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An online optimization-based procedure for the assignment
of airplane seats

Jordi Castro · Fernando Sarachaga

Abstract Due to the large number of air flights these days, all procedures involved
in their operational management should be carefully optimized. This work presents
a novel approach to the seat assignment problem, which focuses on deciding where
to seat the passengers of different online purchases. This problem is currently solved
by most airlines with a set of simple pre-defined rules that do not take into account
future sales. Instead, the approach in this work is based on solving an integer multi-
commodity network flow problem, where different commodities are associated with
expected future demands of different types of passengers. One feature of the devel-
oped optimization model is that it has to be solved online (that is, in real-time), thus
it must be both effective and fast, which prevented the use of more sophisticated
(but also more time consuming, as it was experimentally observed) models based on
stochastic programming. Using a real database of flights by Vueling Airlines S.A., we
generated a set of synthetic online purchases simulating a pseudo-real flight. Apply-
ing our approach to this synthetic data, we observed that (1) the optimization model
could be satisfactorily solved in real-time using the state-of-the-art CPLEX solver;
(2) and the seat assignment obtained was of higher quality than that obtained by the
simple pre-defined rules used by airlines.
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Passenger air traffic is currently experiencing a significant growth. The number
of seats offered over a recent ten-year period increased 48% all over the world (this
increment was 40% in Europe), from 3156M seats in 2005 to 4665M in 2015. Com-
panies expect a growth rate of 5% per year, such that the expected number of seats
will be around 6000M by 2020. The number of airplanes needed to satisfy this de-
mand is thus also growing, and the current number of 33M take-offs is expected to
be around 38.5M by 2020. Due to these orders of magnitude, it is instrumental for
both airlines and airports to be highly efficient in any procedure that involves the
operational management of flights.

In this work we focus on the optimal assignment of airplane seats. Without loss of
generality, we will focus on the seat map of an Airbus A320, although our approach
is valid for any aircraft. Indeed, the Airbus A320 was the airplane that had the most
take-offs in 2015: approximately 5.5M, representing 17% of the world total.

Optimal seat assignment is a highly strategic service, which involves three differ-
ent agents—passengers, airlines, and airports—each of them with different interests:

– For passengers flying in groups, one of the most valued features is having all
group members seated together. In addition, passengers appreciate either having
the option of selecting the seat (premium seats including a fee) or knowing the
assigned seat after the purchase. Airlines are thus forced to manage several strate-
gies within the same seat map.

– For airlines, carrying out good seat assignment is required not only for customer
satisfaction, but also from an operational point of view: fast boarding reduces the
time the airplane is on the ground, which affects the company’s competitiveness.

– For airport authorities good assignment has a double benefit, since reducing the
boarding time will lead to: (i) an increase in the number of take-offs, and (ii)
passengers potentially spending more time in airport shopping areas.

Several other airline operations have been extensively applied in the past, includ-
ing fleet assignment (i.e., optimal assignment of aircraft to routes; see, for instance,
Sherali et al (2006) for a survey and references therein); crew scheduling (i.e, as-
signment of crews to aircraft, see Gopalakrishnan and Johnson (2005) for a survey
and references therein); ground staff management (e.g., one airline implemented the
approach of Felici and Gentile (2004)); air traffic management (to avoid airport con-
gestion and reduce delays) (Agustín et al, 2012a,b; Dembo et al, 1989); and aircraft
conflict resolution (to guarantee safe distances between aircraft to avoid collisions)
(Alonso-Ayuso et al, 2016a,b). A general survey on operations research for the air-
line industry can be found in Yu and Thengwall (2002), which deals with additional
topics such as revenue management and irregular operations.

