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Abstract

The feasibility pump (FP) has proved to be a successful sigufor finding feasible solutions of mixed integer
linear problems. Briefly, FP alternates between two seqgent points: one of feasible solutions for the relaxed
problem, and another of integer points. This short papemela FP, such that the integer point is obtained by rounding
a point on the (feasible) segment between the computecbfegsiint and the analytic center for the relaxed linear
problem.

Key words: Analytic Center, Interior-point Methods, Mixed-integeinear Programming, Feasibility Problem,
Primal Heuristics

1. Introduction
The problem of finding a feasible solution of a generic mixaeger linear problem (MILP) of the form
min c'x
S. tO AX: b (1)

x>0
Xj integer VjelI,

where Ae R™" b e R"ce R"andZ ¢ N = {1,...,n}, is a NP-hard problem. In [5, 7] the authors proposed a
new heuristic approach to compute MILP solutions, nameddasibility pump(FP). This heuristic turned out to be
successful in finding feasible solutions even for some hdtd™Nhstances. A slight modification of FP was suggested
in [1], named theobjective feasibility pumpn order to improve the quality of the solutions in termstoé bbjective
value. The main dierence between the two versions is that the objective F@itrast to the original version, takes
the objective function of the MILP into account during theeution of the algorithm. FP alternates between feasible
(for the linear relaxation of MILP) and integer points, hylly converging to a feasible integer solution. The intege
point is obtained by applying some rounding procedure tofélasible solution. This paper suggests an extension
of FP where all the points in a feasible segment are candidatbe rounded. The end points of this segment are
the feasible point of the standard or objective FP and soitegian point of the polytope of the relaxed problem,
the analytic center being the best candidate (our approdthewvnamed analytic center FP, or AC-FP). When the
end point of the segment in the boundary of the polytope isidened for rounding, we obtain the standard FP
algorithm. The motivation of this approach is that roundingoint of the segment closer to the analytic center may
increase the chances of obtaining an integer point in sostarines, thus reducing the number of FP iterations. The
computational results with AC-FP show that, for some instantaking a point in the interior of the feasible segment
may be more #ective than the standard end point of the objective FP. Anteeersion of FP [8] introduced a new
improved rounding scheme based on constraint propagaftthough in this work we considered as base code a
freely available implementation of the objective FP, ACdeRild also be used with the new rounding scheme of [8].
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1. initialize t := 0 andx* := argmir{c" x: Ax= b, x> 0}
2. if x; is integerthen returnf*) end if

3. %:=[x] (rounding ofx")

4. whiletime < TimeLimit do

5. X 1= argmina (x, %) : Ax=b, x> 0}
6.  if x; isintegerthen returnf’) end if
7. if3jel:[x]# X then

8. %:=[x]

9. edse

10. restart

11. end if

12, t=t+1

13. end while

14. return(FP failed)

Figure 1: The feasibility pump heuristic (original version)

Interior-point methods have been applied in the past indraand-bound frameworks for MILP and mixed integer
nonlinear problems (MINLP) [3, 4, 11, 12]. However, as famasknow, the only previous attempt to apply them
to a primal heuristic was [13]. (We were warned about theterise of this work—when it was a manuscript under
review—by an anonymous reviewer. That and our approach weependently developed, although they share the
idea of using the analytic center for obtaining MILP feasibblutions.) Although AC-FP and the approach of [13]
(named analytic center feasibility method (ACFM)) have $hene motivation (using the analytic center for getting
MILP feasible solutions), both approaches are signifigaditferent, as shown at the end of Subsection 2.2. Briefly,
(i) AC-FP relies on FP, while ACFM is based on an analytic eentitting plane method; (ii) AC-FP only computes
one analytic center, while ACFM computes one per iteraffiti;as a consequence of the previous point, ACFM can
be computationally expensive, while AC-FP is almostfasient as FP.

The paper is organized as follows. The remainder of Sectioeviews the original FP version of [5, 7], the
modified objective FP of [1], and the ACFM of [13]. Section 2roduces AC-FP, showing it is an extension of FP,
and comparing it with ACFM. Finally, Section 3 reports corgiional results on a subset of MILP instances from
MIPLIB 2003 [2], comparing the objective FP, ACFM and AC-FP.

1.1. The original feasibility pump
The FP heuristic starts by solving the linear programmirig)(telaxation of (1)

min{c'x : Ax=b, x> 0}, )
X

and its solutionx® is rounded to an integer point Which may be infeasible for (2). The roundixgfa givenx*,
denoted ax = [X'], is obtained by setting;™= [x’j‘] if jeZandXj= X: otherwise, where.] represents scalar
rounding to the nearest integer.Xis’infeasible, FP finds the closeste P, where

P={xeR" : Ax=Dhb,x> 0}, (3)

by solving the following LP
X" =argmina (x,X) : Ax=b, x> 0}, (4)

