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Abstract

Random simulations from complicated combinatorial sets are often needed in many classes
of stochastic problems. This is particularly true in the analysis of complex networks, where
researchers are usually interested in assessing whether an observed network feature is expected
to be found within families of networks under some hypothesis (named conditional random
networks, i.e., networks satisfying some linear constraints). This work presents procedures
to generate networks with specified structural properties which rely on the solution of classes
of integer optimization problems. We show that, for many of them, the constraints matrices
are totally unimodular, allowing the efficient generation of conditional random networks by
specialized interior-point methods. The computational results suggest that the proposed
methods can represent a general framework for the efficient generation of random networks
even beyond the models analyzed in this paper. This work also opens the possibility for other
applications of mathematical programming in the analysis of complex networks.

Key words: Linear Programming, Interior-Point Methods, Integer Programming, Complex
Networks, Social networks analysis, Total unimodularity, Central path

1. Introduction

The use of random simulation is quite common when statistically studying properties
of highly combinatorial sets. In many of those cases, closed-form expressions are hard to
be found and the availability of efficient and correct simulation procedures might be of
remarkable importance.

This is particularly true in the analysis of complex networks, an interdisciplinary field
which brings together tools and methods from discrete mathematics and computer science
with a great concern toward empirical applications, among others, in business, marketing,
epidemiology, engineering, etc. Researchers are often interested in assessing the hypothesis
of whether a particular network property is likely to appear under a uniform distribution
of all networks verifying given constraints, named conditional random networks [4]. In the
absence of closed-form expressions (as it is often the case for most of random network models),
large random samples of networks satisfying particular properties are required to test these
hypotheses. This work introduces novel procedures to generate this sample, based on linear
and integer optimization. They result in a general approach for random network simulation,
which outperforms in versatility some currently available methods.
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Following the standard notation [2], a graph G = (V,E) is defined by a finite set V of
n nodes, and a set of m pairs of them E ⊆ V × V , named edges or arcs. A graph can be
represented by a n× n binary matrix X, called adjacency matrix (AM from now on), whose
(i, j)-entry, xij , is equal to 1 if there is a link between nodes i and j, and 0 otherwise. We will
assume the graph has no loops, so that the diagonal of X is null. A network is a graph whose
arcs or nodes have associated numerical values (arc costs, arc capacities, node supplies, etc).
In this work we will make no distinction and the two terms “graph” and “network” will be
used as synonyms.

The study of random graphs begins with the seminal work of P. Erdös and A. Rainyi [11],
who considered a fixed set of nodes and an independent and equal probability of observing
edges among them. There are two closely related variants of the Erdös-Rainyi model:

• the G(n, p) model, where a network is constructed by connecting nodes randomly with
independent probability p;

• the G(n,m) model, where a network is chosen uniformly at random from the collection
of all graphs with n nodes and m edges.

Both models possess the considerable advantage of being exactly solvable for many of their
average properties: clustering coefficient, average path length, giant component, etc. (For
more details about network properties, see Bollobas [4], and Wasserman and Faust [34].)
In other words, the expectation of many structural properties of networks generated by the
Erdös-Rainyi processes is analytically obtainable. Conditional uniform models can be seen
as a generalization of the G(n,m) model, when the conditioning information is not necessar-
ily the number of edges but whatever other arbitrary network property. Unfortunately, in
this case we have very few analytical results and simulation is required to obtain empirical
distributions of their average properties.

Although other Operations Research tools have been used in the context of social net-
works [3, 13], as far as we know, this work is the first attempt to use linear and integer
optimization for the generation of several classes of conditional random graphs. Previous
approaches, developed within the fields of mathematical and computational sociology, were
ad hoc procedures for some particular types of networks, in general difficult to generalize
and not very efficient. For instance, the distribution of all networks conditioned to the nodes
in- and out-degree have difficult combinatorial properties, as its analytical study involves
binary matrices with fixed marginal rows and columns. In this respect, some combinatorial
results have been obtained by Ryser [29], who derived necessary and sufficient conditions for
two vectors of non-negative integers to constitute the row sums and column sums of some
zero-one matrix. On the other hand, ways to generate uniform random networks with given
degree distribution were developed in [31, 26, 8, 28, 33], although they were computationally
expensive and prohibitive for very large AMs.

In practice one would like to go even further in conditioning, which however leads to
self-defeating attempts because of combinatorial complexity. This work provides a general
methodological framework to generate networks with constraints, representing structural fea-
tures we wish to control for.

Let xij be entries of the AM of either a directed or undirected graph with no loops or
multiples edges. The AM is an element of the set of binary matrices

χ = {xij ∈ {0, 1}, (i, j) ∈ H},

where H = {(i, j) : 1 ≤ i ≤ n− 1, i < j ≤ n} for undirected graphs
or H = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j} for directed graphs.

(1)
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The continuous relaxation of χ, name it CR(χ), is obtained by replacing xij ∈ {0, 1} by
xij ∈ [0, 1], in (1). Clearly, all extreme points of CR(χ) are integer. If we consider a
conditional graph by adding extra linear constraints to χ, then CR(χ) may contain fractional
extreme points, unless its constraints matrix is totally unimodular (TU, from now on). As
shown in [15], the next theorem provides sufficient conditions for a matrix to be TU:

Theorem 1. Let A ∈ {−1, 0, 1}m×n be a matrix obtained by elementary operations of B ∈
Zm×n and consider a partition of the rows of A in two disjoint sets J1 and J2. The following
three conditions together are sufficient for B to be TU:

1. Every column of A contains at most two non-zero entries, which are either 1 or −1.

2. If two non-zero entries in a column of A have the same sign, then the row of one is in
J1, and the other in J2.

3. If two non-zero entries in a column of A have opposite signs, then the rows of both are
either in J1 or J2.

The above theorem will be extensively used in next section. More details on unimodularity
in integer programming can be found in [30]. If the constraints matrix of CR(χ) is TU, each
extreme point of CR(χ) represents a graph. Therefore, it is possible to generate a bunch
of graphs by merely solving linear programs (LP) with random gradients in the objective
function, or by non-degenerated simplex pivoting, starting from a given initial extreme point
[24]. Moreover, they can be generated in polynomial time if interior-point methods are used
[35].

The paper is organized as follows. Section 2 is devoted to the characterization of the
convex hull of polytopes associated to some families of conditional random networks. We
will differentiate between families whose constraints are TU, and those which may give rise
to fractional AMs. Supported by these results, Section 3 presents two particular procedures
for the generation of conditional random networks, and analyzes the probability distribution
of the LP solutions. Section 4 illustrates these techniques using some real-world data sets.

Throughout the paper we denote the vector of variables associated to the components
of the AM as either xT =

[
x12, . . . , x1n, x23, . . . , x(n−1)n, x21, . . . , xn(n−1)

]
(i.e., the rowwise

upper triangle of AM followed by its columnwise lower triangle) for directed graphs, or
xT =

[
x12, . . . , x1n, x23, . . . , x(n−1)n

]
(only the rowwise upper triangle of AM) for undirected

graphs.

2. Total unimodularity of constraints from some conditional random networks

Let χ be the set of AMs of a family of either directed or undirected networks with n
nodes, and let CR(χ) be its continuous relaxation. For about twenty families of networks
the extreme points of CR(χ) can be seen to be integer. Although making an extensive list
of all these families is out of the scope of this work, some of the most relevant ones will be
discussed in the following subsections.

Next Proposition 1, which provides a sufficient condition for the existence of a bijection
between extreme points of CR(χ) and the set of feasible networks, will be useful to show
that some constraints matrices are TU.

Proposition 1. For a given family of either directed or undirected networks with n nodes,
let F ∈ R

l×m, be a matrix of l ≤ m linear constraints characterizing the family of networks
under consideration, where m = n(n − 1) or m = n(n − 1)/2 for, respectively, directed and
undirected networks. Let CR(χ) = {x ∈ [0, 1]m : Fx = b} be the continuous relaxation of the
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constraints. If b is integer and F can be reduced by elementary row operations to a matrix,
call it F ′, with a unique unitary element (either +1 or −1) per column and all the elements
of the same row with the same sign, then there is a bijection between the extreme points of
CR(χ) and the set of networks under consideration.

