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Abstract

Controlled tabular adjustment (CTA) is a relatively new protection technique for tabular data

protection. CTA formulates a mixed integer linear programming problem, which is challenging

for tables of moderate size. Even finding a feasible initial solution may be a challenging task for

large instances. On the other hand, end users of tabular data protection techniques give priority

to fast executions and are thus satisfied in practice with suboptimal solutions. This work has two

goals. First, the fix-and-relax (FR) strategy is applied to obtain good feasible initial solutions

to large CTA instances. FR is based on partitioning the set of binary variables into clusters to

selectively explore a smaller branch-and-cut tree. Secondly, the FR solution is used as a warm

start for a block coordinate descent (BCD) heuristic (approach named FR+BCD); BCD was

confirmed to be a good option for large CTA instances in an earlier paper by the second and third

co-authors (Computers & Operations Research 2011). We report extensive computational results

on a set of real-world and synthetic CTA instances. FR is shown to be competitive compared

to CPLEX branch-and-cut in terms of quickly finding either a feasible solution or a good upper

bound. FR+BCD improved the quality of FR solutions for approximately 25% and 50% of

the synthetic and real-world instances, respectively. FR or FR+BCD provided similar or better

solutions in less CPU time than CPLEX for 73% of the difficult real-world instances.

Key words: Fix-and-Relax, Block Coordinate Descent, Mixed-integer Linear Programming,

Controlled Tabular Adjustment, Primal Heuristics, Feasibility Pump, Statistical Disclosure

Control

1. Introduction

Microdata and tabular data protection are the two main disciplines of statistical disclosure

control. The purpose of this field is to avoid that confidential information can be derived from

data released. This is one of the main concerns of National Statistical Agencies (NSAs), which

have to disseminate a large amount of information minimizing at the same time the disclosure

risk of individual respondents. Tabular data is obtained by crossing two or more categorical

variables in a microdata file. For each cell, the table may report either the number of individuals

(frequency tables) or information about another variable (magnitude tables). More details can be

found in the recent survey [5] and the monographs [26, 27].
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t1 t2
... ... ... ... ...

51–55 ... 38000d 40000d ...

56–60 ... 39000d 42000d ...
... ... ... ... ...

(a)

t1 t2
... ... ... ... ...

51–55 ... 20 1 or 2 ...

56–60 ... 30 35 ...
... ... ... ... ...

(b)

Figure 1: Example of disclosure in tabular data. (a) Average salary per age and town. (b) Number of individuals per age

and town. If there is only one individual in town t2 and age interval 51–55, then any external attacker knows the salary of

this single person is 40000d. For two individuals, any of them can deduce the salary of the other, becoming an internal

attacker.

Although cell tables report aggregated information for several respondents—so they could

be considered anonymized—there is a risk of disclosing individual data. Figure 1 illustrates this

situation with a simple case. The left table (a) reports the average salary of individuals by age

(row variable) and town (column variable), while table (b) provides the number of individuals. If

there were only one individual of age between 51–55 in town t2, then any external attacker would

know the confidential salary of this person. For two individuals, any of them could disclose the

other’s salary, becoming an internal attacker. Cells that require protection (such as that of the

example) are named sensitive, unsafe, or confidential cells. Sensitive cells are a priori detected

by some sensitivity rules. The above example showed the simplest minimum-frequency rule,

which considers sensitive those cells with very few respondents. The most widely used rule,

named p-% rule, considers a cell unsafe if some respondent may obtain an estimate of another

respondent contribution within a p-% precision. A detailed description of these rules can be

found in [27].

A tabular data protection method can be seen as a map F such that F(T ) = T ′, i.e., table T

is transformed to another table T ′. Two are the main requirements for F: (1) the output table

T ′ should be “safe”, and (2) the quality of T ′ should be high (or equivalently, the information

loss should be small), i.e., T ′ should be a good replacement for T . The disclosure risk can

be analyzed through the inverse map T = F−1(T ′): if not available or difficult to compute by

any data attacker, then we may guarantee that F is safe. Controlled Tabular Adjustment (CTA)

[3, 11] is a recent technique for the protection of any tabular data. It was empirically observed in

[6] that estimates T̂ = F̂−1(T ′), F̂−1 being an estimate of F−1 for CTA, were not close to T for

some real tables. CTA can thus be considered a safe method in general. Moreover, the quality

of CTA solutions has shown to be high [10], higher than that provided by alternative methods in

some real instances [9].

The goal of CTA—which will be formulated in Section 2—is, given a table with any struc-

ture, to find the closest safe table to the original one. This is achieved by adding the minimum

amount of deviations (or perturbations) to the original cell tables that makes the released table

safe. Safety is guaranteed by imposing that sensitive cells in the new protected table are far

enough from the original value. This means the cell value is either above or below some certain

values, thus a disjunctive constraint involving a binary variable is needed for each sensitive cell.

The minimum amount of above or below perturbations required for each sensitive cell are named,

respectively, upper protection and lower protection levels. Changes in sensitive cells force other

changes in the remaining cells to guarantee that the value of total or marginal cells is preserved.
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Although it is a recent approach, CTA is gaining recognition among NSAs; for instance, CTA

is considered a relatively new emerging method in the recent monographs [26, 27]. We recently

implemented a package for CTA in collaboration with the NSAs of Germany and the Nether-

lands, within a project funded by Eurostat, the Statistical Office of the European Communities.

This package has been largely improved within the FP7-INFRA-2010-262608 project funded by

the European Union, with the participation, among others, of the national statistical institutes of

Germany, Netherlands, Finland, Sweden and Slovenia. This CTA software is included in the tau-

Argus package [25] (http://neon.vb.cbs.nl/casc/tau.htm), used for many European na-

tional statistical institutes for the protection of tabular data. Among the recent literature on CTA

variants we find [8, 24]. In recent specialized workshops on statistical disclosure control, some

NSAs stated that perturbative methods, like CTA, are gaining acceptance [31], and perturbative

approaches are being used for the protection of national census tables (e.g., [21] for Germany).

CTA has also been used within other wider protection schemes, such as the pre-tabular protec-

tion method of [20]. In addition, some National Statistical Agencies are questioning current

non-perturbative protection methods because “the task of balancing confidentiality and usability

[...] is nearly impossible” [30]. Therefore there is a need for new methods, and this justifies the

research on CTA and other approaches. Indeed, there is no actually any protection method that

fits the needs of all NSAs in the world.

From a computational point of view, the size of the CTA optimization problem is by far

smaller than for other well-known protection methods, such as the cell suppression problem

[4, 19]. Despite these nice features, CTA formulates a challenging mixed integer linear problem

(MILP) for current state-of-the-art solvers (such as CPLEX or XPress). Optimal (or suboptimal,

e.g., with a 5% gap) solutions may require many hours of execution for medium instances; very

large or massive tables can not be tackled with current technology. Several approaches have been

tried to speed up the solution time. A straightforward Benders reformulation of the problem was

attempted in [7], but promising results were only obtained for two-dimensional tables (i.e., tables

obtained by crossing two categorical variables, whose constraints are represented by a node-arc

network incidence matrix [5]). Heuristic and metaheuristic methods were attempted in [22], but

they only solved small two-dimensional and three-dimensional tables of up to 625 and 8000

cells, respectively, while we consider in this work much more complex synthetic and real tables

from the literature, of up to 200000 and 36000 cells, respectively. For instance, we generated a

set of 20 two-dimensional and 20 three-dimensional tables with the same characteristics (sizes

and number of sensitive cells) than those in [22]. We remark that: (1) the tables used in [22]

were also randomly generated; (2) the matrix constraints only depends on the table structure

(two- or three-dimensional table) so they were the same in our experiments and those in [22];

(3) although the instances are not exactly the same, what makes difficult (in general) a problem

is the structure of the matrix constraints and the number of sensitive cells (which is associated

to the number of binary variables of the optimization problem); those characteristics are the

same in our experiments and those of [22]. CPLEX 12.5 found a 0% gap solution for all these

two-dimensional tables with an average CPU time of 0.02 seconds (the maximum time required

by an instance was 0.03 seconds). For the three-dimensional tables, the average CPU time was

0.2 seconds (the maximum time for an instance was 0.49 seconds), again for 0% gap solutions.

No CPU time comparison with CPLEX was reported in [22]; it was just stated that CPLEX 8.1

could not solve the instances. Therefore, up to now, there is no conclusive evidence that those

metaheuristics are helpful for the CTA problem.

