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Minimum distance controlled tabular adjustment is a recent perturbative approach
for statistical disclosure control in tabular data. Given a table to be protected, it looks for
the closest safe table, using some particular distance. Controlled adjustment is known to

provide high data utility. However, the disclosure risk has only been partially analyzed
using theoretical results from optimization. This work extends these previous results,
providing both a more detailed theoretical analysis, and an extensive empirical assess-

ment of the disclosure risk of the method. A set of 25 instances from the literature and
four different attacker scenarios are considered, with several random replications for each
scenario, both for L1 and L2 distances. This amounts to the solution of more than 2000
optimization problems. The analysis of the results shows that the approach has low dis-

closure risk when the attacker has no good information on the bounds of the optimization
problem. On the other hand, when the attacker has good estimates of the bounds, and
the only uncertainty is in the objective function (which is a very strong assumption),

the disclosure risk of controlled adjustment is high and it should be avoided.

Keywords: Statistical disclosure control; Controlled tabular Adjustment; Disclosure risk;
Optimization; Linear programming; Quadratic programming.

1. Introduction

Statistical data has to be protected before publication to guarantee that sensitive

and confidential information of individuals is not released. There are several tech-

niques available, both for microdata and for tabular data. Formally, a microdata

set can be defined as a function

V : I → D(V1) × D(V2) × · · · × D(Vt)

that maps individuals of set I to an array of t values for variables V1,. . . , Vt, D()

being the domain of those variables. Categorical variables have a discrete domain,

whereas numerical variables can be both discrete or continuous. Tabular data is

obtained by crossing one or more categorical variables. Formally, a table is a function

T : D(Vi1) × D(Vi2) × · · · × D(Vil
) → R or N,

l being the number of categorical variables that were crossed. The result of function

T (cell values) belongs to N for a frequency table, and to R for a magnitude table.

∗To appear in the International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

1



2

For instance, the two-dimensional frequency table crossing the categorical variables

“sex” and “smoke?” could be defined as T : {”male”, ”female”}×{”yes”, ”no”} → N.

Recent surveys and monographs provide detailed information about the different

table structures, and, in general, about the statistical disclosure field. 3,4,14

Any tabular data protection method can be seen as a map F such that F (T ) =

T ′, i.e., table T is transformed to another table T ′ which is safe and, ideally, with

minimum information loss. For the method to exhibit a low disclosure risk, the

inverse map T = F−1(T ′) should not be available or difficult to compute by any

attacker. Note that this applies to all the cells, since T was defined as a function

whose domain are all the table cells.

Controlled adjustment methods 2,11 are an emerging technology for tabular data.
14 They have shown to perform well compared to other techniques in terms of

efficiency and quality of the solution.4,5 Given a table T the purpose is to obtain

T ′ by solving an optimization problem that finds the closest table T ′ to T meeting

some safety linear constraints.

The particular controlled adjustment method named controlled tabular adjust-

ment (CTA) only considered L1 norms and safety was obtained by disjunctive

constraints that forced sensitive cells to be shifted either upward or downward; this

decision was added to the problem through binary variables.11 Other norms, such

as L2 and L∞, were suggested in similar approaches where the protection sense (up-

per or lower) was a priori fixed resulting in more efficient continuous optimization

problems.2 This will be the scheme adopted in this work.

Controlled adjustment methods will have low disclosure risk if no attacker can

obtain a good estimate T̂ = F̂−1(T ′), F̂−1 being an estimate of F−1. An incomplete

theoretical analysis of the disclosure risk of minimum distance controlled adjustment

methods has already been presented in previous works.2 However they were based

on a sensitivity analysis for only some coefficients of the optimization problem, not

all of them. In addition, an empirical exhaustive analysis has not been made before

to show the disclosure risk of the approach. This is specially relevant since some

authors claim that protection approaches based on the minimization of information

loss are not safe if a minimality attack is performed.9 However, minimality attacks

have been used for microdata, not for tabular data (e.g., the term table was used

for “table in a relational database” not for “statistical table”).9 The purpose of this

paper is to fill this gap by (1) providing a detailed attacker problem, considering

several risk scenarios; (2) presenting a complete theoretical analysis of the disclosure

risk of controlled adjustment; (3) presenting an exhaustive empirical evaluation of

the disclosure risk of these approaches, by solving more than 2500 optimization

attacker problems. As it will be shown, when the attacker has no good information

about the original data, the disclosure risk is low. As expected, the computational

results also confirmed that the more information by the attacker, the higher is the

disclosure risk. And for certain scenarios with very well informed attackers (which in

practice can be a very strong assumption), the method should not be recommended.

The paper is organized as follows. Section 2 provides a general formulation of
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controlled adjustment methods, for L1 and L2. Section 3 formulates the problem

the attacker should solve to re-compute the original data, and it describes several

attacker scenarios. Sections 4 and 5 show, respectively, a theoretical and empirical

analysis of the disclosure risk of the approach.

2. Formulation of the controlled adjustment approach

Any variant of controlled adjustment can be formulated from the following param-

eters:

• A set of cells ai, i ∈ N = {1, . . . , n}, that satisfy M = {1, . . . ,m} linear

relations Ta = b (a being the vector of ai’s), T ∈ R
m×n being the matrix

representing the tabular constraints. Each tabular constraint imposes that

the inner cells have to be equal to the total or marginal cell, i.e., if Ij ⊂ N

is the set of indices of inner cells of relation j, and tj is the index of the

total cell of relation j, j ∈ M, the constraint associated to this relation is
(

∑

i∈Ij
ai

)

− atj
= 0.

• A lower and upper bound for each cell i ∈ N , respectively lai
and uai

,

which are considered to be known by any individual/attacker. If no previous

knowledge is assumed for cell i and the table is positive (i.e., negative

cell values are not allowed) then default bounds would be lai
= 0 and

uai
= +M , M ≫ 0 being a large value. For non-positive tables lai

= −M

can be used.

• Nonnegative cell weights wi, i ∈ N , needed to define the distance between

the original and the perturbed released cell values. They are used in the

objective function of the resulting optimization problem. Cell weights are

usually a function of the cell value, i.e., wi(ai). This dependence will only

be explicited when needed in the rest of the paper.