Proof. In standard form, the system of linear constraints associated to CR(χ) is

[
I I

F ′

] [
x

s

]
=

[
e

b

]
,

[
x

s

]
≥ 0. (2)

From Theorem 1, the constraints matrix of (2) is TU by considering the following partition
of rows: set the first m rows (associated to the identities) in J1; if elements of row i of F ′ are
negative, then set this row in J1; otherwise, if they are positive, set the row in J2. Therefore,
all extreme points of CR(χ) are integer and they correspond to the AM of a network. In
addition, no integer point may be located in the interior of CR(χ) since it is a subset of the
unit hypercube, completing the proof.

In some cases there is no bijective relation between a family of conditional random net-
works and the extreme points of its polyhedron, since some basic solutions may be fractional.
However, if we can ensure that no integer solution is in the interior of the polyhedron, this
injective relation (i.e., any random network is associated to an extreme point, but not the
opposite) is still useful, whenever some kind of acceptance-rejection technique is considered
for fractional solutions. This is the case, for instance, of networks conditioned to the within
group densities and in-and-out-degrees, which will be considered in Subsection 4.3.

2.1. Basic models of networks conditioned to linear constraints

One of the simplest cases is that of networks conditioned to the density d. The following
result is immediate by noting that the system of linear constraints characterizing CR(χ)
verifies the hypotheses of Proposition 1:

Proposition 2. Let CR(χ) = {x ∈ [0, 1]m :
∑

(i,j)∈H xij = d}, where H defined in (1) either
relates to a directed or undirected graph. Then there is a bijection between the extreme points
of CR(χ) and the set of graphs with n nodes and density d.

In some situations, nodes might be partitioned into g different groups, γ1, . . . , γg and our
interest might be to keep the within-group densities fixed when simulating random networks.
Let Γ be the set of such groups and consider a function, θ : V × V → Γ × Γ, associating
to each pair of nodes the pair of groups they belong to. The density constraint between
group γk and γh, 1 ≤ k ≤ g, k ≤ h ≤ g, is

∑
(i,j)∈H:θ(i,j)=(γk,γh)

xij = dkh, where dkh is
a non-negative integer. Note that when k = h we have a within group density constraint,
otherwise a between group density constraint. Since the linear constraints characterizing
these networks verify the hypotheses of Proposition 1, the following proposition holds:

Proposition 3. Let CR(χ) = {x ∈ [0, 1]m :
∑

(i,j)∈H:θ(i,j)=(γk,γh)
xij = dkh, 1 ≤ k ≤ g, k ≤

h ≤ g}. Then there is a bijection between the extreme points of CR(χ) and the set of graphs
with n nodes and within and between group densities dkh.

Another widely studied family of networks is that of undirected networks with fixed de-
gree sequence [20, 21, 22], whose associated set of AMs is χ = {x ∈ {0, 1}m :

∑i−1
j=1 xji +∑n

j=i+1 xij = fi, i = 1 . . . n}, where fi is the degree of node i. Denoting these linear con-
straints as Fx = f , we see that each column of F has two +1, thus it does not verify the
hypothesis of Proposition 1, and the constraints matrix is not TU.
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However, if we only add the constraints associated to the degrees of two particular nodes—
with optionally the constraint associated to the number of edges (density)—the resulting
matrix is TU by Proposition 1. The information we are conditioning in this case can be
seen as a lower bound of the distance between the maximum and minimum degrees. Next
proposition summarizes this result.

Proposition 4. Let i1, i2 ∈ V be two nodes with degrees fi1 and fi2 , f̃i1 and f̃i2 their
degrees without considering the arcs (i1, i2) and (i2, i1), and d the total number of edges in
the network. Let J(k, h) = {j : 1 ≤ j ≤ n, j 6= k, j 6= h} and CR(χ) = {x ∈ [0, 1]m :∑

(i,j)∈H xij = d;
∑

j∈J(i1,i2)
xij = f̃i, i = i1, i2}. Then, there is a bijection between the

extreme points of CR(χ) and the set of graphs with n nodes, d edges and degree range greater
than or equal to |fi1 − fi2 |. This same result holds if the density constraint

∑
(i,j)∈H xij = d

is removed from CR(χ).

2.2. Conditional edge-colored networks

The researcher might sometimes be interested in studying networks whose edges are as-
sociated to a categorical value (color), generally known under the name of edge-colored net-
works. The study of edge-colored graphs (i.e., graphs with different types of edges) has
given rise to important developments during the last few decades. From the point of view
of applicability, problems arising in molecular biology are often modeled using edge-colored
graphs [25], and the problem of interpersonal ties in social networks might be also modeled
considering different types of arcs [14].

Let C be a given set of colors, |C| ≥ 2. Formally, an edge-colored graph is a tuple
GC = (V,E, τ), where V and E are the sets of nodes and edges, respectively, and τ : E −→ C
a function assigning a color to each edge. They are, in some sense, related to multicommodity
networks. Edge-colored graphs can be modeled as

|C|∑

c=1

xcij ≤ 1 (i, j) ∈ H

xcij , x
c
ji ∈ {0, 1} (i, j) ∈ H, c = 1, . . . , |C|

(3)

where xcij is 1 if an arc with color c from node i to node j exists, and 0 otherwise, and H
was defined in (1). The first set of constraints of (3) —multicommodity or generalized upper
bounding constraints— complicate the structure of the constraints matrix for some structural
properties, such as the total number of edges, the number of edges per color, and the lower
bound of the degree range.

In the case of edge-colored networks conditioned to having dc edges per color c, the
constraints

∑
(i,j)∈H2 xcij = dc, c = 1, . . . , |C| should be included.

Proposition 5. By adding within-color densities constrains the coefficient matrix associated
to system (3) becomes




I I
I I

. . .
. . .

I I

F
F

. . .

F

G G . . . G I







x1

x2

...

x|C|

s1

s2

...

s|C|




=




e

e
...
e

d

e




. (4)
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where d ∈ Z
|C| is the vector of within-color densities, F = eT and G = I. As matrix

F ′ = [e I]T verifies the conditions of Proposition 1, the coefficient matrix of (4) is TU.

Note that the slack of the inequality of
∑|C|

c=1 x
c
ij ≤ 1 is obtained in (4) by defining

an auxiliary color with no specified within-color density, ca and an extended set of colors
C∗ = C⋃{ca}.

The two models of networks described in propositions 3 and 5 can be combined to ob-
tain another family of network which is also characterized by a TU system. Consider an
edge-colored network where nodes are partitioned into g different groups: γ1, . . . , γg. Since
the connections within members of the same group might have different colors, our inter-
est is to keep the within-color and between-group (or within-group) densities fixed when
simulating random networks. The number of c-color edges between group γk and γh, is∑

(i,j)∈H2:θ(i,j)=(γk,γh)
xcij = dckh, where dckh is a non-negative integer, for c ∈ C, 1 ≤ k ≤ g,

k ≤ h ≤ g. Note that when k = h we have a within group density constraint, otherwise a
between group density constraint. This system of linear constraints verifies the hypotheses
of Proposition 1.

Proposition 6. Consider the edge-colored undirected graph conditioned to the within-color
and within-group densities. Let CR(χ) be the subset of the m-dimensional unitary cube (that
is x ∈ [0, 1]m), verifying the following system

∑

c∈C

xcij ≤ 1 (i, j) ∈ H2

∑

θ(i,j)=(γk,γk)

xcij = dck c ∈ C, 1 ≤ k ≤ g

∑

(i,j)∈H2

xcij = dc c ∈ C

xcij , x
c
ji ∈ {0, 1} (i, j) ∈ H2, c ∈ C

(5)

whose corresponding extended matrix form is equal to (4), except for the fact that d ∈ Z
|C|(g+1)

is now the vector of within-color and within-group densities and F ∈ {0, 1}g+1×m is a matrix
which can be reduced by elementary row operations to contain a unique unitary element of the
same sign per column. As F ′ = [F I]T verifies the conditions of Proposition 1 the described
system is TU.

Another case in which (4) is TU is obtained when the linking constraints are associated
to the within-color degree of two nodes and within-color densities, as the family of network
described in Proposition 4, so that F ∈ {0, 1}3×n(n−1)/2.