We also tried in the past other general metaheuristics as genetic algorithms without success:

combinations or modifications of solutions are not expected to satisfy the large number of linear
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constraints with no particular structure of CTA. Indeed, these constraints are usually complex,

and any practical approach must rely on the efficient solution of (usually difficult) linearly con-

strained problems (either LPs or MILPs). The approaches in this paper rely on decomposing

the problem into smaller, thus tractable, MILP instances. It is worth to note that even the LPs

obtained from large CTA instances by fixing the binary variables are very difficult for today state-

of-the-art solvers. Indeed, some of these instances have been included in standard LP repositories

[29].

The purpose of this work is twofold. Its first goal is to apply a fix-and-relax (FR) heuristic

[13] to the MILP CTA problem. Briefly, FR partitions the set of binary variables into k clusters,

and iteratively optimizes for each cluster i = 1, . . . , k, fixing the binary variables of clusters j < i

at the optimal value found in previous iterations, and relaxing the integrality of binary variables

of clusters j > i. The effect of this partitioning of the set of binary variables is that the nodes

of the branch-and-cut tree are selectively explored. Equipping this procedure with a backward

repartition strategy (details will be given in Section 3.1), if the MILP is feasible then FR will al-

ways provide a feasible, hopefully good and efficient, suboptimal solution. The approach cannot

guarantee the optimal solution, but in practice end users of statistical data protection techniques

prefer quick suboptimal solutions than optimal costly ones, i.e., requiring too many hours, days

or weeks of CPU time.

The second objective of the work is to apply a hybrid approach combining FR and the block

coordinate descent (BCD) heuristic, which was successfully applied to some classes of CTA

problems in [23]. This hybrid method will be named FR+BCD. Indeed, FR is efficient for

computing initial, hopefully good, feasible points, while BCD requires a feasible starting point.

Therefore, both heuristics are complementary. As it will be shown in Section 4, BCD, warm

started with the FR solutions, was able to reduce the gap of the FR solution in approximately

half of the real-world CTA instances. In 25 of the 34 real-world instances FR or FR+BCD pro-

vided similar or better objective functions in less CPU time than the state-of-the-art MILP solver

CPLEX.

FR has been successfully applied in the past mainly to scheduling problems [13, 15, 16].

In those applications, variables and constraints can naturally be partitioned according to some

sequential stages, two consecutive ones being only linked by a few of the variables and con-

straints of each partition. Such a structure can also be found in some classes of tables, named

two dimensional tables with one hierarchical variable, or, shortly, 1H2D tables. These tables are

obtained by crossing a particular categorical variable with a set of, say, h categorical variables

that have a hierarchical relation; this results in a set of h two-dimensional tables with some com-

mon cells. For instance, Figure 2 (from [5]) illustrates a particular 1H2D table. The left subtable

shows number of respondents for “region”×“profession”; the middle subtable is a “zoom in” of

region R2, providing the number of respondents in municipalities of this region; finally the right

subtable details the ZIP codes of municipality R21. This type of tables, which are relevant for

NSAs, are a priori suitable for FR. Most of the instances tested in the computational results of

this work are 1H2D, and, as it will be shown, FR provides good solutions in a fraction of the time

required by state-of-the-art branch-and-cut solvers (to obtain equivalent solutions, i.e., with the

same objective function value). It will be seen that FR+BCD improved the FR solutions in only

25% of these 1H2D tables. For real-world tables, this percentage increased up to 50%, making

FR+BCD a competitive approach.

The paper is organized as follows. Section 2 outlines the MILP CTA problem. Section

3.1 describes the FR heuristic for CTA; it also outlines the BCD approach. Finally, Section

4 presents extensive computational results, showing the effectiveness of FR and FR+BCD for
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C1 C2 C3

R1 5 6 11

R2 10 15 25

R3 15 21 36

T1

C1 C2 C3

R21 8 10 18

R22 2 5 7

R2 10 15 25

T2

C1 C2 C3

R211 6 6 12

R212 2 4 6

R21 8 10 18

T3

Figure 2: 1H2D table made of three subtables: “region”×“profession”, “municipality”×“profession” and

“zip code”×“profession”.

synthetic 1H2D and real-world tables.

2. The MILP formulation of the CTA problem

Any CTA problem instance can be represented by the following parameters :

• A set of cells ai, i ∈ N = {1, . . . , n}, that satisfiesM = {1, . . . ,m} linear relations Aa = b,

a ∈ Rn being the vector of ai’s, and A ∈ Rm×n. These linear relations impose that the set of

inner cells has to be equal to the total or marginal cell, i.e., if I j is the set of inner cells of

relation j ∈ M, and t j is the index of the total cell of relation j, the constraint associated

to this relation is
(

∑

i∈I j
ai

)

− at j
= 0.

• Nonnegative cell weights wi, i ∈ N , used in the definition of the objective function. These

weights penalize perturbations from the original cell values in the released table. Cells

weights are usually a function of the cell value, e.g., wi = 1/ai—for this particular weights,

the objective function represents relative cell deviations.

• A lower and upper bound for each cell i ∈ N , respectively lai
and uai

, which can be

considered publicly known.

• A set S = {i1, i2, . . . , is} ⊆ N of indices of sensitive or confidential cells.

• A lower and upper protection level for each sensitive cell, respectively, lpli and upli, i ∈ S.

Values of sensitive cells must be out of the interval (ai− lpli, ai+upli) in the released table.

The purpose of CTA is to find the closest safe values xi to ai. Considering any distance ℓ,

CTA can be formulated as

min
x

||x − a||ℓ

s. to Ax = b

lai
≤ xi ≤ uai

i ∈ N

xi ≤ ai − lpli or xi ≥ ai + upli i ∈ S.

(1)

The disjunctive constraints of (1) guarantee the published value is safely out of the interval

(ai − lpli, ai + upli). Problem (1) can also be formulated in terms of deviations from the current
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cell values. Defining zi = xi − ai, i ∈ N—and similarly lzi
= lai

− ai and uzi
= uai

− ai—, (1) can

be recast as
min

z
||z||ℓ

s. to Az = 0

lzi
≤ zi ≤ uzi

i ∈ N

zi ≤ −lpli or zi ≥ upli i ∈ S,

(2)

z ∈ R
n being the vector of cell deviations. Using the ℓ1 or Manhattan distance and the cell

weights wi, the objective function is
∑

i∈N wi|zi|. Since wi are nonnegative, splitting the vector of

deviations z in two nonnegative vectors z+ ∈ Rn and z− ∈ Rn, model (2) with the ℓ1 distance can

thus be written as

min
z+,z−,y

∑

i∈N

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0

0 ≤ z+
i
≤ uzi

i ∈ N \ S

0 ≤ z−
i
≤ −lzi

i ∈ N \ S

upli yi ≤ z+
i
≤ uzi

yi i ∈ S

lpli(1 − yi) ≤ z−
i
≤ −lzi

(1 − yi) i ∈ S

yi ∈ {0, 1}, i ∈ S,

(3)

y ∈ Rs being the vector of binary variables associated to protection directions. When yi = 1 the

constraints mean upli ≤ z+
i
≤ uzi

and z−
i
= 0, thus the protection direction is “upper”; when yi = 0

we get z+
i
= 0 and lpli ≤ z−

i
≤ −lzi

, thus the protection direction is “lower”.

3. Heuristic methods applied to CTA

Model (3) is a difficult MILP even for medium size tables. Finding an optimal (or quasi-

optimal) solution may require many hours (even days or weeks) of execution. When the number

of sensitive cells is large, the branch-and-cut scheme has shown to be inefficient, and in some

cases it is even unable to provide a first feasible solution. For some massive instances—such as,

e.g., those in http://www-eio.upc.es/~jcastro/huge_sdc_instances.html— the LPs

obtained by fixing the value of binary variables—associated to the protection directions—are

even not solvable with moderate computational resources. For example, the LPs derived from

the six million cells instances of the above web address exhausted the memory of a 16 gigabytes

workstation when solved with the CPLEX barrier solver. Unfortunately, the alternative simplex

solver is even more prohibitive, but in terms of CPU time: interior-point algorithms have shown

to be much more efficient than the simplex for the LPs derived from CTA [3, 5]. In this work we

consider a FR heuristic and a hybrid FR+BCD approach for CTA. FR and BCD are, respectively,

described and outlined below.