Most of the literature on airline operations deals with the seat allocation problem
instead of seat assignment, which is the purpose of this work. Seat allocation—either
nested or nonnested (Yu and Thengwall, 2002)—seeks the optimal number of seats to
be offered for each fare class in order to maximize revenue management. Some early
approaches to seat allocation considered network optimization models (Dror et al,
1988; Glover et al, 1982), where variables are associated with classes of passengers
(not groups on a flight, as we will do). Probabilistic models for seat allocation using
estimates of uncertain demand were introduced, for instance, in Belobaba (1989);
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Brumelle and McGill (1993); Sawaki (1989). A more recent probabilistic model con-
sidering replenishment for lower fares was presented in Sato and Sawaki (2009). A
different but related problem was addressed in Lee and Hersh (1993): this work for-
mulated a model for deciding whether a booking request for seats in a certain booking
class should be accepted or denied. The approach of Tajima and Misono (1999) for-
mulated a set packing integer problem to fill the aircraft while considering groups of
passengers so that members of the group are seated as close to each other as possible
(as our approach will do); this work used real data by Japan Airlines, but assumed no
stochasticity. We also remark that optimization procedures have been used to decide
the seat allocation in parliaments (Hales and García, 2019).

This work presents a novel approach to the seat assignment problem, which con-
sists of deciding where to seat the different passengers or groups of passengers in an
aircraft, according to different characteristics such as fare class, number of passen-
gers in a group, or sales channel. This problem is currently being solved by companies
such as Vueling Airlines S.A. through a set of pre-defined rules that look for (using
a greedy search) a set of seats that have some characteristics. In this work we pro-
pose an optimization model that represents the aircraft topology as a network and the
groups of passengers as different commodities. This model maximizes benefits and
at the same time tries to satisfy two main goals:

– to avoid separating members of the same group;
– to assign seats according to the fare class.

Compared to current models in use (for instance, at Vueling Airlines), this new ap-
proach improves on the following aspects:

– Expected demand is considered. The current rules in use are the same for all
flights, independently of the expected demand. In this new approach the demand
for different fares (economy and business) is estimated from historical data for
similar flights.

– Cooperative solution. The current rules assign seats considering only the current
passenger or group of passengers, independently of future sales. The new model
forecasts future sales for different fares (economy and business), and assign seats
accordingly, thus increasing revenues. This approach could be formulated as a
stochastic optimization model; however, since the different optimization prob-
lems (one per online sale) must be solved in real-time—thus, quickly—we will
consider a deterministic version. In other words, only the most probable future
scenario (that associated with the expected demand) will be considered. Some
results with a tentative stochastic optimization model will be provided, showing
that is computationally expensive for an online system.

– Quantitative comparison. The new model is based on optimizing an objective
function, and thus allows a quantitative comparison between different seat as-
signments. This was not possible with the rules-based approach.

The structure of this document is as follows. Section 2 outlines the overall ticket
sales procedure, in which the optimization model’s solution for the seat assignment
is one of the crucial steps. This mixed integer linear optimization model is described
in Section 3, which also presents a stochastic optimization model of this problem. Fi-
nally, Section 4 provides computational results that show the effectiveness of the new
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Fig. 1 Scheme of the overall ticket sales and seat assignment procedure

approach in terms of both computation time and revenues. The instances considered
come from a synthetic pseudo-real flight, which was generated by Vueling Airlines
from its extensive (and confidential) database; future demands were also estimated
from this database by the company. Computational results are also reported for the
stochastic version of the model, showing that the resulting stochastic optimization
problem is computationally too expensive for an online system.

2 The overall ticket sales procedure

In this work we consider a realistic modern scenario, in which a significant percentage
of sales is performed online by customers, who would ideally like to know the seats
assigned by the company immediately after their purchase, or at least as soon as
possible. In this scenario, seats are assigned without knowing the future sales, which
is the opposite of the simpler scenario where seats are assigned just before flight
departure, and after all purchases have been made.

The overall ticket sales procedure being considered is shown in Figure 1. The
realistic assumptions performed for this procedure are the following:

– Customers may pay to choose their seat among those currently available.
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– Only customers paying a premium fare will know their assigned seat immediately
after the purchase, independently of the date of purchase.

– When a purchase is made after some deadline (usually a date close to departure),
all customers can know their assigned seats. Customers who make the purchase
before this deadline can return to the system for their seat assignments.

– When the customer has a seat, the airline delivers the boarding pass.
– All pending customers that did not return to the system for a seat will have one

assigned by the airline before departure; customers are notified of their seats at
check-in.

