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Abstract

The computational time required by interior-point methods is often domi-
nated by the solution of linear systems of equations. An efficient specialized
interior-point algorithm for primal block-angular problems has been used to
solve these systems by combining Cholesky factorizations for the block con-
straints and a conjugate gradient based on a power series preconditioner for
the linking constraints. In some problems this power series preconditioner
resulted to be inefficient on the last interior-point iterations, when the sys-
tems became ill-conditioned. In this work this approach is combined with
a splitting preconditioner based on LU factorization, which works well for
the last interior-point iterations. Computational results are provided for
three classes of problems: multicommodity flows (oriented and nonoriented),
minimum-distance controlled tabular adjustment for statistical data protec-
tion, and the minimum congestion problem. The results show that, in most
cases, the hybrid preconditioner improves the performance and robustness of
the interior-point solver. In particular, for some block-angular problems the
solution time is reduced by a factor of 10.
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Preconditioned conjugate gradient, Structured problems.

1. Introduction

Many important large-scale optimization problems exhibit a block-angular
structure. Applications are found in fields such as control and planning, net-
work flows, stochastic linear programming, and statistical data protection.
Several interior-point methods have been devised to solve these structured
problems [5, 7, 12, 16, 25]. These specialized algorithms exploit the particular
structure of the constraints matrix, and some were implemented for paral-
lel environments [5, 25]. The efficiency of interior-point methods critically
depends of the linear system solver used at each iteration to compute the
Newton direction. Such systems are often written in a symmetric indefinite
form, known as the augmented system. They can also be reduced to a smaller
positive definite form, the normal equations. Techniques based on direct and
iterative solvers can be applied for their solution. For some classes of large
scale problems the use of direct methods becomes prohibitive due to stor-
age and time limitations, whereas iterative linear solvers with appropriate
preconditioners may be more efficient.

The efficient interior-point algorithm for primal block-angular problems
of [15] solved the normal equations in two stages: Cholesky factorizations for
the block constraints and a Preconditioned Conjugate Gradient (PCG) for
the linking constraints. The purpose of PCG is to avoid solving the system
associated to the complicating linking constraints by Cholesky factorizations,
in an attempt to make the problem block separable. The preconditioner is
obtained by truncating an infinite power series that approximates the inverse
of the system to be solved. For some difficult primal block-angular problems
this approach outperformed state-of-the-art commercial solvers [16]. How-
ever, in some problems, systems become very ill-conditioned as the optimal
solution is reached, and then PCG provides slow and inaccurate solutions. It
was shown [16] that the efficiency of this approach depends on the spectral
radius —in [0, 1)— of a certain matrix which appears in the definition of
the preconditioner (which is itself related to the Schur complement of the
normal equations). Spectral radius close to 1 degrades the performance of
the preconditioner. When PCG gives inaccurate solutions, the code imple-
mented in [15] switches to the solution of the normal equations by a Cholesky
factorization, which may be prohibitive for large-scale problems.
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In order to yield a reliable and efficient interior-point method based just
on iterative solvers we introduce a hybrid and adaptive scheme for solving
the normal equations. On the first interior-point iterations the normal equa-
tions are solved using the Cholesky-PCG approach of [15] outlined above.
When the system associated to linking constraints becomes ill-conditioned,
the normal equations are solved by a PCG using the splitting preconditioner
of [29, 30], instead of switching to a direct solver. The splitting preconditioner
is a generalization of the tree preconditioner of [33] for large-scale minimum
cost network flow problems. Based on a LU factorization, the splitting pre-
conditioner was specially tailored for the last interior-point iterations, when
the systems are ill-conditioned. We developed a new and efficient criterion
to identify when (i.e., at which interior-point iteration) to switch between
iterative solvers. This criterion is based on both the Ritz values of the ma-
trix that appears in the definition of the power series preconditioner, and
the number of PCG iterations needed at each interior-point iteration. The
Ritz values are approximations of the eigenvalues of a matrix; they will be
used to estimate the spectral radius, which measures the efficiency of the
power series preconditioner. An implementation of this new approach, com-
bining the power series and the splitting preconditioners, was applied to
three classes of primal block-angular instances [15]: multicommodity flows
(oriented and nonoriented), minimum-distance controlled tabular adjustment
for statistical data protection, and the minimum congestion problem. As it
will be shown, the hybrid approach was more efficient than the power series
preconditioner in many block-angular problems. Other hybrid approaches
combining interior-point and combinatorial algorithms have been used for
some type of networks flows problems [21].

This paper is organized as follows. In Section 2 we recall the basic ideas
of interior-point methods for primal block-angular problems using the power
series preconditioner. The new hybrid approach is described in Section 3,
together with an outline of the splitting preconditioner, and a description of
the switching criterion between preconditioners. Numerical experiments are
shown in Section 4. The effect of different regularization parameters for the
splitting preconditioner are also discussed in Section 4. Finally, in Section 5
the conclusions are drawn and further developments are suggested.
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2. The interior-point algorithm for primal block-angular problems

One of the most efficient interior-point methods for some classes of block-
angular problems was initially developed for multicommodity flows [12] and
later extended for general primal block-angular problems [15]. This method
considers the following general formulation of a block-angular problem:

min
k

∑

i=o

(ciT xi + xiT Qix
i)

subject to
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0 ≤ xi ≤ ui i = 1, . . . , k.

(1)

Matrices Ni ∈ R
mi×ni and Li ∈ R

l×ni , i = 1, . . . , k, define, respectively,
the block and linking constraints, k being the number of blocks. Vectors
xi ∈ R

ni , i = 1, . . . , k, are the variables for each block. x0 ∈ R
l are the slacks

of the linking constraints. bi ∈ R
mi , i = 1, . . . , k is the right-hand-side vector

for each block of constraints, whereas b0 ∈ R
l is for the linking constraints.