A (%, X) being defined (using thie; norm) as

A OGR) = DI - Kl 5)

jer

Notice that continuous variables, j ¢ 7, do not play any role. Ih (x*,%X) = 0 thenx’j‘(=>~<j) is integer for allj € 1,
sox* is a feasible solution for (1). If not, FP finds a new integeinp& from x* by rounding. The pair of points(X*)
with X integer andk* € P are iteratively updated at each FP iteration with the ainedficing as much as possible the
distancea (x*, X). An outline of the FP algorithm is showed in Figure 1. To aubiat the procedure gets stuck at the
same sequence of integer and feasible, there is a restagtdun@ when the previous integer paxis Fevisited (lines
7-11 of algorithm of Figure 1). In a restart, a random pewdtidn step is performed.
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The FP implementation has three stag8sage lis performed just on the binary variables by relaxing the in-
tegrality conditions on the general integer variablesstage 2FP takes all integer variables into account. The FP
algorithm exits stage 1 and goes to stage 2 when either (agsébfe point with respect to only the binary variables
has been found; (b) the minimum(x*, X) was not updated during a certain number of iterations; Jath@ maximum
number of iterations was reached. The poiithat produced the smallest (X, X) is stored and passed to stage 2 as
the initial X point. When FP turns out to be unable to find a feasible solutitinin the provided time limit, the default
procedure of the underlying MILP solver (CPLEX 12 [10] inghvork) is started; this is nametiage 3

1.2. The modified objective feasibility pump

According to [1], although the original FP heuristic of [5, fas proved to be a very successful heuristic for
finding feasible solutions of mixed integer programs, thality of their solutions in terms of objective value tends
to be poor. In the original FP algorithm of [5, 7] the objeetifiunction of (1) is only used at the beginning of the
procedure. The purpose of the objective FP [1] is, insteaidisifintly discarding the objective function of (1), to
consider a convex combination of it and(x, X), reducing gradually the influence of the objective terme Tope is
that FP still converges to a feasible solution but it coneaaes the search on the region of high-quality points. The
modified objective function, (X, X) is defined as

Ne (X R):=(1-a) A (XX + Q%CTX, a €[0,1], (6)
where|| . || is the Euclidean norm of a vector, andis the objective function vector of (x, X) (i.e., at stage 1 is the
number of binary variables, and at stage 2 is the number efant(both general integer and binary) variables). At
each FP iteratior is geometrically decreased with a fixed fagtox 1, i.e.,at11 = par andag € [0, 1]. Notice that
the original FP algorithm is obtained using = 0. The objective FP algorithm is basically the same as ttgirai
FP algorithm of Figure 1, replacing (x, X) by A,, (X*,X) at line 5, performing at the beginning the initializatioh o
ag, and adding at the end of the loep 1 = ¢a;.

1.3. The analytic center feasibility method (ACFM)

ACFM [13] is a three-phase procedure that mainly relies eratfialytic center cutting plane method. In phase-I it
computes (i) the analytic centgiof the bounded polyhedron

Pni{x:c'x<znC, (7)

zbeing an upper bound on the objective function @ralset of valid cuts (initially empty), and (i) the minimizef,
and maximizerx,,, of the objective functiore” x subject tox € P. Actually, the formulation in [13] of the problem
for computing the analytic center isfiirent from the above one, since it considers only inegaalitand it needs
a reformulation of equality constraints; our approachaitied in Section 2 below, directly works with the original
formulation of the problem, as it can deal with equality desised problems. Scanning the segments . and

X Xnax » Phase-I tries to obtain the closest integer point to théyéinaenter by rounding the integer components of
different segment points—Iet us namsduch a rounded point—and adjusting the remaining continaoogponents
by solving

mxin{ch D AX=b,x>0,x; =% j€ T} (8)

If (8) is feasible then an integer feasible solution is aftdi. Whether this problem is feasible or not, phase-II is
started. If phase-I found a feasible integer point, the uppendz on the objective is updated and we go to phase-|
again, to recompute the new analytic centeffédent from previous iteration, sinegthus (7), changed). If no feasible
integer point was found at phase-I, then additional comgiécuts) are added ©to move the analytic center towards
the interior of the integer feasible region, and phase-¢started again (computing a new analytic center for the new
polyhedron (7)). The procedure iterates Phase-l and Rhas&t some stopping criteria is satisfied (iteration It

20 iterations in [13]—, or quality of the solution). If no felake solution is found the procedure switches to a phase-Il|
which is similar to the stage 3 of FP.



2. Theanalytic center feasibility pump (AC-FP)

2.1. The analytic center

Given the LP relaxation (2), its analytic center is definedhaspointx € P that minimizes theprimal potential
function- Y, Inx;, i.e.,
X = arg min - YiLiInx
s.to Ax=b ©)
x> 0.

Note that the analytic center is well defined onlyPifs bounded. Note also that constraints O could be avoided,
since the domain of In are the positive numbers. Problems(8)linearly constrained strictly convex optimization
problem. It is easily seen that the arg mil,[, In X is equivalent to the argmdX;’, x. Therefore, the analytic
center provides the point that maximizes the distance thyiperplaness = 0,i = 1,...,n, and it is thus expected
to be well centered in the interior of the polytope We note that the analytic center is not a topological priypefr
a polytope, and it depends on how the polytope is represeiitet is, two diferent sets of linear inequaliti€sand
P’ defining the same polytope may providédient analytic centers. Other centers, such as the cengeavfy, are
not dfected by diferent formulations of the same polyhedron (but they are caatipnally more expensive). In this
sense, redundant inequalities may change the locatioreddrihlytic center (i.e., if formulatioR’ is obtained from
formulation P by adding redundant constraints, it will provide delient analytic center). Additional details can be
found in [14].