2.3. Classes of real-valued networks

The described families of edge-colored networks are ways of modeling non-binary connec-
tions between nodes, i.e. edges associated to multidimensional properties (colors). The main
concern with this class of models is the size of his mathematical programming representation
(number of decision variables and constraints) when the number of colors grow large. A
possible way of dimensionality reduction is to aggregate the information of edge colors in the
corresponding real-valued edge.

Formally, a real-valued graph is a tuple Gν = (V,E, ν), where V and E are the sets of
nodes and edges, respectively, and ν : E −→ [0, 1] ⊂ R a function assigning a real-value to
each edge. By doing so the researcher is assuming a probabilistic model where any symmetric
matrix in [0, 1]n×n verifying a specified system of linear constraints Ax = b has a non-null
probability density of being observed. Note that a full characterization of these classes of
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networks does not require matrix A to be TU any more, as fractional solutions still belong
to the specified families.

Classes of real-valued networks can be defined by relaxing the integrality condition of all
families of networks presented in subsections 2.1 and 2.2. In particular relaxing the integrality
conditions allows for a wider modeling possibility of families of networks by systems of linear
constraints with arbitrary coefficient matrix A.

A simple example related to the previously defined model is the class of real-valued
networks with fixed between-group valued-densities and valued-degrees: CR(χ) = {x ∈
[0, 1]m :

∑
j∈V xij = fi;

∑
(i,j)∈H:θ(i,j)=(γk,γh)

xij = dkh, 1 ≤ k ≤ g, k ≤ h ≤ g}, where dkh is
the density between group γk and γh, 1 ≤ k ≤ g, k ≤ h ≤ g, as described in Proposition 3,
and fi is the valued-degree of node i ∈ V , as described in Proposition 4.

3. Generating random networks by Linear Programming

The previous section provided an algebraic characterization of several families of networks
by linear constraints. From a constructive point of view, this section proposes LP-based
polynomial-time methods to generate instances of networks with given structural properties.
Broadly speaking, the goal is to obtain random networks as the solution of a LP by randomly
changing the cost vector. To validate these LP-based procedures, first we will derive the
probability density function of the primal-dual LP solutions when the cost vector randomly
changes. Although this probability density may not be uniform, we will see it can be used to
obtain solutions of uniform distribution by considering the acceptance-rejection Metropolis-
Hastings method [27], widely used in Statistics.

3.1. The probability of primal-dual solutions

Let CR(χ) = {x ∈ [0, 1]n
′

: Ax = b} be a polytope whose set of extreme points is
bijectively related to a given family of networks and consider the associated (feasible and
bounded) LP

min cTx s. to Ax = b, 0 ≤ x ≤ 1, (6)

where A ∈ R
m′×n′

is a full row rank matrix, b ∈ R
m′

and c ∈ R
n′

. By adding slacks, (6) can
be written in standard form as

min ĉT x̂ s. to Âx̂ = b̂, x̂ ≥ 0, (7)

where Â ∈ R
m̂×n̂ (m̂ = m′ + n′ and n̂ = 2n′) is a full row rank matrix, b̂ = [bT eT ]T ∈ R

m̂

and ĉ = [cT 0T ]T ∈ R
n̂. If the gradient of the objective function ĉ is a properly defined

random vector of density function fC(ĉ), then the solution of (7) is also a random vector
whose probability distribution can be computed as

P (x̂) =

∫

G−1(ĉ)=x̂

fC(ĉ) dĉ, (8)

where G(x̂) is the set of gradients for which x̂ is an optimal solution and G−1(ĉ) is the set
of optimal solutions of (7) for a fixed objective gradient ĉ. Defined this way, G would be a
set-to-set mapping. We thus consider an alternative definition, as shown by next Lemma,
which guarantees a point-to-point function:
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Lemma 1 (Dimensionality augmentation). Consider the augmented sample space obtained
by introducing the auxiliary random vectors ŷ and ẑ and the joint probability function

P (x̂, ŷ, ẑ) =

∫

G−1(ĉ,0,0)=(x̂,ŷ,ẑ)
fC(ĉ) dĉ, (9)

where G(x̂, ŷ, ẑ) is defined though the KKT optimality conditions as

G(x̂, ŷ, ẑ) ,




ÂT ŷ + ẑ

Âx̂− b̂

X̂Ẑe


 and (x̂, ẑ) ≥ 0, (10)

ŷ and ẑ being respectively the Lagrangian multipliers of the equations and bounds of (7), and
X̂ and Ẑ diagonal matrices made up with the components of x̂ and ẑ.

We claim that G is a one-to-one continuously differentiable function from ID0 = {(x̂, ŷ, ẑ) ∈
R
2n′+m′

: x̂ > 0, ẑ > 0, Âx̂ = b̂, ÂT ŷ + ẑ = ĉ, X̂Ẑe = 0e} to IC0 = R
n′ × {0}m′+n′

.

Proof. To proof that G is a one-to-one function we only need to note that the Lagrangian
multipliers associated to an optimal solution of an LP are unique, as long as Â is full rank
(see [35]). The continuous differentiability of G in I0 results from its Jacobian

J(G(x̂, ŷ, ẑ)) =




ÂT I

Â

Ẑ X̂


 . (11)

Theorem 2 (Change of variables in integral calculus [12]). Let G : ID −→ IC be a one-
to-one and continuously differentiable map of the open set ID into IC , such that J(G(t)) is
nonsingular for all t ∈ ID. If f : IC −→ R is a non-negative locally integrable function, then

∫

ID

f(G(t))| det J(G(t))|dt =
∫

IC

f(s)ds, (12)

where the symbol | det J(G(t))| is used to denote the absolute value of the determinant of the
Jacobian of G at point t ∈ ID. By the inverse-function theorem, IC is open and the inverse
point mapping G−1(s) is continuously differentiable.

The applicability of Theorem 2 to solve the integral in (9) is conditioned to the nonsin-
gularity of J(G(x̂, ŷ, ẑ)), which cannot be claimed in the general case. (See Subsection 3.2
for special conditions of nonsingularity.)

However, it can be possible to guarantee the nonsingularity of J(G(x̂, ŷ, ẑ)) into a rede-
fined domain IDµ = {t = (x̂, ŷ, ẑ) : x̂ > 0, ẑ > 0, Âx̂ = b̂, ÂT ŷ+ ẑ = ĉ, X̂Ẑe = µe} for some
µ ∈ R, µ > 0, which is defined based on the KKT-µ perturbed conditions

G(x̂, ŷ, ẑ) =



ĉ

0

µe


 . (13)

The codomain of G is thus ICµ = {s = (ĉ,0, µe) : µ ∈ R, µ > 0, ĉ ∈ R
n̂}. For a fixed ĉ,

the set of solutions (x̂(µ), ŷ(µ), ẑ(µ)) of (13) for µ > 0 is an arc of feasible points known as
the primal-dual central path [35, 36], which is widely used in interior-point methods. When
µ → 0, the central path converges to an optimal solution of (7). If instead of a unique
solution we have an optimal face, then the central path converges to the single analytic
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center of this optimal face [36]. If the primal-dual strictly feasible set of (7) is nonempty (i.e.,
F0 = {(x̂, ŷ, ẑ) : x̂ > 0, ẑ > 0, Âx̂ = b̂, ÂT ŷ + ẑ = ĉ} 6= ∅), then the central path exists and
it is unique for each µ > 0 (see [35, 36] for a proof of this result). This uniqueness guarantees
that, given s = (ĉ,0, µe), there is a single point t = (x̂(µ), ŷ(µ), ẑ(µ)) satisfying (13). The
adopted notation makes explicit the dependence of the primal-dual points with respect to
the complementarity parameter µ.

Lemma 2 (Nonsingularity of the Jacobian). The Jacobian J(G(x̂(µ), ŷ(µ), ẑ(µ))) —which
is the matrix of the Newton system to be solved at each iteration of primal-dual interior-point
methods– is nonsingular if Â is full row rank and (x̂(µ), ẑ(µ)) > 0.

