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Abstract We propose a cutting-plane approach (namely, Benders decomposition) for
a class of capacitated multi-period facility location problems. The novelty of this ap-
proach lies on the use of a specialized interior-point method for solving the Benders
subproblems. The primal block-angular structure of the resulting linear optimization
problems is exploited by the interior-point method, allowing the (either exact or in-
exact) efficient solution of large instances. The consequences of different modeling
conditions and problem specifications on the computational performance are also in-
vestigated both theoretically and empirically, providing a deeper understanding of
the significant factors influencing the overall efficiency of the cutting-plane method.
The methodology proposed allowed the solution of instances of up to 200 potential
locations, one million customers and three periods, resulting in mixed integer linear
optimization problems of up to 600 binary and 600 millions of continuous variables.
Those problems were solved by the specialized approach in less than one hour and
a half, outperforming other state-of-the-art methods, which exhausted the (144 Giga-
bytes of) available memory in the largest instances.
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1 Introduction

A dynamic facility location problem consists of defining a time-dependent plan for
locating a set of facilities in order to serve customers in some area or region. A finite
planning horizon is usually considered representing the time for which the decision
maker wishes to plan. In a multi-period setting, the planning horizon is divided into
several time periods each of which defining specific moments for making adjustments
in the system. The most common goal is the minimization of the total cost—for the
entire planning horizon—associated with the operation of the facilities and the satis-
faction of the demand.

This class of problems extends their static counterparts and emerges as appropri-
ate when changes in the underlying parameters (e.g., demands or transportation costs)
can be predicted. The reader can refer to the book chapter [36] for further details as
well as for references on this topic.

The study of multi-period facility location problems is far from new. Neverthe-
less, the relevance of these problems is still quite notable since they are often found
at the core of more complex problems such as those arising in logistics (see, e.g.,
[33L 3]]). Accordingly, their study is of major importance. In particular, having effi-
cient approaches for tackling those problems may render an important contribution
to the resolution of more comprehensive problems.

The purpose of this paper is to introduce an exact method for a class of multi-
period discrete facility location problems. In particular, we consider a pure phase-in
setting in which a plan is to be devised for progressively locating a set of capacitated
facilities over time. This is the “natural” extension to a multi-period context of the
classical capacitated facility location problem. In addition, we specify a maximum
number of facilities that can be operating in each time period. This is a means to
control the “speed” at which the system changes in case the decision maker finds
this necessary. A set of customers whose demand is known for every period is to
be supplied from the operating facilities in every period. Nevertheless, we assume
that service level is not necessarily 100%; instead, this will be endogenously defined
and a cost is assumed for shortages at the customers. This cost may represent an
opportunity loss or simply a penalty incurred due to the shortage. In addition to this
cost, we consider operating costs for the facilities and transportation costs from the
facilities to the customers. All costs are assumed to be time-dependent. The goal of
the problem is to decide where and when to locate facilities in order to minimize the
total cost over the planning horizon.

The above problem can be formulated as a mixed integer linear optimization prob-
lem with a set of binary variables (associated with the location decisions) and a set
of continuous variables (associated with transportation for demand satisfaction and
shortage at the customers). Such type of problems are well-known to be particu-
larly suited for decomposition approaches based on cutting planes, namely Benders
decomposition [29] 45]]. In fact once the binary variables are fixed, the remaining
problem is a linear optimization problem which can be dualized for deriving opti-
mality cuts. We explore this structure in order to develop a very efficient Benders
decomposition approach for the problem.



1.1 Relation with the existing literature

From a methodological point of view, our work consists of using, extending, and
combining several methods in order to obtain an efficient exact solution procedure
for the problem that we are investigating. In particular, we make use of a structure-
exploiting interior-point method as a cut-generator for a Benders decomposition of
the problem. In this section we discuss previous literature on the relevant techniques
and their relation with the new methodology proposed.

We start by pointing out that the key idea of our specialized interior-point method
differs substantially from that of other existing interior-point based solvers, such as
the Object-Oriented Parallel Solver (OOPS) and the suite of parallel solvers PIPS.

The OOPS system, described in [[19] and used in several applications (e.g., [13]),
is based on partitioned Cholesky factorizations, while our specialized interior-point
method eliminates the complicating linking constraints by combining both direct—
Cholesky factorizations—and iterative solvers—conjugate gradients. As it will be
discussed later, the particular advantage of the iterative solvers resulted to be instru-
mental for making the overall approach very effective when tackling instances of the
problem we are analyzing.

PIPS is an alternative exploiting-structure system, specialized for stochastic op-
timization, that includes both linear and nonlinear interior-point [39, 6] and simplex
solvers [27]. However, again, the interior-point methods of PIPS are significantly
different from our approach. Although the block-angular structure of the stochastic
optimization problems dealt with by PIPS is similar to ours, PIPS relies on high per-
formance computers that exploit parallel processing, and makes use of state-of-the-art
Cholesky solvers. Our approach runs (so far) in single thread mode, it requires much
less moderate computing resources, and it is efficient enough if a standard Cholesky
solver is considered (and thus, there is room for improvement). From an algorith-
mic point of view, the most significant difference between [39] and our approach is
that we solve the normal equations form of the KKT interior-point conditions, while
PIPS considers the augmented system form. This allows us to solve the resulting
linear systems by a combination of Cholesky for block constraints and a precondi-
tioned conjugate gradient for linking constraints—using the preconditioner detailed
in [7, [10]—whereas in [39] the whole system (including all constraints) is solved by
an iterative solver, requiring an expensive factorization to obtain the preconditioner.
The approach of [6] also uses an iterative solver, but the preconditioner is tailored to
stochastic optimization problems, which is not our case. Compared to PIPS-S [27]],
our approach can solve our linear optimization subproblems (those obtained after
fixing the binary variables) with hundreds of millions of variables using a few Gi-
gabytes of RAM, while the highly efficient and parallel simplex implementation of
PIPS-S required about 1000 Gigabytes of RAM for stochastic optimization problems
of similar sizes, which calls for the use of supercomputers.

A second ingredient of our approach will be the use of suboptimal feasible so-
lutions in the Benders subproblems, obtaining €-subgradients and thus €-cuts. This
idea was first used in [20] for the solution of block-angular problems using the gen-
eral solver HOPDM [18]]. The main two differences of that approach with ours are:
(i) the problems in [20] were linear, while facility location includes binaries; (ii)



the cutting plane was applied in [20] for the solution of the block-angular problem
(thus the “master problem” was linear), whereas we use cutting planes for the binary-
continuous division (thus the “master problem” is binary), and the block-angular
structure is exploited in the subproblems using the specialized interior-point solver.
The use of inexact or €-cuts in Benders decomposition was analyzed in [47] for linear
problems, confirming its good convergence properties. Its use in integer problems has
been recently studied and validated in 30} 44].

Recent improvements have been also achieved in the solution of large facility
location problems with quadratic costs [16, [17]. The approach proposed in [17] is
also based on an efficient and ad-hoc cut-generator (i.e., subproblem solution), which
relies on KKT conditions. However it deals with uncapacitated problems, while we
focus on capacitated and multi-period instances which require of an efficient sim-
plex or interior-point method as a cut generator. On the other hand the approach
presented in [16]] solves instances of a quadratic capacitated facility location problem
using a perspective reformulation which, eventually, means solving a quadratically
constrained problem with a general purpose interior-point solver. We note that the
specialized interior-point solver used in our work could be extended to deal with the
type of quadratically constrained problems investigated in [16]—though the exten-
sion is nontrivial, and it would mean a significant coding effort. Therefore, we think
that combining the subproblem formulation of [16] with an extended version of the
specialized interior-point solver we are using in our work, would allow solving ex-
tremely large facility location instances with quadratic costs.

It is also worth noting that interior-point methods have already been used in the
past for the solution of integer optimization problem using cutting-plane approaches,
such as in [34] for linear ordering problems. More recently, primal-dual interior-point
methods have shown to be very efficient in the stabilization of column-generation
procedures for the solution of problems such as vehicle routing with time windows,
cutting stock, and capacitated lot sizing with setup times [21}135].

One important ingredient for the development of our new methodology has to do
with the fact that the Benders subproblems we will be dealing with can be separated
into block-angular structured linear programming problems. This same structure has
triggered the development of several well-known optimization techniques. Among
those, methods based upon Dantzig-Wolfe decomposition, namely column genera-
tion approaches ([[12]], [26]) are possibly the most popular ones. As pointed out in
[43]], such approaches can be looked at as a dual method based upon the Lagrangian
relaxation of the linking constraints. Alternatively, such Lagrangian relaxation can be
tackled directly as a non-smooth concave problem. Subgradient methods ([22]], [40])
are one possibility that is quite popular. Another type of methods that have emerged
as an alternative to subgradient optimization for non-smooth concave problems are
the so-called bundle methods ([25]). [42] developed a bundle method for tackling
block-angular structured convex problems. After dualizing the linking constraints, the
resulting non-smooth concave problem can be solved using a bundle-based decom-
position method. In [31]] this possibility is studied more deeply and it is applied for
tackling large scale block-angular structured linear programming problems. Recently,
[38] considered so-called inexact bundle methods to two-stage stochastic programs.