• A set S = {i1, i2, . . . , is} ⊆ N of indices of confidential or sensitive cells.

This set of cells is a priori selected using some sensitivity rules, such as the

the (n-k) dominance rule, or the p% rule. These rules, out of the scope of

this work, are discussed in some of the references.3,10,12,14.

• Nonnegative lower and upper protection levels for each confidential cell

i ∈ S, respectively lpli and upli, such that the released values should be

out of the interval (ai − lpli, ai + upli). Depending on how this constraint

is dealt with, several controlled adjustment variants can be obtained. For

instance if we consider the disjunctive constraint “either xi ≥ ai + upli
or xi ≤ ai − lpli”, the resulting method is known as controlled tabular

adjustment (CTA)11, and it results in a difficult combinatorial optimization

problem. If, on the other hand, a protection sense is fixed, i.e., one of the two

members of the disjunction is a priori selected, it results in a continuous

optimization problem.2 It is worth to mention that the protection levels

lpli and upli are either computed as a certain fraction of the sensitive cell
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value ai, or directly derived from the sensitivity rules that provide the set

of sensitive cells S.14 In both cases, the protection levels implicitly depend

on the cell value, i.e., lpli(ai) and upli(ai). As for the cell weights, in the

rest of the work this dependence will only be clearly shown when needed.

The controlled adjustment method attempts to find the closest values xi, i ∈ N

—according to some distance L(w), w ∈ R
n being the vector of cell weights—, that

make the released table safe. This involves the solution of the following optimization

problem:

min
x

||x − a||L(w) (1a)

s. to Tx = b (1b)

lai
≤ xi ≤ uai

i ∈ N (1c)

xi for all i ∈ S are safe values. (1d)

The formulation of (1d) depends on the particular controlled adjustment variant

considered. For instance, in the standard CTA approach, this constraint is

(xi ≤ ai − lpli) or (xi ≥ ai + upli) i ∈ S, (2)

which, by introducing a vector of binary variables y ∈ R
s can be written as

xi ≥ −M(1 − yi) + (ai + upli)yi i ∈ S,

xi ≤ Myi + (ai − lpli)(1 − yi) i ∈ S,

yi ∈ {0, 1} i ∈ S,

(3)

0 ≪ M ∈ R being a large positive value. Constraints (3) impose either “upper pro-

tection sense” xi ≥ ai +upli, when yi = 1, or “lower protection sense” xi ≤ ai− lpli
when yi = 0. The CTA problem (1a)–(1c), (3) is a mixed integer linear optimization

problem (MILP), which can be time consuming for medium-large instances.

An alternative would be to a priori fix the binary variables yi, i ∈ S, thus ob-

taining a CTA formulation with only continuous variables, as suggested in previous

works.2 Although this variant will provide a solution with a higher information

loss (since it does not explore all the possible combinations of binary variables),

the resulting optimization problem will be solved much more efficiently. Thus, it is

specially suited for the real-time protection in on-line tabular data servers.7 In this

work we will focus on this continuous controlled adjustment method. It is worth

to note that if this variant is shown to be “safe”, the problem with binary vari-

ables would also be “safe” (even “safer”), since in the former case the decision on

the particular value of yi is governed by a combinatorial optimization procedure

(impossible to be reproduced if the values a are not completely known), and not

a priori fixed by some rule. Possible infeasibilities in the resulting problem due to

the particular choices of yi, i ∈ S, could be treated with approaches for fixing in-

feasible instances in optimization.8 Some of them have already been used in the

context of CTA.6 Formulating problem (1) in terms of cell deviations z = x − a,
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z ∈ R
n, and fixing the binary variables, the resulting continuous CTA problem can

be formulated as the general convex optimization problem

min
z

||z||L(w)

s. to Tz = 0

l(a) ≤ z ≤ u(a),

(4)

where

li(ai) =

{

upli(ai) if i ∈ S and yi = 1

lai
− ai if (i ∈ N \ S) or (i ∈ S and yi = 0)

ui(ai) =

{

−lpli(ai) if i ∈ S and yi = 0

uai
− ai if (i ∈ N \ S) or (i ∈ S and yi = 1),

(5)

for i ∈ N . Note we made explicit the relation l(a), u(a) in (4)–(5). It is worth to

mention that the a priori assignment of yi to either 0 or 1 should always be the same

if cell i ∈ S appears in two different tables, otherwise we could be both disclosing

information and providing inconsistent tables (the same cell would appear with two

different values in two released tables). This can be avoided if the value for yi is

computed from local information to the cell, e.g., from the set of respondents or

contributors to this particular cell.7 A particular implementation of this general

idea is based on the use of microdata keys.13

Problem (4) can be specialized for several norms, L1 and L2 being the two most

relevant. For L1, defining z = z+ − z−, we obtain the following linear optimization

problem (LP):

min
z+,z−

n
∑

i=1

wi(ai)(z
+
i + z−i )

s. to T (z+ − z−) = 0

l+(a) ≤ z+ ≤ u+(a)

l−(a) ≤ z− ≤ u−(a),

(6)

w(a) ∈ R
n being a vector of nonnegative cell weights, z+ ∈ R

n and

z− ∈ R
n the vector of positive and negative deviations in absolute value, and

l+(a), l−(a), u+(a), u−(a) ∈ R
n lower and upper bounds for the positive and nega-
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tive deviations defined as

l+i (ai) =

{

upli(ai) if i ∈ S and yi = 1

0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+
i (ai) =

{

0 if i ∈ S and yi = 0

uai
− ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i (ai) =

{

lpli(ai) if i ∈ S and yi = 0

0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−

i (ai) =

{

0 if i ∈ S and yi = 1

ai − lai
if (i ∈ N \ S) or (i ∈ S and yi = 0),

(7)

for i ∈ N . For L2, problem (4) can be directly recast as the following quadratic

optimization problem (QP) without introducing additional variables:

min
z

n
∑

i=1

wi(ai)z
2
i

s. to Tz = 0

l(a) ≤ z ≤ u(a).

(8)

In practice, values wi = 1/ai and wi = 1/a2
i are sensible choices for respectively L1

and L2, such that the objective function models the sum of relative deviations in

(6) and relative deviations to square in (8). These will be the values used in Section

5 for the computational results.