Proof. A simpler expression for the determinant can be derived if we are in an interior point,
i.e., if µ > 0, thus x̂(µ) > 0 and ẑ(µ) > 0. Denoting by J the Jacobian, and adding to the
first block-row of J the last block-row multiplied by the diagonal matrix X̂−1(µ) we have

det(J) = det(J1)
n∏

i=1

x̂i(µ) where J1 =

[
−X̂−1(µ)Ẑ(µ) ÂT

Â

]
.

Since J1 = CDCT , where

C =

[
I

−ÂX̂(µ)Ẑ−1(µ) I

]
and D =

[
−X̂−1Ẑ

ÂX̂(µ)Ẑ−1(µ)ÂT

]
,

using that det(C) = 1 we finally obtain

det(J) = det(D)

n∏

i=1

x̂i(µ) = (−1)n det(ÂX̂(µ)Ẑ−1(µ)ÂT )

n∏

i=1

ẑi(µ). (14)

ÂX̂(µ)Ẑ−1(µ)ÂT is the symmetric and positive definite matrix—if Â has full row rank—of
the normal equations system of interior-point methods and (x̂(µ), ẑ(µ)) > 0 [35].

The applicability of Theorem 2 when G : IDµ → ICµ allows computing the probability
density function of t = G−1(s) from that of the random variable s. According to this result:

fIDµ
(t) = fIC (s)| det(J(G(t)))| = fICµ

(s)

∣∣∣∣∣∣∣
det




ÂT I

Â

Ẑ(µ) X̂(µ)




∣∣∣∣∣∣∣
, (15)

where fIDµ
and fICµ

denote the probability density functions (PDF, from now on) of t and
s, respectively.

3.2. The KKT-µ perturbed conditions for classes of real-valued networks

The discussion of Section 3 started by considering a polytope CR(χ) = {x ∈ [0, 1]n
′

:
Ax = b}, whose set of extreme points is bijectively related to a given family of networks, and
the associated LP in standard form (7). Let Int(CR(χ)) be the interior of CR(χ). The closed-
form expression (15), associated to the augmented sample space of primal-dual solutions,
suggests a proper definition of a PDF of Int(CR(χ)) (primal strictly feasible solution of (7)),
based on the KKT-µ perturbed conditions.
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Let fC and fµ be the absolutely continuous PDFs (i.e., sets of zero Lebesgue measure
have zero probability) of the cost vector ĉ and complementarity parameter µ . We assume
fICµ

to have the following form:

fICµ


s =




s1
s2
s3




 =

{
fC(s1)fµ(s3) if s ∈ ICµ

0 otherwise.
(16)

Therefore, under the transformation G we finally have, for t = (x̂, ŷ, ẑ) ∈ IDµ:

fIDµ
(x̂(µ), ŷ(µ), ẑ(µ)) = fC

(
ĉ
)
fµ
(
µ
)
∣∣∣∣∣∣∣
det




ÂT I

Â

Ẑ(µ) X̂(µ)




∣∣∣∣∣∣∣
. (17)

Note that the support of fIDµ
is IDµ, so that it only provides the probability density of

central path points for some particular µ.

Theorem 3. If fC and fµ have non-null probability density over R
n′

and R respectively, then
every x̂ ∈ Int(CR(χ)) has a non-null probability density.

Proof. Let Cµ(ĉ) = {x̂(µ) | ∃ ŷ(µ), ẑ(µ) > 0 , G(x̂(µ), ŷ(µ), ẑ(µ)) = (ĉ, 0, µe), µ > 0} be the
primal central path of (7), for a fixed gradient ĉ ∈ R

n′

, and define

C∪ =
⋃

ĉ∈Rn′

Cµ(ĉ). (18)

and

fIDµ
(x̂(µ)) =

∫

ϕ

fIDµ
(x̂(µ), ŷ(µ), ẑ(µ)) dŷdẑ (19)

where ϕ = {(ŷ, ẑ) | ÂT ŷ+ ẑ = ĉ, X̂ ẑ = µe}. If fC and fµ have non-null probability over Rn′

and R, then C∪ is the support of (17), so that a sufficient condition for Theorem 3 to hold is
that Int(CR(χ)) ⊆ C∪—as the opposite inclusion it trivially true.

Hence, the proof consists in showing that for any x̂ ∈ Int(CR(χ)), there exists ĉ ∈ R
n′

and µ > 0, such that G(x̂, ŷ, ẑ) = (ĉ, 0, µe), for some Lagrangian multipliers ŷ and ẑ > 0.
Due to the µ-complementarity (X̂ ẑ = µe), the required sufficient condition is the existence of
ĉ ∈ R

n′

and µ > 0, such that for any x̂ verifying Âx̂ = b̂, x̂ > 0, the system ÂT ŷ+µX̂−1e = ĉ

has a solution for some ŷ ∈ R
m′

. And the statement immediately follows (for instance, setting
ŷ = 0 and ĉ = µX̂−1e > 0) .

The ability to randomly generate primal strictly feasible points and the availability of a
closed-form expression of their PDF (17) allow for a straightforward extension of the proposed
methodology to simulate from families of real-valued networks with linear constraints. In fact,
as it will be shown in Subsection 3.4, the applicability of well known statistical simulation
methodologies (such as the Metropolis-Hastings algorithm) to generate strictly feasible points
from arbitrary distribution is guaranteed by (17).

3.3. Asymptotic behaviour of fIDµ

The use of the central path in subsections 3.1 and 3.2 resulted in a general methodology
to provide arbitrarily close approximations of the extreme points and to extend the range of

10



applicability of the described random graph simulation procedure to the case of real-valued
networks.

In particular, as far as families of binary networks (characterized by the set of extreme
points of algebraically defined polytopes) are concerned, the use of the central-path in the
redefined sample space IDµ in Subsection 3.1 allowed bypassing the problem of the nonsingu-
larity of the J(G(x̂, ŷ, ẑ)) for a correct applicability of Theorem 2, by considering arbitrarily
close µ-approximations of the extreme points. (It must be noted that in practice numeri-
cal solvers require such kind of numerical approximations of the optimal solution, which are
governed by some optimality tolerances.)

In this subsection the convergence of fIDµ
(x̂(µ), ŷ(µ), ẑ(µ)) to fIDµ

(x̂(0), ŷ(0), ẑ(0)) is
assessed, based of the continuity of the central path in µ = 0, and the nullity of the set
of critical values of G(x̂(0), ŷ(0), ẑ(0)). For the latter we will need Sard’s Lemma, which is
provided below.

Lemma 3 (Sard’s Lemma). Let G : S ⊆ R
q −→ T ⊆ R

p be a one-to-one and continuously
differentiable map of the open set S into T . Let Lq denote the q-dimensional Lebesgue-
measure and Ξ the set of critical values of G. Then Ξ has Lq-measure zero.

Proof. See [1, Paragraph 15] and [32, Theorem II.3.1].

As just mentioned in Subsection 3.1, the support of fIDµ
is IDµ, so that it only provides

the probability of central path points for some particular µ. As µ → 0 the central path points
converge to the solution of (7), and then (15) converges to the probability distribution of the
primal-dual solutions of the LP problem in terms of the probability distribution of the cost
vector, as shown by the next theorem:

Theorem 4. The probability density function of the µ-parameterized primal-dual solutions
converge to the one of the optimal primal-dual solutions, that is,

lim
µ→0

fIDµ
(x̂(µ), ŷ(µ), ẑ(µ)) = fID0

(x̂(0), ŷ(0), ẑ(0)). (20)

as long as fµ(µ) > 0, for all µ ≥ 0 (mild condition).

Proof. The first part of the proof consists in showing that the limit exists. After taking for
granted the existence of the limit, we show that this limit is the desired PDF.

- Existence of the limit

By [36, Theorem 2.17], the points (x̂(µ), ŷ(µ), ẑ(µ)) on the central path are bounded,
the central path converges to (x̂(0), ŷ(0), ẑ(0)), and x̂(0) and ẑ(0) are, respectively, the
analytic centers of the primal and dual optimal faces (i.e., for any ĉ the central path
converges to a unique point—the analytic center of the optimal face—even if there are
multiple solutions for this ĉ). Therefore, (15) exists in ID0, as the determinant of (15)
computed at Ẑ(0) and X̂(0) is bounded, and limµ→0 fIDµ

(x̂(µ), ŷ(µ), ẑ(µ)) exists by
continuity of the determinant.