The analytic center may be computed by solving the KKT camialit of (9)

Ax = b

Aly+s = 0
xs = 1 i=1...,n (10)

x,99 > 0,

y € R™ands € R" being the Lagrange multipliers éfx = b andx > 0 respectively. Alternatively, and in order to use
an available highly #icient implementation, the analytic center was computetiswork by applying a primal-dual
path-following interior-point algorithm to the barriergislem of (2), after removing the objective function terne.(i.
settingc = 0):
mxin —u Yt Inx
s.to Ax=bh (11)
x>0,

wherey is a positive parameter (the parameter of the barrier) #raitd to zero. The arc of solutions of (&)Ju) is
named the primal central path. The central path convergéetanalytic center of the optimal set. Whes 0 (asin
(12)) the central path converges to the analytic centerefahsible seP [14].

2.2. Using the analytic center in the feasibility pump hstici

Once the analytic center has been computed, it can be usedhery infinitely) increase the number of feasible
points candidates to be rounded. Instead of rounding, & ERdteration, the feasible point € P, points on the
segment

X(y) =yx+(1-y)X" ye[0,1] (12)

will be considered. Note that the segment is feasible, siris@ convex combination of two feasible points.

AC-FP first considers atage O(which is later applied at each FP iteration) where sevgpdl points are tested,
fromy = 0toy = 1 (i.e, fromx* to x). Eachx(y) is rounded tox(y). If X(y) is feasible, then a feasible integer
solution was found and the procedure is stopped at the sta@#h@rwise the algorithm proceeds with the next stage
of FP, considering two dlierent options:

a) using the poink(0) = [x*] (optiony = 0);



1. initialize t := 0, ag € [0, 1], ¢ € [0, 1], andx* := argmir{c x : Ax= b, x > 0}
2. compute analytic center:= argminf- 3, Inx; : Ax=b, x> 0}
3. { Beginning of stage}0

4. for y € [0,1] do

5. X(y)=yx+(L-yx

6. X(7) :=[x(»)] (rounding ofx(y))

7. if X(y) is feasiblethen returnf(y)) end if

8. end for

9. { End of stage P

10. selectxfrom the setX(y)}

11. whiletime < TimeLimit do

12, x :=argminfae (X X) : Ax=b,x> 0}

13.  for y €[0,1] do

14. X(y) == yX+ (1= y)Xx*

15. K(y) := [X(y)] (rounding ofx(y))

16. if X(y) is feasiblethen return(d(y)) end if
17.  endfor

18.  selectxfrom the sefX(y)}
19. if X7 # X; then

20. %= K
21. ese

22. restart
23. end if

24, o= g
25, ti=t+1
26. end while

27. return(FP failed)

Figure 2: The AC-FP heuristic

b) using the poink(y) that minimizeg|X(y) — X(y)ll» (optionL.,).

If the first option is applied at each FP iteration, and noifdas(y) for y > 0 is found, AC-FP behaves as the standard
FP algorithm. In the second option, if no feasik(g)is found, the procedure selects tk(¢) which is closer toX(y)]
according to thé.., norm. The aim is to select the point with more chances to bedwsth integer and feasible, in an
attempt to reduce the number of FP iterations. This secotidroprovided better results in general and it was used
in the computational results of Section 3. It is worth to nibiat if the rounding of severady) points is feasible, the
procedure selects the one with the lowgste., the one closest t0 (instead of the one closest to the analytic center
X), since this point was computed considering the objectinetion (fore > 0). An outline of the algorithm is shown

in Figure 2.

From Figure 2 it is clear that AC-FP only computes one amabgiter (that oP) at line 2 of the algorithm, unlike
ACFM [13] which computes one analytic center (for a modifietl/jpedron) at each iteration. This is computationally
the most significant dierence between AC-FP and ACFM: since the computation ofaoaknters can be expensive,
AC-FP is more #icient than ACFM. It is also seen that AC-FP and ACFM are coteptalifferent approaches: the
former is an extension of FP, the latter is based on compuativadytic centers of modified polyhedrons obtained by
adding cutting planes tB.