Finally, we refer to the Volume algorithm introduced by [4] as a means for extend-
ing the subgradient algorithm so that it also produces primal solutions. Those authors
have tested the new approach in linear optimization problems with a special structure
including a block-angular one. Recently, in [15]], we observe a successful application
of the Volume algorithm in the context of large-scale two-stage stochastic mixed-
integer 0-1 problems, namely when it comes to solving the Lagrangian dual resulting
from dualizing the non-anticipativity constraints in the splitting variable formulation
of the general problem.

1.2 The relevance of the contribution provided by the current work

The novelty in the Benders decomposition we propose has to do with the resolution of
the Benders subproblem, for which the specialized interior-point method for primal
block-angular structures of [[7, 8, [10] will be customized. In short, this is a primal-
dual path-following method [46], whose efficiency relies on the sensible combination
of Cholesky factorization and preconditioned conjugate gradient for the solution of
the linear system of equations to be solved at each interior-point iteration.

This paper amplifies significantly the range of applicability of interior-point meth-
ods within the context of combinatorial optimization. This is accomplished by opti-
mally combining existing techniques that result in a new approach yielding remark-
able computational results. The methodological novelty can be detailed as follows:

e Benders subproblems are tackled using a specialized interior-point method, which
allows to fully take advantage of some unique factorization properties of the fa-
cility location problem matrix structure. This has two main benefits:

— It becomes possible to efficiently solve very large linear subproblems (that
cannot be tackled by state-of-the-art optimization solvers such as IBM CPLEX).

— Since Benders decomposition does not require an optimal solution to the sub-
problem, a primal-dual feasible solution (i.e., a point of the primal-dual space
which is feasible for both the primal and dual pair of the subproblem) is
enough for generating an additional cut. The interior-point method is thus an
excellent choice, since it can quickly obtain such a primal-dual feasible point
in the earlier iterations, skipping the last ones which focus on reducing the
complementarity gap. In particular, avoiding the last interior-point iterations
is instrumental for the specialized algorithm considered in this work, since
the performance of the embedded preconditioned conjugate gradient solver
degrades close to the optimal solution.

e The multi-period capacitated facility location problem that we are investigating
is very general—it captures in a single modeling framework several particular
cases which are at the core of many real-world logistics network design problems.
Accordingly, more than a specific problem, we are in fact investigating a broad
class of combinatorial optimization problems.

e Both from a theoretical and an empirical point of view, we show that the compet-
itive advantage of the proposed approach increases when the number of facilities
and customers grows large.



Overall, the new procedure represents a relevant breakthrough in terms of the res-
olution to optimality of multi-period capacitated facility location problems. In fact,
it has been able to solve problems of up to 200 potential locations, one million cus-
tomers and three periods, resulting in mixed integer linear problems of up to 600
binary and 600 millions of continuous variables. To the best of the authors’ knowl-
edge, the solution of facility location instances of such sizes has never been reported
in the literature.

The remainder of this paper is organized as follows. In Section [2] the problem
is described in detail and formulated. The cutting plane method is presented in Sec-
tion [3] introducing the new approach for solving the subproblems. Computational
tests are reported in Section 4| The paper ends with an overview of the work done
and some conclusions that can be drawn from it.

2 Problem description and formulation

We consider a set of potential locations where facilities can be set operating during a
planning horizon divided into several time periods. Additionally, there is a set of cus-
tomers whose demand in each period is known and that are to be supplied from the
operating facilities. Facilities are capacitated and once installed they should remain
open until the end of the planning horizon. We specify the maximum number of fa-
cilities that can be operating in each time period. Finally, demands are not required to
be fully satisfied; instead, we consider a service level not necessarily equal to 100%;
its value is an outcome of the decision making process. We consider costs associated
with: (i) the operation of the facilities, (ii) the satisfaction of the demand and (iii)
the shortages at the customers. The goal is to decide where facilities should be set
operating and how to supply the customers in each time period from the operating
facilities in order to minimize the cost for the entire planning horizon.

Before presenting an optimization model for this problem we introduce some
notation that will be used hereafter.

Sets:
T Set of time periods in the planning horizon with k = |T|.
1 Set of candidate locations for the facilities with n = |1|.
J Set of customers with m = |J].
Costs:
1 Cost for operating a facility at i € / in period ¢t € T'.
ch ; Unitary transportation cost from facility i € I to customer j € J in
periodt €T.
ht] Unitary shortage cost at customer j € J in periodt € T.
Other parameters:
d’]- Demand of customer j € J in periodt € T.
q} Capacity of a facility operating ati € I.
P Maximum number of facilities that can be operating in period ¢t € T.

The decisions to be made can be represented by the following sets of decision
variables:



V= {1 if a facility is operating at i € I in period € T,
1

0 otherwise.
xlij = Amount shipped from facility i € I to customer j € J in periodt € T
z’j = Shortage at customer j € J in periodt € T

The multi-period facility location problem we are working with can be formulated
as follows:

min Y’ <foy§ +Y ) i+ Z}h;zﬂ) ; (1
JE

teT \ i€l i€l jeJ
subject to g;xfj +7; =d;, teT, je, ()
l
Y X <awi, teT,iel, 3)
jeJ
Y i<y, teT, 4)
i€l
i<yt reT\{k},icl, (5
yi €{0,1}, teT,iel, (6)
XQ,ZO, teT,iel, jel @)
7 >0, teT,jel. (8)

In the above model, the objective function (I}) represents the total cost through-
out the planning horizon, which includes the cost for operating the facilities, the
transportation costs from facilities to customers and the costs for shortages at the
customers. Constraints (2) ensure that the demand of each customer in each period
is divided into two parts: the amount supplied from the operating facilities and the
shortage. Inequalities (3) are the capacity constraints for the operating facilities. Con-
straints (@) define the maximum number of facilities that can be operating in each
period. Relations (3) ensure that we are working under a pure phase-in setting, i.e.,
once installed, a facility should remain open until the end of the planning horizon.
Finally, constraints (6)—(8) define the domain of the decision variables.

The above model has several features which are worth emphasizing.

i) By considering constraints (B) we are capturing a feature of major relevance in
many logistics network design problems which has to do with the need for pro-
gressively install a system since it is often the case that such systems cannot be
setup in a single step (the reader can refer to [32] for a deeper discussion on this
aspect).

ii) Since the facilities are capacitated, the possibility of adjusting the set of operating
facilities over time is a way for adjusting the overall capacity of the system, which,
in turn, can be looked at as a response to changes in demands and costs. Some
authors have explicitly considered capacity adjustments as part of the decision
making process (e.g., [23| [24]) within a multi-period modeling framework for
facility location problems.

iii) By specifying the values of p’, t € T, we are setting a maximum “speed” for
making adjustments in the system in terms of the operating facilities. When such



iv)

vi)

vii)

a feature is not relevant, one can simply set p’ = n, t € T and the model is still
valid. Since we are working with a pure phase-in problem we assume that 1 <
pl<p’<..-<p<nm

In our problem, the service level is not necessarily 100%; instead, it will be en-
dogenously determined, resulting from a trade-off between the different costs in-
volved. The practical relevance of considering a service level below 100% in the
context of facility location has been discussed by several authors, such as [37]],
[2], and [1]]. Since we are working with a multi-period problem, the expression
“service level” is rather vague. In fact, we can, for instance, consider a service
level per time period or even a global service level for the entire planning hori-

zon:
Y jes Lier; Yier Ljes Lier;
SL([) _ jeJ IEII ij , GSL _ teT Ljel lGI[ ij ]
Yjesd; YierYjesd;
In the first case, in order to obtain a “global” service level, we may simply average
the service level attained in the different periods yielding

1
ASL = —) SL(z).

X t; (r)
The above model is still valid if some facilities are already operating before the
planning horizon and the goal is to expand a system already operating. In such a
case we can use the same model if we fix to 1 the location variables associated
with the existing facilities.
In order to present a model that is as general as possible, we are assuming all
parameters to be time-dependent. However, in practice this is not always the case.
For instance, when the transportation costs are a function of the distance between
the facilities and customers we may not observe a significant change from one
period to the following and thus we may assume them to be time-invariant.
Parameters f! may convey more than the operating costs of the facilities in the
different periods. In fact, if we have, say, a fixed cost, 05, for opening a facility at
i in period # and we wish to include the corresponding term, o!(y} —y. '), in the
objective function, it is easy to conclude that re-arranging the terms associated to
the location variables we obtain again each variable y; multiplied by a “modified”
operating cost (the reader can refer to [36] for additional insights).

Considering the problem with kK = 1 (one period), p; = n and shortage costs ar-

bitrarily large (thus ensuring that all z-variables are equal to 0), we obtain the well-
known capacitated facility location problem which generalizes the uncapacitated fa-
cility location problem that is known to be NP-hard (see, e.g., [14]). Accordingly,
the problem we are investigating is also NP-hard. Nevertheless, developing efficient
exact approaches that can solve instances with a realistic size is always a possibility
worth exploring. This is what we propose next.