The company must assign seats in two steps of the procedure, which correspond
to the grey boxes in Figure 1. In the first step (upper grey box), seats are assigned only
for the current online purchase; this will be named “online assignment”, and it must
be performed before knowing the future uncertain demand. In the second step (lower
grey box), all pending customers are assigned seats without expecting new purchases
(except for the last minute ones); this will be called “offline assignment”. These two
steps are embedded in an optimization model, which is described in the next section.

3 The mathematical optimization model

The seat map of the aircraft is represented by a directed graph G = (A,N), where
A and N are the set of arcs and nodes, respectively. For an aircraft of n seats, the
set of nodes is defined as N = {0} ∪ {n+ 1} ∪ I ∪ J′, where I = {1,2, . . . ,n} and
J′ = {1′,2′, . . . ,n′}. Nodes i ∈ I and j′ ∈ J′ are associated with seats; nodes 0 and
n+ 1 will be used as initial and final nodes in the model. Four types of arcs will be
considered, i.e., A = O∪F ∪S∪D where:

– O = {(0, i), i ∈ I}: arcs from the initial node to each seat.
– F = {( j′,n+1), j′ ∈ J′}: arcs from each seat to the final node.
– S = {(i, j′), i ∈ I, j′ ∈ J′ : i = j}: arcs associated with seats. Flow through these

arcs means that the associated seat has been assigned.
– D = {( j′, i), j′ ∈ J′, i ∈ I : j > i}: arcs connecting different seats. These arcs are

needed to select seats for different passengers in the same group. In principle, all
seats are connected to each other, so we could use j 6= i in the definition of set
D. However, to avoid symmetries in the solution it is preferable to consider only
half of the arcs, so that j > i. This resulted in becoming instrumental in efficiently
solving the optimization problems.

Figure 2 shows the graph for a hypothetical aircraft with only four seats, indicating
the different types of arcs. For an Airbus A320—the plane considered for the com-
putational results—the number of seats is n = 180 (distributed in 30 rows of 6 seats
each). This graph representation is valid, however, for any aircraft.

The optimization problem will consider a set K = {1, . . . ,κ} of κ different pur-
chases or groups of passengers to be assigned. All variables will be replicated ac-
cording to K, and then—as will be shown—the resulting model will be an integer
multicommodity flow problem with side constraints. Commodity K 3 k = 1 corre-
sponds to the current sale (i.e., the group who is currently purchasing the online
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Fig. 2 Graph associated with a small aircraft with only four seats. Continuous red lines correspond to arcs
O; dashed blue lines to arcs F ; dashed-dotted black lines to arcs S; dotted green lines to arcs D.

tickets). The rest of commodities K 3 k > 1 represent the number of expected future
seats to be purchased by different classes of passengers (economy, business, etc). All
these commodities (the current group and the expected future groups) compete for a
seat in the plane, that is, the capacity of the arc in S representing a seat is one, and the
sum of the binary flows for all k ∈ K traversing this arc must be less than or equal to
one (which are the usual mutual capacity constraints in multicommodity flow mod-
els, defined in below equations (1c)). In this way, the current decision is taken by
considering the expected future demands for economy/business seats, thus obtaining
better assignments for the company. In other words, some “better” seats may not be
assigned to the current purchase, with the expectation that these seats will be bought
in the future by a business passenger.

We will deal with two different cases. When computing the assignment for the
current purchase (either a passenger or a group of passengers), which corresponds
to the online assignment of the upper grey box of Figure 1, κ will take a value of
{1,3,4,5}. When κ = 1 we consider only the current purchase; this gives rise to the
simplest optimization problem. When κ = 3, we consider the current purchase and
two additional groups (possibly with a large number of passengers) which represent
all the upcoming economy- and business-class purchases. Similarly, we also consider
the cases in which κ = 4 and κ = 5. When κ = 4, in addition to the economy and
business groups, we also include a “top-business” segment, i.e., premium business
passengers that frequently flight with the company and have additional benefits (such
as priority boarding, better offline seat assignment, priority in reallocation in case of
flight cancellation, etc.). On average, it is estimated that the number of top-business
passengers represents 10% of all business class purchases. When κ = 5, we also add
to the previous groups a “top-economy” group (with benefits similar to those for top-
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business); it has been estimated that the size of the top-economy group represents
50% of all economy passengers. The resulting optimization problems will thus have
a multicommodity flow-like structure, with κ equal to either 1 (this case being single-
commodity), 3, 4 or 5 commodities.