Both procedures, AC-FP and ACFM, consider the feasible sagimetween the analytic centeand a solution
of the relaxed problemx{ in AC-FP,x" . andx;,.,in ACFM) for rounding purposes. It is worth to note that in A®-
the analytic center is the same for all the iterations gnid different at each iteration, whereas the opposite holds for
ACFM: it computes a dferent analytic center at each iteration whenggs andx;,,, are uniquely determined at the
beginning. In addition, AC-FP and ACFM use the rounded p&{p} in a different manner. AC-FP checksxfy) is
feasible, and stops the procedure once the first feagfp)as found (which is indeed the criterion considered by FP).
On the other hand, ACFM, which may obtain a rounded feasibietat its phase-I, keeps on iterating with phase-|
and phase-II until some stopping criteria (i.e., time limitquality of the solution) is satisfied. In addition, after
obtaining the rounded point, ACFM solves (8) for adjustihg temaining continuous components (this is not done
by AC-FP, which relies on the overall FP procedure for peniog a similar adjustment at line 12 of the algorithm of
Figure 2). Since AC-FP may obtain a feasible point at stageskdo the analytic centerdnd far from the feasible
point x* € P, this point may provide a very large objective function \eali\n extension would be to save this point
and keep on looking for new feasible points of higher qudkity done by ACFM).

As stated in Subsection 1.3, ACFM computes two linear féagibintsx’ .- andx;,,,, the minimizer and maxi-
mizer ofc x within P, and it considers the two segments that join the analytitecesf the current ACFM iteration
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with those two points. On the other hand, AC-FP only considere segment betweerandx*. Actually, we ini-
tially also considered two segments: the current ®ixe, and a second one joiningwith the farthest feasible point
from x in the directionx — x* (name itx;). Note that this point is easily computed &s = x + 5*(X - x*), where
B = min{ﬁ S (X=x); < 0,i = 1,...,n}. The computational benefit of using instead ofx;,,, is that the solution
of an extra LP problem is avoided. However, in practice, gisire second segmem was not useful, and it was
discarded in the final AC-FP implementation.

3. Computational results

AC-FP was implemented using the base code of the objectiveddty available fronhttp://www.or.deis.
unibo.it/research_pages/ORcodes/FP-gen.html. The base FP implementation was extended for computing
the analytic center using threefldirent interior-point solvers, CPLEX [10], GLPK [9] and PG¥.[ The new code
is available fromhttp://www-eio.upc.es/~dbaena/sw/2010/fp_analytic_center.tgz. CPLEX integrates
better with the rest of the FP code, which also relies on CPL&X it also turned out to be significantly more
efficient than GLPK and PCx. On the other hand, even deactivatirte preprocessing options and removing the
crossover postprocess, CPLEX was not always able to prdtigle@nalytic center oP because of its aggressive
reduced preprocessing (which can not be deactivated as wetaled by CPLEX developers). For instance, for
P ={x: X, X% = n,x > 0}, the barrier option of CPLEX did not apply the interior-ppaigorithm, not providing
an interior solution (i.e., it providesi = n, X; = 0, ] # i), whereas both GLPK and PCx reported the right analytic
centerx, = 1,i = 1,...,n. Of the other two solvers, PCx turned out to be much mdieient than GLPK. Indeed,
PCx may handle upper bounds implicitly (i.e.<0x < 1 from linear relaxations ok € {0, 1}) in its interior-point
implementation, whereas GLPK transforms the problem tcsthedard form (replacing < 1 by x+ s= 1,5 > 0),
significantly increasing the size of the Newton’s systemdatblved at each interior-point iteration.

The AC-FP implementation was applied to a subset of MIPLIBRhstances, whose dimensions are shown in
Table 1. Columns “rows”, “cols”, “nnz”, “int”, “bin” and “ce” provide respectively the number of constraints,
variables, nonzeros, general integer variables, binanghi@s, and continuous variables of the instances. Column
“objective” shows the optimal objective function. Unknoaptimal objectives are marked with a “?”.

Table 2 shows the results obtained with AC-FP using PCx and=®P12.1. For the two AC-FP variants, Table 2
reports the number of FP iterations (columns “niter”), th@eative value of the feasible point found (“fobj”), the gap
between the feasible and the optimal solution (“gap%”), tied=P stage where the feasible point was found (“stage”).
Columns “tFP(tAC)” report separately the CPU time spenttages 1 to 3 (“tFP”) and the time for computing the
analytic center before stage 0 (in brackets, “tAC"); thalttime is the sum of “tFP” and “tAC". Columns “AC value”
show the value of the original objective function evaluat¢dhe analytic center. Berences are due toftérent
computed analytic centers because both solvers apply &tigat preprocessing strategies.

Table 3 compares AC-FP with ACFM using the subset of nine NBR2D03 instances solved in [13]. For ACFM,
Table 3 reports the number of ACFM iterations needed to réaelieasible solution (“niter”), the feasible solution
(column “fobj”), and the gap between the solution found byFACand the optimal solution (column “gap%”).
Column “tt(tAC)" reports the total CPU time of the ACFM algghim, including the amount of CPU time in seconds
spent on calculating the analytic centers (in bracketsC")AThe best result (i.e., execution with the lowest gap) is
highlighted in boldface.