3. Formulation of the attacker problem

Once either problem (6) or (8) has been solved, the released cell values are x = a+z.

To recompute the original values a, the attacker should know z, i.e, the solution of

either (6) or (8). For this purpose, the attacker should know all the parameters of

the above optimization problems. In practice, however, once the table is published,

the attacker only knows

• the released values x;

• the structure of the table, that is, the constraint matrix T .

For the rest of parameters the attacker may only have partial information:

• the particular distance used may be unknown, that is, which of the two

problems were solved by the data protector, either (6) or (8); however, pro-

viding information about the distance used may be seen as a good practice,

so we considered it is known by the attacker;

• cell weights w(a) are unknown, since they depend on the original data;

• the lower and upper bounds (l+(a), l−(a), u+(a), u−(a) in (6), u(a), l(a) in

(8)) are unknown because: (i) they depend on a; (ii) the set of sensitive
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cells S is unknown to the attacker; (iii) the a priori assignment of yi will

also be unknown to the attacker.

The goal of the attacker is then to obtain a good estimate â of a. In this context,

a good estimate may have two meanings: either to obtain the original value ai for

some sensitive cell, or —the weaker condition— a value not too far from ai. Both

meanings will be analyzed in the computational results. To get such an estimate

the attacker should try to recompute â from x by using that x = a+z was obtained

from the solution of (1)–(2). From (2), the problem to be solved by the attacker is

thus

min
â

||â − x||L(w)

s. to T â = b

lai
≤ âi ≤ uai

i ∈ N

(âi ≤ xi − upli) or (âi ≥ xi + lpli) i ∈ S.

(9)

Defining ẑ = x−â as the estimate of the cell deviations, such that x−ẑ = (a+z)−ẑ =

â, problem (9) can be formulated in terms of ẑ as

min
ẑ

||ẑ||L(w)

s. to T ẑ = 0

l̂(x) ≤ ẑ ≤ û(x),

(10)

where

l̂i(xi) =

{

upli(xi) if i ∈ S and yi = 1

xi − uai
if (i ∈ N \ S) or (i ∈ S and yi = 0)

ûi(xi) =

{

−lpli(xi) if i ∈ S and yi = 0

xi − lai
if (i ∈ N \ S) or (i ∈ S and yi = 1),

(11)

for i ∈ N . Note that the data protector and attacker problems (4) and (10) are

very similar, the only change being the definition of the bounds (5) and (11), which

depend on ai and xi, respectively. This also holds for the upper and lower protection

levels, which are a function of ai in (5) and of xi in (11). Specializing the general

model (10), the final problem to be solved by the attacker for L1would be

min
ẑ+,ẑ−

n
∑

i=1

wi(xi)(ẑ
+
i + ẑ−i )

s. to T (ẑ+ − ẑ−) = 0

l̂+(x) ≤ ẑ+ ≤ û+(x)

l̂−(x) ≤ ẑ− ≤ û−(x),

(12)
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where

l̂+i (xi) =

{

upli(xi) if i ∈ S and yi = 1

0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

û+
i (xi) =

{

0 if i ∈ S and yi = 0

xi − lai
if (i ∈ N \ S) or (i ∈ S and yi = 1)

l̂−i (xi) =

{

lpli(xi) if i ∈ S and yi = 0

0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

û−

i (xi) =

{

0 if i ∈ S and yi = 1

uai
− xi if (i ∈ N \ S) or (i ∈ S and yi = 0),

(13)

for i ∈ N . For L2 the attacker problem would be

min
ẑ

n
∑

i=1

wi(xi)ẑ
2
i

s. to T ẑ = 0

l̂(x) ≤ ẑ ≤ û(x),

(14)

l̂(x), û(x) defined as in (11). Note that wi(xi) instead of wi(ai) were used in the

objective functions of (12) (14) since ai are unknown to the attacker. Similar deriva-

tions could be done for more general perturbation approaches (e.g., combining

stochastic noise with controlled adjustment).

Problems (6) and (12) for L1, and (8) and (14) for L2 to be solved by the data

protector and attacker only differ in the objective function (wi(ai) vs wi(xi)) and

the bounds ((7) vs (13), and (5) vs (11)). If the attacker had full information about

the objective and bounds the solution of the problem would be ẑ = z. However

he/she has to approximate the values that depend on a (objective function weights

and bounds on variables) from x. To estimate bounds from x, the attacker should

also know:

• how the protection levels upli and lpli depend on a, to use the same rule

for x;

• the cell bounds lai
and uai

, or rather, the difference ai − lai
and uai

− ai

i ∈ N ;

• the set of sensitive cells S;

• the values yi ∈ {0, 1} used by the data protector.

Therefore, we may consider different scenarios according to the knowledge of the

attacker. In this work (in particular, in the computational results of Section 5)

we will consider the four following scenarios (where “B” and “C” are related to,

respectively, changes in Bounds and Costs of the optimizations problems):

B. The attacker has incomplete information about both the bounds and ob-

jective function. We have three subscenarios, listed below. In all these sub-
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scenarios we assume the attacker knows the subset S of sensitive cells, and

the original cell bounds lai
and uai

, i ∈ N (which are quite strong assump-

tions), but not ai − lai
and uai

− ai i ∈ N .

B1. The attacker neither knows the protection levels upli, lpli, i ∈ S, nor

the protection sense yi ∈ {0, 1}, i ∈ S.

B2. The attacker knows the protection sense yi ∈ {0, 1}, i ∈ S, but not the

protection levels upli, lpli, i ∈ S.

B3. The attacker knows both the protection sense yi ∈ {0, 1} and protec-

tion levels upli, lpli, i ∈ S. The only unknown terms to reproduce the

real bounds are then ai − lai
and uai

− ai, i ∈ N .

C. The attacker has complete information about the bounds, i.e, he/she knows

l̂i(ai), ûi(ai), l̂+i (ai), û+
i (ai), l̂−i (ai), û−

i (ai), i ∈ N , and the only uncertainty

is in the use of wi(xi) instead of wi(ai). Note this is a very strong assump-

tion, since it means the attacker knows or has accurate information about

the original cell values a.