3.1. Fix-and-relax

FR is a decomposition method based on partitioning the set of binary variables into clusters

to iteratively solve a sequence of MILPs of smaller dimension than the original problem. In

those smaller MILPs only a subset of variables retain their binary constraints while the rest are

either fixed or relaxed. Since only a reduced subset of (non-fixed) 0-1 variables is kept integer

at each FR iteration, a computational improvement is expected. FR can both be seen as an

approach for obtaining (hopefully good) initial feasible solutions and primal bounds. There are
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1. Input: Number of clusters k ≥ 1

2. Partition S into {V1, . . . ,Vk} clusters

3. Initialize r = 1 and solve CT A1
FR

4. if CT A1
FR

is infeasible, STOP

5. else Store values of binary variables of CT A1
FR

, set lower bound LB, and r ← r + 1

6. while r ≤ k do

7. Solve CT Ar
FR

8. if infeasible, redefine the partition structure as in (5)

9. else Store optimal values of binary variables of CT Ar
FR

, and r ← r + 1

10. end while

11. Return UB (solution of CT Ak
FR

) and LB

Figure 3: The fix-and-relax heuristic applied to the CTA problem

other approaches for initial good solutions in MILPs, such as the feasibility pump [17], but as it

will seen in Section 4, in practice FR outperformed them.

FR can be briefly stated as follows. The set of binary variables is partitioned into a finite set

of clusters {V1, . . . ,Vk}. The original MILP is then decomposed into k subproblems and at each

iteration one of them is solved. At first iteration (counter r set to 1) the subproblem considers

as binary only the variables of V1, while the integrality of binary variables in the remaining

clusters is relaxed. Continuous variables in the original MILP maintain this same status at each

subproblem. Hopefully, this first subproblem will be easily solved since the cardinality of V1 is

much smaller than the number of binary variables in the original MILP. Once solved, the counter

r is incremented and the next subproblem is considered. At subproblem of iteration r, k > r > 1,

the binary variables of clusters Vi, i < r, are fixed to the values of optimal solutions from the

previous iterations; variables of cluster Vr are considered binary, while the integrality of variables

in clusters V j, j > r is relaxed. The process is repeated until r = k. If no subproblem is infeasible,

a (hopefully good) feasible solution will be available after the solution of subproblem k. In the

particular case of CTA, the set S of sensitive cells is partitioned into the subsets {V1, . . . ,Vk}, and

the subproblem r associated to (3)—which will be referred as (CT Ar
FR

)—is

min
z+,z−,y

n
∑

i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0

0 ≤ z+
i
≤ uzi

i ∈ N \ S

0 ≤ z−
i
≤ −lzi

i ∈ N \ S

upli yi ≤ z+
i
≤ uzi

yi i ∈ S

lpli(1 − yi) ≤ z−
i
≤ −lzi

(1 − yi) i ∈ S

yi = ỹi i ∈
⋃

h=1,...,r−1 Vh

yi ∈ {0, 1} i ∈ Vr

yi ∈ [0, 1] i ∈
⋃

h=r+1,...,k Vh,

(4)

where ỹi, i ∈ ∪h=1,...,r−1Vh, are the values of binary variables found at subproblems CT A1
FR

, . . .,

CT Ar−1
FR

. Although FR is a heuristic for MILP problems, it is easily switched to an optimal

approach by setting k = 1.

It is worth noting that the first subproblem CT A1
FR

has two main features compared to the

subsequent ones:
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• The lower bound on the objective function provided by CT A1
FR

is a global lower bound of

(3). On the other hand, the lower bound of subproblems r > 1 are just local lower bounds.

The lower bound reported by the FR algorithm will then be that of CT A1
FR

. Note that the

optimal solution of CT A1
FR

can be considered a lower bound of (3) only if computed with

a 0% gap. However, such a gap is impractical, because the solution of CT A1
FR

would take

a long execution time—something to avoid, since the goal of FR is to quickly provide a

decent solution. In the implementation developed, the lower bound was obtained by the

CPLEX routine CPXgetbestobjval. When a problem has been solved to optimality, this

routine provides the optimal solution value. Otherwise, it provides the minimum objective

function value of all remaining unexplored nodes in the branch-and-cut tree.

• If CT A1
FR

is infeasible, then (3) is infeasible as well. However, if some subproblem r > 1

is infeasible it can not be concluded that (3) is infeasible; it just means that we can not fix

yi = ỹi, for i ∈ Vr−1, at subproblem r. To overcome this drawback, when subproblem r > 1

is reported as infeasible, we backtrack to problem r− 1, modifying the partition by joining

the clusters Vr−1 and Vr as follows:































Vr−1 ← Vr−1

⋃

Vr

Vi ← Vi+1, i = r, . . . , k − 1

k ← k − 1

r ← r − 1.

(5)

Note that the above repartition strategy will always provide a feasible solution if (3) is

feasible. Indeed, in the worst case, if subproblem k is infeasible and (5) is applied k −

1 times, we will end up with a unique cluster, i.e., we will be solving (3). However,

in practice, as it was observed in the computational results of Section 4, this repartition

strategy was never needed in the instances tested.

An outline of the FR algorithm for CTA is shown in Figure 3.

3.2. Outline of block coordinate descent

The BCD approach applied to CTA has been described in [23]. Briefly, it consists of a

sequence of CTA subproblems, each of them optimizing the objective function over the cell

deviations z+, z− and a subset of the decision variables y, while the remaining variables y are kept

fixed to some direction. Provided that we start from a feasible assignment of y, the method can

move from a solution to another, hopefully better. Although there could be uncountable strategies

to determine the subset of variables to be optimized, the set S is usually partitioned into k clusters

(or blocks) and the algorithm iterates through them. However, BCD could perform indefinitely,

starting again with the same or with another partition. Stopping criteria normally employed

are: only one cycle of k clusters; a time limit, or a specified number of subproblems without

improvement in the objective function. Since the method does not account for dual information

there are no means to compute a gap for the solution. Despite this, the results of [23] showed that

BCD reaches sub-optimal but still good solutions in significantly less time than branch-and-cut

schemes. The algorithm is summarized in Figure 4.

Experience with BCD has shown that, in general, the performance of the method improves as

the number of blocks decreases, and two blocks seems to be the best choice. Notice that one block

would lead the method to a plain branch-and-cut, which might be computationally prohibitive. It

has been observed that many tables are (sub-optimally) protected through manipulation of half
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1. Input: Number of clusters k ≥ 1

2. Set feasible initial values to y; initialize outer iteration counter: t ← 0

3. while stopping criterion not satisfied and t ≤ tmax do

4. Set inner iteration counter: i← 0; divide y into k blocks: y = {y1,i, . . . , yk,i}

5. while i < k do

6. Solve (3) with respect to block yi,i fixing y j,i for j , i: obtain (yi,i)∗

7. yi,i+1 ← (yi,i)∗; y j,i+1 ← y j,i for j , i

8. i← i + 1

9. end while

10. t ← t + 1

11. end while

12. Return the best solution found

Figure 4: The block coordinate descent heuristic for the CTA problem

of their sensitive cells in a fraction of the time needed if the whole set of sensitive cells was

considered (this fraction of time being significantly less than 1/2).

Many tests indicate that rebuilding the partition of blocks at each iteration is clearly prefer-

able to keep some pre-determined division. Actually, the best performances are obtained with a

random division of the binary variables into blocks; this is the main strategy considered.

A disadvantage of BCD is the need to find a feasible initial assignment of directions to start

the process (step 2 of algorithm of Figure 4), which may be in itself a difficult problem for

large CTA instances. The heuristic approach considered in [23], which relies on the Boolean

Satisfiability problem, only focuses on the constraints, and then it may provide poor quality

solutions. Since FR solutions take into account the objective function, we can use them as a

good warm start to BCD. This approach, named FR+BCD, will be computationally tested and

seen as a very efficient option in Subsection 4.3.

4. Computational results

The FR and FR+BCD heuristics for CTA have been coded in C++, using the state-of-the-art

CPLEX 12.5 branch-and-cut solver for the solution of subproblems (4). FR and FR+BCD were

compared with the direct solution of (3) through plain CPLEX branch-and-cut, which will be

referred as BC.