3 The cutting-plane approach

The problem described in the previous section is a good candidate for the application
of a Benders decomposition approach [3} 28} 41} 45]]. In fact, once a decision is made



for the binary y-variables, the remaining problem is a linear optimization problem.
Therefore, the problem can be projected onto the y-variables space yielding

min Y Y i+ 00), 9)
teT iel
subjectto Y yi < p', teT, (10)
iel
yh< oyt teT\{k},iel, (11)
yi €{0,1}, teT,iel, (12)

where y = (i, i€ l,t € T), and Q(y) is defined as

o®y) = min Z (ZZcﬁjxngrZh’,z‘,), (13)
jeJ

(T \jeliel

subject to Zxﬁj—l—ztj = d;, teT,jel, (14)
icl
jeJ
xi; >0, teT,icl, jelJ, (16)
7 >0, teT,jel. (17)

QO(y) is a convex piecewise linear function, so the overall problem can be solved
by some nondifferentiable cutting-plane approach. Benders decomposition can be
seen as a particular implementation of such an approach, where Q(y) is approxi-
mated from below by cutting planes. These planes are obtained by evaluating Q(y)
at some particular y values, i.e., solving the (Benders) subproblem induced by those
values. The new cuts replace Q(y) and are sequentially added to @I)— leading
to an updated (Benders) master problem. Benders master and subproblem provide,
respectively, lower and upper bounds to the optimal solution. Such a cutting-plane
algorithm is iterated until the gap between the lower and upper bound is either zero
or small enough.

Fixing the location variables y! (i € I, ¢ € T'), the linear optimization problem Q(y)
is separable in terms of the time periods. A resulting family of k independent linear

optimization problems is obtained, which for a particular period t = 1,...,k can be
written as:
SubLP(y,t) = min Y Y o+ Y K2, (18)
jeriel jel
subject to ngj +Z; = d;-, Jj€EJ, (19)
il
Y <aqw, i€l (20)
i€t
xijO7 iel, jel, 21

7 >0, jeld. (22)
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Therefore, the Benders subproblem can be written as Q(y) = Y,cr SubLP(y,7). Its
optimal solution provides the information about the goodness of the designed loca-
tion decisions. That solution provides an upper bound to the original multi-period
problem (I)—(8). It is worth noting that, in theory, a primal-dual feasible suboptimal
solution to (I8)—(22)—that is, an inexact solution to the subproblem, or an inexact
Benders cut—is enough for the Benders decomposition algorithm, though the upper
bound obtained may be higher, thus of worse quality. Inexact cuts have been studied
and proven to guarantee convergence of the Benders method, for instance, in [47]]
for linear problems. In the case of mixed integer linear problems, to the best of the
authors’ knowledge, the few references existing in the literature exploring the use of
inexact cuts are very recent, namely [30] and [44].

Denoting by ;th_ (j €J)and p (i € I) the dual variables associated with constraints
@]) and @I), respectively, we can write the dual of SubLP(y,?) as follows:

DualSubLP(y,r) =  max Y Aldi+ Y ulgi), (23)
jeJ iel

subjectto A4 i <cij, icl jel, (24)

Af < hfj, j€e, (25)

ul <o, iel (26)

Benders decomposition makes use of a cutting-plane method to transfer the infor-
mation about the goodness of the location decisions specified by the y-variables from
the subproblem to the master problem. Suppose that Q(y) was evaluated at a set of
points y”,v € V. Denote by l;’v (j€J)and ,ul{ " (i € I) the corresponding solution for
problem DualSubLP(y”,#). The Benders master problem can be written as follows:

min Z Zfity:» +0, (27)
teT iel
subjectto 0 > Z Z l]t»’vd;» + Z Z[Jf’vq,’yﬁ, vev (28)
teT jeJ teT iel
Y i<p, reT, (29)
iel
<yt reT\{k},iel,  (30)
yi € {0,1}, teT,iel. 31

The optimal objective function value of this problem provides a lower bound to the

original problem (T)—().
In the above model, we present the aggregated cuts (28). In fact, such cuts can be
disaggregated by considering one for each time period,

0'> Y Ajdi+) wiani, teT,
=) icl

and considering the objective function

Y i+ ) 6.

i€l teT
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In this work we considered the aggregated cuts (28), since some preliminary com-
putational experiments showed that this reduces significantly the size of the master
problem, yet producing high quality cuts.

For the particular case of the capacitated multi-period facility location problem
we are studying in this paper, the structure of the subproblem allows obtaining a
deeper insight into the quality of Benders cuts. In order to see this, consider an
& —parameterized version of the problem with m = k = 1 (one period and one cus-
tomer), where the demand and the capacities are specified asd = & and g; = (1 &),
for i € I. The corresponding subproblem can be written as follows (we simplify some
notation previously introduced since m =k = 1):

SubLP/ (&) = min Y cixi +hz, (32)
icl

subject to Zx,- +z=¢, (33)
icl

x < (1=8)yi, iel, (34)

5 >0, icl, (35)

z>0. (36)

Denoting by A, y; (i € I), v; (i € I), and y the dual variables associated with

constraints (33)), (34), (33), and (36), respectively, the dual of (32)—(36) can be written

as follows:

DualSubLP'(§) = max EA+ ) (1—&)yi;, (37)
iel

subjectto A+ i+vi=c;, i€l (38)

A+y=h, (39)

pi <0, iel, (40)

vi >0, icl, (41)

y>0. (42)

Proposition 1 In a Benders iteration, let 14 be the subset of I associated to the active
constraints x; = (1 — &)y; of SubLP'(§). The corresponding Benders cut is

0>Eh—y)—(1-&) Y (h—ci— )y 43)

i€ly

Proof The dual feasibility of SubLP’(&) implies A + t; + V; = ¢;, fori € I, and A +
v = h. Note that, ; = ¢;+y—h, for all i € I, and y; =0, for all i € I\ I4. (In the
special case when y; = 0, either v; or y; can be arbitrarily fixed, and this relation still
holds.) Based on @ we have:

0>EA+(1-8)) myi
i€l

=&(h—y)—(1-8) Y (h—ci—7)yi

i€ly



Proposition [I] suggests two important elements which might substantially effect
the goodness of a Benders cut: (i) the relationship between demand and total capacity,
captured by &, (ii) the shortage cost 4. When & is small enough, z > 0 and ¥ =0, so
that 0 > Eh— (1 —&) Xy, (h—ci)yi. In particular, when h < ¢;, forall i=1...n, the
Benders cut is 6 > &, since |I4| = 0. Similarly, when & approaches either zero (the
total capacity widely exceeds the demand) or one (the demand overcomes the total
capacity), the two limit cases reduce to 8 > — Y./ (h—c;—y)y; and 6 > (h—y)
respectively. It turns out that the information transmitted by the Benders cut reduces
when the demand grows large with respect to the total capacity, as reflected by the
smaller size of the term (1 — &)Y/, (h— ¢; —7)yi. Nonetheless, when the demand
is too small |I4| = 0 and (1 — &) Ye;, (h—c;—7)y; = 0. Thus, both cases give rise
to conditions where the decisions of the subproblem poorly affect the decision to be
made in the master problem.

3.1 Solving the subproblem by a specialized interior-point method

As we have already shown, the Benders subproblem can be decomposed into k inde-
pendent linear optimization problems (I8)-([22). For each 7 € T, the corresponding
problem can be written as the following linear problem with primal block-angular
constraints:

SubLP(y,7) = min )" c’ijlj (44
jel
.

e . xil d?

¢ 2 dy
subject to . =1 (45)

el || Xn dy,

LL..LIJ|[x, q
X >0, j=0,1,..,m, (46)
where matrix L = [I | 0] € R"™*("+1) is made up by an identity matrix with a zero
column vector on the right; for each j € J, ¢/, = [c} ;... ,c;lj,hf]-]T € R™! and X =
[ ooy, j,z’j]T € R™*! represent, respectively, the shipping and shortage costs in-

volving customer j and the amount of commodity shipped to and shortage of cus-
tomer j; e € R"! is a vector of ones; X, € R" are the slacks of the linking con-
straints; q' = [q1)],-..,gx),] " € R" is the right-hand side vector for the linking con-
straints which contains the supply capacities of the designed locations. Note that the
block constraints eTx’j = d}, j €J, correspond to l| , whereas the linking constraints
Y jes Lx; 4+ x4 = q' refer to (20).

Formulation (#4)—(46) exhibits a primal block-angular structure, and thus it can
be solved by the interior-point method of [7,[10]]. This method is a specialized primal-
dual path-following algorithm tailored for primal block-angular problems. A thor-
ough description of primal-dual path-following algorithms can be found in [46].
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Shortly, these type of methods follow the central path until they reach the optimal
solution. The central path is derived as follows. Formulation (#4)—{#6) can be written
in standard form as

min ¢ x, “47)
subjectto Ax =0, (48)
x>0, (49)

where ¢,x € ROHDm41 contain, respectively, all the cost and decision variables vec-
tors c’j, x’j, and A € Rmtn)x[(ntD)m+n] ang p € R gre, respectively, the constraints
matrix and right-hand-side vector of (@4)—(@6). Denoting by A and s the Lagrange
multipliers of the equalities and inequalities, and considering a parameter ( > 0, the
perturbed Karush-Kuhn-Tucker optimality conditions of @7)—({@9) are

Ax=0b (50)
ATdA+s=c (51)
XS=ue, (x5)>0 (52)

where e is a vector of ones, and X and S are diagonal matrices whose (diagonal)
entries are those of x and s. The set of unique solutions of (50)—(52) for each u is
known as the central path, and these solutions converge to those of {7)-@9) when
u — 0 (see [46]).