The upper bounds for each group of variables are defined by ui, i = 1, . . . , k.
This formulation considers the general form of linking constraints b0 − u0 ≤
∑k

i=1 Lix
i ≤ b0. ci ∈ R

ni and Qi ∈ R
ni×ni , i = 1, . . . , k, are the linear

and quadratic costs for each group of variables. We also consider linear
and quadratic costs c0 ∈ R

l and Q0 ∈ R
l×l for the slacks. We restrict

our considerations to the separable case where Qi, i = 0, ..., k, are diagonal
positive semidefinite matrices.

Problem (1) can be written in standard form as

min cT x + 1
2
xT Qx

subject to Ax = b
0 ≤ x ≤ u,

(2)

where A ∈ R
m×n (m = l +

∑k

i=1 mi, n = l +
∑k

i=1 ni and m ≤ n), Q ∈ R
n×n,

b ∈ R
m and c, x, u ∈ R

n. Replacing inequalities in (2) by a logarithmic
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barrier with parameter µ > 0, we obtain the logarithmic barrier problem

min B(x, µ) , cT x + 1
2
xT Qx − µ

n
∑

i=1

ln(xi) − µ
n

∑

i=1

ln(ui − xi)

subject to Ax = b.

(3)

The first order KKT optimality conditions for the logarithmic barrier
problem —or equivalently, the perturbed KKT-µ conditions for (2)— are

Ax = b,
AT y − Qx + z − w = c,

XZe = µe,
(U − X)We = µe,

(z, w) > 0, u > x > 0,

(4)

where y ∈ R
m, z ∈ R

n, w ∈ R
n are, respectively, the Lagrange multipliers

of constraints Ax = b, x ≥ 0 and x ≤ u, X,Z, U,W ∈ R
n×n are diagonal

matrices made up of vectors x, z, u, w, and e ∈ R
n is a vector of 1’s. The

first two sets of equations of (4) impose, respectively, primal and dual feasi-
bility, while the remaining two impose perturbed complementarity. The set
of primal-dual solutions C = {(xµ, yµ, zµ, wµ), µ > 0} of (4) is known as the
central path. Primal-dual path-following interior-point algorithms approxi-
mately follow the central path by applying Newton’s method to the nonlinear
system of equations (4), reducing the barrier parameter µ at each iteration.
When µ → 0 these solutions converge to the optimal solution of the original
problem. Full details can be found in [37]. The Newton direction is obtained
by solving a linear system in variables ∆x, ∆y, ∆z and ∆w. In practice,
variables ∆z and ∆w are eliminated and the system reduces to the indefinite
augmented system form

[

−Θ−1 AT

A

] [

∆x
∆y

]

=

[

r
rb

]

, (5)

where Θ and r are defined as

Θ = (Q + S−1W + X−1Z)−1 r = rc + S−1rsw − X−1rxz, (6)

and S = U − X. Eliminating ∆x from the first group of equations system
(5) is reduced to the smaller positive definite normal equations

(AΘAT )∆y = rb + AΘr = g. (7)
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For separable quadratic optimization problems Q and Θ are diagonal, and
normal equations are usually the preferred choice for computing the Newton
direction.

2.1. Normal equations for block-diagonal problems

The performance of interior-point methods relies on the efficient solution
of either (5) or (7). For block-angular problems (1) matrices A and Θ have
a special structure. The interior-point algorithm used in this work [12, 15]
solves the normal equations (7) by exploiting the block decomposition of
AΘAT :

AΘAT =
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T
k Θ0 +
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T
i



















. (8)

Considering the blocks of AΘA and partitioning appropriately the dual vari-
ables direction ∆y and the right-hand-side vector g, the normal equations
system (7) can be written as

[

B C
CT D

] [

∆y1

∆y2

]

=

[

g1

g2

]

. (9)

where B ∈ R
m̃×m̃ (m̃ =

∑k

i=1 mi), C ∈ R
m̃×l and D ∈ R

l×l are the blocks
of AΘAT , and Θi, i = 0, . . . , k, are the submatrices of Θ, i.e., Θi = (Qi +
S−1

i Wi + X−1
i Zi)

−1. By eliminating ∆y1 from the first group of equations of
(9), we obtain

(D − CT B−1C)∆y2 = (g2 − CT B−1g1) (10)

B∆y1 = (g1 − C∆y2). (11)

The solution of (10) by a direct method is computationally prohibitive be-
cause (i) computing the matrix of the system means solving l —the number
of linking constraints— systems with matrix B; and (ii) the symmetric and
positive definite Schur complement matrix D −CT B−1C ∈ R

l×l will be very
dense in general [12]. Therefore, unless l is small, the Cholesky factorization
of the Schur complement is impractical, and (10) is best solved by PCG using
the power series preconditioner described below. System (11) is solved by a
Cholesky factorization for each diagonal block NiΘiN

T
i , i = 1 . . . k, of B.
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2.2. Power series preconditioner

The power series preconditioner for the Schur complement matrix was
initially applied to multicommodity flows [12] and later extended to any gen-
eral primal block-angular problem [15]. This preconditioner uses the relation
[12]

(D − CT B−1C)−1 =

(

∞
∑

i=0

(D−1(CT B−1C))i

)

D−1

to compute an approximation of the inverse of the Schur complement. This
approximation is obtained by truncating this series at some term h. Clearly,
the more terms h, the better the preconditioner, at the expense of increasing
the execution time of each PCG iteration. In practice, performances are best
for h = 0 and, in some cases, for h = 1. The preconditioner M−1 for these
choices are

M−1 = D−1 if h = 0,
M−1 = (I + D−1(CT B−1C))D−1 if h = 1.