- Convergence in distribution

Let Ψµ = IDµ \Ξ, i.e. the subset of IDµ obtained by removing the set of critical points
Ξ of G(x̂(µ), ŷ(µ), ẑ(µ)). For µ > 0, Lemma 2 ensures that Ξ = ∅. For µ = 0, by
Sard’s Lemma, Ξ has Lq-measure zero, since G is a bijection from ID0 to IC0. This
fact allows the applicability of Theorem 2 in Ψµ. Thus, as long as fµ(µ) > 0, for all
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µ ≥ 0, we claim that for any (Lebesgue-integrable) real-valued function g : IDµ −→ R,
the following equality must be true:

Eµ[g(t)] =

∫

Ψµ

g(t)fIDµ
(t)dt =

∫

IDµ

g(t)fIDµ
(t)dt (21)

and limµ→0 Eµ[g(t)] = E0[g(t)].

The above results are illustrated by this small example.

Example 1. Consider the small two-dimensional problem min c1x1+c2x2 s. to x1+Mx2 = 1, (x1, x2) ≥
0 (M > 0 being a given parameter), which matches (7) for Â = [1 M ] and b̂ = 1. The feasible region
of this problem is the segment between VA = (1, 0) and VB = (0, 1/M). When c2 > Mc1, VA is the
optimal extreme point; when c2 < Mc1, the solution is VB; when c2 = Mc1 (which is unlikely if the
cost vector is randomly generated) the whole segment is optimal. Unless M = 1, the probability of VA

and VB being optimal is not uniform, even if the cost vector is randomly generated (in particular we
have P (VA) = 1−M/2 and P (VB) = M/2).

The associated KKT-µ perturbed conditions are

x1 +Mx2 = 1
y + z1 = c1

My + z2 = c2
x1z1 = µ
x2z2 = µ

(x1, x2, z1, z2) > 0

(22)

and, after a few manipulations from the dual feasibility and complementarity conditions, we obtain:

Mc1 +
Mµ

1− x1

= c2 +
Mµ

x1

and Mc1 +
µ

x2

= c2 +
Mµ

1−Mx2

. (23)

When c2 6= Mc1, the central path is obtained by solving the two quadratic equations (23) with respect
to x1(µ) and x2(µ):

x1(µ) =
c2 −Mc1 − 2Mµ+

√
∆

2(c2 −Mc1)
, x2(µ) =

c2 −Mc1 + 2Mµ−
√
∆

2M(c2 −Mc1)
,

∆ = 4M2µ2 + (c2 −Mc1)
2, z1(µ) =

µ

x1(µ)
, z2(µ) =

µ

x2(µ)
, y(µ) = c1 − z1(µ).

(24)

When c2 = Mc1, we directly have

x1(µ) =
1

2
, x2(µ) =

1

2M
, z1(µ) = 2µ, z1(µ) = 2Mµ, y(µ) = c1 − 2µ. (25)

For c2 6= Mc1, the limit point of the central path can be obtained either by direct substitution (as for
x1(µ), x2(µ)) or by applying L’Hôpital’s rule (as for z1(µ), z2(µ)):

lim
µ→0

x1(µ) = 1

lim
µ→0

x2(µ) = 0

lim
µ→0

z1(µ) = 0

lim
µ→0

z2(µ) = c2 −Mc1

lim
µ→0

y(µ) = c1

for c2 > Mc1, and

lim
µ→0

x1(µ) = 0

lim
µ→0

x2(µ) =
1

M

lim
µ→0

z1(µ) =
Mc1 − c2

M
lim
µ→0

z2(µ) = 0

lim
µ→0

y(µ) =
c2
M

for c2 < Mc1.

For c2 6= Mc1, the primal solution (x1(µ), x2(µ)) does not depend on µ and it provides the analytic
center of the feasible primal segment, as expected. The dual limit point is z1(0) = z2(0) = 0, y(0) = c1.
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By (17), the asymptotic value of the density function of primal-dual solutions is

fIDµ
(x1(µ), x2(µ), y(µ), z1(µ), z2(µ)) = fIC (c1, c2)| det(J)|, (26)

where in this simple problem det(J) = M2x2(µ)z1(µ) + x1(µ)z2(µ). Therefore, when µ → 0 we have
that

det(J(x1(0), x2(0), z1(0), z2(0)) =





(c2 −Mc1) if c2 > Mc1
(Mc1 − c2) if c2 < Mc1
0 if c2 = Mc1.

(27)

First, we note by (27) that the set of points with 0 determinant (i.e., the critical values {(c1, c2) ∈
R

2 : c2 = Mc1}) has 0 measure in R
2, as expected by Sard’s Lemma 3. The density of those points is

0, according to our development. We also see from (26) and (27) that the probability density of the
primal solutions VA and VB increase, respectively, with c2 −Mc1 and c1 −Mc2, which is consistent
with the solution of the primal problem.

It is worth to make some observations to (17) and Theorem 4:

• From (17), the probability density function of the primal-dual solutions depends on the
randomness of ĉ and µ, but also on the feasible polyhedron defined by the constraints
matrix Â, which appears in the determinant of the Jacobian of G. This is coherent
with the intuition.

• Given a primal-dual central path point (x̂(µ), ŷ(µ), ẑ(µ)) for some cost vector ĉ, equa-
tion (17), which is easily computed, provides the probability density fIDµ

of this primal-
dual point. However, the probability distribution of the primal points is obtained as the
marginal distribution with respect of the Lagrangian multipliers, as in (19). Although
(19) is a difficult integral, the expression of the density (17) is enough to compute
primal-dual solutions with any desired distribution (as seen in below Subsection 3.4).

• A closed form expression for (17) can not be computed, in general, because of the
determinant of the Jacobian of G, which involves the constraints matrix Â and the
values of (x̂(µ), ẑ(µ)) in the central path (which do not admit a closed form expression,
but for toy problems).

• Consistently with Sard’s Lemma, Example 1 shows that the set of objective gradients
such that the optimal solution to the corresponding LP is not a unique vertex has
measure zero. As a corollary of Theorem 4, eliminating such a set of points from the
support of fC does not affect the moments of the primal-dual distribution.

3.4. Computing solutions with uniform distribution

Due to the availability of a computable probability density function (17), we can guar-
antee the uniform distribution (indeed, any distribution) of the primal-dual solutions, by a
proper application of Markov Chain Monte Carlo methods. One of these approaches is the
Metropolis-Hastings algorithm, which is a well-known method to sample from probability dis-
tributions for which direct sampling is not possible, though a well defined probability density
function is available. A detailed derivation of this algorithm, which is out of the scope of this
work, can be found in [27]. We just outline the main steps of this procedure.

When applied to our problem, this method consists in generating a stochastic sequence
of primal-dual solutions, from an arbitrary starting point t0(µ) = (x̂0(µ), ŷ0(µ), ẑ0(µ)), and
the following rule to go from a current state tk(µ) = (x̂k(µ), ŷk(µ), ẑk(µ)) to a new state
tk+1(µ) = (x̂k+1(µ), ŷk+1(µ), ẑk+1(µ)):
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1. Initialization: choose an arbitrary point t0(µ) to be the first sample and let (17) be
the proposal probability distribution, which suggests a candidate for the next sample
value tk+1(µ), given the previous sample value tk(µ). (In the case the vectors ĉ is
independently generated, that is fIC (ĉ | tk(µ)) = fIC(ĉ), the probability (17) of the
candidate point is independent from the previous point.)

2. Candidate state: propose a candidate point tk+1(µ) from a proposal distribution (17)
that may depend on the current state tk(µ). (In our case the proposal entails the
solution of a LP, as the candidate primal-dual solution is obtained by solving the KKT-
µ perturbed conditions with a fixed and very close to 0 value of µ and a random value
of ĉ.)

3. Acceptance criterion: accept the candidate state with probability

α(tk(µ), tk+1(µ)) = min

(
1,

fIDµ
(tk(µ))

fIDµ
(tk+1(µ))

)
. (28)

The underlying state-space of this Markov chain is the set of primal-dual solutions, asso-
ciated to a fixed value µ, which are obtained by solving the KKT-µ perturbed conditions.