Each iteration of a primal-dual path-following method computes a Newton di-
rection for (50)—(52). This requires the solution of the normal equations system
ABATAL = g, where ® = XS~! is diagonal and directly computed from the val-
ues of the primal and dual variables at each interior-point iteration; AA € R™ ™" is
the direction of movement for the Lagrange multipliers A; and g € R™™" is an ap-
propriate right-hand side. Solving the normal equations is the most expensive com-
putational step of the interior-point method. General interior-point solvers usually
compute them by a Cholesky factorization, while the specialized method considered
in this work combines Cholesky with preconditioned conjugate gradient (PCG). Ex-
ploiting the structure of A in , and appropriately partitioning @ and AA according
to the m + 1 blocks of variables and constraints, we have

[el@)e e"OLT
ABGATAL = 5 AL
e'O,e e'@,L"
| LOye ... LOue |@g+Y;c,LO;LT
_Tr(®1) q)lT Alll
|l |21
T(©,) ¢ | |AM, | L€ Pl1AR]  [s2]’
L o ... Ow |D ALy

(53)
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where Tr(.) denotes the trace of a matrix, ¢; = [®,,,...,0;,]", for j € J, and
6, + Z 0,
jeJ
D= . (54)
®0nn + Z @ jnn
jel

is diagonal.
By eliminating AA; from the first group of equations, the system reduces to
(D—CTB—IC) Ay = (g —C B 1g)) (55)
BAL = (g1 —CAL). (56)
Systems Bu = v with matrix B (for some u and v) in (55)—(56)) are directly solved as

v
- Ti(0))

u; j=1,...,m.
The only computational effort is thus the solution of system (55)—the Schur comple-
ment of —, whose dimension is n, the number of candidate locations.

System (55) is computationally expensive if solved by Cholesky factorization,
because (i) it requires computing the matrix D — C"B~'C, and (ii) this matrix can
become very dense, as shown in [[7]. As suggested in [7]—for multicommodity flow
problems—and in [8]]—for general block-angular problems, this system can be solved
by PCG. A good preconditioner is instrumental for the performance of the conjugate
gradient. As shown in [7} Prop. 4], the inverse of D —C " B~!C for this kind of block-
angular problems can be computed as

(D-C"B'c)"! = (i (D_I(CTB_1C)>i> D (57)

i=0

The preconditioner, which will be denoted as M~!, is an approximation of (D—
CTB~'C)~! obtained by truncating the infinite power series at some term ¢. As
shown in [9], in many applications the best results are obtained for ¢ =0, i.e. the pre-
conditioner is just M~! = D~!. This value, ¢ = 0, has been successfully used for all
the computational results of the paper. In such a case, the solution of (53)) by the con-
jugate gradient only requires matrix-vector products with matrix (D —C'B~1C)—
computationally cheap because of the structure of D, C and B—and the solution of
systems with matrix D—which are straightforward since D is diagonal.

It has been shown in [10] that the quality of the preconditioner depends on the
spectral radius (i.e., the maximum absolute eigenvalue) of matrix D~!(CTB~'C),
denoted as p, which is real and always in [0, 1). The farther from 1, the better is the
preconditioner. In practice it is observed that p comes closer to 1 as we approach the
optimal solution, degrading the performance of the conjugate gradient. Therefore,
since there is no need to optimally solve the Benders subproblem, the interior-point
algorithm can be prematurely stopped for some not-too-small tt > 0. The suboptimal
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primal-dual point will guarantee the primal and dual feasibility conditions (50) and
(51), and its optimality gap can be controlled through p. This way we can avoid
the most expensive conjugate gradient iterations, providing at the same time a good
primal-dual feasible point to generate a new cut for the master problem. We note
that this cannot be (efficiently) achieved using the simplex algorithm for the Benders
subproblem, since in that case the points are either primal feasible (primal simplex)
or dual feasible (dual simplex), and primal-dual feasibility is not reached until the
optimal solution has been found.

An alternative to the Newton direction is to compute Mehrotra’s predictor-cor-
rector direction (see, for instance, [46, Ch.10] for the details), which in practice
significantly reduces the number of interior-point iterations. However, this means
to compute two systems with the matrix of the normal equations, for two different
right-hand-sides. This is not a main drawback when normal equations are solved
by Cholesky, since the factorization—the most expensive part of the solution of the
system—is reused for the two backward-forward substitutions. Predictor-corrector
directions (even higher-order directions) are the default in state-of-the art interior-
point solvers (such as CPLEX). On the other hand, computing the predictor-corrector
direction with the specialized interior-point means solving two different systems with
PCG, which can drastically increase the solution time. In other applications it was ob-
served [[7,110] that the predictor-corrector direction was not competitive compared to
the Newton direction using the specialized interior-point method. However, as it will
be seen in Subsection[4.2] in the context of the multi-period facility location problem
that we are investigating in this paper, the predictor-corrector direction provided the
best results for the largest and most difficult instances. This is explained by the good
behaviour of PCG in this particular application.

As stated above, the dimension of the Schur complement system (53) is n, the
number of candidate locations. Therefore, we can expect a high performance of this
approach when the number of potential facilities is small, even if the number of cus-
tomers is very large. This assertion is supported by the empirical evidence provided
in the next section, where problems of a few hundreds of locations and up to one mil-
lion of customers are efficiently solved. We should emphasize that this “few locations
and many customers” situation is the most usual in practice.

In addition, from a theoretical point of view, the method is also very efficient
when the number of candidate locations becomes large. In this case, as stated by
the next proposition, in the limit, the diagonal preconditioner M~! = D~! provides
the inverse of the matrix in the Schur complement system (55). We will assume the
interior-point (x,s) of the current iteration is not too close to the optimal solution,
such that it can be uniformly bounded away from O (in fact, at every iteration the
current point is known to be greater than 0 [40]).

Proposition 2 Let us assume that there is a 0 < € € R such that the current interior-
point (x,s) satisfies x > € and s > €. Then, when n — oo (the number of candidate
locations grows larger) we have D —C"B~'C — D.

Proof This reduces to showing that matrix C' B~'C — 0 when n — c. From the
definition of C and B in (53] and since B is diagonal, we have that entry (/,1) of



C'B~Cis
CTBIC, = i O m®ju 1 i O;m®;u

4 ~n*™= mn®;;
—1 -1 mnGj;;
J E ®j,ii 7 i

i=1

Since ©; =Xij_1 andx; > € >0ands; > € >0, we get

1 & OjmOjn _0
n%oonjzl Iniln@j,ii

O

A major consequence of this proposition is that for large n, the number of PCG iter-
ations required for the solution of is very small using M~! = D! as precondi-
tioner. However, this was also empirically observed when the parameter that grows
larger is the number of customers, m, as shown in the next section.

For the computational tests of next section we used the solver BlockIP, which
is an efficient C++ implementation of the above specialized interior-point method,
including many additional features [9]] (among them, the computation of both Newton
and Mehrotra’s predictor-corrector directions). Unlike most state-of-the-art solvers,
BlockIP does not offer preprocessing capabilites. Because of that, we only considered
in the linking constraints of open facilities at period ¢, since the shipments x} ;
from the non-open ones are 0. The size of the systems to be solved by PCG is thus
the number of open facilities instead of n, which simplifies the solution of the Schur
complement system. However, in order to appropriately build the Benders cut we
still need the Lagrange multipliers ! of the constraints that are associated to
non-open facilities (i.e., those with y; = 0). Since these Lagrange multipliers have to
satisfy constraints (24) and (26)) of the dual subproblem, they are computed according
to

pi = min{0,min{c}; Vj € J} —max{A}VjeJ}} icl:y;=0, teT.

4 Computational tests

In this section we describe a series of computational experiments designed to empir-
ically validate the efficiency of the proposed cutting-plane approach for capacitated
multi-period facility location using the specialized interior-point method for block
angular problems. All the runs were carried out on a Fujitsu Primergy RX300 server
with 3.33 GHz Intel Xeon X5680 CPUs (24 cores) and 144 Gigabytes of RAM, under
a GNU/Linux operating system (Suse 11.4), without exploitation of multithreading
capabilities, i.e., a single core was used—runs were carried out sequentially. CPLEX
branch-and-cut (release 12.4) was used for solving the Benders master problems;
Benders subproblems were solved with both the barrier algorithm of CPLEX and
BlockIP. The CPLEX barrier—which will be denoted as “BarOpt”—was used since
it resulted more efficient than simplex variants for these large subproblems. For run-
ning the CPLEX barrier we considered one thread, and no crossover (otherwise the
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CPU time would significantly increase). For BlockIP again a single thread was used.
Both for the interior-point method and for the overall cutting plane approach the gap
was computed according to (UB — LB)/UB, where UB and LB denote respectively
an upper and lower bound for the optimal value either of the subproblem or of the
overall multi-period facility location problem. For the very large-scale instances the
optimality tolerance in the subproblems was the same for CPLEX and for BlockIP:
either 1073 or 1072 depending on the particular type of instances.