The value h = 0 was used for the computational results of Section 4. The ef-
fectiveness of this preconditioner depends on the spectral radius of D−1(CT B−1C),
which is always in [0, 1) [12, Theorem 1]. The farther away from 1, the closer
M−1 is to (D − CT B−1C)−1. In the last interior-point iterations matrix Θ
is very ill-conditioned: some values of matrix Θ go to zero whereas others
tend to infinity. This results in spectral radius of matrix D−1(CT B−1C) very
close to 1, which hinders the efficient solution of (7).

2.3. Effect of regularizations on the power series preconditioner

Motivated by the observed better behavior of this specialized interior-
point algorithm for separable quadratic than for linear instances, a quadratic
regularization term was added to the logarithmic barrier to improve the qual-
ity of the power series preconditioner [16]. The logarithmic barrier problem
for linear problems (3) (considering Q = 0) was replaced by the alternative
regularized version

BQ(x, µ) , cT x + µ

(

1

2
xT Qx −

n
∑

i=1

ln xi −
n

∑

i=1

ln(ui − xi)

)

, (12)

where Q is a diagonal positive semidefinite matrix and dom BQ = {x :
0 < x < u}. Unlike other approaches [3], the reduction to zero of the
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regularization term is governed by the barrier parameter µ. This regularized
barrier problem only changes the dual feasibility equations of (4), which
become

AT y + z − w = c + µQx, (13)

and the matrix Θ defined in (6) which is replaced by

Θ = (µQ + S−1W + X−1Z)−1. (14)

When µ → 0, (13) and (14) converge to the expressions of the non-regularized
algorithm. The quadratic regularization was shown to reduce the spectral
radius of the power series preconditioner [16, Theorem 1, Proposition 1], im-
proving the overall performance of the interior-point method in some classes
of instances.

3. The hybrid approach for normal equations

The hybrid approach works as follows. Initially, the normal equations
are solved by the procedure described in Section 2.1, i.e., solving (11) by
Cholesky factorizations and (10) by PCG with the power series precondi-
tioner. When the power series preconditioner becomes inefficient, then the
method switches to the solution of the normal equations (7) by PCG with
the splitting preconditioner [30]. The splitting preconditioner and the effi-
cient criteria developed to identify the switch between preconditioners are
described in next two subsections.

3.1. The Splitting preconditioner

The splitting preconditioner was introduced in [29, 30] for solving the
augmented systems in general linear programming problems. This precon-
ditioner is a generalization of the tree preconditioner introduced in [32, 33],
and extended in [19, 20], for minimum cost network flow problems. Alterna-
tive splitting preconditioners for indefinite systems and diagonally-dominant
matrices were presented, respectively, in [9] and [2]. An important feature
of this preconditioner is the option to reduce the preconditioned indefinite
system to the positive definite normal equations allowing the use of CG.
The main appeal of this class of preconditioners is that they work better
near a solution of the linear programming problem. This is a very welcome
feature since the linear system is known to be very ill-conditioned close to
the optimizer, making difficult its solution by iterative methods. However,
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since the preconditioner is specially tailored for the final iterations of the
interior-point method, it may fail in the initial ones. Hybrid approaches
with Cholesky controlled preconditioners on early iterations have been suc-
cessfully used in large-scale linear programming [8, 23, 35]. A version of the
splitting preconditioner for normal equations can be obtained as follows.

Let AP = [B N ] be a basic-nonbasic partition of the matrix A, i.e.,
B ∈ R

m×m and N ∈ R
(n−m)×(n−m), where P is a permutation matrix such

that B is nonsingular. Considering the same partitioning for Θ, the normal
equations matrix can be rewritten as

AΘAT = BΘBBT + NΘNNT . (15)

The symmetric application of the preconditioner M−1 = Θ
− 1

2

B B−1 to matrix
(15) gives:

M−1(AΘAT )M−T = Θ
− 1

2

B B−1(BΘBBT + NΘNNT )B−T Θ
− 1

2

B (16)

= I + (Θ
− 1

2

B B−1NΘ
1

2

N)(Θ
− 1

2

B B−1NΘ
1

2

N)T

= I + WW T .

Sufficiently close to an optimal solution at least n − m entries of Θ are
small. Thus, with a suitable choice of the columns of B, the diagonal entries
of Θ−1

B and ΘN are very small close to a solution. In this situation, W
approaches the zero matrix and the preconditioned matrix (16) approaches
the identity. The preconditioner requires to find and to solve linear systems
with B. Identifying a suitable basis matrix B is a nontrivial task. In [30], the
first m linearly independent columns of AΘ with smallest 1-norm are selected
for B. However, 1-norm has a tendency to diminish the effect of outliers, a
feature not desirable in this context since the goal is to split the columns in
two sets of size m and n−m, respectively. The use of the 2-norm instead has
improved the performance of the splitting preconditioner for most problems
[35]. In this work we are using the 2-norm criterion.

The techniques developed in [30] for determining the subset of columns
B from A for the splitting preconditioner are rather costly and sophisticated.
Fortunately, a nice property of the splitting preconditioner is that it can be
reused for some iterations. It is important to notice that keeping the matrix
B from previous iterations does not mean to keep the same preconditioner
since Θ will be different. In this work the matrix B is recomputed if the
PCG iterations exceeds 2% of the matrix size. This heuristic worked fine for
the instances tested.
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3.2. Switching between preconditioners

The criterion to identify the switch between preconditioners is instrumen-
tal for the performance of this approach. As shown in [12, Theorem 1], the
effectiveness of the power series preconditioner depends on the spectral ra-
dius of matrix D−1CT B−1C. We developed a heuristic based on Ritz Values
to estimate the spectral radius of this matrix. It is based on the following
relation between the eigenvalues of D−1CT B−1C and those of the precondi-
tioned matrix of (10), the system solved by the power series preconditioner.
The proof is omitted since it is a well-known linear algebra result.