All the runs were carried out on a Dell PowerEdge 6950 server with four dual core AMD

Opteron 8222 3.0 GHZ processors (without exploitation of parallelism capabilities) and 64 GB

of RAM. Default values were used for the CPLEX parameters, unless explicitly stated. For the

computational tests we considered a set of real-world general and synthetic 1H2D tables. Real-

world general tables are standard instances used in the literature [5]. It is worth noting that some

real-world instances were not included in this set since they are too difficult for both heuristic and

exact MILP approaches—no feasible solution was obtained within the time limit. Synthetic in-

stances were obtained with a generator of 1H2D tables. This generator is governed by several pa-

rameters, as, for instance, the number of rows in a subtable; the number of columns per subtable;

the depth of the hierarchical tree; the minimum and maximum number of rows with hierarchies

for each subtable; and the probability for a cell to be marked as sensitive. The 1H2D table gen-

erator is available from http://www-eio.upc.es/~jcastro/generators_csp.html. We

9
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instance n s m nz

Symmetric instances

sym-40-50-5 29039 1421 1334 58793

sym-40-50-15 31753 46612 1388 64219

sym-40-50-30 29141 8556 1336 58997

sym-40-60-5 36990 1816 1521 74835

sym-40-60-15 34026 5011 1473 68906

sym-40-60-30 38040 11207 1539 76933

sym-50-50-5 40637 1989 1562 81988

sym-50-50-15 39596 5815 1541 79907

sym-50-50-30 38097 11190 1512 76908

sym-50-60-5 45555 2237 1662 91964

sym-50-60-15 44457 6550 1644 89768

sym-50-60-30 45835 13507 1666 92525

Asymmetric instances

asym-40-50-5 125661 6157 5677 254483

asym-40-50-15 126844 18646 5700 256850

asym-40-50-30 127000 37338 5703 257162

asym-40-60-5 151166 7431 6321 306114

asym-40-60-15 149641 22069 6296 303064

asym-40-60-30 150711 44454 6314 305203

asym-50-50-5 162561 7966 6400 328284

asym-50-50-15 159766 23487 6346 322694

asym-50-50-30 160171 47094 6354 323503

asym-50-60-5 191503 9415 6982 386789

asym-50-60-15 189718 27982 6953 383218

asym-50-60-30 188742 55676 6937 381266

Table 1: Characteristics of symmetric/asymmetric synthetic 1H2D instances.

fixed all parameters, but three: the number of rows per subtable (r ∈ {40, 50}), the number of

columns per subtable (c ∈ {50, 60}) and the percentage of sensitive cells (s ∈ {5, 15, 30}).

We considered either symmetric and asymmetric instances, i.e., instances where uai
= lai

for

all i ∈ N and uai
, lai

for some i ∈ N , respectively. Asymmetric instances were obtained by

considering uai
= a · lai

for all i ∈ N , where a ∈ {2, 5, 10} is the asymmetry parameter. For

each combination of parameters we generated a sample of five instances varying the random

generator seed. This amounted to 12 and 36 samples of five instances each one, for symmetric

and asymmetric instances respectively. Although the asymmetry parameter slightly affects to the

difficulty of the problem, both symmetric and asymmetric instances will be grouped by r, c and

s to simplify the exposition. The reported computational results are thus averaged on five and 15

replications for symmetric and asymmetric tables, respectively.

Table 1 reports the characteristics of each set of symmetric/asymmetric 1H2D instances: the

average number of cells (”n”), the average number of sensitive cells (”s”), the average num-

ber of table relations (”m”) and the average number of coefficients in linear constraints (”nz”).

Hierarchical synthetic tables are identified by the particular combination of parameters, i.e.,

sym-r-c-s for symmetric instances and asym-r-c-s for asymmetric ones. Table 2 reports

the same information for real-world tables, though in this case the dimensions are not averaged.

The dimensions of the MILP problems (3) are 2n continuous variables, s binary variables, and

m + 4s linear constraints.

4.1. Tuning the number of clusters in fix-and-relax

The performance of FR depends on the number of clusters k considered. We performed an

empirical study of the effect of k on two particular metrics: the CPU time and the quality of

the solutions provided by FR. This empirical analysis was done considering values k ∈ K =

10



instance n s m nz

australia_ABS 24420 918 274 13224

bts4 36570 2260 36310 136912

cbs 11163 2467 244 22326

dale 16514 4923 405 33028

destatis 5940 621 1464 18180

hier13d4 18969 2188 47675 143953

hier13 2020 112 3313 11929

hier13x13x13a 2197 108 3549 11661

hier13x13x13b 2197 108 3549 11661

hier13x13x13c 2197 108 3549 11661

hier13x13x13d 2197 108 3549 11661

hier13x13x13e 2197 112 3549 11661

hier13x13x7d 1183 75 1443 5369

hier13x7x7d 637 50 525 2401

hier16 3564 224 5484 19996

hier16x16x16a 4096 224 5376 21504

hier16x16x16b 4096 224 5376 21504

hier16x16x16c 4096 224 5376 21504

hier16x16x16d 4096 224 5376 21504

hier16x16x16e 4096 224 5376 21504

nine5d 10733 1661 17295 58135

osorio 10201 7 202 20402

sbs2008_C 4212 1135 2580 13806

sbs2008_E 1430 382 991 4680

table1 1584 146 510 4752

table3 4992 517 2464 19968

table4 4992 517 2464 19968

table5 4992 517 2464 19968

table6 1584 146 510 4752

table7 624 17 230 1872

table8 1271 3 72 2542

targus 162 13 63 360

toy3dsarah 2890 376 1649 9690

two5in6 5681 720 9629 34310

Table 2: Characteristics of real instances.
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{3, 5, 7, 10, 20, 30, 40, 50}, and using a subset of asymmetric 1H2D instances. For each combina-

tion of parameters r-c-s we considered a sample of three instances.

Each instance was solved |K| times, randomly partitioning the set S of sensitive cells into

k ∈ K subsets. The stopping criterion for all the runs, i.e., subproblems (4), was a 5% optimality

gap, which is computed by CPLEX as (UB − LB)/(|UB| + 10−10), where UB is the best integer

solution (upper bound) and LB is the best achievable value from the current branch-and-cut tree

(lower bound).

Figure 5 reports the CPU time (in seconds, averaged for the three instances of each sample)

used by FR for the different k ∈ K number of clusters. Clearly, the CPU time increases with k,

and the heuristic becomes prohibitive if the number of clusters is large.

The second metric, the quality of the solutions, was evaluated using the performance profile

proposed in [14]. Quality was measured as the value of the objective function (thus, the lower,

the better). Let Qtk be the quality of the solution of instance t solved by FR with k clusters. Note

that Qtk for CTA is always strictly positive. The performance ratio is thus defined as

v(t, k) =
Qt,k

min{Qt,k : k ∈ K}
,

i.e., the ratio between the quality of the solution obtained when instance t is solved by FR with k

clusters over the strategy with the best (minimum) performance for this instance. The (cumula-

tive) distribution function Pk(q) : [1,∞)→ [0, 1] is defined as

Pk(q) =
|{t ∈ T : v(t, k) ≤ q}|

|T |
, q ≥ 1.

where T is the set of instances. Figure 6 shows the performance profiles for the different k ∈ K .

Pk(q) = 1 means FR with k clusters is able to solve all the instances within a factor q of the best

possible ratio. In our case k = 3 is the first strategy to converge to 1 for q ≈ 1.45 (i.e., FR with

3 blocks solves all the instances within a factor ≈ 1.45 of the best ratio). It can also be observed

that k = 3 provides the highest quality for 80% of the instances (P3(1) ≈ 0.8).

4.2. Comparison between fix-and-relax and plain branch-and-cut

From the discussion of previous Subsection, k = 3 was set for FR. An optimality gap of 5%

was considered for all the optimization problems, either (3) or FR subproblems (4). The time

limit was set to two hours for both 1H2D and real-world instances. Note that FR subproblems

are also solved by CPLEX branch-and-cut; therefore the comparison is between whether using

or not the FR scheme. We will refer to these two variants as FR and BC.