4.1 The effect of parameter specification

Consider a capacitated multi-period facility location problem of the form (I)-
(8) and the demands, capacities and costs reported in Table [I] Geometrically, this
parameter specification can be looked at as resulting from a setting where facilities
and customers are distributed along two (possibly piecewise) lines with a random
perturbation § ~ uniform(¢,1) in a two-dimensional plane. This is not far from real-
world, where population is mostly concentrated around coastlines. Parameter ¥ €
[0,1] is responsible for the angle between the two lines: customers and facilities are
collinear or orthogonal when % = 0 or ¥ = 1 respectively. Instances with ¥ = 0 will
be referred to as one-dimensional or 1D instances; for ¥ > 0 the instances will be
called two-dimensional or 2D instances. The tuning parameter 1 controls the extent
to which the distance measures are heterogeneous. Hence, the transportation costs
reflect some distance measure between the facilities and the customers, whereas the
cost for operating a facility increases along a line. Discount factors 0 < 8. < 1 and 0 <
07 < 1 are included to compute the present value of transportation and building costs
respectively—thus discounting future costs back to the present values. Concerning
customer demands, a similar increasing pattern along a line is considered, so that
more expensive locations are geometrically closer to customers with higher demand.
The capacity of a location grows linearly with respect to its cost and is time-invariant.
The tuning parameters & and 3 presented in Table[I]allow (un)balancing the relation
between the total demand and the total capacity in the system. Parameter o is used
for defining the capacities, while S controls the maximum number of facilities that
can be open in each period.

The first computational tests performed involved 150 instances of problem (I)—(8)
divided into six groups of 25 instances. These instances were generated according to
the parameter specification of Table[I] For these instances we considered ¥ = 0 (1D
instances with collinear customers and facilities), / = 1 (no random perturbation),
and 1 = 20. Each group of 25 instances is associated with a specific combination of
m, n and k. The 25 instances in each group correspond to different combinations of ¢
and B—which have been chosen to take the values 0.1, 0,3, 0.5, 0.7, and 0.9, result-
ing in 25 possible combinations. The first two groups instantiate the static problem (a
single period in the planning horizon—k = 1); the third and fourth groups correspond
to instances with a 3-period planning horizon (k = 3); the fifth and sixth groups corre-
spond to instances with a 6-period planning horizon (k = 6). Next, we summarize the
results obtained. The detailed results are presented in Appendix [A] All the instances



Table 1: Parameter specification for the instances to be used in the computational tests

. 10+ 1000 ) The Ab‘uildingl costs depend on Athe
| = 57)*" fori=1...n, t=1...k specific location i and vary over time
n(8f due to a discount factor.

The transportation costs depend on
the distance between location i and
destination and vary over time ac-
cording to a discount factor.

o= n+i—jEl+]i—C(j—8/m)
Y 2(n+m)(8.)"

fori=1...n,j=1...mt=1...k

The unitary shortage cost at cus-
h‘/ =nxm, forj=1...mt=1...k tomer j is chosen to overcome the
maximum building cost.

10+ The demands increase over time and
L— (] — _ | = =
d/'_ (1-a) T ’ forj=1...[J.r=1..|T| vary depending on the customer.
y dep! g
100+ 2i The capacities do not vary over time
f=a———, fori=1...n,t=1...k and only depend on the specific lo-
n cation i.

The maximum number of facilities
p'=Bn, fort=1...k. that can be operating in period 7 does
not vary over time.

have been solved by the cutting-plane algorithm that we are proposing in this paper
using both CPLEX BarOpt and BlockIP.

Figure [T]depicts the CPU time (seconds)—averaged over 25 instances—for each
of the six groups. We computed the arithmetic average since each group of 25 in-
stances is associated with the same number of potential locations, customers and
time periods. Accordingly, the order of magnitude of the results within groups does
not call for the use of other average or aggregation measure. The vertical axis shows
the CPU time (seconds), whereas the horizontal axis presents the five different values
of o (for the left plots) and B (for the right plots). The straightforward interpretation
of these results is that, for almost all values of m, n, k, o and 8, BlockIP signifi-
cantly outperformed BarOpt when solving the Benders subproblems. Another inter-
esting and relevant fact is the non-linear effect of ¢, which is consistent with what
we claimed when discussing the implications of Proposition [T} extreme values of o
are associated to a poor effect of the second stage decision and transportation costs
(subproblem solution) upon the goodness of the first stage decisions (master problem
solution).

The aggregated results for the six groups of instances (averaged over 25 single
problems) are presented in Table [2| In addition to the values of n, m and k, the ta-
ble reports the number of constraints (“const.”), binary variables (“bin. var”) and
continuous variables (“cont. var”) of the resulting optimization problems. Columns
“BarOpt” and “BlockIP” report the average CPU time (seconds) and, within paren-
theses, the average number of Benders iterations. The column “Branch-and-cut” re-
ports the average CPU time (seconds) and the average number of simplex iterations
required by the CPLEX branch-and-cut solver for the solution of the monolithic for-
mulation (I)—(8). It should be noted that the larger the instances, the more efficient the
cutting-plane method—with either BarOpt or BlockIP—compared to branch-and-cut.
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Fig. 1: Comparisons of the CPU times of Benders-with-BarOpt (red line) and Benders-with-BlockIP
(blue dashed line) for different values of ¢ and 3, corresponding to the parameter specification of Table

Each plot averages values for each B when o varies, and for each a when f varies.

BlockIP seems to be approximately two times faster than BarOpt for all the instances

sizes.

Since the CPU times were obtained for different combinations of a, 3, n, m and
k, a full factorial experiment was performed allowing the estimation of the effect of
each parameter on the CPU time as well as on the number of Benders iterations. A
linear regression was applied to the collection of 150 numeric observations reported
in Appendix [A] The two response variables are given by the CPU time and either the



20

Table 2: Average CPU times for the three tables in Appendix The average number of Benders itera-
tions (for Benders decomposition) or simplex iterations (for Brach-and-cut) is reported within parenthesis

Benders decomposition

Branch-and-cut

n m k  const. bin.var. cont. var. BarOpt BlockIP
500 500 1 1001 500 250500 8.1(3.28) 4.9 (3.16) 27.3 (36950)
1000 1000 1 2001 1000 1001000 62.2 (3.52) 44.5 (3.48) 257.0 (82632)
500 500 3 4003 1500 751500 17.0 (4.92) 7.2 (4.36) 118.6 (152792)
1000 1000 3 8003 3000 3003000 115.7 (4.48) 48.0 (4.28) 1440.1 (384906)
500 500 6 8506 3000 1503000 56.1 (7.76) 19.1 (7.52) 433.8 (291345)
1000 1000 6 17006 6000 6006000 253.6 (6.40)  140.1 (6.44) 2936.0 (783983)

number of Benders iterations—for Table B}—or the number of simplex iterations—
for Table 4] Based on the non-linear effect of ¢, observed in Figure[l} the regression
model includes the linear effect |o¢ — 0.5] (which is related to the excess of demand
or excess of capacities), rather than «.

Table 3: Linear regression of Benders iterations and CPU time

Iterations CPU
factor effect p-value effect p-value
intercept 3.19E-16 1.00000 -9.15E-17 1.00000
loe—0.5]| —0.20418 0.00428 -0.31078  3.26E-06
B 0.19115 0.00739 0.23008 0.00046
m=n —0.04309 0.54113 0.39638  6.30E-09
k 0.44965  2.11E-09 0.30965  3.52E-06

From Table [3] we conclude that the length of the planning horizon is the main
feature responsible for the number of Benders iterations (0.44965), but its effect is
comparatively reduced when the CPU time is taken into account. This is consistent
with the fact that the size of the subproblems per each time period is exclusively
determined by the number of potential locations and customers and this is the reason
why the effect of m and n plays the strongest role (0.39638). Another interesting
insight that can be deduced from the regression analysis performed is the fact that the
excess of demand or capacities (captured by parameter | — 0.5]) gives rise to two
different outcomes in the computational performance of the Benders decomposition
and the branch-and-cut algorithm. In fact, reinterpreting Proposition [T} high values

Table 4: Linear regression of simplex iterations and CPU time

Iterations CPU
factor effect p-value effect p-value
intercept -1.05E-16 1.00000 1.65E-16 1.00000
|a—0.5] -0.03690 0.34926 0.19710 0.00895
B -0.188437  3.98E-06 -0.24829 0.00011
m=n 0.472138  1.63E-23 0.43848  7.98E-11
k 0.718540  1.77E-39 0.37580  1.39E-08
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Table 5: Dimensions and results of 1D location problems with optimality tolerance 10~ for the sub-
problems