Proposition 1. Let v be the eigenvector of matrix I − D−1(CT B−1C) as-

sociated with the eigenvalue λ. Then, v is eigenvector of D−1(CT B−1C)
associated to eigenvalue 1 − λ.

Note that I − D−1(CT B−1C) is the matrix of (10) preconditioned in
asymmetric form (i.e., premultiplied) by D−1. From Proposition 1 it is thus
possible to obtain the spectral radius of D−1(CT B−1C) as follows:

Corollary 1. Let λmin ≥ 0 be the minimum eigenvalue of I − D−1(CT B−1C).
Therefore, the spectral radius of D−1(CT B−1C) is 1 − λmin.

The conjugate gradient method is based implicitly on the Lanczos three-
term recurrence relations (see for example [24, Chapter 9], [26]). For a sym-
metric matrix M ∈ R

l×l, the Lanczos method looks for a tridiagonalization
V T MV = T , where V is orthogonal and T is tridiagonal. The eigenvalues
θi, i = 1, . . . , l, and eigenvectors of T are known as the Ritz values and Ritz
vectors, respectively. The column vectors of V are known as the Lanczos vec-
tors; the first column vector v1 determines the tridiagonalization performed.
At iteration k of the Lanczos method, Tk is defined by

Tk =















γ1 η2

η2 γ2 η3

. . . . . . . . .

ηk−1 γk−1 ηk

ηk γk















, (17)
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where the coefficients γi and ηj can be computed from the CG algorithm.
Consider the following generic CG algorithm to solve the linear system Mx =
b.

Given x0, r0 = b − Mx0, ρ0 = r0, k = 1
while rk 6= 0 and k < kmax

αk−1 =
(

||rk−1||
2

(ρk−1,Mρk−1)

)

xk = xk−1 + αk−1ρk−1

rk = rk−1 − αk−1Mρk−1

βk−1 =
(

||rk||
2

||rk−1||
2

)

ρk = rk + βk−1ρk−1

k := k + 1
end while.

The coefficients in matrix Tk can be obtained from the following relations
(see, for instance, [24, Chapter10] or [18, Chapter 5]):

γk =
1

αk−1

+
βk−1

αk−2

, β0 = 0, α−1 = 0, ηk+1 = −
√

βk

αk−1

.

The first Lanczos vector v1 is the unit vector that points in the direction of
the initial residual of the CG algorithm, i.e., v1 = r0/‖r0‖.

It is known from Lanczos theory that the eigenvalues of Tk (Ritz values)
converge to those of the original matrix M . In general, the extreme eigenval-
ues of M are well approximated already during early GC iterations [27, 31].
We then used the extreme Ritz values to estimate the smallest eigenvalue
λmin of the preconditioned matrix I − D−1(CT B−1C). From Corollary 1, as
λmin approaches zero, the spectral radius of D−1(CT B−1C) tends to one, and,
consequently, the power series preconditioner becomes less efficient. Ritz val-
ues were computed using the SSTEQR LAPACK routine [4].

High quality estimates of λmin depend on the rate of convergence of the
Ritz values θi of Tk to the true eigenvalues λi, i = 1, . . . , l, of I−D−1CT B−1C.
There is a variety of results about this rate of convergence, which constitute
what is known as the Kaniel-Paige theory [24, Chapter 9], [26, Chapter 1].
However, some of these results are either not conclusive or difficult to apply
in our context. For instance, the initial Lanczos vector v1 = r0/‖r0‖ is
instrumental, and it affects the convergence of the Ritz values to λi. As
stated in [26, Section 1.6], this initial vector can be chosen to delay the
convergence as much as needed. In practice it is not easy to compute a good

11



initial residual r0 = b−Mx0 according to this criteria; in our implementation,
the previous solution of (10) was considered as the starting point x0 for CG.

Some a priori bounds have been computed for the Ritz values. At iteration
k of the Lanczos method, the Ritz value θk

1 (i.e., the smallest eigenvalue of
Tk) satisfies the inequality

λ1 ≤ θk
1 ≤ λ1 +

(λl − λ1) tan(φ1)
2

ck−1(1 + 2λ2−λ1

λl−λ2

)
, (18)

where λ1 = λmin, φ1 is the angle between v1 and the eigenvector associated
to λ1, and ck−1(x) is the Chebyshev polynomial of order k − 1 (details can
be found in [24, Section 9.1.4] or [26, Section 1.7]). From (18) we see that
the proximity of θk

1 to λmin depends again on v1, and also on the remaining
eigenvalues of I − D−1(CT B−1C) (in particular, λl and λ2). It is worth
noting that Ritz values provide in practice higher quality estimates of (mainly
extremal) eigenvalues than other techniques. For instance they are considered
an acceleration strategy to the QR method for the symmetric eigenvalue
problem [24, Section 8.3.6].

Another result shows that the speed of convergence of the Ritz values
depends on how well the eigenvalues are separated from the others [31].
However, in practice it is difficult to know the distribution of eigenvalues
of I − D−1(CT B−1C). From a practical point of view, an interesting result
is that the similarity between CG errors and Ritz errors has been noticed and
analyzed in [10, 34]. These authors showed that CG errors can be considered
as Ritz errors and vice versa. To evaluate the proximity between the Ritz
values and the eigenvalues, we performed computational experiments with
three small instances of the test problems (m32-32-12, PDS-10, Tripart1),
which are described in Section 4.1. The results are shown in Figures 1,
2 and 3. For each experiment we used two different PCG tolerances at
each interior-point iteration i: the tolerance of the original implementation
(εi = max{0.95εi−1, minε}, where minε = 10−8, and ε0 = 10−2) and a more
restrictive tolerance (εi = 10−12). Using the original PCG tolerances, few
PCG iterations are needed for convergence at the first interior-point iterations
in general, since the PCG tolerances are not tight. The PCG error can be
higher and hence the approximations of the eigenvalues by Ritz values are
poor. As the interior-point iterations evolve the PCG tolerances become
tighter, more iterations are required for convergence and the quality of Ritz
values tends to be better. On the other hand, the tighter PCG tolerance εi =
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10−12 always provides very close approximations, as shown in Figures 1.(b),
2.(b) and 3.(b). Figure 4 shows the absolute difference between minimum
eigenvalue and minimum Ritz value at each interior-point iteration, using the
original PCG tolerance. At the last interior point iteration plotted on these
graphs (iteration at which the switch criterion described below is satisfied),
the absolute difference is less than 10−4.
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(b) Tighter PCG tolerance: 10−12.