The correctness of the Metropolis-Hastings algorithm to simulate from the target distribu-
tion (i.e. to generate uniform primal-dual solutions) occurs under mild regularity conditions:
irreducibility and aperiodicity. Broadly speaking, irreducibility means that the proposal dis-
tribution should allow to move from t(µ) to t′(µ) in a finite number of iterations with nonzero
probability. Aperiodicity occurs when the number of steps needed to move from t(µ) to t′(µ)
is not required to be a multiple of some integer greater than one. Consider the transition
distribution of the defined Metropolis-Hastings chain

Q(t′(µ), t(µ)) = fIDµ
(t′(µ))min

(
1,

fIDµ
(t(µ))

fIDµ
(t′(µ))

)
. (29)

• Based on (29), the described properties of the proposal distribution (17) ensures that
every state can be generated in one step with non-null probability (due to the positivity
of the determinant in Ψµ).

• Since under mild conditions (29) is non-null in Ψµ, the chain is able to consecutively
generate the same primal-dual solutions, so that all the states communicate with each
other and the aperiodicity is guaranteed.

Thus, the above procedure provides primal-dual feasible points (x̂(µ), ŷ(µ), ẑ(µ)) with
uniform distribution. It establishes a probabilistic framework to sample random graphs be-
longing to specified families (both binary and real-valued). In fact, the uniform distribution
of (x̂(µ), ŷ(µ), ẑ(µ)) implies that the distribution of x̂(µ) (the primal solution associated to
a random graph) is also uniformly distributed, as requested.

An efficient implementation of this method is provided in the next subsection, where
the LPs are solved in each step for a few randomly chosen variables, allowing a consistent
reduction of the computational time, while keeping the described probabilistic properties.
Such method, which we call sequential r-blocks algorithm, will be numerically analyzed in
Section 4 and compared with a simplex-based approach (described in Subsection 3.6), which
we call sequential s-pivots algorithm. The analyzed probabilistic properties do not hold for
the sequential s-pivots algorithm, so that no guarantee of uniformity of the generated sample
is available when network are generated by random pivots.
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3.5. Sequential r-blocks algorithm

Let χ be one of the families of networks associated to extreme points of polytopes of the
form CR(χ) = {x ∈ [0, 1]n

′

: Ax = b}, A ∈ R
m′×n′

. As we noted in Subsection 3.1, given a
c ∈ R

n′

, we can compute a network by solving miny cTy, s.to y ∈ CR(χ). Similarly, if we
have a given extreme point xk of CR(χ), we might obtain another extreme point xk+1 by
fixing n′−t variables and optimizing, with a given objective cost vector c ∈ R

t, the remaining
t variables.

Formally, if we partition the set of variables in r blocks of dimensions ti, i = 1, . . . , r,∑r
i=1 ti = n′, and denote by xFi

∈ R
n′−ti and xCi

∈ R
ti the fixed and changing components

of x associated to block i, and by AFi
and ACi

the submatrices of A associated to xFi
and

xCi
, the new extreme point is obtained by solving

min cTy

s.to
ACi

y = b−AFi
xFi

0 ≤ y ≤ 1

(30)

for some random vector c ∈ R
n′−ti and i ∈ {1, . . . , r}. Algorithm 1 shows how to obtain

k̄ random networks by iteratively applying this procedure. For small r values, the r-blocks
algorithm generates less dependent networks at the expense of solving from scratch many
linear optimization problems. In the extreme case, for r = 1, the cost vectors generated are
non-correlated.

Algorithm 1 r-blocks

1: Let k = 0, x0 be an initial extreme point;
2: repeat

3: Randomly select i ∈ {1, . . . , r} and c ∈ R
ti ;

4: Let xk
Fi

and xk
Ci

be the vectors of fixed and changing components respectively;

5: Let Ak
Fi

and Ak
Ci

be the associated coefficient matrices;
6: Solve (30) and let y∗ be its optimal solution;
7: xk+1

Ci
= y∗, xk+1

Fi
= xk

Fi
;

8: k := k + 1;
9: until k ≥ k̄

The sequential r-blocks algorithm can be used as a specific implementation of the Metropolis-
Hastings algorithm (as numerically done in Section 4), which accept and reject candidate
solutions in accordance with (28), although the acceptance step is not explicitly reported in
Algorithm 1.

3.6. Sequential s-pivots algorithm

Considering again the polytope CR(χ) = {x ∈ [0, 1]n
′

: Ax = b}, where A ∈ R
m′×n′

,
m′ < n′, we know from LP that there is an equivalence between extreme points and basic
solutions, which can be written as xT = [xT

B,x
T
N ], xB ∈ R

m′

, xN ∈ R
n′−m′

, A = [B N ],
B ∈ R

m′×m′

, N ∈ R
m′×(n′−m′), for a suitable permutation of the variables. Since the extreme

points of CR(χ) have been proved to be all integer, it turns out that all basic variables must
be at their limits (either at 0 or 1), as well as the non-basic variables. The basic solutions
are thus fully degenerate.

Denoting by eq the q-th column vector of the identity matrix, and by Bk and Nk the
basic and nonbasic submatrices of A, given a basic solution xk we can obtain another one by
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moving along the simplex-like direction

∆k(q) =

[
−B−1

k Nkeq
eq

]
. (31)

If the nonbasic variable q is 0, then the iteration performed is xk+1 = xk + λ∆k(q), for some
non-negative step-length λ. On the other hand if xk

Nq
= 1 then we apply xk+1 = xk−λ∆k(q).

It can be easily verified that in both cases Axk+1 = Axk = b, i.e., the new point satisfies the
linear constraints. In addition, since the constraints matrices of Section 2 are TU, the step-
lengths λ—computed by a ratio test—are always either 0 or 1. It is thus possible to generate
a new basic solution (i.e., a new random graph) by randomly selecting q ∈ {1, . . . , n′ −m′}
and computing xk+1 = xk ± λ∆k(q). A sample of k̄ networks can be obtained by iteratively
applying this procedure. Since the resulting sample may be claimed to be quite local, every
s iterations we can jump to an independent extreme point of the polytope by generating
some random cost vector, and solving the associated LP. Two drawbacks of this procedure
are: (1) many iterations may be degenerate, i.e., λ = 0, so no new point is obtained; (2) the
sample of networks obtained may be highly correlated if s is large because of its proximity in
the feasible polytope. On the other hand, this procedure may be very efficient, since it only
requires simplex pivots to obtain a new network. Algorithm 2 summarizes this procedure.
Note that the s-pivots and r-blocks methods are equivalent for s = r = 1. They will be
computationally evaluated in Section 4.

Algorithm 2 s-pivots

1: Let x0 be an extreme point computed with some initial cost vector c; k = 0;
2: repeat

3: if ((k + 1) mod s) > 0 then

4: repeat

5: Randomly select q ∈ {1, . . . , n′ −m′};
6: Compute step-length λ ∈ {0, 1} associated with ±∆k(q);
7: until λ 6= 0
8: Compute xk+1 = xk ± λ∆k(q) and update Bk and Nk;
9: k = k + 1;

10: else

11: Generate cost vector c ∈ R
n′

and compute a new extreme point xk;
12: k = k + 1;
13: end if

14: until k ≥ k̄

The sequential s-pivots algorithm is not a specific case of the described Metropolis-
Hastings procedures, as a full characterization of the proposal distribution (associated to
the random pivots) is not available. It turns out that the probabilistic properties, analyzed
in subsections 3.1 and 3.4 do not hold, so that no guarantee of uniformity of the generated
sample is available when network are generated by random pivots.

3.7. Efficient solution of the resulting LPs

The r-blocks and s-pivots procedures of subsections 3.5 and 3.6 require the repeated solu-
tion of several LP problems, at each iteration and every s iterations, respectively. Moreover,
each one of these LPs may be computationally expensive for large networks. Therefore, al-
though state-of-the-art implementations of the simplex method and polynomial time interior-
point algorithms can be used, it is worth to exploit the problem structure whenever possible
[9].
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n C n. var. n. constr. Dual Simplex Barrier BlockIP
Cplex 12.5 Cplex 12.5

50 50 61250 100 0.7 (733) 0.2 (13) 0.2 (34)
150 50 558750 200 6.4 (934) 5.3 (26) 3.4 (43)
450 50 5051250 500 126.3 (2462) 90.8 (46) 45.7 (56)
50 150 183750 200 5.0 (1435) 0.9 (14) 0.9 (40)
150 150 1676250 300 58.3 (2503) 18.7 (30) 12.6 (52)
450 150 15153750 600 1175.5 (5243) 384.6 (53) 147.2 (58)
50 450 551250 500 5.2 (1956) 2.9 (15) 3.3 (45)
150 450 5028750 600 378.8 (4822) 64.9 (35) 37.7 (51)
450 450 45461250 900 10926.3 (13047) 1287.4 (52) 409.6 (54)

Table 1: CPU time and iterations (in parentheses) of three LP algorithms.