Tables 3 and 4 report an exhaustive comparison between FR and BC for synthetic 1H2D

and real-world instances, respectively. These tables report the FR CPU time (columns “TFR”);

the primal gap of the solution reported by FR (columns “GAPFR%”); the primal gap of the so-

lution reported by BC after TFR seconds of CPU time (columns “GAPBC%”), i.e., using the

same time than FR; the difference between both primal gaps (columns “∆(BC, FR)”); the pri-

mal gap and CPU time needed by BC to compute a better solution than the feasible solution

found by FR (columns “GAP
up

BC
%” and “T

up

BC
”); and finally the difference between the time

needed by BC to improve the FR solution and the time needed by FR to compute that solu-

tion (columns“∆(TFR,T
up

BC
)”). Positive values at column ∆(BC, FR) means that FR achieved a

better solution than BC in the same CPU time.
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instance TFR GAPFR% GAPBC % ∆(BC, FR) GAP
up

BC
% T

up

BC
∆(T

up

BC
, TFR)

asym-40-50-5 72.76 2.52 †(40.70,5) †(38.18,5) ‡(1.20,13) ‡(87.76,13) ‡(15.00,13)

asym-40-50-15 158.75 3.55 86.67 83.11 ‡(1.94,13) ‡(465.84,13) ‡(307.09,13)

asym-40-50-30 210.51 5.60 99.98 94.38 1.84 1083.47 872.96

asym-40-60-5 95.40 2.40 †(0.88,5) †(−1.51,5) ‡(1.08,14) ‡(124.01,14) ‡(28.61,14)

asym-40-60-15 193.37 3.17 99.96 96.79 ‡(1.69,12) ‡(945.40,12) ‡(752.03,12)

asym-40-60-30 314.96 5.26 99.97 94.71 2.43 1107.84 792.88

asym-50-50-5 110.54 1.82 †(0.08,8) †(−1.74,8) ‡(0.62,14) ‡(135.65,14) ‡(25.11,14)

asym-50-50-15 186.95 3.11 86.66 83.54 ‡(1.02,11) ‡(804.02,11) ‡(617.07,11)

asym-50-50-30 333.50 5.94 99.94 93.99 2.21 1704.06 1370.55

asym-50-60-5 153.14 1.23 †(0.45,9) †(−0.78,9) ‡(0.85,13) ‡(163.61,13) ‡(10.46,13)

asym-50-60-15 282.79 3.05 93.33 90.28 ‡(1.46,13) ‡(1569.41,13) ‡(1286.62,13)

asym-50-60-30 406.42 5.52 99.92 94.40 2.39 1396.89 990.47

sym-40-50-5 8.99 2.43 12.69 10.26 ‡(1.61,2) ‡(15.09,2) ‡(6.10,2)

sym-40-50-15 115.34 4.31 45.79 41.48 ‡(2.56,4) ‡(443.91,4) ‡(328.57,4)

sym-40-50-30 371.35 4.61 63.90 59.29 ‡(4.36,3) ‡(2681.80,3) ‡(2310.45,3)

sym-40-60-5 10.52 2.79 14.44 11.65 1,33 37.76 27.24

sym-40-60-15 102.29 2.20 82.23 80.03 ‡(−,0) ‡(−,0) ‡(−,0)

sym-40-60-30 800.45 4.39 12.88 8.49 †(4.59,3) †(2870.02,3) †(2069.57,3)

sym-50-50-5 25.47 1.94 †(12.20,3) †(10.25,3) ‡(0.72,5) ‡(50.75,5) ‡(25.27,5)

sym-50-50-15 166.33 3.66 12.74 9.08 ‡(1.95,2) ‡(1434.04,2) ‡(1267.71,2)

sym-50-50-30 511.19 3.45 66.81 63.36 ‡(3.71,2) ‡(5049.30,2) ‡(4538.11,2)

sym-50-60-5 56.80 1.61 †(54.33,4) †(52.72,4) ‡(0.97,4) ‡(104.60,4) ‡(47.80,4)

sym-50-60-15 279.63 2.47 13.60 11.14 ‡(0.70,1) ‡(1055.10,1) ‡(775.47,1)

sym-50-60-30 833.45 3.95 47.62 43.66 ‡(4.38,2) ‡(3863.53,2) ‡(3030.08,2)

†(x,y) BC could not find a solution in y of the overall number of replications within TFR seconds;

x is the average value for the remaining successful runs.

‡(z,w) BC could not improve the FR solution in w of the overall number of replications within the time limit;

z is the average value for the remaining successful runs.

Table 3: Comparison between fix-an-relax and plain branch-and-cut for synthetic asymmetric and symmetric 1H2D

instances

From Table 3 it can be concluded that FR is more efficient than BC for fast good feasible

solutions of 1H2D tables. In several runs (marked with ‡) BC could not find a better solution

than FR within the time limit. It is worth noting that for all the 1H2D instances FR provided

solutions with gaps below 6%. For the real-world general instances of Table 4 the situation is

slightly different. These instances are not guaranteed to have a hierarchical structure, and this

may explain why FR is not as competitive as for 1H2D tables. FR provided a better gap than BC

within the same CPU time in 17 of the 34 instances, and both FR and BC provided the same gap

in six adittional cases. In six of these cases BC could not improve the FR solution within the two

hours time limit. In the remaining instances BC outperformed FR.

4.3. Comparison between fix-and-relax with block coordinate descent and plain branch-and-cut

As mentioned in section 3.2, since FR can provide good feasible solutions faster in aver-

age than BC, BCD was warm started with the FR solution. This hybrid approach was named

FR+BCD.

The BCD algorithm performed in all cases a loop with two clusters, each one with a half of

the sensitive cells, partitioned at random. At exit, the CPU computation time and the objective

function value were saved. This CPU time was added to the FR CPU time and compared to the

CPU time used by BC. We also took into account whether the sensitive cells had been correctly

protected in the final solutions, since accuracy errors might be present in some instances, making

actually infeasible the protected table. This accuracy errors are due to the big-M constraints

z+
i
≤ uzi

yi and z−
i
≤ −lzi

(1 − yi) of (3) and (4), since uzi
and −lzi

can take very large values.
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instance TFR GAPFR% GAPBC % ∆(BC, FR) GAP
up

BC
% T

up

BC
∆(T

up

BC
,TFR)

australia_ABS 6,05 73,87 3,84 -70,03 7,40 2,45 -3,6

bts4 6332,15 66,57 74,16 7,59 ‡ ‡ ‡

cbs 2,87 100,00 100,00 0,00 0,00 2,88 0,01

dale 595,85 48,44 48,44 0,00 48,44 7199,96 6604,11

destatis 204,32 19,53 99,97 80,44 1,80 706,48 502,16

hier13d4 6410,73 82,86 99,98 17,12 ‡ ‡ ‡

hier13 747,29 6,88 4,90 -1,98 4,90 159,24 -588,05

hier13x13x13a 542,72 5,22 5,22 0,00 4,94 690,15 147,43

hier13x13x13b 584,92 5,89 5,24 -0,65 5,24 369,13 -215,79

hier13x13x13c 542,86 5,63 4,99 -0,65 4,99 243,43 -299,43

hier13x13x13d 178,12 4,69 5,27 0,58 2,40 340,47 162,35

hier13x13x13e 336,72 5,39 4,40 -0,99 4,40 269,82 -66,9

hier13x13x7d 34,72 5,58 7,19 1,61 4,96 69,32 34,6

hier13x7x7d 2,71 4,82 12,35 7,53 ‡ ‡ ‡

hier16 4854,46 59,48 63,07 3,59 ‡ ‡ ‡

hier16x16x16a 2803,76 44,96 48,80 3,84 44,71 3706,65 902,89

hier16x16x16b 3401,2 33,49 99,95 66,46 31,89 6275,87 2874,67

hier16x16x16c 3488,27 40,86 50,40 9,54 39,62 4926,13 1437,86

hier16x16x16d 3776,81 57,66 63,32 5,66 57,07 5369,03 1592,22

hier16x16x16e 3862,21 46,55 46,87 0,32 ‡ ‡ ‡

nine5d 6133,25 67,69 99,99 32,30 ‡ ‡ ‡

osorio 1,86 0,00 0,00 0,00 0,00 1,03 -0,83

sbs2008_C 543,88 50,11 3,36 -46,75 21,77 32,24 -511,64

sbs2008_E 4,56 4,73 4,73 0,00 4,73 2,94 -1,62

table1 0,62 8,38 13,43 5,06 4,92 1,25 0,63

table3 1909,18 25,39 15,07 -10,32 17,11 408,3 -1500,88

table4 1196,86 25,39 17,30 -8,09 18,60 511,64 -685,22

table5 720,49 22,80 20,20 -2,60 20,25 216,19 -504,3

table6 1,01 7,77 39,32 31,54 3,36 2,17 1,16

table7 0,1 1,01 0,41 -0,61 0,41 0,02 -0,08

table8 0,18 2,44 0,00 -2,44 1,35 0,04 -0,14

targus 0,08 3,84 3,84 0,00 3,84 0,01 -0,07

toy3dsarah 25,47 0,34 7,29 6,94 0,34 37,46 11,99

two5in6 3010,89 66,04 99,99 33,95 63,91 7200,45 4189,56

‡ Time limit reached without improving the feasible FR solution.