BlockIP BarOpt

n m k const.  bin. var. cont. var. iter. gap CPU iter. gap CPU rel. diff . open
100 100000 1 100101 100 10100000 3 0.0000 18.19 3 0.0000 41.31 0.0000 37
100 100000 2 200302 200 20200000 4 0.0000 34.77 4 0.0000 117.83 -0.0000 21,37
100 100000 3 300503 300 30300000 6 0.0000 95.86 6 0.0000 303.40 0.0000 15,27,37
100 500000 1 500101 100 50500000 2 0.0002 70.03 3 0.0335 246.73 -0.0347 100
100 500000 2 1000302 200 101000000 3 0.0001 282.92 5 00335 1178.86 -0.0348 73,100
100 500000 3 1500503 300 151500000 5 0.0001 846.16 5 00333 214837 -0.0344 55,90, 100
100 1000000 1 1000101 100 101000000 2 0.0001 123.48 4 00026 1005.98 -0.0026 100
100 1000000 2 2000302 200 202000000 2 0.0001 261.86 f — 100, 100
100 1000000 3 3000503 300 303000000 3 0.0002 946.20 t — 89,100, 100
200 100000 1 100201 200 20100000 3 0.0000 18.05 3 0.0000 101.61 0.0000 37
200 100000 2 200602 400 40200000 4 0.0000 33.51 4 0.0000 300.29 -0.0000 21,37
200 100000 3 301003 600 60300000 6 0.0000 93.57 6 00000  756.72 0.0000 15,27,37
200 500000 1 500201 200 100500000 3 0.0001 236.00 300000  669.79 0.0001 117
200 500000 2 1000602 400 201000000 5 0.0001 708.28 i — 74,117
200 500000 3 1501003 600 301500000 6 0.0000 1200.00 t — 55,90, 117
200 1000000 1 1000201 200 201000000 3 0.0000 799.41 — 181
200 1000000 2 2000602 400 402000000 400000 1829.84 — 117,181
200 1000000 3 3001003 600 603000000 6 0.0000 443441 — 90,141, 181

T CPLEX ran out of memory (required more than 144 Gigabytes of RAM)

of |o¢ —0.5| should result in a poor dependency between the second stage and first
stage decisions. Clearly, the same reasoning does not apply to the branch-and-cut
algorithm, whose generation of valid inequalities follow a completely different logic.

4.2 Solution of very large-scale instances

In addition to the instances analyzed in the previous section, we generated a col-
lection of very large-scale instances to test the efficiency of the proposed approach.
These additional instances were obtained by considering all the combinations for
n € {100,200}, m € {100000,500000, 1000000} and k € {1,2,3}. The parameters o
and f3 were set to 0.9999 and to 1, respectively, for all the instances, in order to avoid
problems with large shortages resulting from lack of capacity. Due to the large num-
ber of customers, in these instances, transportation costs were divided by a scaling
factor to reduce their “weight” in the objective function. A time limit of 7200 seconds
was used in those executions, although it was never reached.

The dimensions of these instances are inspired by real-world location problems
that may be faced, for instance, by internet-based retailer multinational companies.
Such problems call for a few dozens or hundreds of locations spread around the world
for the warehousing activities, and hundreds of thousands of “customers” related,
for instance, to cities over some threshold population. To the best of the authors’
knowledge, the resolution of facility location problems with such dimensions have
never been reported in the literature.

The first set of experiments corresponds to large-scale 1D instances (¢ = 0) with
no random perturbation (¢ = 1). We ran those instances with the cutting-plane ap-
proach using an optimality tolerance 10~ for the interior-point solver in the sub-
problems. As we pointed out in the previous sections, inexact solutions to subprob-
lems save the last and thus often the most “expensive” interior-point iterations with
BlockIP since the performance of PCG degrades near the optimal solution. For a fair
comparison with the off-the-shelf solver in use, these same optimality tolerances were
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set for CPLEX BarOpt, although its performance should not be significantly affected
by this tolerance since it does not rely on PCG. The master problems were also subop-
timally solved with CPLEX branch-and-cut by using a positive optimality tolerance
to avoid too expensive solutions (from the perspective of the CPU time required);
this tolerance was reduced in each Benders iteration multiplying it by a factor in the
interval (0,1) (in particular, we used 0.95). A positive small optimality gap was also
used for the global Benders decomposition; Benders iterations stop when the relative
difference between the best lower and upper bounds falls below this tolerance.

Table [5] reports the results obtained. The information contained in the columns
headed by “m”, “n”, “k”, “const.”, “bin. var” and “cont. var” is the same as in Table
[2l Columns “iter.”, “gap” and “CPU” contain the number of interior-point iterations,
the achieved Benders optimality gap, and the CPU time (seconds), respectively, for
both BlockIP and BarOpt. In column “rel. diff”” we report the relative difference in
terms of the best solutions (i.e., best Benders upper bounds) obtained by BlockIP and
BarOpt. A negative value indicates that the upper bound obtained when using BlockIP
was smaller (and thus better) than that obtained when using BarOpt. Although these
values are omitted in the table, it is worth noting that, as it was mentioned in Section
[3.1] BlockIP required in average only two PCG iterations for the solution of system
(33) in the largest instances. (Analogous results for primal block-angular problems
with the form (#4)-(@6) have been also observed in the field of complex network
problems [11].) Finally, the last column in Table E] (headed by “open”) contains the
number of facilities operating in each period.

The results presented in Table [5] require some extra explanation: although sub-
problems were solved with an optimality tolerance of 10~>, the Benders cuts gener-
ated in those instances were good enough to obtain a solution with a sufficiently small
optimality gap. In fact, if Benders cuts were not accurate enough, the current solu-
tion could not be properly separated, and the master problem would have reported
the same binary solution in two consecutive iterations (that is, the inexact solution
of the Benders subproblem would be providing just a valid inequality for the master
problem, not really a cut). In such a case, the Benders subproblem would generate
the same new constraint for the master and the algorithm would iterate forever. We
also see that, in general, optimality gaps were smaller—thus better—with BlockIP
than with CPLEX, though both solvers used the same subproblem tolerance.

About efficiency, from Table [5] we see that Benders with BlockIP outperformed
Benders with CPLEX BarOpt in all the instances. Concerning the memory require-
ments we conclude that BlockIP was far superior to CPLEX BarOpt. Benders with
BlockIP was able to provide a good solution to the largest instances, while CPLEX
with BarOpt ran out of memory. Remarkably, Benders with BlockIP was able to solve
the largest cases, namely those with a number of opened facilities equal to 181 in pe-
riod 3. This means that the dimension of the subproblems solved by BlockIP was up
to 181 million of continuous variables. CPLEX exhausted the 144 Gigabytes of RAM
of the computer in the largest instances (executions marked with *), while BlockIP
just required a small fraction of the available memory.

The second set of experiments performed corresponds to large-scale 2D instances
obtained with ¥ = 0.5, keeping unchanged all the previously defined parameteriza-
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Table 6: Dimensions and results of 2D instances with deterministic distribution of customers, and opti-
mality tolerance of 1073 for the subproblems

BlockIP BarOpt

n m k const.  bin.var. cont. var. iter. gap CPU iter. gap CPU rel. diff . open
100 100000 1 100101 100 10100000 3 0.0000 19.29 3 0.0000 41.53 0.0000 37
100 100000 2 200302 200 20200000 4 0.0000 35.09 4 0.0000 120.85 -0.0000 21,37
100 100000 3 300503 300 30300000 6 0.0000 98.79 6 0.0000  309.42 0.0000 15,27,37
100 500000 1 500101 100 50500000 2 0.0001 70.98 4 0.0365 412.46 -0.0379 100
100 500000 2 1000302 200 101000000 3 0.0001 280.66 5 0.0353 851.41 -0.0367 73, 100
100 500000 3 1500503 300 151500000 5 0.0001 861.09 5 00373  2167.39 -0.0387 55,90, 100
100 1000000 1 1000101 100 101000000 2 0.0001 123.09 3 0.0027 611.52 -0.0027 100
100 1000000 2 2000302 200 202000000 2 0.0001 260.90 i — 100, 100
100 1000000 3 3000503 300 303000000 3 0.0002 902.87 i — 89,100, 100
200 100000 1 100201 200 20100000 3 0.0000 18.95 3 0.0000 102.64 0.0000 37
200 100000 2 200602 400 40200000 4 0.0000 3454 4 0.0000 302.03 -0.0000 21,37
200 100000 3 301003 600 60300000 6 0.0000 99.31 6 0.0000 756.79 -0.0000 15,27,37
200 500000 1 500201 200 100500000 3 0.0001 381.60 3 00000 71723 0.0001 17
200 500000 2 1000602 400 201000000 5 0.0001 928.44 i — 74,117
200 500000 3 1501003 600 301500000 6 0.0000 1440.27 i —  55,90,117
200 1000000 1 1000201 200 201000000 3 0.0000 897.47 i — 181
200 1000000 2 2000602 400 402000000 4 00000 2011.97 i — 117, 181
200 1000000 3 3001003 600 603000000 6 0.0000 4984.55 — 90,141, 181

T CPLEX ran out of memory (required more than 144 Gigabytes of RAM)

tions. We tested instances with a deterministic distribution of customers (£ = 1) as
well as instances with a random distribution (¢ = 0.5). The corresponding results are
reported in Tables [6] and [7] respectively, where the competitive advantage of combin-
ing Benders decompositions with the specialized interior-point method appears once
again. The number of open facilities in each period remains almost the same as in
the case of 1D instances, due to the unchanged demand requirements and location
capacities.