On the other hand, when we are close to flight departure, seats must be assigned
for all pending groups of customers; this is the offline assignment of the lower grey
box in Figure 1. In this case κ (usually κ > 1) is the number of pending groups, and
future expected purchases are not considered.

In addition to the previous graph G and set K, the optimization model also re-
quires the following parameters:

– pk > 0,k ∈ K: number of passengers in group k. In the online assignment, p1 is
the real number of passengers for the current sale; pk,k > 1, is an estimate of the
future sales for each group (economy, business, top-economy, and top-business,
as explained above). In the offline assignment, pk is the real number of passengers
in pending group k.

– ai ∈ {0,1}, i ∈ I: availability of seat i. If ai is 1, this seat is available; if it is 0, it
has already been assigned to a previous customer. Parameters ai are updated after
each purchase.

– cO
ik,(0, i) ∈ O,k ∈ K: cost associated with arcs in O, which are the arcs that start

the assignment for group k. This is the only cost whose values differ according to
the type of passenger, thus allowing the control and creation of different environ-
ments on the plane according to different fares.

– cS
ii′k,(i, i

′)∈ S,k ∈K: cost associated with arcs in S, for group k. This is the cost of
selecting a particular seat i. This cost is useful for reserving some seats for future
customers who can afford to pay for them, or to give more importance to, say,
window or aisle seats.

– cD
j′ik,( j′, i) ∈ D,k ∈ K: cost associated with arcs in D for group k. This cost is

instrumental if pk > 1 (that is, if they have to seat more than one passenger for
group k), since it controls the penalization between far away seats. Contiguous
seats i and j have a small cost cD

j′ik, and the cost increases with the “distance”
between i and j. It is worth noting that D includes only arcs from seat j to seat i
if j > i (i.e., if the row of seat j is posterior to the row of seat i). This means that
the solution of the optimization problem (associated with flows in the graph G)
will assign passengers of the same group in a non-increasing sequence of rows,
thus avoiding equivalent solutions with different orders (symmetric solutions).

– wO
k ,k ∈ K: weighting factor for costs cO

ik for different groups k. For instance, by
setting wO

1 < wO
k , for k > 1, in the online assignment (upper grey box in Figure

1), we give priority to future purchases.
– wD

k ,k ∈ K: weighting factor for costs cD
j′ik for different groups k. For instance, by

setting wD
1 > wD

k , for k > 1 in the online assignment (upper grey box in Figure 1),
we give preference to seating together passengers of the online purchase.

It is worth remarking that the costs for arcs in O and S could be adjusted to deal
with other considerations than just the comfort of passengers, such as, for instance,
the location of the gravity center of the aircraft (which, for safety reasons, must be
within some predefined range). Another option to fully control the location of the
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gravity center would be to include extra side constraints to the below model, at the
expense of complicating the optimization procedure.

The variables of the optimization problem (all of them binary) are unit flows
through the arcs in Figure 2, replicated for each group (commodity). The purpose is
to send a unit flow from the initial to the final node, traversing as many seat arcs as
there are passengers with each commodity. The variables are:

– oik ∈ {0,1},(0, i) ∈ O,k ∈ K: flows through arcs in O. They start the assignment
of seats for group k.

– f j′k ∈ {0,1},( j′,n+1) ∈ F,k ∈ K: flows through arcs in F . They end the assign-
ment of seats for group k.

– sii′k ∈ {0,1},(i, i′) ∈ S,k ∈ K: flows through arcs in S. If a unit flow traverses arc
sii′k, seat i is selected for group k.

– d j′ik ∈ {0,1},( j′, i) ∈ D,k ∈ K: flows through arcs in D. A unit flow traversing
arc d j′ik means that, if a member of the group k is at seat j, the next member will
be at seat i.