Table 4 compares AC-FP with the objective FP. For the ohje&P we report the number of FP iterations (column
“niter”), the objective value of feasible point found (“f3jy the gap between the feasible and the optimal solution
(“gap%”), the FP stage where the feasible point was foungts’) and the total CPU time (column “tt”). The best
result (i.e. that with the lowest gap if obtained in stage8)Pis highlighted in boldface. Note that for instance
“swath” objective FP is considered the best approach, thahg gap is greater than for AC-FP, since the solution
with objective FP was found at stage 2, while AC-FP failed éameteded stage 3. This same argument was applied
for instance “dano3mip”, of unknown gap. For instance “lAC-FP with PCx provided a better objective function,
though the gap is also unknown. If two approaches providsdinge gap, but one is significantly mof@a@ent, this
is marked as the best result (as in instance “ds”).

The default FP settings were used as suggested in [1]. Adlware carried on a Dell PowerEdge 6950 server with
four dual core AMD Opteron 8222 3.0 GHZ processors (withoyti@tation of parallelism capabilities) and 64 GB
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Instance rows cols nnz int bin con objective
10teams 230 2025 12150 0 1800 225 924
alclsl 3312 3648 10178 0 192 3456 11503.40
aflow30a 479 842 2091 0 421 421 1158
aflow40b 1442 2728 6783 0 1364 1364 1168
air04 823 8904 72965 0 8904 0 56137
air05 426 7195 52121 0 7195 0 26374
arkioo1 1048 1388 20439 96 415 877 7580810
atlanta-ip 21732 48738 257532 106 46667 1965 90.00
cap6000 2176 6000 48243 0 6000 0 -2451380
dano3mip 3202 13873 79655 0 552 13321 ?
danoint 664 521 3232 0 56 465 65.66
disctom 399 10000 30000 0 10000 0 -5000
ds 656 67732 1024059 0 67732 0 93.52
fast0507 507 63009 409349 0 63009 0 174
fiber 363 1298 2944 0 1254 44 405935
fixnet6 478 878 1756 0 378 500 3983
gesa2-0 1248 1224 3672 336 384 504 25779900
gesa2 1392 1224 5064 168 240 816 25779900
glass4 396 322 1815 0 302 20 1200010000
harp2 112 2993 5840 0 2993 0 -73899800
liu 2178 1156 10626 0 1089 67 ?
mannagl 6480 3321 12960 3303 18 0 -13164
marksharel 6 62 312 0 50 12 1
markshare2 7 74 434 0 60 14 1
mas74 13 151 1706 0 150 1 11801.20
mas76 12 151 1640 0 150 1 40005.10
misc07 212 260 8619 0 259 1 2810
mkc 3411 5325 17038 0 5323 2 -563.84
mod011 4480 10958 22254 0 96 10862 -54558500
modglob 291 422 968 0 98 324 20740500
msc98-ip 15850 21143 92918 53 20237 853 19839500
mzzvll 9499 10240 134603 251 9989 0 -21718
mzzva42z 10460 11717 151261 235 11482 0 -20540
net12 14021 14115 80384 0 1603 12512 214
noswot 182 128 735 25 75 28 -41
nsrand-ipx 735 6621 223261 0 6620 1 51200
nw04 36 87482 636666 0 87482 0 16862
opt1217 64 769 1542 0 768 1 -16
p2756 755 2756 8937 0 2756 0 3124
pkl 45 86 915 0 55 31 11
pp08aCUTS 246 240 839 0 64 176 7350
pp08a 136 240 480 0 64 176 7350
protfold 2112 1835 23491 0 1835 0 -31
qiu 1192 840 3432 0 48 792 -132.87
roli3000 2295 1166 29386 492 246 428 12890
rout 291 556 2431 15 300 241 1077.56
setlch 492 712 1412 0 240 472 54537.80
seymour 4944 1372 33549 0 1372 0 423
sp97ar 1761 14101 290968 0 14101 0 660706000
swath 884 6805 34965 0 6724 81 467.40
timtabl 171 397 829 94 64 239 764772
timtab2 294 675 1482 164 113 398 1096560
tr12-30 750 1080 2508 0 360 720 130596
vpm2 234 378 917 0 168 210 13.75