Figure 1: Minimum eigenvalues and Ritz values at each interior-point itera-
tion, problem m32-32-12 (oriented).
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(b) Tighter PCG tolerance: 10−12.

Figure 2: Minimum eigenvalues and Ritz values at each interior-point itera-
tion, problem PDS-10.
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(b) Tighter PCG tolerance: 10−12.

Figure 3: Minimum eigenvalues and Ritz values at each interior-point itera-
tion, problemTripart1.

Supported by the previous results, the following heuristic criterion was
developed. The switch between the power series and the splitting precondi-
tioner is performed when all the following three criteria occur:

1. The minimum Ritz value of I − D−1(CT B−1C) is less than 0.001.
2. The number of PCG iterations with the power series preconditioner

reaches 0.05l, where l is the dimension of I − D−1(CT B−1C).
3. The centrality parameter µ is less than 0.5.

The first two criteria verify whether the power series preconditioner is be-
coming less efficient. The last one guarantees enough progress of the interior-
point method. The satisfaction of the three criteria is a good indicator
that the splitting preconditioner will work better. In practice, this crite-
rion provided good computational results. Note that in the implementation
of Section 4 the centrality parameter is computed with the usual formula

µ = σ xT z+(u−x)T w

2n
, where σ = 0.1. The stopping criterion for the PCG is

described in Section 4 below.

4. Numerical experiments

The hybrid approach described in the previous section has been added to
a MATLAB implementation of the specialized algorithm for general block-
angular problems, named BlockIP [15]. BlockIP implements a standard infea-
sible primal-dual path-following algorithm, which solves the normal equations
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(a) m32-32-12.
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(b) PDS-10.

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

IPM iterations

ab
s(

M
in

E
ig

en
V

al
ue

s 
−

 M
in

R
itz

V
al

ue
s)

(c) Tripart1.

Figure 4: Difference between the minimum eigenvalue and the minimum Ritz
values at each interior-point iteration.

by either the specialized procedure described in Section 2.1 or a Cholesky fac-
torization. The code uses the Ng-Peyton sparse Cholesky package [22, 28]
for the solution of (11) and (7); the Ng-Peyton sparse Cholesky package was
hooked to MATLAB for the LIPSOL interior-point solver [38]. System (10)
associated to the linking constraints is solved by PCG, using the power series
preconditioner. PCG may give inaccurate solutions when the matrix of this
system becomes ill-conditioned. When this happened, the original version
of BlockIP switched to the solution of the full normal equations (7) by a
Cholesky factorization. The switch is performed when we are close enough
to the optimal point (gapi < 0.5) and gapi increases from one iteration to
the next (gapi > 1.05gapi−1), where gapi = |pi−di|/(1+ |pi|), pi and di being
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the primal and dual objective functions at iteration i, respectively.
The splitting preconditioner, initially coded in C, has been hooked to

the MATLAB BlockIP implementation. The new version of the BlockIP
package is thus able to solve the normal equations by either a Cholesky
factorization or PCG using the power series or the splitting preconditioner.
The default parameters of BlockIP described in [15] have been adopted, but
for the stopping criterion of the interior-point method and the PCG. Since
the splitting preconditioner may provide more accurate solutions than the
power series preconditioner near the optimal solution, we allowed a more
restrictive stopping criterion for the interior-point algorithm: it stops when,
at a primal-dual feasible solution, gapi < 10−6. This stopping criterion
will be used for both the original version (i.e., power series preconditioner
followed by Cholesky) and the hybrid approach (unlike in the code of [15],
where the stopping criterion was gapi < 10−4). The stopping criterion
for the PCG in the original code was based on the angle rule suggested in
[33], and the PCG tolerance at the interior-point iteration i was updated as
εi = max{0.95εi−1, minε}, where minε = 10−8, and ε0 = 10−2 or ε0 = 10−3

for, respectively, linear and nonlinear problems [15]. The stopping criterion of
the PCG solver has been tightened in the new code when either gapi < 10−4

or the code switches from the power series to the splitting preconditioner:
it is stopped when at iteration j of PCG the relative residual norm satisfies
||rj||/||r0|| < minε. The precision minε = 10−8 is also required for PCG if no
switch of preconditioner is performed but we are close to the optimal solution
(µ < 10−4) and the gap increases (gapi > 1.1gapi−1). Table 1 shows the main
differences of parameters between the original and the new hybrid approach.

4.1. Test problems

Three classes of primal block-angular problems have been considered for
testing the hybrid approach: multicommodity network flow problems (ori-
ented and nonoriented), minimum congestion problems and minimum dis-
tance controlled tabular adjustment.

Multicommodity flow problems attempt to route a set of commodities at
a minimum cost over a capacitated oriented or nonoriented network. We con-
sidered three kinds of oriented instances. The first two correspond to a subset
of the PDS [11] and Mnetgen [1] instances. These instances are widely used in
the literature, and they can be retrieved from http://www.di.unipi.it/optimize/Data/MMCF.html

The last set corresponds to instances obtained with the Tripartite generator,
which can be retrieved from http://www-eio.upc.edu/~jcastro/mmcnf-data.html.
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Table 1: Differences of parameters between the original and the new hybrid
approach.