In addition, since the attacker knows x is a perturbation or adjustment of the

true value a, he/she may try to consider different values x̃ around x (either ran-

domly, or using some distribution for x if this information is at hand for some

particular data) to get a closer estimate ẑ. Therefore we will consider that several

attacker problems (12) and (14) for w(x̃), l̂(x̃), û(x̃), l̂+(x̃), û+(x̃), l̂−(x̃) and û−(x̃)

will be solved by the attacker.

If the solutions of the data protector and attacker problems are close, the method

will have a high disclosure risk. As shown above, both problems only differ in the

objective function and in the lower and upper bounds. The question is thus how

close will be both solutions? Next two sections answer this question theoretically

and empirically, respectively.

4. Theoretical analysis of the disclosure risk

The attacker problems (12) and (14) and the data protector problems (6) and (8)

only differ in the objective function weights, and in the upper and lower bounds.

The attacker problem can thus be seen as a perturbed version of the data protector

problem, and could be written, in general, as the following convex optimization

problem:

f(ǫw, ǫl, ǫu) = min
z

||z||L(w+ǫw)

s. to Tz = 0

l + ǫl ≤ z ≤ u + ǫu,

(15)

where ǫw, ǫl, ǫu,∈ R
n denote the perturbation of the weights and lower and upper

bounds. Although we will focus on the general model (15), we also provide the
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explicit perturbed formulation for the L1 and L2 norms:

min
z+,z−

(w + ǫw)T z+ + (w + ǫw)T z−

s. to T (z+ − z−) = 0

l+ + ǫ+l ≤ z+ ≤ u+ + ǫ+u
l− + ǫ−l ≤ z− ≤ u− + +ǫ−l ,

(16)

for L1, and

min
z

zT (W + E)z

s. to Tz = 0

l + ǫl ≤ z ≤ u + ǫu

(17)

for L2, where ǫu, ǫ+l , ǫ+u , ǫ−l , ǫ−u ∈ R
n, and W = diag(w) ∈ R

n×n, E = diag(ǫ) ∈

R
n×n are diagonal matrices,

Problem (15) consists on the minimization of a convex objective function over

a feasible region defined by the polyhedral set S = {z ∈ R
n : Tz = 0, l + ǫl ≤ z ≤

u+ǫu}. S is bounded since all variables are lower and upper bounded. f is also lower

bounded by 0, since it is the minimization of a norm. For (ǫw, ǫl, ǫu) = (0, 0, 0), (15)

is equal to (4) and provides the protected solution of optimal objective function

f(0, 0, 0). If (ǫw, ǫl, ǫu) 6= (0, 0, 0) we will obtain a different solution, of optimal

objective f(ǫw, ǫl, ǫu). Optimization theory provides several information about f ,

which are summarized without proof in the following theorem:1,16

Theorem 1. Given the convex optimization problem (15), then

(1) The optimal objective f is a convex function of ǫl, ǫu.

(2) If the objective function is linear (L1 norm), then f is a piecewise linear convex

function of ǫl, ǫu.

(3) The optimal objective f is a concave function of ǫw.

(4) If the objective function is linear (L1 norm), then f is a piecewise linear concave

function of ǫw.

(5) If µl ∈ R
n and µu ∈ R

n are the nonnegative Lagrange multiplier vectors of the

inequalities (lower and upper bounds, respectively), then the local change of f

at (ǫw, ǫl, ǫu) = (0, 0, 0) is

∇ǫl
f(ǫw, ǫl, ǫu) = −µl ∇ǫu

f(ǫw, ǫl, ǫu) = µu. (18)

From Theorem 1, perturbations in the bounds change the objective function

according to the Lagrange multipliers µl and µu of the bounds constraints. Since

both bounds can not be active (except when they are the same, but in this case the

value zi, i ∈ N , is fixed and it is no longer a variable), we have from the optimality

conditions of an optimization problem that either µli = 0 or µui
= 0, i ∈ N . If the

one-norm of the vector (µl, µu) (information reported in Table 1 of Section 5 for all

the test instances) is close to 0, then the optimal solution may not be affected by

small changes in the bounds. In general, however, even small changes to the bounds
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would change the optimal solution. This result only gives a local explanation; it does

not explain what would happen to the optimal solution when the perturbations are

large. This analysis is better done empirically, as in below Section 5, using the

scenarios B1, B2 and B3 described in Section 3.

Clearly, changes in the weights due to ǫw also affect the optimal objective. As

in the case of changes in the bounds due to ǫl , ǫu, our interest is in the optimal

solution, not the optimal objective. However the situation is now a bit different:

changes in the active bounds would in general mean a different solution, but this

may not happen when we change the objective function (mainly if the change is

small). For instance, for LPs (L1 norm), optimal solutions are found in a vertex

of the feasible polyhedral set S, and this vertex can be optimal for several similar

objective functions. For QPs (L2) the situation is not so straightforward; the optimal

solution may be even in the interior of S. Section 5 analyzes this situation, which

corresponds to the scenario C of Section 3. As suggested by theory, it will be shown

that the values obtained by the attacker are equal to the true values in many cases

for L1 and scenario C (considering small changes in the weights); therefore, for

scenario C, the disclosure risk of the method is very high.

Table 1. Dimensions, solution times of all the runs, and ||µ||1, for the test instances.