Table 4: Comparison between fix-an-relax and plain branch-and-cut for real instances
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Objective Function

FR+BCD < BC FR+BCD > BC

FR+BCD < BC

mean (sd) ∆F

max |∆F|

mean (sd) ∆T

max |∆T |

N [Nasym ; Nsym]

−1.24 (1.08)

−4.23

−1564 (1872)

−6641

58 [27; 31]

1.86 (1.46)

7.26

−883 (1281)

−6351

119 [93; 26]

Time FR+BCD > BC

mean (sd) ∆F

max |∆F|

mean (sd) ∆T

max |∆T |

N [Nasym ; Nsym]

−1.55 (1.43)

−3.89

146 (207)

508

5 [4; 1]

0.83 (1.07)

4.17

49 (38)

182

58 [56; 2]

∆F stands for 100(FFR+BCD − FBC )/FBC . ∆T stands for (TFR+BCD − TBC ), in seconds.

“sd” stands for standard deviation.

Table 5: Summary of results for 1H2D instances, in the comparison between FR+BCD versus BC.

With regard to 1H2D instances, it has been observed that the extra time needed by the BCD

stage is related to the number of sensitive cells, although with considerable variability especially

if the table is large. The 16 tables with more than 50,000 sensitive cells consumed between 114

and 492 seconds, with a median time of 255 seconds. In 104 instances with less than 10,000

sensitive cells the median time was 29.7 seconds. Compared to the time employed by the FR

stage, it took about 40% of that time (median proportion): in 18 instances out of 240 BCD lasted

longer than FR, generally in tables with high density of sensitive cells.

Sixty-one tables improved the objective function after the BCD stage, and the others re-

mained in the same value (not necessarily in the same solution). The median change in the

objective function with respect to the value attained by FR was 3%, with a maximum of 10%.

Improving the solution requires also more time: 54.6% of FR time, instead of 37% for the ta-

bles not improved. We observed a higher rate of success among the tables with high density of

sensitive cells: an odd of 33 versus 47 for tables with 30% of sensitive cells, compared to 28

versus 132 for tables with 15% or lower proportion. The table size or the asymmetry degree in

the protection levels were not related to improvement in the objective function.

Table 5 summarizes the results with 1H2D instances for two factors: solution times (in rows)

and objective function values (in columns) between BC and FR+BCD. The two categories for

each factor are either FR+BCD outperfomed BC (“FR+BCD < BC”, i.e., less CPU time or a

lower objective function value) or the opposite (“FR+BCD > BC”). Each of the four cells shows

the number of instances (“N”), and some statistics (mean, standard deviation, maximum) about

the change in both factors: ∆F is the percentage change in the objective function, ∆T is the

absolute change in the time. Comparing left versus right columns, we can see small differences

between the percentage changes in objective function values (they range from −4.23% to 7.26%).

However, comparing above versus below rows, we can see large differences with respect to

solution times: 1564 and 883 seconds in favor of FR+BCD (177 cases) against 146 and 49

seconds (63 cases) in favor of BC.

For the real-world tables, FR+BCD got better solutions than FR in 18 instances after a BCD

cycle, whereas it did not improve the FR objective function in 16 cases. Table 6 reports the results

obtained. Columns “F.” and “T.” provide, respectively, the objective function and CPU solution

times for each method, BC, FR and FR+BCD or BCD. Column “∆(FFR, FFR+BCD)” provides

the relative change (as a percentage) in the objective function between the FR and FR+BCD

solutions. The rows are ordered by ∆(FFR, FFR+BCD); the first instance shows a negative change
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instance FBC FFR FFR+BCD TBC TFR. TBCD ∆(FFR, FFR+BCD)

table6‡ 28331962414 29686800000 29899600000 2.17 1 0.38 -0.72

dale 256 256 256 7199.96 595.9 596.62 0

hier13 434834824.5 444063000 444063000 1312.7 747.3 8.18 0

hier13d4 5.11488e+12 6143970000 6143970000 7201.23 6410.7 2769.53 0

hier13x13x13a 434834824.5 436127000 436127000 895.44 542.7 6.16 0

hier13x13x13b 44385.67 44865.8 44865.8 1444.94 584.9 7.14 0

hier13x13x13c 368036.2 370564 370564 1561.69 542.9 8.47 0

hier13x13x13d 414115.44 424074 424074 340.48 178.1 6.89 0

hier13x13x13e 4644973.87 4693570 4693570 269.83 336.7 6.83 0

hier13x7x7d 594401 593370 593370 29.19 2.7 0.24 0

hier16 591756145.8 556221000 556221000 7200.41 4854.5 130.81 0

hier16x16x16b 74891.53 76700.4 76700.4 7200.44 3401.2 121.52 0

osorio 13 13 13 1.8 1.9 1.35 0

sbs2008_E 109959.57 109960 109960 2.95 4.6 0.13 0

table7 9970266227 10031200000 10031200000 0.04 0.1 0.1 0

toy3dsarah 5.0747e+14 5.07506e+14 5.07506e+14 37.46 25.5 0.22 0

hier13x13x7d 1684140 1695250 1686430 241.81 34.7 2.59 0.52

table8 439 450 445 0.09 0.2 0.18 1.11

hier16x16x16a 529703489.9 532145000 525466000 7200.31 2803.8 372.61 1.26

targus 1103759.75 1103760 1088480 0.02 0.1 0.08 1.38

nine5d 6.20788e+12 1215790000 1191810000 7200.51 6133.3 2389.56 1.97

table5 10154665.5 11094800 10837600 7200.21 720.5 258.66 2.32

hier16x16x16c 604844.28 620633 601548 7200.39 3488.3 672.13 3.08

table4 10290147784 11843300000 11433900000 7200.27 1196.9 142.92 3.46

hier16x16x16e 9543201.06 9485820 9077750 7200.41 3862.2 692.34 4.3

table1 2.93185e+13 3.04227e+13 2.89576e+13 1.45 0.6 0.54 4.82

two5in6 707133564.8 751514000 713214000 7200.45 3010.9 169.86 5.1

hier16x16x16d 752648610.3 765577000 725869000 7200.31 3776.8 789.54 5.19

table3 1.20849e+12 1.39866e+12 1.29248e+12 7200.24 1909.2 171.17 7.59

destatis 234541294 286199000 241329000 2528.91 204.3 29.83 15.68

bts4 4114851966 3180710000 2592590000 7200.6 6332.2 6002.29 18.49

sbs2008_C 320835.46 621448 459655 66.34 543.9 0.43 26.03

australia_ABS 651 2396 746 2.91 6.05 4.46 68.86

cbs† 0 268 0 2.88 2.9 1.79 100

‡ This negative improvement is due to unprotected cells in FR solution.

† cbs instance has a global optimum of zero because all the sensitive cells have null weights in the objective function.

Table 6: Comparison between plain branch-and-cut and FR+BCD with real-world instances.

because the solution reached by FR was actually not feasible, due to slight deviations in some

sensitive cells beyond their protection levels, but undetectable with the (already tight) infeasi-

bility tolerance in use by the solver (cf. big-M issue discussed above). In general, FR already

provided a good solution for instances which could not be improved by BCD; this FR solution

was close to the one obtained by BC, but it was computed faster. On the other hand, it is remark-

able that most of the instances where the BCD cycle could improve the solution were difficult

for the BC scheme, which used to exhaust the time limit.

Table 7 summarizes the results for the real-world instances with respect to CPU time and

objective function values. The structure of this table is similar to that of Table 5, but with an

additional central column. This central column corresponds to instances without relevant dif-

ferences in the objective function value (i.e., (FFR+BCD − FBC)/FBC less than 5%). Each cell of

Table 7 reports the number and names of its instances. The first row includes the instances that

were solved faster with FR+BCD than with BC, and the instances that could not be solved in the

2-hour time limit by BC, but they could by FR+BCD. Moreover, some instances were not suit-

ably protected: bts4, dale, table1, table3, table4, table5, table6 and table7 present some sensitive

cells unprotected in the BC solution; dale, table5 and table6 had the same problem with FR, and

BCD was in trouble as well with bts4 and table6: in general, FR+BCD dealt better than BC with

these difficult instances.
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Objective Function

FR+BCD < BC FR+BCD ≈ BC FR+BCD > BC

FR+BCD < BC

bts4 hier16 nine5d

table3 table4 table5

[N=6]

dale destatis

hier13 hier13d4

hier13x13x13a

hier13x13x13b

hier13x13x13c

hier13x13x13d

hier13x13x7d

hier13x7x7d

hier16x16x16a

hier16x16x16b

hier16x16x16c

hier16x16x16d

hier16x16x16e

table1 table6

toy3dsarah two5in6

[N=19]

[N=0]

Time

FR+BCD > BC

[N=0] cbs hier13x13x13e

osorio sbs2008_E

table7 table8 targus

[N=7]

australia_ABS

sbs2008_C

[N=2]

Table 7: Summary of results for real instances, in the comparison between FR+BCD versus BC.