Original approach hybrid approach

switches to Cholesky factorization of (7) PCG with splitting prec. for (7)

switches when (gapi < 0.5) and (gapi > 1.05gapi−1) criterion of Subsection 3.2

PCG stopping

rule

angle criterion
angle criterion before switch

relative residual norm after switch

PCG tolerance εi = max{0.95εi−1, 10−8}

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(before switch

εi and (µ ≥ 10−4

or gapi ≤ 1.1gapi−1))

(after switch

10−8 or (µ < 10−4

and gapi > 1.1gapi−1))

We are not aware of any standard set of nonoriented multicommodity flow
problems, thus nonoriented instances were generated from the oriented Mnet-
gen ones.

The minimum congestion problem (also known as the maximum concur-
rent flow problem) [6, 36] arises in practical applications on telecommunica-
tions networks. The purpose of this problem is to compute the maximum
concurrent flow (or throughput) that can be transported through a network.
Equivalently, it can be seen as the problem of finding, in an infeasible multi-
commodity flows network, the minimum of the maximum relative increments
in arc capacities, for each arc of the network, that makes the problem feasi-
ble, i.e., all multicommodity flows can be sent from sources to destinations.
The formulation used here is described in [15]. The infeasible multicommod-
ity instances were generated from the oriented Mnetgen ones by increasing
supplies and demands by a factor of two.

Minimum-distance controlled tabular adjustment (CTA for short) is a
technique for the protection of statistical tabular data [13, 14, 17]. This
is a major concern for National Statistical Institutes, which must guarantee
that individual information cannot be disclosed from released data. For some
classes of tables (three-dimensional tables) and using the Euclidean distance,
this problem can be formulated as a quadratic multicommodity flow problem
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with saturated linking constraints [13, 16]. If the L1 distance is used, the
formulation no longer corresponds to a multicommodity flow problem, but it
exhibits a block-angular structure. Several formulations for this problem are
reported in [17]. In this work we considered some of the instances derived
from the most efficient observed formulation of the L1-CTA problem.

Table 2 summarizes the dimensions of these instances: number of blocks
k; number of constraints and variables for each block, m′ and n′, respec-
tively; number of linking constraints l; and overall number of constraints and
variables of the resulting problem, m and n respectively. For minimum con-
gestion instances columns m′ and n′ show the overall number of constraints
and variables for all the diagonal blocks, since not all the blocks have the
same dimension, i.e., m′ =

∑k

i=1 mi and n′ =
∑k

i=1 ni.

4.2. Effect of regularizations on the splitting preconditioner

As stated in Subsection 2.3, the power series preconditioner is improved
by considering a quadratic regularization term in the barrier problem. How-
ever, this quadratic term may complicate the computation of the basic-
nonbasic partition of the constraints matrix needed by the splitting pre-
conditioner, which was developed for linear problems. The straightforward
approach would be to inactivate the regularization term when switching to
the splitting preconditioner. Instead, some numerical experiments were car-
ried out to evaluate the impact of different regularization parameters in the
performance of the splitting preconditioner. The regularization Q matrix of
(12) is computed as

Q = t
δ

µ0

I, (19)

where t ∈ Z
+ is the number of interior-point iterations, µ0 ∈ R is the value

of the barrier parameter at the first interior-point iteration, and δ ∈ R is a
parameter to be provided by the user for initializing the regularization matrix
Q. The value δ = 10−6 was always fixed for the power series preconditioner,
and different values δ ∈ {10−2, 10−4, 10−6, 0} were considered for the splitting
preconditioner. When δ = 0, the standard non-regularized algorithm is being
used.

Results are illustrated in Table 3. For each δ, columns PCG and CPU

report the number of PCG iterations and CPU time required by the hybrid
approach, but only for the interior point iterations after the switch from the
power series to the splitting preconditioner. Information is only reported for
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Table 2: Dimensions of test instances.

Instances k m′ n′ l m n

oriented multicommodity flows

M32-32-12 32 31 486 361 1353 15913

M64-64-12 64 63 511 371 4404 33075

M128-64-12 64 127 1171 860 8988 75804

M128-128-12 128 127 1204 932 17188 155044

PDS-10 11 1398 4792 814 16192 53526

PDS-30 11 4222 16148 2399 48841 180027

PDS-40 11 5651 22059 3199 65360 245848

PDS-50 11 7030 27668 3933 81263 308281

Tripart1 16 191 2096 238 3294 33774

Tripart2 16 767 8432 1029 13301 135941

Tripart3 20 1199 16380 1561 22541 329161

nonoriented multicommodity flows

M32-32-12 32 31 972 361 1353 31465

M64-64-12 64 63 1022 387 4419 65795

M128-64-12 64 127 2342 896 9024 150784

M128-128-12 128 127 2408 959 17215 309183

controlled tabular adjustment

CTAL1-10-10-5 5 219 400 100 1195 2100

CTAL1-15-15-10 10 479 900 225 5015 9225

CTAL1-20-20-20 20 839 1600 400 17180 32400

CTAL1-30-30-30 30 1859 3600 900 56670 108900

CTAL1-40-40-20 20 3279 6400 1600 67180 129600

CTAL1-50-50-10 10 5099 10000 2500 53490 102500

CTAL1-50-50-50 50 5099 10000 2500 257450 502500

CTAL1-100-100-10 10 20199 40000 10000 211990 410000

CTAL1-100-100-50 50 20199 40000 10000 1019950 2010000

CTAL1-500-500-50 50 500999 1000000 250000 25299950 50250000

minimum congestion

M32-32-12 34 992 31591 972 1964 32563

M64-64-12 66 4032 66430 1532 5564 67962

M128-64-12 66 8128 152230 3512 11640 155742

M128-128-12 130 16256 310632 3611 19867 314243
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Table 3: Impact of different regularization parameters in the splitting pre-
conditioner.