?: Unknown value

Table 1: Characteristics of the subset of MILP instancesfktiPLIB 2003



AC-FP with PCx AC-FP with CPLEX
Instance niter fobj tFP(tAC) stage gap% AC value| niter fobj tFP(tAC) stage gap% AC value|
10teams 179 1022 26(0) 3 10.59 1020 177 1056 25(0) 3 14.27 1020
alclsl 0 46756.40 0(0) 0 306.43 50396.8( 0 38193.60 0(0) 0 232 40504.70
aflow30a 171 3802 1(0) 2 228.13 5377.34 298 5578 2(0) 2 381.36 4714.70|
aflow40b 394 8300 12(0) 3 610.09 7234.03 54 7051 2(0) 1 503.25 6635.6|
air04 186 72098.00 1220(2) 3 28.43 79260.3 186 71223.99 1147(0) 3 26.87 79989.
air05 186 37907 162(1) 3 43.73 45309 190 35798 148(0) 3 35.73 45732.1Q
arkioo1 871 7729296.21 43(0) 3 1.96 7807100 1573 7763720.15 79(0) 3 241 782217
atlanta-ip 42 198.02 68(9398) 1 118.68 171.3: 397 154.01 934(11) 3 70.32 159.74
cap6000 0 -2442800 1(0) 0 0.35 -596562| 0 -2442800 1(0) 0 0.35 -109362
dano3mip 205 1000 1892(17) 3 ? 12849.20 252 1000 1947(4) 3 ? 995.15|
danoint 99 76 4(0) 1 15.50 434.456 230 85.50 9(0) 3 29.75 66.77
disctom 4 -5000 3(1) 1 0 -5000 4 -5000 4(0) 1 0 -5000
ds 198 5418.56 1945(10) 3 5633.77 1053.98 0 5418.56 1(2) 0 5633.77 5418.54
fast0507 39 11884 131(4) 1 6691.43 8254.52 0 275 2(1) 0 57.71 122425
fiber 41 6481510 0(0) 1 1496.68 19694201 15 3147830 0(0) 1 675.45 4560220(
fixnet6 18 38401 0(0) 1 863.91 60883.2Q 0 97271.70 0(0) 0 2341.58 101827
gesa2-o 20 71213100 0(0) 2 176.23 11691400 35 32635500 1(0) 2 26.59 16678400
gesa2 3 38472300 1(0) 2 49.23 12409500 47 40307000 1(0) 2 56.35 188208000
glass4 254 10500117800 2(0) 3 775 142889000000 224 5000046800 1(0) 3 316.67 886284000
harp2 178 -40631391 3(0) 3 45.02 -5075820( 59 -49759800 1(0) 1 32.67 -4626250Q
I 119 3036 4(5) 1 ? 921857| 121 5876 5(0) 1 ? 959.02
mannagl 0 -12948 0(6) 0 1.64 -7307.16! 0 -12878 0(0) 0 2.17 0
marksharel 65 603 0(0) 1 30100 30.48 0 7286 0(0) 0 364250 7286
markshare2 66 925 0(0) 1 46200 36.10 0 10512 0(0) 0 525550 10512
mas74 0 57195600000 0(0) 0 484618022.50 571956000000 O 50000000000 0(0) 0 423649728.01 10000000000p0
mas76 0 26804400000 0(0) 0 67000682.38 536000000000 0 50000000000 0(0) 0 124980840.41 10000000000p0
misc07 217 3935 3(0) 2 40.02 3601.66/ 219 3410 2(0) 2 21.34 4894.40,
mke 13 -276.96 1(0) 1 50.79 -253.58, 12 38.81 1(1) 1 106.69 -95.53]
mod011 23 -37482400 3(1) 1 31.30 -3143010 23 -35547800 3(0) 1 34.84 -3660000(
modglob 60 21809700 1(0) 1 5.16 27228600( 0 82243300 0(0) 0 296.53 14294900
msc98-ip 33 30196300 16(949) 1 52.20 2957100 29 30928000 19(22) 1 55.89 2954510
mzzvll 567 -16262 435(116) 3 25.12 -4264.41 561 -13744 484(7) 3 36.71 -4794.93
mzzv42z 23 -12736 13(147) 1 37.99 -3210.77 27 -14192 12(15) 1 30.90 -3825.7Q
netl2 25 337 10(86) 1 57.21 325.12 25 337 8(27) 1 57.21 337
noswot 34 -15 0(0) 2 61.90 -21.82 33 -31 0(0) 2 23.81 -15.67
nsrand-ipx 883 258080 367(2) 3 404.05 76198 694 203040 265(0) 3 296.56 802647
nwo4 2 18380 9(8) 1 9 50318.90 42 61640 120(2) 1 265.54 52460.9
opt1217 124 -12.11 0(0) 1 22.80 -8.23 0 0 0(0) 0 94.12 0
p2756 244 51338 7(0) 3 1542.85 139229 279 51338 7(0) 3 1542.85 164724
pkl 57 86 0(0) 1 625 34.13 0 731 0(0) 0 6000 731
pp08aCUTS 11 16390 0(0) 1 122.98 18715 0 21671.40 0(0) 0 194.82 23012.4Q
pp08a 15 15850 0(0) 1 115.63 21666.77 0 18439.30 0(0) 0 150.85 18778.7Q
protfold 307 -18.90 365(2) 3 37.81 -18.42|
qiu 41 868.57 1(0) 1 748.05 722.04) 0 3693.35 0(0) 0 2858.10 4188.61
rolI3000 818 40048.40 65(1) 3 210.68 44336.8 175 18507 11(1) 2 43.57 38004.1¢
rout 79 1644.41 1(0) 1 52.56 1455.68 74 1337.27 1(0) 1 24.08 1474.90
setlch 0 268719 0(0) 0 392.71 224714 0 216475 0(0) 0 296.92 262834
seymour 39 754 5(35) 1 78.07 728.54 0 588 0(0) 0 38.92 1345
sp97ar 63 1161990000 57(4) 1 75.87 827200000p 97 11702100000 88(1) 1 1671.15 184417000Q0
swath 795 34774.58 96(1) 3 7324.22 1470.1 795 34774.58 100(0) 3 7324.22 1470.14
timtabl 169 1081000 1(0) 2 41.35 147557 819 1401240.99 3(0) 3 83.22 41953
timtab2 972 2105005.99 6(0) 3 91.96 2052380 1072 1772242.99 7(0) 3 61.62 67185(
tr12-30 214 289227.99 7(0) 3 121.47 135861 221 285716 6(0) 3 118.78 75936.5
vpm2 11 29.50 0(0) 1 106.78 4848 27 2375 0(0) 1 67.8 14.08