Nine tables were solved faster with the pure BC scheme, but it is worth noting that only two

(sbs2008_C and hier13x13x13e) can be considered as challenging, since they needed more than

one minute to be solved, whereas four (osorio, table7, table8 and targus) have few sensitive cells

and could be solved very quickly by both FR+BCD and BC.

To sum up, Table 7 shows that the combination FR+BCD is competitive with BC in the

solution’s quality, and, in addition, it protects the table in significantly less time.

4.4. Comparison between fix-and-relax and other heuristics

Current state-of-the-art MILP solvers can be turned into heuristic approaches by tuning some

of their pre-build heuristics. For a fair comparison, FR is tested in this section against feasibility

pump (FP), relaxation induced neighborhod search (RINS), and FR+BC (warm starting CPLEX

from the FR solution) with and without polishing.

4.4.1. Fix-and-relax and feasibility pump heuristics

FP [17] is considered an efficient heuristic for the fast computation of hopefully good initial

feasible solutions to MILPs. We used the objective feasibility pump (oFP) [1], which is more

efficient than FP in terms of quality of the solution and the analytic center feasibility pump (AC-

FP) [2], which was introduced as a good alternative in some MILP instances (either in time

or quality of the solution). Table 8 shows a comparison between FR and these FP variants for

real instances. It reports the primal gap of the FR and FP solutions (columns “GAPFR%” and

“GAPFP%”, respectively), the CPU time required by FR and FP to compute the feasible solution

(columns “TFR” and “TFP”, respectively), and the difference between both methods in CPU times

and gaps (columns “∆(TFP,TFR)” and “∆(FP, FR)”, respectively). We ran both oFP and AC-FP.

Table 8 only shows the result of the best FP variant, i.e., the one that provides the lowest gap,

and in case of equal gaps, the fastest one. The best FP variant is clearly marked in the table.
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instance GAPFR% TFR GAPFP% TFP ∆(TFP, TFR) ∆(FP, FR)

australia_ABS 73,87 6,05 95,90AC−FP 26 19,95 22,03

bts4 66,57 6332,15 74,09oFP 552 -5780,15 7,52

cbs 100,00 2,87 100,00oFP 20 17,13 0,00

dale 48,44 595,85 98,52oFP 27 -568,85 50,08

destatis 19,53 204,32 21,93AC−FP 222 17,68 2,40

hier13d4 82,86 6410,73 † † † †

hier13 6,88 747,29 58,96oFP 126 -621,29 52,08

hier13x13x13a 5,22 542,72 63,36AC−FP 122 -420,72 58,14

hier13x13x13b 5,89 584,92 53,36AC−FP 235 -349,92 47,47

hier13x13x13c 5,63 542,86 54,01oFP 217 -325,86 48,38

hier13x13x13d 4,69 178,12 99,86oFP 132 -46,12 95,17

hier13x13x13e 5,39 336,72 99,87oFP 128 -208,72 94,48

hier13x13x7d 5,58 34,72 60,49AC−FP 13 -21,72 54,91

hier13x7x7d 4,82 2,71 73,56oFP 2 -0,71 68,73

hier16 59,48 4854,46 68,36AC−FP 2852 -2002,46 8,89

hier16x16x16a 44,96 2803,76 99,99oFP 4537 1733,24 55,03

hier16x16x16b 33,49 3401,2 99,91oFP 3742 340,8 66,42

hier16x16x16c 40,86 3488,27 99,93oFP 3937 448,73 59,07

hier16x16x16d 57,66 3776,81 66,88AC−FP 2706 -1070,81 9,22

hier16x16x16e 46,55 3862,21 81,19oFP 4430 567,79 34,64

nine5d 67,69 6133,25 † † † †

osorio 0,00 1,86 27,65oFP 0 -1,86 27,65

sbs2008_C 50,11 543,88 82,64oFP 12 -531,88 32,53

sbs2008_E 4,73 4,56 74,15oFP 2 -2,56 69,42

table1 8,38 0,62 2,17oFP 0 -0,62 -6,20

table3 25,39 1909,18 100,00oFP 323 -1586,18 74,61

table4 25,39 1196,86 96,81AC−FP 379 -817,86 71,42

table6 7,77 1,01 9,05oFP 0 -1,01 1,28

table7 1,01 0,1 69,21oFP 0 -0,1 68,20

table8 2,44 0,18 6,51oFP 0 -0,18 4,07

targus 3,84 0,08 0,92oFP 0 -0,08 -2,92

toy3dsarah 0,34 25,47 65,07oFP 5 -20,47 64,73

two5in6 66,04 3010,89 61,91AC−FP 5234 2223,11 -4,13

† Time limit reached without finding a feasible feasibility pump solution.
oFP: best solution provided by oFP.
AC−FP: best solution provided by AC-FP.

Table 8: Comparison between fix-and-relax and feasibility pump for real instances.

It is clearly seen that FR outperformed FP for CTA in terms of quality of the solution. In

most cases, FR provided a better gap than FP by a big difference. Only in three instances FP was

better. FP reached the time limit without a feasible solution in two instances. However, FP is in

general faster than FR in order to find a feasible solution. It can be concluded that, for the CTA

problem, FR instead of FP should be used for finding good feasible solutions within a reasonable

short time.

4.4.2. Fix-and-relax and RINS and local branching heuristics

RINS [12] is a heuristic that explores a neighborhood of the current incumbent solution

and the continuous relaxation at a node h of the BC tree to try to find a new and improved

incumbent. CPLEX BC incorporates RINS, allowing the user to control how often to apply the

heuristic through a frequency parameter f . A value f > 0 means that RINS is applied at nodes

h = 0, f , 2 f , ... while for f = 0 CPLEX automatically decides when to apply the heuristic. The

results of Table 4 were obtained with f = 0; as it was shown in that table, FR outperformed BC

in a considerable percentage of real-world instances. Table 9 adds a comparison between FR and

BC with f = 50. The meaning of columns is the same as in Table 4. The value of f , either

0 or 50, is reported in the new column RINS f . We only considered the subset of real-world
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instance TFR GAPFR% RINS f GAPBC% ∆(BC, FR) GAP
up

BC
% T

up

BC
∆(TFR, T

up

BC
)

bts4
6332,15 66,57

0 74,16 7,59 ‡ ‡ ‡

50 100 33,43 ‡ ‡ ‡

dale
595,85 48,44

0 48,44 0 48,44 7199,96 6604,11

50 48,44 0 ‡ ‡ ‡

destatis
204,32 19,53

0 99,97 80,44 1,8 706,48 502,16

50 99,97 80,44 1,78 3090,16 2885,84

hier13
747,29 6,88

0 4,9 -1,98 4,9 159,24 -588,05

50 99,98 93,1 4,9 1239,3 492,01

hier13x13x13a
542,72 5,22

0 5,22 0 4,94 690,15 147,43

50 99,99 94,77 4,94 1426,84 884,12

hier13x13x13b
584,92 5,89

0 5,24 -0,65 5,24 369,13 -215,79

50 99,98 94,09 4,87 2742,67 2157,75

hier13x13x13c
542,86 5,63

0 4,99 -0,65 4,99 243,43 -299,43

50 99,98 94,34 4,99 3405,16 2862,3

hier13x13x7d
34,72 5,58

0 7,19 1,61 4,96 69,32 34,6

50 38,93 33,34 4,84 158,96 124,24

hier13x7x7d
2,71 4,82

0 12,35 7,53 ‡ ‡ ‡

50 24,1 19,28 4,53 20,09 17,38

hier16
4854,46 59,48

0 63,07 3,59 ‡ ‡ ‡

50 100 40,52 ‡ ‡ ‡

hier16x16x16a
2803,76 44,96

0 48,8 3,84 44,71 3706,65 902,89

50 100 55,03 43,87 7200,57 4396,81

hier16x16x16d
3776,81 57,66

0 63,32 5,66 57,07 5369,03 1592,22

50 100 42,33 56,08 7200,59 3423,78

hier16x16x16e
3862,21 46,55

0 46,87 0,32 ‡ ‡ ‡

50 99,96 53,41 46,18 7200,52 3338,31

table3
1909,18 25,39

0 15,07 -10,32 17,11 408,3 -1500,88

50 100 74,61 16,78 2303,34 394,16

table4
1196,86 25,39

0 17,3 -8,09 18,6 511,64 -685,22

50 100 74,61 14,64 2163,97 967,11

table5
720,49 22,8

0 20,2 -2,6 20,25 216,19 -504,3

50 100 77,2 16,96 1441,96 721,47

‡ Time limit reached without improving the feasible fix-and-relax solution.