δ = 10−2 δ = 10−4 δ = 10−6 δ = 0

Instances PCG CPU PCG CPU PCG CPU PCG CPU

oriented multicommodity flows

M32-32-12 477 0.16 477 0.17 477 0.19 477 0.15

M64-64-12 796 1.22 799 1.25 798 1.25 801 1.28

M128-64-12 1755 9.03 1759 9.06 1751 8.90 1754 9.08

M128-128-12 3354 20.86 3385 20.95 3366 20.98 3362 20.69

PDS-10 1087 1.78 1135 1.85 1084 1.77 1082 1.78

PDS-30 4717 35.79 4826 35.75 4806 35.74 4801 35.6

PDS-40 4766 63.33 4849 65.41 4756 64.72 4756 63.77

PDS-50 5729 336.27 5937 315.25 5721 314,0 5716 312.94

Tripart1 550 1.69 771 1.09 755 1.03 757 1.04

Tripart2 1988 80.11 1461 77.82 1451 85.85 1456 83.79

Tripart3 6011 1069.61 6458 884.78 6423 902.04 6426 910.96

nonoriented multicommodity flows

M32-32-12 369 0.22 369 0.24 373 0.21 368 0.23

M64-64-12 913 5.13 913 5.13 900 5.08 908 5.06

M128-64-12 2354 55.52 2313 53.76 2317 51.07 2346 51.10

M128-128-12 3267 142.01 3242 133.83 3244 142.48 3250 151.96

controlled tabular adjustment

CTAL1-15-15-10 1825 1.78 1366 1.24 1472 1.52 1432 1.50

CTAL1-20-20-20 3426 15.44 3145 12.25 3118 11.34 3096 11.96

CTAL1-30-30-30 14681 223.18 12524 233.51 12377 220.18 12415 229.93

CTAL1-40-40-20 11157 303.07 8458 230.34 8618 234.66 8851 232.16

CTAL1-50-50-10 16255 270.10 14476 266.84 14617 264.65 14592 253.38

minimum congestion

M128-64-12 † † † †
5261 28.53 6429 35.63

† Numerical problems when gapi < 10−5

Number of instances with best results

for PCG 6 6 7 6

for CPU 1 5 8 7
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the subset of the instances where the switch to the splitting preconditioner
is performed (as it will be shown later in Table 4).

From Table 3 it is clear that the different regularization parameters af-
fect the PCG and CPU time required by the splitting preconditioner. Note
that in some cases (e.g., Tripart3) executions with a smaller number of PCG
iterations provide larger CPU times; this may be due, first, to inaccuracies
of the operating system timing routines, and second, to different sparsity
patterns of the LU factorization of the splitting preconditioner. There is no
regularization parameter providing the best performance for all problems.
For multicommodity flow instances, the best results, in number of PCG it-
erations, were obtained with δ = 10−2 (oriented problems) and δ = 10−4

(nonoriented instances). The value δ = 10−4 also guaranteed the best re-
sults for the CTA instances. However, the hybrid approach failed for the
M128-64-12 minimum congestion instance when δ = 10−2 and δ = 10−4. As
expected, in general, the small regularization parameters, i.e., δ = 10−6 and
δ = 0, performed well for most instances and reported the maximum number
of best executions. The value δ = 10−6 will be used for the computational
results of next subsection.

4.3. Computational results

We compared the original version of the BlockIP code (power series pre-
conditioner followed by Cholesky factorization if ill-conditioning is found)
against the new version implementing the hybrid approach (power series
followed by splitting preconditioner). The original version of BlockIP was
considered with two switching criteria: original ((gapi < 0.5) and (gapi >
1.05gapi−1)) and the new criterion (described in Subsection 3.2). Table 4
shows the computational results obtained.

Columns “original”, “original–new switch” and “hybrid” of Table 4 corre-
spond to these three executions, respectively. For each test problem, columns
“Iter”, “CPU” and “PCG” provide, respectively, the number of interior-point
iterations, the CPU time in seconds and the number of PCG iterations. The
numbers in brackets of columns “Iter” show the interior-point iteration at
which the switch between linear solvers is performed (from power series pre-
conditioner to Cholesky in the “original” and “original–new switch” columns,
and from power series to splitting preconditioner in the “hybrid” columns).
All runs were carried out on a Fujitsu Primergy RX300 server with 3.33 GHz
Intel Xeon X5680 CPUs (24 cores) and 144 GB of RAM, under a GNU/Linux
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operating system (Suse 11.4), without exploitation of parallelism capabilities.
The fastest executions are marked in boldface.

For the oriented multicommodity Mnetgen instances M32-32-12, M64-64-
12 and M128-64-12 the new switch criterion significantly reduced the num-
ber of interior-point iterations performed. This is because the switch to
the Cholesky Factorization (original–new switch) or to PCG with splitting
preconditioner (hybrid) was performed very soon, avoiding some expensive
iterations with the power series preconditioner. For PDS and Tripart there is
no significant difference in the number of interior-point iterations among the
three approaches. For Mnetgen and PDS (but PDS-10) instances the “hy-
brid” approach reduced the CPU time. In Tripart problems “original–new
switch” produced the best results.