It can be shown that, under a proper row and column permutation, most of the constraints
matrices of Section 2 exhibit a primal block-angular structure such as




N1

N2

. . .

Nk

L1 L2 . . . Lk I







x1

x2

...
xk

x0



=




b1

b2

...
bk

b0



. (32)

Matrices Ni and Li i = 1, . . . , k, respectively define the block-diagonal and linking constraints,
k being the number of blocks. Vectors xi, i = 1, . . . , k, are the variables for each block. x0

are the slacks of the linking constraints
∑k

i=1 Lix
i ≤ b0 (x0 = 0 if linking constraints are

equalities). bi, i = 1, . . . , k, is the right-hand side vector for each block of constraints, whereas
b0 is for the linking constraints.

Consider, for instance, the constraints matrix of the edge-colored network (4). The num-
ber of blocks is k = C, the decision variables are the n(n − 1)/2 edges of each one of the
C AMs, and Ni = eT , i = 1, . . . , C. Matrices Ni are also row vectors in most of the other
families of networks introduced in Section 2.

Problems with the constraints structure of (32) can be efficiently solved by specialized ap-
proaches, such as the interior-point method of [5, 6, 7] (BlockIP from now on). A description
of this method is out of the scope of this work; details can be found in the above references.
For instance, Table 1 reports computational results for the solution of several edge-colored
network instances. Columns n and C show the number of nodes and colors of the networks.
Columns “n. var.” and “n. constr.” give the number of variables and constraints of the re-
sulting LP problems. Note that the largest case has more than 45 million variables, and 900
constraints. The remaining columns of Table 1 give the CPU time and number of iterations
(in parentheses) for the three algorithms tested: Cplex 12.5 dual simplex, Cplex 12.5 barrier
(interior-point), and the specialized interior-point method of BlockIP. The runs were carried
out on a Fujitsu Primergy RX300 server with 3.33 GHz Intel Xeon X5680 CPUs (24 cores)
and 144 GB of RAM, under a GNU/Linux operating system (Suse 11.4), without exploitation
of multithreading capabilities.

From Table 1, the simplex method is clearly outperformed by the barrier algorithm,
and the gap increases with the size of the instance. BlockIP, the specialized interior-point
algorithm, was two to three times faster than the Cplex barrier in the largest instances,
resulting to be the most efficient approach for this kind of problems.
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Graph conditioned to . . . bases CPU time

total density 1166 1.7
within group densities 135 1.6
lower bound of the degrees range and density 1267 1.7

Table 2: Number of bases visited to compute 100 extreme points with the s-pivots method for the three
specified polytopes

4. Computational analysis

This section provides numerical results comparing the efficiency and correctness of the r-
blocks and s-pivots procedures, both in terms of CPU time and analysis of specified network
features. Three network data sets are used: a 62 node undirected graph, representing the
social network of frequent associations between dolphins in a community living off Doubtful
Sound, New Zealand [18, 19]; and two 39 node undirected graphs, representing alliances
among workers during extended negotiations for higher wages in a tailor shop in Zambia at
two different times (seven months apart) over a period of one month [17].

The runs were carried out on the same hardware used for the results of Subsection 3.7.
According to these results, the LPs were solved with BlockIP, the most efficient approach for
these problems. The simplex pivots required by the s-pivots procedure were implemented in
Matlab.

4.1. Degeneracy in the s-pivots procedure

Consider the previously introduced data set of 62 dolphins and the following families
of networks: (1) undirected networks conditioned to the density; (2) undirected networks
conditioned to the within and between group densities; (3) undirected networks conditioned
to the lower bound of the degree sequence range and density. These three models are specified
by the observed parameters of the dolphin’s social network. The within group densities are
obtained from the community structure of the observed network, computed by the walk trap
community search algorithm of [23]. Table 2 shows the number of basic solutions explored
by the s-pivots procedure to generate 100 different networks, and the required CPU time.
The results confirm the high degeneracy of the s-pivots procedure.

4.2. Correctness and efficiency of r-blocks and s-pivots procedures

For the data sets of dolphins and the two of workers previously introduced, we consider
the simple uniform random network conditioned to the density model. Our interest is in two
network features: clustering coefficient (CC) and assortativity coefficient (AC). The CC of a
network is the average CC of all the nodes, as a measure of how dense is the neighborhood
of each node. The AC is the Pearson correlation coefficient of degree between pairs of linked
nodes. Positive values of AC indicate a correlation between nodes of similar degree, while
negative values indicate relationships between nodes of different degree.

For each of the three data sets, eight samples of 1000 networks have been obtained using
the r-blocks and the s-pivots methods for different r and s values. Tables 3, 5 and 7 show,
respectively for each data set, the mean and standard deviation of the CC and AC over the
samples generated by the r-blocks method. Last column reports the CPU time in seconds.
The Metropolis-Hastings algorithm has been used to guarantee a uniform distribution of the
generated sample; the sixth column informs about the number of rejections.
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r mean CC std. CC mean AC std. AC rejected CPU time

12 0.0819 0.0185 -0.0353 0.0774 1226 58.4
24 0.0806 0.0109 -0.0313 0.0740 1659 47.4
48 0.0796 0.0185 -0.0195 0.0618 1779 61.5
96 0.0869 0.0181 -0.0562 0.0860 1865 55.3

Table 3: Numerical results using the r-blocks method for the dolphin data set.

s mean CC std. CC mean AC std. AC CPU time

20 0.0846 0.0207 -0.0301 0.0751 20.4
40 0.0836 0.0192 -0.0301 0.0823 18.8
80 0.0801 0.0198 -0.0468 0.0816 17.9

160 0.0759 0.0121 -0.0265 0.0659 17.4

Table 4: Numerical results using the s-pivots method for the dolphin data set.

Likewise, tables 4, 6 and 8 summarize the analogous information for networks generated
with the s-pivots methods.

Theoretical results [4] state that the expected clustering coefficient of a uniform random
network with n nodes conditioned to d edges is 2d/n2, which in the case of the dolphin social
network is 2 · 159/622 = 0.08272633. This is approximately what we obtained in tables 3
and 4. The expected assortativity coefficient of a uniform random network with n nodes
conditioned to d is approximately − 1

n/2−1 (this approximation is based on the multivariate

hypergeometric distribution of the degree vector), which in the case of the dolphin social
network is − 1

62/2−1 = −0.03333, fitting reasonably well the simulated networks.
The numerical values of CC and AC obtained for the first data set of workers in tables 5

and 6 also resemble the theoretical values under the considered probabilistic model, which are
2 · 158/392 = 0.2077581 and − 1

39/2−1 = −0.05405405 respectively. Beside, the corresponding

theoretical values of CC and AC for the second observed network of workers are 2 ·223/392 =
0.2932281 and − 1

39/2−1 = −0.05405405, which are consistent with the numerical results in
tables 7 and 8. The observed numerical correctness of the r-blocks method supports the
results of Subsection 3.1.

It is worth remarking that this kind of simulations are normally divided into pre- and
post-convergence periods, where the pre-convergence part, known as burn-in, is discarded and
the post-convergence part is used for inference. The sample means in tables 3–8 have been
calculated discarding the first 200 networks, so they only include a relatively small sample
size of 800 instances.