?: Unknown value

Table 2: Computational results using AC-FP with PCx and CPLEX



AC-FP with PCx AC-FP with CPLEX ACFM

Instance tFP(tAC) gap% tFP(tAC) gap% niter fobj tt(tAC) gap%
mas74 0(0) 484618022.50 0(0) 423649728.01 7 15026.47 8.89(8.26)  434.75
mas76 0(0) 67000682.38 0(0) 124980840.41 1 44877.42 2.55(2.1) 12.18
misc07 3(0) 40.02 2(0) 2134 13 4795 9.28(8.71) 70.64
noswot 0(0) 61.90 0(0) 23.81 3 37 251(2.11) 9.76
pk1l 0(0) 625 0(0) 6000 1 28.99 0.75(0.72) 16355
pp08aCUTS 0(0) 122.98 0(0) 194.82 1 8458 2.81(225) 1507
pp08a 0(0) 115.63 0(0) 150.85 1 9048.56 2.07(15) 2311
rout 1(0) 52.56 1(0) 24.08 4 1111.88  101.95(100.58) 3.8
vpm2 0(0) 106.78 0(0) 67.8 6 15.5 28.43(27.31) 1273

Table 3: Comparison of AC-FP (PCx and CPLEX) with ACFM only fiee instances solved in [13]

AC-FP with PCx AC-FP with CPLEX objective FP
Instance tFP(tAC) gap% tFP(tAC) gap% niter fobj tt stage gap%
Problems with only binary variables
10teams 26(0) 10.59 25(0) 14.27 278 1014 19 3 9.73
alclsl 0(0) 306.43 0(0) 232 351 22714.68 8 2 97.45
aflow30a 1(0) 228.13 2(0) 381.36 41 2355 0 1 103.28
aflow40b 12(0) 610.09 2(0) 503.25 21 2329 1 1 99.32
airo4 1220(2) 28.43 1147(0) 26.87 45 58229 181 1 373
airos 162(1) 4373 148(0) 35.73 3 26930 2 1 211
cap6000 1(0) 0.35 1(0) 0.35 31 2442163 0 1 0.38
dano3mip 1892(17) ? 1947(4) ? 70 763.97 361 1 ?
danoint 4(0) 15.50 9(0) 29.75 96 74 3 1 12.50
disctom 3(1) 0 4(0) 0 3 -5000 3 1 0
ds 1945(10) 5633.77 12) 5633.77 446 5418.56 9495 3 5633.77|
fast0507 131(4) 6691.43 2(1) 57.71 8 184 51 1 571
fiber 0(0) 1496.68 0(0) 675.45 41 6481506.12 0 1 1496.68
fixnet6 0(0) 863.91 0(0) 2341.58 67 41304 0 1 936.77
glass4 2(0) 775 1(0) 316.67 374 12700154400 1 3 958.34
harp2 3(0) 45.02 1(0) 32.67 138 -60669440 3 1 17.90
liu 4(5) ? 5(0) ? 119 3286 1 1 ?
markshare1 0(0) 30100 0(0) 364250 65 725 0 1 36200
markshare2 0(0) 46200 0(0) 525550 65 963 0 1 48100
mas74 0(0) 484618022.50 0(0) 423649728.01 109 16534.04 0 1 40.10
mas76 0(0) 67000682.38 0(0) 124980840.41 106 46242.57 1 1 15.59
misc07 3(0) 40.02 2(0) 21.34 188 3690 1 1 3131
mke 1(0) 50.79 1(1) 106.69 13 -288.96 0 1 4867
mod011 3(1) 31.30 3(0) 34.84 12 -45633967.33 1 1 16.36
modglob 1(0) 516 0(0) 296.53 60 22995521.33 0 1 10.87
neti2 10(86) 57.21 8(27) 57.21 216 337 12 2 57.21
nsrand-ipx 367(2) 404.05 265(0) 296.56 132 211040 5 2 312.38
nwo4 9(8) 9 120(2) 265.54 10 17858 10 1 5091
opt1217 0(0) 22.80 0(0) 94.12 40 -16 0 1 0
p2756 7(0) 1542.85 7(0) 1542.85 377 51338 2 3 1542.85
pk1 0(0) 625 0(0) 6000 56 36 0 1 208.33
pp08aCUTS 0(0) 122.98 0(0) 194.82 10 8360 0 1 1374
ppo8a 0(0) 115.63 0(0) 150.85 11 12010 0 1 63.39
protfold 365(2) 37.81 286 -16 90 2 46.88
qiu 1(0) 748.05 0(0) 2858.10 9 160.76 0 1 21934
setlch 0(0) 392.71 0(0) 296.92 46 95845.5 0 1 75.74
seymour 5(35) 78.07 0(0) 38.92 7 471 3 1 11.32
sp97ar 57(4) 75.87 88(1) 1671.15 9 919778417.68 4 1 39.21
swath 96(1) 7324.22 100(0) 7324.22 395 35951.85 14 2 757556
tr12-30 7(0) 121.47 6(0) 118.78 25 164128 1 1 25.68
vpm2 0(0) 106.78 0(0) 67.8 12 18.25 0 1 3051
Problems with binary and general integer variables