L1 L2

instance n s m nz CPU ||µ||1 CPU ||µ||1

australia ABS 24420 918 274 13224 55.43 97.12 36.16 0
bts4 36570 2260 36310 136912 1219.97 10.8 1006.14 0

cbs 11163 2467 244 22326 29.26 270.69 51.95 24.19

dale 16514 4923 405 33028 102.23 2811.44 74.98 26.69

destatis 5940 621 1464 18180 185.32 43.23 254.98 20.26

hier13 2020 112 3313 11929 127.19 0.72 88.25 0

hier13x13x13a 2197 108 3549 11661 73.5 1.4 85.43 0.02

hier13x13x7d 1183 75 1443 5369 36.2 0.84 27.02 0

hier13x7x7d 637 50 525 2401 6.53 0.35 6.19 0

hier16 3564 224 5484 19996 541.69 1.78 429.36 0

hier16x16x16a 4096 224 5376 21504 676.15 5.44 607.93 0.04

nine12 10399 1178 11362 52624 1559.99 5.02 1105.86 0

nine5d 10733 1661 17295 58135 885.92 10.54 1172.9 0

ninenew 6546 858 7340 32920 832.61 3.94 909.22 0

osorio 10201 7 202 20402 59.6 9.38 30.54 0.01

table1 1584 146 510 4752 16.07 16.95 11.13 0

table3 4992 517 2464 19968 335.48 1298.26 443.69 25.75

table4 4992 517 2464 19968 331.77 1298.26 430.72 25.75

table5 4992 517 2464 19968 330.61 1298.26 429.31 25.75

table6 1584 146 510 4752 15.19 16.94 12.3 0

table7 624 17 230 1872 6.78 20.27 4.69 29.49

table8 1271 3 72 2542 6.88 0.08 4.75 0

targus 162 13 63 360 1.82 4.15 1.53 0.46
toy3dsarah 2890 376 1649 9690 95.52 0 73.05 0
two5in6 5681 720 9629 34310 345.26 7.4 368.32 0
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5. Empirical analysis of the disclosure risk

For the empirical assessment we have considered a set of both real and synthetic

25 instances widely used in the literature about statistical data protection.2,4 They

can be obtained from http://webpages.ull.es/users/casc/#CSPlib:. Table 1

shows the main dimensions of these tables: number of cells (column n), number

or sensitive cells (s), number of tabular constraints (m), and number of nonzero

coefficients in the matrix of tabular constraints (“nz”).

Table 2. Results for scenario B1 and norm L1. For each instance and different intervals of
the values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell
value of sensitive cells), the table gives the percentage of sensitive cells within each interval.
Results shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 0.0 1.2 1.3 37.4 5.9 6.3 10.3 37.3

bts4 0.0 9.1 24.0 24.8 20.5 19.3 2.1 0.1
cbs 0.0 4.3 4.6 8.8 8.4 19.6 32.9 21.4
dale 0.0 4.0 4.0 8.1 9.7 15.5 24.4 34.3
destatis 0.0 15.3 17.1 23.7 18.6 17.1 6.6 1.6
hier13 0.0 28.3 15.5 26.5 17.8 11.2 0.7 0.0
hier13x13x13a 0.0 28.7 14.6 26.5 20.5 9.5 0.2 0.0
hier13x13x7d 0.0 22.0 15.2 19.1 22.8 18.4 2.5 0.0
hier13x7x7d 0.0 17.2 22.0 20.8 22.4 16.6 1.0 0.0
hier16 0.0 22.2 20.0 20.9 19.2 16.5 1.1 0.1
hier16x16x16a 0.0 22.1 21.2 19.7 19.2 16.6 1.2 0.0
nine12 0.0 17.2 14.4 23.2 22.8 20.0 2.0 0.3
nine5d 0.0 21.3 20.4 27.2 19.9 10.8 0.4 0.0
ninenew 0.0 19.5 14.7 22.1 22.2 18.8 2.2 0.5
osorio 0.0 7.1 8.6 20.0 11.4 25.7 12.9 14.3
table1 0.0 17.3 17.5 21.8 23.5 14.7 2.6 2.7
table3 0.0 9.0 13.8 27.2 17.8 20.8 7.5 4.0
table4 0.0 9.0 13.8 27.2 17.8 20.8 7.5 4.0
table5 0.0 9.0 13.8 27.2 17.8 20.8 7.5 4.0
table6 0.0 17.3 17.4 21.8 23.4 14.7 2.6 2.7
table7 0.0 1.8 0.0 0.0 1.2 1.8 3.5 91.8
table8 0.0 16.7 10.0 20.0 20.0 30.0 3.3 0.0
targus 0.0 9.2 3.1 7.7 15.4 34.6 29.2 0.8
toy3dsarah 0.0 28.0 12.5 22.8 18.5 14.2 3.3 0.6
two5in6 0.0 18.8 21.4 26.8 20.3 12.0 0.7 0.2

Each instance was first protected by solving both (6) for L1 and (8) for L2,

using some a priori assignment of the binary variables (they were set to 1 for all

the sensitive cells). Note that no infeasibilities appeared in this phase. Weights

wi = 1/ai and wi = 1/a2
i were used for L1 and L2, respectively. From Theorem 1,

the local change in the objective function due to small changes in the lower and

upper bounds is governed by the Lagrange multipliers associated to these bounds.

Columns ||µ||1 of Table 1 show the one-norm of the vector of Lagrange multipliers

(µl, µu), for the L1 and the L2 problems. The zero values which appear are indeed
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Table 3. Results for scenario B1 and norm L2. For each instance and different intervals of
the values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell

value of sensitive cells), the table gives the percentage of sensitive cells within each interval.
Results shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 0.0 3.4 3.7 10.3 7.9 12.3 19.1 43.2
bts4 0.0 12.2 21.0 24.5 20.6 19.4 2.1 0.1
cbs 0.0 4.3 4.6 8.8 8.4 19.2 33.1 21.6
dale 0.0 4.0 4.0 8.1 9.7 15.5 24.4 34.3
destatis 0.0 9.0 9.3 23.1 22.6 24.4 9.5 2.1
hier13 0.0 25.4 17.3 27.8 17.8 11.1 0.7 0.0
hier13x13x13a 0.0 26.1 16.9 27.0 19.9 9.8 0.3 0.0
hier13x13x7d 0.0 19.7 13.6 23.1 22.7 18.1 2.8 0.0
hier13x7x7d 0.0 15.4 18.4 25.2 23.4 16.6 1.0 0.0
hier16 0.0 21.1 17.3 24.2 19.6 16.6 1.1 0.1
hier16x16x16a 0.0 19.2 19.8 23.9 19.2 16.8 1.0 0.0
nine12 0.0 15.1 14.7 24.7 23.3 20.1 1.8 0.3
nine5d 0.0 19.6 20.8 28.5 19.9 10.7 0.5 0.0
ninenew 0.0 15.8 14.7 24.2 22.6 19.8 2.5 0.5
osorio 0.0 2.9 5.7 12.9 11.4 20.0 18.6 28.6
table1 0.0 6.8 8.4 21.6 23.8 31.0 5.7 2.7
table3 0.0 11.1 13.2 23.0 19.4 21.5 7.8 4.1
table4 0.0 11.1 13.2 23.0 19.4 21.5 7.8 4.1
table5 0.0 11.1 13.2 23.0 19.4 21.5 7.8 4.1
table6 0.0 7.0 9.0 19.9 19.1 28.8 10.8 5.3
table7 0.0 0.6 0.0 1.2 0.0 3.5 4.1 90.6
table8 0.0 16.7 10.0 20.0 20.0 30.0 3.3 0.0
targus 0.0 7.7 6.2 11.5 23.1 36.2 15.4 0.0
toy3dsarah 0.0 9.7 10.1 22.1 18.4 18.0 6.1 15.6
two5in6 0.0 18.0 20.3 28.4 20.5 12.0 0.7 0.2