The length of the burn-in period depends on the autocorrelation of the resulting sample.
The plots in figures 1–6 show the autocorrelations function of CC and AC for the 1000
networks obtained in each of the runs of tables 3–8 with r = 12 and s = 20. It can be observed
from the autocorrelation function associated to different values of r and s (not plotted to

r mean CC std. CC mean AC std. AC rejected CPU time

12 0.2145 0.0237 -0.0481 0.0629 1006 45.6
24 0.2160 0.0216 -0.0491 0.0715 1216 40.2
48 0.2170 0.0215 -0.0511 0.0601 1452 37.4
96 0.2154 0.0207 -0.0574 0.0639 1673 37.7

Table 5: Numerical results using the r-blocks method for the first workers data set.
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s mean CC std. CC mean AC std. AC CPU time

20 0.2099 0.0185 -0.0353 0.0635 8.1
40 0.2070 0.0201 -0.0707 0.0700 7.9
80 0.2111 0.0159 -0.1054 0.0714 7.8

160 0.2211 0.0212 -0.0006 0.0474 7.8

Table 6: Numerical results using the s-pivots method for the first workers data set.

r mean CC std. CC mean AC std. AC rejection CPU time

12 0.3002 0.0154 -0.0531 0.0540 910 71.4
24 0.3022 0.0168 -0.0527 0.0526 1082 48.4
48 0.3006 0.0164 -0.0441 0.0572 1265 42.1
96 0.2972 0.0134 -0.0334 0.0624 1305 41.5

Table 7: Numerical results using the r-blocks method for the second workers data set.

save space) that the autocorrelations tend to zero faster when r and s are small. Nonetheless,
the s-pivots methods maintains a strongly autocorrelated behavior even when s = 20. On
the other hand, the autocorrelations of the sample obtained with the r-blocks procedure
quickly tend to zero for small lags. Thus, despite the s-pivots outperforms the r-blocks
method in terms of efficiency, the generation of less autocorrelated networks by the r-blocks
method allows for a much smaller sample size when simulating large networks. Moreover,
the availability of (15) allows a more rigorous evaluation of the probabilistic properties of the
networks obtained with the r-blocks method and the application of the Metropolis-Hastings
algorithm. As it can be seen from tables 3, 5 and 7, the number of Metropolis-Hastings
rejections is approximately one half of the generated sample. One possibility to increase the
acceptance rate is to update the probability density function of the objective costs along the
iterations, increasing the internal dependencies of the described Markov Chain.

As already mentioned, the study of uniform random networks conditioned to the density
by the s-pivots or r-blocks methods are quite unreasonable, since plenty of theoretical results
for this model are available [4]. However this simple model allowed us to validate our proce-
dures. For more complicated models, as the one of next subsection, these LP-based network
generation procedures are instrumental.

4.3. Application to models with non-TU constraints matrices

In [18, 19] it was shown that the social network of dolphins exhibits a remarkable level of
community structure, i.e., dolphins can be easily grouped into (potentially overlapping) sets
such that each set of nodes is densely connected internally. Characterizing those communities
is in general a difficult task. We used two of the several algorithms for community finding,
the walk trap community and the fast greedy community, as implemented in the igraph

library of the R package. The first algorithm finds densely connected subgraphs by simulating

s mean CC std. CC mean AC std. AC CPU time

20 0.3001 0.0125 -0.0391 0.0521 8.5
40 0.3055 0.0135 -0.0578 0.0614 8.2
80 0.2993 0.0171 -0.0667 0.0518 8.1

160 0.3093 0.0101 -0.0118 0.0330 8.0

Table 8: Numerical results using the s-pivots method for the second workers data set.
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Figure 1: Autocorrelation function of CC for the r-blocks algorithm (left plot), with r = 12, and s-pivots
algorithm (right plot), with s = 20, corresponding to the samples in tables 3 and 4.

Figure 2: Autocorrelation function of AC for the r-blocks algorithm (left plot), with r = 12, and s-pivots
algorithm (right plot), with s = 20, corresponding to the samples in tables 3 and 4.

Figure 3: Autocorrelation function of CC for the r-blocks algorithm (left plot), with r = 12, and s-pivots
algorithm (right plot), with s = 20, corresponding to the samples in tables 5 and 6.

Figure 4: Autocorrelation function of AC for the r-blocks algorithm (left plot), with r = 12, and s-pivots
algorithm (right plot), with s = 20, corresponding to the samples in tables 5 and 6.
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Figure 5: Autocorrelation function of CC for the r-blocks algorithm (left plot), with r = 12, and s-pivots
algorithm (right plot), with s = 20, corresponding to the samples in tables 7 and 8.

Figure 6: Autocorrelation function of AC for the r-blocks algorithm (left plot), with r = 12, and s-pivots
algorithm (right plot), with s = 20, corresponding to the samples in tables 7 and 8.

random walks on the graph, which tend to stay inside communities. The second algorithm
identifies (using the betweenness measure) edges in a network that lie between communities
and then removes them, leaving behind just the communities themselves. Both algorithms
found almost the same four communities.

Using the above four groups, the goal is to decide whether the CC and AC of our social
network of dolphins is likely to have been randomly obtained from the distribution of undi-
rected networks conditioned to the observed within-community-densities and degree nodes.
As noted in Section 2 the constraints matrix of this model is not TU. However, we can still
use the r-blocks procedure, discarding the fractional solutions found.

A sample of 100 networks was generated using the observed densities and degree of the
dolphin’s social network. Table 9 provides the numerical results for r ∈ {4, 5, 6, 8, 10, 13}.
Column “Fractional networks” shows the number of rejected fractional solutions. If two
consecutive LPs with different objectives provided the same solution (named “loops”), the
repeated network is also rejected; they are reported in column “Loops” of Table 9. Last
column provide the CPU time in seconds, using the same computational environment than
in previous sections.

In accordance with the results in Table 9, the number of fractional networks seems to
decrease with the number of blocks r. Nonetheless, when r is large, consecutive networks are

r Fractional networks Loops CPU time

4 44 0 112.0
5 38 1 103.2
6 26 5 89.1
8 10 16 61.4
10 8 110 68.7
13 3 372 74.6

Table 9: Numerical results of the sampling procedure using the sequential r-blocks optimization method.
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Figure 7: Empirical distribution of CC and AC obtained with the 8-blocks procedure

sample mean sample std. observed value one tail p-value

CC 0.199145 0.01949775 0.2901595 0.0112000
AC -0.065980 0.07585131 -0.0436017 0.6941203

Table 10: Numerical results from the sample obtained with the 8-blocks method

more likely to be the same, so that we face a trade-off between minimizing the number of
loops and minimizing the number of fractional solutions. In any case, the r-blocks procedure
was still efficient for this non-TU model.

Based on the results in Table 9, we set r = 8 (which guarantees an uncorrelated sample
with low number of loops and fractional solutions) and generated 10100 networks, removing
the first 100 ones as burn-in period.

The resulting empirical distribution of CC and AC is shown in the density plot of Figure
7. Table 10 shows the sample mean and standard deviation of the CC and AC over the 10000
generated networks, the observed values in the dolphins social network, and the associated
p-values. From these p-values we conclude hat the CC cannot be explained by only using
the information concerning the within-community-density and the degree nodes. On the
other hand, the AC seems instead to be likely induced by the fixed structural properties
we considered. The LP-based sampling procedures developed in this work allowed to easily
perform this kind of inference analysis, which otherwise could not have been done with the
available theoretical results for these complex network models.

5. Conclusions

The constraints matrices associated to several classes of random graph problems have
shown to be TU. The resulting MILP problems are thus efficiently solved as LPs. It was ob-
served that specialized specialized interior-point algorithms outperform state-of-the-art sim-
plex solvers for this kind of problems. Two particular procedures, r-blocks and s-pivots, were
introduced to generate large samples of random graphs. These two procedures were validated
both empirically, using three real-world data sets, and theoretically, obtaining expressions for
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the density function and entropy of the LP solutions as a function of the distribution and
entropy of the cost vectors. Extending this approach to other classes of random graph prob-
lems, and showing whether their constraints matrices are TU, is part of the further work
to be done. The application of the acceptance-rejection Metropolis-Hastings method [27] to
obtain LP solutions guaranteeing other than the uniform particular distributions should also
be explored in the future. Indeed, the observed numerical correctness of the r-blocks method
suggests a particularly low rejection ratio in the Metropolis-Hastings algorithm.

This work showed how mathematical programming tools can be efficiently used for the
analysis of complex networks, and it opens the possibility for other applications in this field.
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