Table 9: Comparison between FR and BC with frequency RINS f equal to 0 and 50 for some real-world instances

instances whose BC tree had more than 50 nodes. From Table 9 it can be concluded that FR still

outperforms BC with the RINS heuristic using f = 50.

We additionally tried RINS frequencies f ∈ {100, 150, 200}, obtaining exactly the same re-

sults (they are thus omitted in Table 9). As stated above, CPLEX always applies the RINS heuris-

tic at node 0 for any f > 0. We noted that, since RINS is an expensive heuristic, it exhausted

most of the allowed time (that of the FR heuristic) at node 0, making irrelevant the particular

value of f . Therefore, at least for this particular application, RINS f = 0 seems to be the best

choice. Indeed, we noted that when f = 0 CPLEX does not apply RINS to node 0 in many

instances.

The local branching (LBr) heuristic also explores the neighborhood of an incumbent solu-

tion, but by adding constraints based on the number of binary variables flipping their values

with respect the incumbent [18]. Running CPLEX with the LBr heuristic, and setting as time

limit the CPU time of FR, we only observed differences with RINS f = 0 for five instances

of Table 9: hier13x13x7d (solutions of 6.2% and 7.2% gaps for LBr and RINS, respectively),

hier13x7x7d (24.1% gap for LBr, 12, 4% gap for RINS), hier16 (61.2% for LBr, 63.0% for

RINS), hier16x16x16a (44.4% for LBr, 49.0% for RINS), and hier16x16x16d (62.4% for LBr,

63, 0% for RINS). LBr only clearly outperformed RINS f = 0 in hier16x16x16a; for that in-

stance, LBr was also more efficient than FR.
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instance TFR GAPFR% TFR+BC GAPFR+BC % TBC GAPBC % ∆(FR + BC, BC) ∆(TFR+BC , TBC )

asym-40-50-5 72.76 1.89 264.45 0.47 306.46 0.35 0.12 −42.01

asym-40-50-15 158.75 3.13 †(1223.55,1) 0.71 †(1357.15,3) 0.67 0.04 −133.60

asym-40-50-30 210.51 5.41 †(1606.53,2) 0.82 †(2062.43,3) 1.04 −0.23 −455.90

asym-40-60-5 95.40 1.75 259.40 0.40 231.36 0.40 0.00 28.04

asym-40-60-15 193.37 3.11 †(1352.60,2) 0.93 †(1430.58,4) 1.02 −0.09 −77.98

asym-40-60-30 314.96 5.07 †(2181.63,6) 1.40 †(2040.04,6) 1.21 0.19 141.59

asym-50-50-5 110.54 1.53 †(560.24,1) 0.43 476.49 0.35 0.08 83.75

asym-50-50-15 186.95 2.86 †(1403.85,3) 0.90 †(1533.78,4) 0.93 −0.03 −129.93

asym-50-50-30 333.50 5.81 †(2417.91,5) 1.52 †(2284.80,5) 1.74 −0.22 133.11

asym-50-60-5 153.14 1.06 268.43 0.64 286.51 0.48 0.16 −18.08

asym-50-60-15 278.72 2.73 †(1263.52,3) 1.24 †(1408.72,3) ‡(8.67,2) −7.43 −145.21

asym-50-60-30 416.11 5.54 †(2768.88,8) 1.60 †(2665.53,7) ‡(1.74,1) −0.14 103.35

sym-40-50-5 8.99 2.00 41.51 0.40 29.10 0.68 −0.28 12.40

sym-40-50-15 115.34 4.21 1114.50 0.75 720.22 0.80 −0.06 394.29

sym-40-50-30 371.35 4.62 †(3097.98,4) 1.93 †(3131.25,3) 1.77 0.16 −33.27

sym-40-60-5 10.52 2.68 32.82 0.63 60.05 0.52 0.11 −27.23

sym-40-60-15 102.29 2.16 1731.73 0.86 1381.75 0.82 0.04 349.98

sym-40-60-30 800.45 4.40 †(3600,5) 3.22 †(3600,5) 6.55 −3.33 0

sym-50-50-5 25.47 1.88 103.45 0.50 85.12 0.57 −0.07 18.33

sym-50-50-15 166.33 3.66 †(2370.98,1) 0.97 †(1728.63,1) 0.75 0.22 642.35

sym-50-50-30 511.19 3.45 †(3600,5) 2.54 †(3600,5) 4.46 −1.92 0

sym-50-60-5 56.80 1.59 80.64 0.54 134.79 0.36 0.17 −54.15

sym-50-60-15 279.63 2.46 2347.58 0.91 1894.95 0.74 0.17 452.63

sym-50-60-30 833.45 3.93 †(3600,5) 3.54 †(3600,5) 6.31 −2.77 0

†(x,y) a solution within 1% optimality gap could not be found in y of the overall number of replications within the time limit of 3600 seconds;

x is the average CPU time for the remaining successful runs.

‡(z,w) no feasible solution was found in w of the overall number of replications within the time limit of 3600 seconds;

z is the average gap for the remaining runs.

Table 10: Using the fix-and-relax solution to warm start CPLEX branch-and-cut

4.5. Using fix-and-relax to warm start branch-and-cut

Table 10 shows the results obtained with FR+BC (i.e., warm starting BC with the FR solu-

tion) on 1H2D tables. The table reports the CPU computation time and gap (as a percentage)

of the FR solution (columns “TFR” and “GAPFR%”). The same information is provided for

the FR+BC solution using a 1% optimality gap (columns “TFR+BC” and GAPFR+BC%); and for

CPLEX BC without starting point with the same 1% optimality gap (columns TBC and GAPBC%).

Columns ∆(FR+ BC, BC) and ∆(TFR+BC ,TBC) give the difference in gap and CPU time between

the FR+BC and BC solutions. A time limit of one hour was considered for these runs. Some

FR+BC or BC executions were unable to find a solution of 1% optimality gap within this time

limit; these are clearly marked in Table 10. BC could not find a feasible solution within the

time limit for three instances, which are also clearly marked in the table. In those situations the

average gap reported in Table 10 may be greater than 1%.

FR+BC provided a lower gap than BC in 12 of 24 cases. In addition, in six of these 12 cases

the CPU time of FR+BC was inferior. These six successful FR+BC executions are marked in

boldface in Table 10. These results are not entirely satisfactory, since it could be expected that

providing a good incumbent from the beginning would significantly reduce the computational

burden for all the instances, by pruning portions of the search space. In fact, we found reported

similar experiences. In http://www2.isye.gatech.edu/~rcarvajal3/2012/2012-12-24_effect-of-information

the author presents an experiment with instances from MIPLIB 2010 [28] where providing the

optimal solution as a warm start can actually be harmful for the performance of the solver.

We also applied the CPLEX polishing heuristic to the FR starting point. This heuristic,

which can be very time consuming, tries to exploit an initial feasible solution provided to BC by
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solving an alternative branch-and-cut. We ran FR+BC with and withoug polishing. Activating

the polishing the gap was improved in 92% of the executions; however the average gap reduction

was 0.4%. On the other hand, in 83% of the executions the polishing significantly increased the

CPU time: an average increment of 59%. In the remaining 17% of executions the CPU time

was reduced, in average, a 18%. From these figures, it can be concluded that the polishing is in

general very time consuming for CTA, and it is not worth the gap reduction provided.

5. Conclusions

FR, either alone or in combination with other heuristics such as BCD, has shown to be an effi-

cient approach for the difficult MILP CTA problem. Initially developed for scheduling problems

that can be partitioned into stages, FR has also been successfully applied to a class of hierarchical

tables named 1H2D. For these tables, it was competitive against BC, and FP or RINS heuristics.

For general real-world tables, FR and FR+BCD outperformed BC in 73% of the instances tested.

Promising results were also obtained in a reduced set of instances by warm starting BC with the

FR solution.

Quick tools to provide fast solutions to CTA are a necessity because of the increasing ability

of NSAs to create more complex and huge tables from collected data. FR is thus an step in

this direction. Combining FR with other heuristics, or embedding FR in exact approaches, like

Benders reformulation, is part of the further work to be done in this field.
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