 10 1 5.91
opt1217 0(0) 22.80 0(0) 94.12 40 -16 0 1 0
p2756 7(0) 1542.85 7(0) 1542.85 377 51338 2 3 1542.85
pk1 0(0) 625 0(0) 6000 56 36 0 1 208.33
pp08aCUTS 0(0) 122.98 0(0) 194.82 10 8360 0 1 13.74
pp08a 0(0) 115.63 0(0) 150.85 11 12010 0 1 63.39
protfold 365(2) 37.81 286 -16 90 2 46.88
qiu 1(0) 748.05 0(0) 2858.10 9 160.76 0 1 219.34
set1ch 0(0) 392.71 0(0) 296.92 46 95845.5 0 1 75.74
seymour 5(35) 78.07 0(0) 38.92 7 471 3 1 11.32
sp97ar 57(4) 75.87 88(1) 1671.15 9 919778417.68 4 1 39.21
swath 96(1) 7324.22 100(0) 7324.22 395 35951.85 14 2 7575.56
tr12-30 7(0) 121.47 6(0) 118.78 25 164128 1 1 25.68
vpm2 0(0) 106.78 0(0) 67.8 12 18.25 0 1 30.51

Problems with binary and general integer variables
arki001 43(0) 1.96 79(0) 2.41 803 7719381.38 15 3 1.83
atlanta-ip 68(9398) 118.68 934(11) 70.32 454 156.01 227 3 75.52
gesa2-o 0(0) 176.23 1(0) 26.59 33 36205441.29 1 2 40.44
gesa2 1(0) 49.23 1(0) 56.35 33 28181419.78 0 2 9.32
manna81 0(6) 1.64 0(0) 2.17 52 -12940 2 2 1.70
msc98-ip 16(949) 52.20 19(22) 55.89 61 30502274.00 26 1 53.75
mzzv11 435(116) 25.12 484(7) 36.71 540 -17898 127 3 17.59
mzzv42z 13(147) 37.99 12(15) 30.90 25 -14502 49 1 29.39
noswot 0(0) 61.90 0(0) 23.81 13 -41 1 2 0
roll3000 65(1) 210.68 11(1) 43.57 793 36109.80 17 3 180.12
rout 1(0) 52.56 1(0) 24.08 117 1652.55 0 1 53.31
timtab1 1(0) 41.35 3(0) 83.22 216 1400493.99 1 2 83.13
timtab2 6(0) 91.96 7(0) 61.62 1222 1982037.99 2 2 80.75
?: Unknown value

Table 4: Comparison with objective FP
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of RAM. According to the Standard Performance Evaluation Corporation (http://www.spec.org/) the ratio of the
performance of our machine (considering specfp2000 and specint2000) and that used in [13] is about 1.5. Therefore
the CPU times in Table 3 for ACFM are those of [13] divided by 1.5.

As stated in Subsection 2.2, as a consequence of computing one analytic center per iteration, ACFM can be
computationally expensive, and this is the most important difference from a practical point of view between ACFM
and AC-FP. Indeed, as it can be observed in Table 3, ACFM was only tested in [13] on nine of the smaller MIPLIB
instances, while we applied AC-FP to 54 (some of them much larger) instances. For example, for instance “rout”
ACFM needed 101 seconds and got a solution of 1111.88 (gap of 3.18%), while AC-FP needed one second for an
objective of 1337.27 (gap of 24.08%); but in other cases AC-FP outperformed ACFM both in time and objective, as
in instance “misc07” where ACFM required nine seconds for anobjective of 4795 (gap 70.64%), while AC-FP took
two seconds for an objective of 3410 (gap 21.34%).

Although from Table 4, in general it can be concluded that AC-FP is inferior to the objective FP, there are some
notable exceptions. For instance, for the 13 instances withboth binary and general integer variables, AC-FP (either
with PCx or CPLEX) obtained a solution with a lower gap than the objective FP in eight of the 13 instances; in some
cases more efficiently and even being able to find a solution when the objective FP failed (i.e., it required stage 3),
as for instances “roll3000” and “atlanta-ip” (in this latter case, however, at the expense of a very large CPU time).
On the other hand, for problems with only binary variables AC-FP obtained solutions with a lower gap in very few
instances. A possible explanation of this different behaviour in problems with and without general integer variables
is that, for a binary problem, the only feasible integer points “close” to the segmentx(γ) are{0,1}n, which in addition
may be far from the center. For problems with general integervariables, the number of feasible integer solutions close
to the analytic center will be, in general, much larger. For some problems with only binary variables, AC-FP behaved
very poorly, as for “mas74” and “mas76” (it stopped at stage 0in those cases). However, in other instances it was
much more efficient obtaining the same gap that the objective FP, as for “ds”. Note that for “ds” AC-FP with CPLEX
obtained the feasible solution in one second at stage 0 (the other two variants failed, requiring stage 3). However,
in that case CPLEX did not really compute the analytic center: it solved minx{0 : x ∈ P} heuristically, instead of
applying the barrier algorithm, as required. It thus considered a segment between two feasible solutions, none of them
being the analytic center ofP. Therefore, the idea of using a segment of feasible points isnot restricted to the case
where one of the endpoints is the analytic center, and it can be extended to more general situations.

4. Conclusions

The three approaches (FP, ACFM and AC-FP) have their own benefits and disadvantages. FP is likely the fastest
approach, and in general it provides good (if not the best) solutions in most instances; however it does not exploit the
concept of analytic center, which may be beneficial in some instances. ACFM seems to provide better points, but it
is computationally expensive and it was only tested on smallinstances. AC-FP is not computationally as expensive
as ACFM (it only needs to compute one analytic center), and insome MILP instances outperforms FP (either in time
or quality of the solution); however, for binary problems AC-FP seems not to be competitive against FP (the analytic
center seems not to be helpful when we optimize within the unit cube).
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