From Tables[6and [7] we see that 2D instances were in general more difficult than
1D ones, requiring more CPU time. This is clearly seen in Table 7| which reports re-
sults for 2D instances with a random distribution of customers along the line. In fact,
the random parameter considered (¢ = 0.5) means that customers may be located very
far from the line. Those instances could not be solved with BlockIP using the standard
Newton direction, and we were forced to use Mehrotra’s predictor-corrector direction
(see the discussion in Subsection with a loose optimality tolerance of 102 for the
subproblems; tighter optimality gaps reported long execution times. However, even
in those unfavorable circumstances, Benders using BlockIP was able to compute so-
lutions with small enough gaps for these big instances. Looking into these results we
can also conclude that random instances listed in Table [7] are more difficult than the
deterministic ones in Table [§] due to the average number of PCG iterations required
at each interior-point iteration: two are required for the deterministic instances (as for
the 1D instances reported in Table [5)) while 4-6 are needed for those of Table[7] As
it was observed for 1D instances, CPLEX could not solve the largest ones since the
144 Gigabytes of RAM available were exhausted.

5 Conclusions

In this work we exploited the use of a specialized interior-point method for solv-
ing the Benders subproblems associated with the decomposition of large-scale capac-
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Table 7: Dimensions and results of 2D instances with random distribution of customers, optimality
tolerance of 102, and Mehrotra’s predictor-corrector direction for the subproblems

BlockIP BarOpt

n m k const.  bin.var. cont. var. iter. gap CPU iter. gap CPU rel. diff . open
100 100000 1 100101 100 10100000 3 0.0000 7.04 3 0.0001 42.30 0.0000 37
100 100000 2 200302 200 20200000 4 0.0000 19.67 4 0.0001 120.28 0.0000 21,37
100 100000 3 300503 300 30300000 6 0.0000 53.67 6 0.0001 309.82 0.0000 15,27,37
100 500000 1 500101 100 50500000 4 0.0022 68.51 4 0.1557 393.86 -0.1843 100
100 500000 2 1000302 200 101000000 5 0.0023 484.68 5 0.1557 820.65 -0.1842 74, 100
100 500000 3 1500503 300 151500000 5 0.0023 869.74 6 0.1545 225475 -0.1826 55,90, 100
100 1000000 1 1000101 100 101000000 4 00013 229.89 300252 563.18 -0.0257 100
100 1000000 2 2000302 200 202000000 4 0.0015 255.05 i — 100, 100
100 1000000 3 3000503 300 303000000 4 00010 237536 i — 90, 100, 100
200 100000 1 100201 200 20100000 3 0.0000 7.88 3 0.0001 103.03 0.0000 37
200 100000 2 200602 400 40200000 4 0.0000 19.98 4 0.0001 305.18 0.0000 21,37
200 100000 3 301003 600 60300000 6 0.0000 51.34 6 0.0001 770.87 0.0000 15,27,37
200 500000 1 500201 200 100500000 3 0.0001 275.37 300000  708.52 0.0001 17
200 500000 2 1000602 400 201000000 5 00004 1436.11 i — 74,117
200 500000 3 1501003 600 301500000 6 0.0000 1322.14 i —  55,90,117
200 1000000 1 1000201 200 201000000 300000 1775.67 i — 181
200 1000000 2 2000602 400 402000000 6 0.0001 5106.35 i — 118, 181
200 1000000 3 3001003 600 603000000 6 0.0001 513123 — 90,141,181

T CPLEX ran out of memory (required more than 144 Gigabytes of RAM)

itated multi-period discrete facility location problems. This was accomplished by tak-
ing advantage from the primal block-angular structures of the underlying constraints
matrices. The computational tests performed and reported in the paper show that this
led to a substantial decrease in the computational effort for the overall Benders proce-
dure. The effect of different modeling conditions on the computational performance
was also investigated, which provided a deeper understanding of the significant fac-
tors influencing the overall efficiency.

The extensive computational results reported in Section 4] show that in all the in-
stances tested, a Benders decomposition approach embedding BlockIP clearly outper-
formed other approaches, such as branch-and-cut or Benders using a generic interior-
point method, even when the latter makes use of the full strength of an off-the-shelf
solver such as IBM CPLEX. Furthermore, the specialized interior-point method was
able to solve the Benders subproblems of the largest instances, namely, those in which
the number of open facilities in the last period is 181 and thus with subproblems in-
volving up to 181 million of continuous variables.

The research presented in this paper opens new possibilities for solving exactly
large instances of more comprehensive multi-period facility location problems, A
straightforward extension that can be considered is the combined phase-in/phase-out
problem in which, in addition to the features considered in this paper, it is assumed
that some facilities are already operating before the beginning of the planning hori-
zon, which can be closed in any period. Another challenging area in which the devel-
opments proposed in this work may have a strong impact concerns stochastic single-
and multi-period discrete facility location problems.

Our results show that the new methodology we propose in this paper works ex-
tremely well for problems with a structure such as the one we are considering. It is
worth noting that the approach is relevant even if the Benders decomposition does
not converge in a few iterations. In fact, even if some spatial distributions called for
a larger number of Benders iterations, the benefits of using this specialized interior-
point solver are still valid: (i) it may be early stopped with a suboptimal but feasible



25

primal-dual point; (ii) it allows computing valid cuts even for huge subproblems,
providing a solution with a given duality gap.
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A Tables of numerical experiments of Subsection [4.1]

Tables |§|, |§| and m contain the CPU times (seconds) required by the Benders decomposition and
the branch-and-cut to solve instances of (I)—(8), with one, three and six time periods respectively. The
parameter specification has been defined in Table with different combinations of o and 8 and for two
sizes m = n = 500 and m = n = 1000.

One period

Table 8: CPU time of instances of two sizes m = n = 500 and m = n = 1000, with one time period (k = 1).
The three tables report the CPU times of the three analyzed solution methods: Benders—with—BlockIP,
Benders—with—BarOpt and Branch—and—cut. The values inside the parenthesis are either the number of
Benders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)

Benders-with-BlockIP

B 0.1 03 05 07 09

01 304 2) 76202) 39503) 2593) 3840
03 325(2) 822(2) 5.14(3) 459(5) 378 (4)
0.5 3.68(2) 8.45(2) 7.00 (4) 3.63 (4) 3.79 (4)
07 425Q2) 9.03 2) 9.12 (4) 3.72(4) 3.68 (4)
0.9 502(2) 11522) 9.14 (4) 327 (4) 3.11(4)

Benders—with—Baropt

B 0.1 03 05 07 09

01 20 7852) 58403 606 3) 960 5)
03 459(2) 776 2) 679 3) 9.61(5) 8.68 (4)
05 535(2) 7.90 (2) 1071 (5) 8.26 (4) 8.39 (4)
0.7 5.86(2) 9.112) 15.88 (5) 8.15 (4) 8.25(4)
0.9 6.08 (2) 10.93 2) 1552 (5) 8.09 (4) 8.23 (4)

B, Branch-and—cut (CPLEX)
’ 0.1 0.3 0.5 0.7 0.9
0.1 24.78 (23534)  24.39(35422)  28.20(29337)  30.16 (46270)  29.31 (44764)
0.3 26.64 (24741)  22.83(36596)  25.90 (32865)  28.45 (46158)  29.99 (44584)
0.5 26.41(27408)  22.18(36994)  26.09 (35442)  27.92(44459)  30.07 (44584)
0.7 26.24 (27394)  22.76 (39697)  23.10(29404)  27.91(44459)  30.18 (44584)
0.9 26.36 (27147)  22.14(39457)  24.02(29404)  27.70 (44459)  31.06 (44584)
Benders—with-BlockIP

B 01 03 05 07 09
0.1 3.04(2) 7.62(2) 3.95(3) 2.59(3) 3.84(5)
0.3 3.25(2) 8.22(2) 5.14 (3) 4.59 (5) 3.78 (4)
0.5 3.68 (2) 8.45(2) 7.00 (4) 3.63 (4) 379 4)
0.7 425(2) 9.03 (2) 9.12 (4) 372 (4) 3.68 (4)
0.9 5.02(2) 11.52(2) 9.14 (4) 327 (4) 3.11(4)
Benders—with—Baropt

B 0.1 03 0.5 0.7 09
0.1 152(2) 785 (2) 5.84(3) 6.06 (3) 9.60 (5)
0.3 459 (2) 7.76 (2) 6.79 (3) 9.61 (5) 8.68 (4)
0.5 535(2) 7.90 (2) 10.71 (5) 8.26 (4) 8.39 (4)
0.7 5.86 (2) 9.11 (2) 15.88 (5) 8.15 (4) 8.25(4)
0.9 6.08 (2) 10.93 (2) 15.52 (5) 8.09 (4) 8.23(4)
B.a Branch-and—cut (CPLEX)