very small values, i.e., the objective function is not (too much) affected by small

changes ǫ in the bounds; this mostly happens for L2. L2, in general, also provides

smaller one-norms of µ.

Once the released values x = a + z were obtained from the solutions of (6)

and (8), we solved the attacker problems for the four different scenarios listed

in Section 3: B1, B2, B3 and C. For each of the 200 different tuples (instance,

distance, scenario) we considered ten realizations of the attacker problems for

different x̃i values, randomly obtained within the interval [xi (1 − β) , xi (1 + β)],

i ∈ N . We used as β the maximum relative deviation between the released val-

ues x and the original ones a, such that for all the cells i ∈ S, ai ∈ [xi(1 −

β), xi(1 + β)]. This is a realistic assumption, since the maximum relative de-

viation could be published by the data protector and thus known by the at-

tacker. For scenario B1 (unknown protection senses) the values yi are randomly

obtained from {0, 1} (equiprobable Bernoulli distribution). For scenarios B1 and

B2 (unknown protection levels) the lower and upper protection levels were ran-

domly obtained within the intervals
[

xi max
{

0, lpli
ai+δ

− ∆
}

, xi

(

lpli
ai+δ

+ ∆
)]

and
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Table 4. Results for scenario B2 and norm L1. For each instance and different intervals of
the values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell

value of sensitive cells), the table gives the percentage of sensitive cells within each interval.
Results shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 0.0 2.1 2.4 44.7 6.2 6.6 10.2 27.5
bts4 0.0 12.9 11.6 26.6 36.6 12.2 0.0 0.0
cbs 0.0 8.2 8.3 16.6 15.4 27.2 17.3 7.0
dale 0.0 7.9 7.9 16.4 16.1 16.9 18.5 16.3
destatis 0.0 24.2 17.7 28.1 16.4 11.4 2.0 0.2
hier13 0.0 1.4 2.8 9.8 53.4 32.6 0.0 0.0
hier13x13x13a 0.0 3.0 1.8 12.9 55.9 26.5 0.0 0.0
hier13x13x7d 0.0 3.7 4.4 19.7 49.1 23.1 0.0 0.0
hier13x7x7d 0.0 8.6 6.8 27.2 46.8 10.6 0.0 0.0
hier16 0.0 4.3 5.5 18.5 55.0 16.7 0.0 0.0
hier16x16x16a 0.0 4.8 4.9 21.7 50.3 18.3 0.0 0.0
nine12 0.0 14.7 11.9 25.8 34.2 13.2 0.1 0.0
nine5d 0.0 1.1 1.4 7.8 49.9 39.8 0.0 0.0
ninenew 0.0 10.9 9.3 24.3 39.7 15.7 0.1 0.0
osorio 0.0 18.6 15.7 25.7 17.1 5.7 12.9 4.3
table1 0.0 16.0 9.0 30.1 36.3 8.2 0.4 0.0
table3 0.0 11.1 11.9 22.9 33.2 19.6 1.2 0.0
table4 0.0 11.1 11.9 22.9 33.2 19.6 1.2 0.0
table5 0.0 11.1 11.9 22.9 33.2 19.6 1.2 0.0
table6 0.0 16.0 9.0 30.1 36.3 8.2 0.4 0.0
table7 0.0 0.0 1.2 1.2 1.8 9.4 15.3 71.2
table8 0.0 13.3 10.0 36.7 30.0 10.0 0.0 0.0
targus 0.0 10.8 6.9 20.8 40.0 18.5 3.1 0.0
toy3dsarah 0.0 2.2 2.3 19.4 58.6 17.5 0.1 0.0
two5in6 0.0 1.4 1.8 12.0 54.8 30.1 0.0 0.0

[

xi max
{

0, upli
ai+δ

− ∆
}

, xi

(

upli
ai+δ

+ ∆
)]

, respectively, δ being a small value for the

case ai ≈ 0. The above expressions are an attempt to apply to xi the same fraction

of protection that was applied to ai; since this is unknown to the attacker, an error

term ∆ is considered (∆ = 0.2 in all the runs performed). Possible infeasibilities de-

rived from the values x̃ are dealt with by reformulating the inequalities of (12) and

(14) as soft-constraints.8 This amounts to the solution of 1025 linear optimization

problems for L1 and 1025 quadratic optimization problems for L2 (including the

protection problems). The CPU time needed for all of them is shown in columns

“CPU” of Table 1. Since the problems do not involve binary variables they are very

efficiently solved. All runs were carried out on a Fujitsu Primergy RX300 server

with 3.33GHz Intel Xeon X5680 CPUs and 144 GB of RAM, under a GNU/Linux

operating system (Suse 11.4), without exploitation of parallelism capabilities (these

continuous LP and QP problems can also be solved in a much smaller laptop or

desktop PC). The interior-point algorithm of the CPLEX 12.4 optimization solver

was used for all the executions. Interior-point methods have shown to be the most

efficient approach for controlled tabular adjustment problems with L1 norms,2 and
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Table 5. Results for scenario B2 and norm L2. For each instance and different intervals of
the values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell

value of sensitive cells), the table gives the percentage of sensitive cells within each interval.
Results shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 0.0 6.1 5.9 13.1 10.2 14.9 23.1 26.4
bts4 0.0 13.0 11.6 26.7 36.7 12.1 0.0 0.0
cbs 0.0 8.5 8.6 17.4 16.6 25.6 16.7 6.5
dale 0.0 8.0 8.0 16.6 16.3 17.2 19.0 14.9
destatis 0.0 11.0 13.5 26.9 19.4 20.2 7.4 1.5
hier13 0.0 1.4 2.8 9.8 53.6 32.4 0.0 0.0
hier13x13x13a 0.0 3.0 1.8 12.9 55.9 26.5 0.0 0.0
hier13x13x7d 0.0 3.7 4.4 19.9 48.9 23.1 0.0 0.0
hier13x7x7d 0.0 8.6 6.8 27.2 46.8 10.6 0.0 0.0
hier16 0.0 4.3 5.5 18.5 55.0 16.7 0.0 0.0
hier16x16x16a 0.0 4.8 4.9 21.7 50.3 18.3 0.0 0.0
nine12 0.0 14.8 11.8 26.3 35.0 12.1 0.0 0.0
nine5d 0.0 1.1 1.4 7.9 50.3 39.3 0.0 0.0
ninenew 0.0 10.8 9.5 24.9 41.5 13.4 0.0 0.0
osorio 0.0 15.7 18.6 14.3 15.7 4.3 14.3 17.1
table1 0.0 4.5 2.0 10.8 11.6 19.1 51.6 0.3
table3 0.0 10.0 10.3 23.6 36.2 19.9 0.0 0.0
table4 0.0 10.0 10.3 23.6 36.2 19.9 0.0 0.0
table5 0.0 10.0 10.3 23.6 36.2 19.9 0.0 0.0
table6 0.0 1.3 1.2 6.2 8.4 23.4 59.0 0.5
table7 0.0 1.8 0.6 1.2 2.4 10.6 17.1 66.5
table8 0.0 13.3 10.0 36.7 30.0 10.0 0.0 0.0
targus 0.0 6.9 5.4 21.5 36.2 23.8 6.2 0.0
toy3dsarah 0.0 1.0 1.9 6.1 25.8 54.9 5.2 5.1
two5in6 0.0 1.3 1.8 12.1 54.7 30.0 0.0 0.0

are known to be the most efficient option for quadratic optimization problems (L2

norm).15

Tables 2–9 summarize the results obtained for the 2000 attacker problems solved.

We computed for each sensitive cell the ten percentage differences between a and â,

the true cell values and the ten attacker estimations, i.e., |âi−ai|/ai ·100, i ∈ S. The

particular estimation âi depends on the information assumed known by the attacker,

i.e., the scenario B1, B2, B3 or C, and the norm used, L1 or L2. Tables 2–9 provide,

for each of the four scenarios and two norms, the distribution (as percentages) of

the percentage differences between a and â, considering the intervals 0 (i.e., the

true value was re-computed by the attacker), (0,5], (5,10], (10,20], (20,30], (30,50],

(50,100] and (100,—], for all the ten realizations of each instance. Distributions

skewed to the left (long left tail, and the mass of the distribution is concentrated

on the right part, i.e., on medium-large intervals) mean the attacker could not get

good estimates, and the data can be considered safely protected. The opposite holds

for right-skewed distributions. The following conclusions can be derived from tables

2–9:
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Table 6. Results for scenario B3 and norm L1. For each instance and different intervals of the
values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell value

of sensitive cells), the table gives the percentage of sensitive cells within each interval. Results
shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 91.2 0.6 0.3 1.6 0.8 0.6 1.3 3.5
bts4 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cbs 94.9 0.1 0.1 0.1 0.1 3.6 0.9 0.3
dale 98.8 0.0 0.0 0.0 0.0 0.1 0.3 0.7
destatis 98.4 1.0 0.4 0.1 0.1 0.0 0.0 0.0
hier13 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x13a 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x7d 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x7x7d 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier16 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier16x16x16a 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nine12 99.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
nine5d 99.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0
ninenew 99.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0
osorio 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
table1 99.9 0.0 0.0 0.0 0.1 0.0 0.0 0.0
table3 99.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
table4 99.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
table5 99.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
table6 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
table7 83.5 0.0 1.2 5.9 5.9 0.0 0.0 3.5
table8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
targus 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
toy3dsarah 98.3 1.7 0.0 0.0 0.0 0.0 0.0 0.0
two5in6 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

• Scenarios B1 and B2 can be considered safe, in general. The estimate âi was

never equal to the true cell value ai, and the distribution is not concentrated on

the left intervals. Although scenario B1 should be safer than B2 (the attacker

has less information), in some cases the opposite holds (such as for instances

“hier*”). This was an unexpected result. Therefore, in principle, it can be con-

cluded that if the attacker has not good information about the protection levels

(and to which cells to apply them), then controlled adjustment methods exhibit

a low disclosure risk, and at the same time, a high data utility (as it was already

known).5

• Comparing L1 and L2, the latter seems to reduce the disclosure risk: the dis-

tribution is more left-skewed for L2 in scenarios B1 and B2. This is a new and

unexpected result (however, it cannot be generalized to other datasets). L2 is

thus a good candidate norm for controlled adjustment methods, since in some

instances it may exhibit both a lower disclosure risk and a higher data utility

than L1.

• On the other hand, for scenarios B3 and C the attacker was able to re-compute



17

Table 7. Results for scenario B3 and norm L2. For each instance and different intervals of the
values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell value