Similar results are obtained for nonoriented multicommodity flow prob-
lems. All the runs with the “original” approach switched from the power
series preconditioner to the Cholesky factorization. We observed that normal
equations are nearly singular when the switch is performed; directions com-
puted by the Cholesky factorizations are inaccurate, thus requiring a large
number of interior-point iterations to converge. Since in the “original–new
switch”and “hybrid” approaches the switch is done earlier, better directions
were obtained, reducing the number of interior-point iterations. The CPU
time is significantly smaller with the “hybrid” version.

For CTA problems, “original–new switch” reported the best results for
some instances. However, the “original” or “original–new switch” versions
reached the maximum number of iterations for instances CTAL1-30-30-30,
CTAL1-50-50-50, CTAL1-100-100-10 and CTAL1-100-100-50, without a so-
lution with the required optimality tolerance. For these instances, when
gapi < 10−5 system (10) became very ill-conditioned and PCG reported a
large residual error. Inaccurate directions were also obtained after switching
to the Cholesky factorization. On the other hand, the “hybrid” approach
converged to a solution in few iterations. Although “hybrid” reports larger
CPU times than “original–new switch” for some instances, it is more robust
since it found the optimal solution in all the runs performed.

For CTAL1-500-500-50 and the minimum congestion instances M32-32-12
and M64-64-12 the switching criterion was never satisfied, since the power
series preconditioner behaved well for all the interior-point iterations. In
some instances (e.g., CTAL1-10-10-5 and minimum congestion M128-128-12)
the “original” and “original–new switch” approaches switched to Cholesky,
but the “hybrid” approach did no switch to the splitting preconditioner. This
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Table 4: Results for test instances.

original original–new switch hybrid

Instance Iter CPU PCG Iter CPU PCG Iter CPU PCG

oriented multicommodity flows

M32-32-12 67(57) 15.79 1701 37(26) 6.62 211 37(25)
2.46 583

M64-64-12 105(52) 114.35 948 49(39) 34.61 314 49(39)
7.84 1064

M128-64-12 83 504.23 31569 60(46) 462.98 345 60(46)
20.66 2053

M128-128-12 79 416.29 13344 75(62) 2200.01 441 75(62)
53.93 3787

PDS-10 85 238.87 4555 85(82)
177.22 3896 85(82) 210.54 4733

PDS-30 132 1123.87 11347 133(127) 1221.03 9214 133(127)
998.96 13660

PDS-40 139 1364.93 12205 140(132) 1640.61 8955 140(132)
1064.43 14264

PDS-50 144 2062.43 18203 146(136) 2603.94 13003 143(136)
1877.33 22062

Tripart1 58 12.21 2221 59(49)
7.34 1117 53(49) 8.64 1760

Tripart2 79 1424.13 13258 79(71)
119.83 2221 78(71) 280.02 3598

Tripart3 91 6057.77 34720 84(70)
287.19 2506 84(70) 1250.55 8756

nonoriented multicommodity flows

M32-32-12 61(46) 15.66 1330 38(28) 4,5 178 38(28)
3.12 518

M64-64-12 133(62) 164.81 1212 58(47) 36.98 554 58(47)
17.09 1410

M128-64-12 95(71) 660.83 2774 64(47) 498.14 343 64(47)
74.15 2604

M128-128-12 101(73) 3688.66 1248 76(61) 2914.64 482 76(61)
191.01 3666

controlled tabular adjustment

CTAL1-10-10-5 70(65) 1.33 544 28(22) 0.76 179 21 0.48 191
CTAL1-15-15-10 46 11.23 4499 29(20)

1.91 177 29(20) 2.33 1611
CTAL1-20-20-20 47(40) 36.13 5514 33(21)

8.98 287 33(21) 14.15 3332
CTAL1-30-30-30 200(63)∗ 2787.64 19539 39(24)

81.11 331 39(24) 255.46 12657
CTAL1-40-40-20 46 810.80 5921 33(26)

61.74 428 33(26) 292.62 8954
CTAL1-50-50-10 183(57) 893.35 6572 66(32)

83.14 837 51(32) 317.12 15323
CTAL1-50-50-50 200(122)∗ 34969.31 99608 200(41)∗ 4519.07 1128 143(41)

27553.79 300858
CTAL1-100-100-10 200(73)∗ 3844.11 28877 200(63)∗ 899.69 6947 80(63)

4460.27 50104
CTAL1-100-100-50 200(124)∗ 452968.22 824285 200(61)∗ 17363.51 6385 82(61)

72794.64 137510
CTAL1-500-500-50 60 10050.08 237 60 10374.76 237 60 10363.03 237

minimum congestion

M32-32-12 27 3.11 211 27 3.26 211 27 3.05 211
M64-64-12 30 5.45 121 30 5.51 121 30 5.76 123

M128-64-12 36(25) 218.79 49 91(46)† 1740.93 527 52(46)
58.97 5596

M128-128-12 40(31) 362.89 90 109(104)† 514.47 2517 39 43.84 251

∗ Maximum number of iterations reached without a solution.
† Numerical problems when gapi < 10−5

(.) Iteration at which the change of preconditioner is performed.

23



is because the tighter PCG termination criterion of the hybrid approach,
which is used when there is no switch between preconditioners and gap gets
worse, allowed the power series preconditioner to reach the optimal solution.

5. Conclusions

We have provided computational evidence that the hybrid approach com-
bined with a new switch criterion significantly improved the performance
of the specialized interior-point algorithm for some classes of primal block-
angular problems. An estimate for the spectral radius of the matrix D−1(CT B−1C)
was computed by using the Ritz values. This resulted in a criterion to switch
between preconditioners that worked fine in the tested instances.

Improving the efficiency of the PCG by an adaptive selection of the num-
ber of terms h in the power series preconditioner is among the future tasks
to be done. This could be done by using the Ritz values to measure the
efficiency of the preconditioner at each interior-point iteration. The perfor-
mance of the specialized algorithm would be improved if the optimal term
h∗ could be identified at each iteration.
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