! 0.1 0.3 0.5 0.7 0.9

0.1 24.78 (23534)  24.39(35422)  28.20(29337)  30.16 (46270)  29.31 (44764)
0.3 26.64 (24741)  22.83(36596)  25.90 (32865)  28.45 (46158)  29.99 (44584)
0.5 26.41 (27408)  22.18(36994)  26.09 (35442)  27.92(44459)  30.07 (44584)
0.7 26.24 (27394)  22.76 (39697)  23.10 (29404)  27.91 (44459)  30.18 (44584)
0.9 26.36 (27147)  22.14(39457)  24.02(29404)  27.70 (44459)  31.06 (44584)

1000 facility locations — 1000 destinations | 500 facility locations — 500 destinations
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Three periods

Table 9: CPU time of instances of two sizes m = n = 500 and m = n = 1000, with three time periods (k=
3). The three tables report the CPU times of the three analyzed solution methods: Benders—with—BlockIP,
Benders—with—BarOpt and Branch—and—cut. The values inside the parenthesis are either the number of
Benders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)

Benders—with—BlockIP

B.a Branch-and—cut (CPLEX)

’ 0.1 0.3 0.5 0.7 0.9
0.1 1092.41 (190457) 1128.3 (497498) 1341.32 (433991) 1771.85 (521141)  3140.49 (364098)
0.3 1083.25 (183858)  1432.37 (503591)  1341.28 (/398657) ~ 2371.77 (517030)  1040.00 (366078)
0.5 1048.64 (185015)  1344.06 (477182)  1328.27 (431055)  1384.44 (446753)  1218.97 (366078)
0.7 1113.06 (183404)  1215.51 (491545) 1505.74 (409296) 1753.35 (446753)  1036.53 (366078)
0.9 1066.31 (185925)  1199.02 (447635)  1256.25 (396701)  1361.38 (446753)  1118.97 (366078)

2 B 0.1 03 05 07 09
o 0.1 241(2) 2.40 (2) 245 (2) 2.673) 422(6)
g 0.3 249 (2) 272 (2) 7.19 (5) 9.88 (7) 3.58 (6)
=1 0.5 2.57(2) 581 (3) 17.65 (8) 7.05 (6) 3.57(6)
= 0.7 271 (2) 18.32(3) 15.10 (6) 7.97 (6) 3.55(6)
_§ 0.9 2.90 (2) 27.39 (4) 15.12 (6) 7.89 (6) 3.59 (6)

8 B.a Benders—with—Baropt
w 0.1 0.3 0.5 0.7 0.9

| 0.1 497 (2) 4.86 (2) 5.06 (2) 7.64 (3) 15.97 (6)

2 0.3 5.23(2) 5.53(2) 16.09 (5) 30.91 (9) 16.34 (6)

g 0.5 5.84(2) 11.05 (3) 41.81 (10) 28.07 (8) 16.25 (6)
= 0.7 6.84 (2) 15.12(3) 41.36 (8) 28.12(8) 16.09 (6)

8 0.9 8.05(2) 23.98 (4) 41.39 (8) 28.15(8) 15.93 (6)

[}

Ef‘ B.ax Branch-and—cut (CPLEX)
= 0.1 0.3 0.5 0.7 0.9
B3 0.1 75.80 (82767) 91.62 (145763) 121.33 (162566) 141.96 (199826) 119.93 (161368)
& 0.1 77.37 (88267) 99.69 (156288) 117.77 (158843) 441.77 (236393) 121.26 (157888)
o 0.1 83.79 (86095) 95.19 (143148) 1027.8 (361530) 122.68 (166711) 120.32 (157888)
(=} 0.1 77.61 (84922) 93.10 (141979) 102.11 (129615) 122.58 (166711) 120.77 (157888)
N 0.1 79.98 (88707) 85.02 (130412) 102.23 (129615) 122.32 (166711) 122.2 (157888)

©n Benders—with—-BlockIP

g B.a 01 03 05 07 09
= 0.1 18.04 (2) 18.15(2) 18.07 (2) 19.25 (3) 29.09 (7)

g 0.3 18.38 (2) 18.82(2) 27.71 (3) 63.34 (8) 27.21 (6)
= 0.5 18.09 (2) 27.84(2) 70.03 (5) 53.83(6) 27.33(6)

S 0.7 19.46 (2) 74.71 (3) 208.92 (8) 54.00 (6) 27.05 (6)
o] 0.9 20.16 (2) 100.52 (3) 157.41 (6) 53.89 (6) 27.87 (6)
(e
8 b Benders—with—Baropt
— 0.1 0.3 0.5 0.7 0.9

| 0.1 35.09(2) 36.20(2) 36.72(2) 59.44 (3) 144.28 (7)

[} 0.3 40.30 (2) 41.18 (2) 72.47 (3) 216.97 (8) 140.21 (7)

g 0.5 42,69 (2) 48.20 (2) 164.24 (5) 193.69 (7) 140.30 (7)
= 0.7 48.32(2) 96.80 (3) 267.14 (7) 19233 (7) 140.55 (7)

8 0.9 53.19(2) 115.36 (3) 249.55 (6) 192.58 (7) 141.01 (7)
2
é\

:T"j
&
(e
(=]
(=]
—




31

Six periods

Table 10: CPU time of instances of two sizes m = n = 500 and m = n = 1000, with six time periods (k =
6). The three tables report the CPU times of the three analyzed solution methods: Benders—with—BlockIP,
Benders—with—BarOpt and Branch—and—cut. The values inside the parenthesis are either the number of
Benders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)

Benders—with-BlockIP

B 0.1 03 05 07 09
0.1 4.86 (2) 4.85(2) 529(3) 6.21 (5) 15.62 (10)
0.3 5.01(2) 6.81 (3) 18.32(8) 30.85(12) 8.59 (9)
0.5 532(2) 14.53 (4) 75.02 (19) 20.54 (9) 8.59(9)
0.7 1530 (2) 39.33(5) 95.68 (18) 20.53 (9) 8.34(9)
0.9 27.09 (3) 108.11 (7) 95.76 (18) 20.50 (9) 8.16 (9)
B.a Benders—with—Baropt

! 0.1 0.3 0.5 0.7 0.9
0.1 9.86 (2) 10.02 (2) 15.12 (3) 27.63 (5) 112.91 (20)
0.3 10.28 (2) 17.66 (3) 46.21 (7) 98.39 (14) 53.49 (10)
0.5 11.82(2) 31.66 (4) 172.06 (20) 81.40 (11) 53.48 (10)
0.7 14.15(2) 51.10(5) 103.71 (10) 78.04 (11) 53.07 (10)
0.9 27.95(3) 90.66 (7) 100.21 (10) 77.86 (11) 53.82 (10)
B.a Branch-and—cut (CPLEX)

’ 0.1 0.3 0.5 0.7 0.9
0.1 160.15 (174912) 237.84 (306138) 305.12 (320752) 358.98 (363900) 281.51 (311002)
0.3 162.65 (171758) 240.52 (312191) 314.58 (324738) 475.19 (307862) 498.59 (315966)

0.5 169.77(174745) 27258 (322766)  >3600(611082)  282.61 (299578)  490.38 (315966)
07 170.17(170519)  233.78 (294001) 25162 (266350)  313.44(299578)  495.00 (315966)

0.9 166.23 (168989) 199.87 (252973) 277.84 (266350) 321.92 (299578) 499.23 (315966)
B.a Benders-with—-BlockIP

! 0.1 0.3 0.5 0.7 0.9
0.1 35.19(2) 36.11(2) 36.29 (2) 40.02 (4) 105.62 (10)
0.3 36.93 (2) 48.30 (3) 62.84 (4) 253.28 (18) 63.02 (9)
0.5 38.27(2) 85.19 (4) 269.69 (7) 145.83 (9) 65.63 (9)
0.7 39.52(2) 200.53 (4) 670.59 (14) 145.77 (9) 64.11 (9)
0.9 44.90 (2) 388.82 (5) 41543 (11) 145.03 (9) 64.86 (9)
B.a Benders—with—Baropt

’ 0.1 0.3 0.5 0.7 0.9
0.1 76.39 (2) 73.05 (2) 74.45 (2) 153.22 (4) 233.15(10)
0.3 81.84 (2) 134.18 (4) 195.97 (4) 298.28 (16) 103.91 (9)
0.5 87.89 (2) 225.99 (4) 458.89 (7) 275.83 (10) 174.63 (9)
0.7 100.74 (2) 274.54 (4) 1129.83 (14) 235.77 (9) 179.04 (9)
0.9 118.49 (2) 42232 (5) 831.57 (10) 221.14 (9) 178.31 (9)
B.a Branch-and—cut (CPLEX)

! 0.1 0.3 0.5 0.7 0.9

0.1 2806.43 (438667)  2615.41 (947346) > 3600 (1037026) >3600 (936011)  3234.75 (703221)
0.1 2699.30 (458865)  3379.19 (946117)  3416.73 (1055603) > 3600 (1030661)  2195.65 (709446)
0.1 2261.68 (447090)  3450.16 (931857) > 3600 (970240) > 3600 (765625)  2199.04 (709446)
0.1 2449.55 (432943)  3572.15(980130)  3144.12(912201) > 3600 (792742)  2192.47 (709446)
0.1 2223.04 (405934)  2626.27 (871642)  3571.51 (918625) > 3600 (779241)  2194.18 (709446)

1000 facility locations — 1000 destinations | 500 facility locations — 500 destinations
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