of sensitive cells), the table gives the percentage of sensitive cells within each interval. Results
shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 26.2 36.0 5.6 6.6 3.9 5.1 4.9 11.5
bts4 98.9 1.1 0.0 0.0 0.0 0.0 0.0 0.0
cbs 14.4 81.0 0.2 0.4 0.7 2.9 0.4 0.0
dale 57.2 41.2 0.1 0.2 0.2 0.4 0.8 0.0
destatis 13.8 53.3 5.0 8.4 7.4 11.0 1.1 0.0
hier13 90.7 9.3 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x13a 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x7d 84.0 16.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x7x7d 84.6 15.4 0.0 0.0 0.0 0.0 0.0 0.0
hier16 95.1 4.9 0.0 0.0 0.0 0.0 0.0 0.0
hier16x16x16a 93.4 6.6 0.0 0.0 0.0 0.0 0.0 0.0
nine12 93.3 6.7 0.0 0.0 0.0 0.0 0.0 0.0
nine5d 95.3 4.7 0.0 0.0 0.0 0.0 0.0 0.0
ninenew 95.4 4.6 0.0 0.0 0.0 0.0 0.0 0.0
osorio 10.0 51.4 0.0 5.7 2.9 7.1 7.1 15.7
table1 1.0 19.0 0.3 0.1 3.5 66.5 9.5 0.0
table3 95.3 4.7 0.0 0.0 0.0 0.0 0.0 0.0
table4 95.3 4.7 0.0 0.0 0.0 0.0 0.0 0.0
table5 95.3 4.7 0.0 0.0 0.0 0.0 0.0 0.0
table6 1.0 49.2 8.9 1.2 2.4 32.8 4.4 0.1
table7 41.8 36.5 5.9 7.6 5.3 1.2 1.2 0.6
table8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
targus 28.5 5.4 9.2 19.2 17.7 20.0 0.0 0.0
toy3dsarah 0.0 2.2 2.4 18.1 67.6 6.5 2.5 0.7
two5in6 96.9 3.1 0.0 0.0 0.0 0.0 0.0 0.0

in almost 100% of the cases the original values a. For instance, for scenario

C and norm L1, a 100% of success was obtained by the attacker in most of

the instances; similar figures are shown for (B2, L1). Results are slightly better

when L2 is used (as stated above), but the disclosure risk is still very high.

Therefore, it can be concluded that if the attacker has good information about

the protection levels, protection senses, set of sensitive cells, and lower and

upper bounds, then controlled adjustment methods exhibit a high disclosure

risk. Although it could be stated that we are assuming the attacker has “too

much” information, it is worth to keep in mind the above recommendation when

protecting data through these techniques.

• Scenario C assumes the attacker perfectly knows the bounds of problems (12)

and (14), the only uncertain parameters being in the objective function. Ac-

cording to Section 4, different objective functions may theoretically provide

different (even very different) solutions. However, as observed empirically, this

is not happening.

• It is worth to remind that we are assuming in all the scenarios tested that the
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Table 8. Results for scenario C and norm L1. For each instance and different intervals of the
values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell value

of sensitive cells), the table gives the percentage of sensitive cells within each interval. Results
shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 55.0 0.4 0.6 1.3 1.3 1.1 39.3 0.7
bts4 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cbs 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dale 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
destatis 99.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0
hier13 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x13a 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x7d 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier13x7x7d 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier16 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier16x16x16a 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nine12 99.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
nine5d 99.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0
ninenew 99.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0
osorio 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
table1 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
table3 99.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
table4 99.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
table5 99.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
table6 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
table7 0.0 0.0 0.0 0.0 0.0 58.8 41.2 0.0
table8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
targus 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
toy3dsarah 97.7 1.9 0.1 0.2 0.0 0.2 0.0 0.0
two5in6 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

attacker knows: (1) which is the subset S ⊆ N of sensitive cells; and (2) the

lower and upper cell bounds lai
and uai

for all cells i ∈ N . Without these

assumptions, extra randomness would be added to the attacker problems, thus

reducing the disclosure risk.

6. Conclusions

The disclosure risk of controlled adjustment methods for statistical tabular data

never before had been analyzed empirically, and few results only based on the

theory of optimization could be found in the literature. This work presented such

an empirical assessment of the disclosure risk of controlled adjustment methods. The

main conclusion is that, as observed from the extensive computational results, if the

attacker does not have good knowledge on the original data, he/she could hardly

obtain good estimates of the sensitive cells, in general. However, if the attacker has

good information about the protection levels and which are the sensitive cells, or

he/she knows the lower and upper bounds of the optimization problem (which is a

stronger condition), then the method has a high disclosure risk. We also observed,
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Table 9. Results for scenario C and norm L2. For each instance and different intervals of the
values |âi − ai|/ai · 100, i ∈ S (percentage difference between the real and estimated cell value

of sensitive cells), the table gives the percentage of sensitive cells within each interval. Results
shown for all the attacker problems.

instance 0 (0,5] (5,10] (10,20] (20,30] (30,50] (50,100] (100,—]

australia ABS 31.4 18.2 2.1 3.2 2.5 4.7 37.0 0.7
bts4 99.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
cbs 44.7 55.2 0.0 0.0 0.0 0.0 0.0 0.0
dale 84.2 15.7 0.0 0.0 0.0 0.0 0.0 0.0
destatis 31.9 11.2 1.4 18.6 36.9 0.0 0.0 0.0
hier13 98.2 1.8 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x13a 94.4 5.6 0.0 0.0 0.0 0.0 0.0 0.0
hier13x13x7d 97.3 2.7 0.0 0.0 0.0 0.0 0.0 0.0
hier13x7x7d 81.2 18.8 0.0 0.0 0.0 0.0 0.0 0.0
hier16 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hier16x16x16a 99.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
nine12 97.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0
nine5d 98.6 1.4 0.0 0.0 0.0 0.0 0.0 0.0
ninenew 97.4 2.6 0.0 0.0 0.0 0.0 0.0 0.0
osorio 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
table1 0.0 10.0 0.0 0.0 0.0 87.2 2.8 0.0
table3 95.5 4.5 0.0 0.0 0.0 0.0 0.0 0.0
table4 95.5 4.5 0.0 0.0 0.0 0.0 0.0 0.0
table5 95.5 4.5 0.0 0.0 0.0 0.0 0.0 0.0
table6 0.0 0.7 0.0 3.7 7.0 85.5 3.2 0.0
table7 31.8 32.4 7.1 10.6 1.2 2.4 7.1 7.6
table8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
targus 97.7 2.3 0.0 0.0 0.0 0.0 0.0 0.0
toy3dsarah 0.0 2.7 2.3 23.4 63.2 7.6 0.6 0.1
two5in6 99.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

unexpectedly, that L2 in general provides solutions of lower disclosure risk, which

combined with the good data utility exhibited by this norm,5 makes it a suitable

choice for controlled tabular adjustment.
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