arkiooL 43(0) 1.96 79(0) 241 803 7719381.38 15 3 183
atlanta-ip 68(9398) 118.68 934(11) 7032 454 156.01 227 3 75.52
gesa2-0 0(0) 176.23 1(0) 26.59 33 36205441.29 1 2 40.44
gesa2 1(0) 49.23 1(0) 56.35 33 28181419.78 0 2 9.32
mannag1 0(6) 164 0(0) 217 52 -12940 2 2 1.70
msc98-ip 16(949) 52.20 19(22) 55.89 61 30502274.00 26 1 53.75]
mzzvll 435(116) 25.12 484(7) 36.71 540 -17898 127 3 17.59
mzzva42z 13(147) 37.99 12(15) 30.90 25 -14502 49 1 29.39
noswot 0(0) 61.90 0(0) 23.81 13 -41 1 2 0
rolI3000 65(1) 210.68 11(1) 4357 793 36109.80 17 3 180.12
rout 1(0) 52.56 1(0) 24.08 117 1652.55 0 1 53.31
timtabl 1(0) 41.35 3(0) 83.22 216 1400493.99 1 2 83.13
timtab2 6(0) 91.96 7(0) 61.62 1222 1982037.99 2 2 80.75]

?: Unknown value

Table 4: Comparison with objective FP



of RAM. According to the Standard Performance Evaluationp@eation gttp://www.spec.org/) the ratio of the
performance of our machine (considering specfp2000 ancir#g2000) and that used in [13] is about 1.5. Therefore
the CPU times in Table 3 for ACFM are those of [13] divided by.1.

As stated in Subsection 2.2, as a consequence of computm@uualytic center per iteration, ACFM can be
computationally expensive, and this is the most importafiieicbnce from a practical point of view between ACFM
and AC-FP. Indeed, as it can be observed in Table 3, ACFM whstested in [13] on nine of the smaller MIPLIB
instances, while we applied AC-FP to 54 (some of them mudelinstances. For example, for instance “rout”
ACFM needed 101 seconds and got a solution of 1111.88 (gapl8%d, while AC-FP needed one second for an
objective of 1337.27 (gap of 24.08%); but in other cases ACaktperformed ACFM both in time and objective, as
in instance “misc07” where ACFM required nine seconds foohjective of 4795 (gap 70.64%), while AC-FP took
two seconds for an objective of 3410 (gap 21.34%).

Although from Table 4, in general it can be concluded thatAZis inferior to the objective FP, there are some
notable exceptions. For instance, for the 13 instanceshath binary and general integer variables, AC-FP (either
with PCx or CPLEX) obtained a solution with a lower gap tham dibjective FP in eight of the 13 instances; in some
cases morefciently and even being able to find a solution when the ohjedtP failed (i.e., it required stage 3),
as for instances “roll3000” and “atlanta-ip” (in this lattease, however, at the expense of a very large CPU time).
On the other hand, for problems with only binary variables-A obtained solutions with a lower gap in very few
instances. A possible explanation of thigfelient behaviour in problems with and without general integeiables
is that, for a binary problem, the only feasible integer f®iiclose” to the segment(y) are{0, 1}", which in addition
may be far from the center. For problems with general integgables, the number of feasible integer solutions close
to the analytic center will be, in general, much larger. Fone problems with only binary variables, AC-FP behaved
very poorly, as for “mas74” and “mas76” (it stopped at stage those cases). However, in other instances it was
much more #icient obtaining the same gap that the objective FP, as fér Miste that for “ds” AC-FP with CPLEX
obtained the feasible solution in one second at stage O {ttex two variants failed, requiring stage 3). However,
in that case CPLEX did not really compute the analytic cenitesolved min{0 : x € P} heuristically, instead of
applying the barrier algorithm, as required. It thus coesed a segment between two feasible solutions, none of them
being the analytic center &. Therefore, the idea of using a segment of feasible poimstisestricted to the case
where one of the endpoints is the analytic center, and it eaaxtended to more general situations.

4. Conclusions

The three approaches (FP, ACFM and AC-FP) have their ownfiteaead disadvantages. FP is likely the fastest
approach, and in general it provides good (if not the bedtlftisns in most instances; however it does not exploit the
concept of analytic center, which may be beneficial in sorstamces. ACFM seems to provide better points, but it
is computationally expensive and it was only tested on simsiances. AC-FP is not computationally as expensive
as ACFM (it only needs to compute one analytic center), arsbime MILP instances outperforms FP (either in time
or quality of the solution); however, for binary problems A® seems not to be competitive against FP (the analytic
center seems not to be helpful when we optimize within theaube).
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