The optimization problem to be solved is:

min ∑
k∈K

(
wO

k ∑
i∈I

cO
ikoik +wD

k ∑
( j′,i)∈D

cD
j′ikd j′ik + ∑

(i,i′)∈S
cS

ii′ksii′k

)
(1a)

s. t. ∑
(i,i′)∈S

sii′k = pk k ∈ K (1b)

∑
k∈K

sii′k ≤ 1 (i, i′) ∈ S (1c)

sii′k ≤ ai i ∈ I,k ∈ K (1d)

∑
i∈I

oik = 1 k ∈ K (1e)

∑
j′∈J′

f j′k = 1 k ∈ K (1f)

sii′k = oik + ∑
( j′,i)∈D

d j′ik i ∈ I,k ∈ K (1g)

s j j′k = f j′k + ∑
( j′,i)∈D

d j′ik j′ ∈ J′,k ∈ K (1h)

∑
( j′,i)∈D

d j′ik = pk−1 k ∈ K (1i)

oik ∈ {0,1}, f j′k ∈ {0,1} i ∈ I, j′ ∈ J′,k ∈ K (1j)
sii′k ∈ {0,1},d j′ik ∈ {0,1} (i, i′) ∈ S,( j′, i) ∈ D,k ∈ K. (1k)

The objective function (1a) minimizes the cost of the assignment (equivalently, it
maximizes the company revenue and benefit to passengers). Constraints (1b) guaran-
tee that the right number of seats is selected for each group. Constraints (1c) impose
at most one passenger per seat. Constraints (1d) prevent using previously assigned
seats. Constraints (1e) inject a unit flow at node 0 of graph G, for each commodity;
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Table 1 Time (in seconds) to solve 10 instances with different values of p1, with or without constraint
(1i)

Value of p1
1 1 1 1 1 3 1 1 2 2

With (1i) 12.9 19.0 10.1 7.1 7.4 19.5 5.4 4.2 5.1 7.0
Without (1i) 22.5 29.4 21.5 20.5 20.2 16.4 16.0 15.3 7.0 7.4
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Fig. 3 Solution for the small example of Figure 2 considering a set K with κ = 3 commodities: commodity
1 is the current online economy sale with one passenger; commodity 2 is the expected future demand of
economy seats (p2 = 1 in this example); and commodity 3 is the expected future demand of business seats
(p3 = 2 in this example).

these unit flows exit the graph at node (n+ 1) according to constraints (1f). Con-
straints (1g) and (1h) are the balance equations at nodes of I and J′, respectively.
Constraints (1i) guarantee that the unit flow circulating through the network traverses
pk− 1 arcs of D. Constraints (1i) are indeed redundant, but when pk = 1, arcs d j′ik
are set to 0 during the preprocessing. This resulted in being very useful, as shown
in Table 1. This table reports the time (in seconds) for the solution of 10 different
instances with values of p1 in {1,2,3}. Clearly, when p1 = 1 the times are 2-3 times
less with constraints (1i). For p1 > 1 constraints (1i) did not significantly affect the
performance of the model, thus they will be kept for all the instances.

Figure 3 illustrates the solution for the small example of Figure 2, considering a
set K with κ = 3 commodities or groups. The first group corresponds to the current
online purchase with p1 = 1 (one passenger); commodity 2 is the expected demand of
economy seats, with p2 = 1 (one expected passenger); and commodity 3 is the future
demand for business seats, with with p3 = 2 (two expected passengers). The arcs of
Figure 3 are associated to the only variables with value one in the optimal solution,
the rest having a zero value. It is observed that the current purchase is assigned to



10 Jordi Castro, Fernando Sarachaga

seat 4, while seat 3 is assigned to the future expected economy purchase, and the
contiguous seats 1 and 2 of the first row are reserved for the expected future economy
purchases.

3.1 The stochastic optimization model

The optimization problem (1) can be made stochastic by considering that (pk,k > 1)
is a random vector with a certain distribution. A two-stage stochastic model considers
two types of variables: the first-stage variables are the decisions to be made before
the realization of future random events; and the second-stage variables, which are
decided after the outcome of random events. The different realizations of the random
events are associated to the future demands for all groups of passengers k > 1, and are
represented by a set of scenarios L = {1, . . . ,λ}, λ being the number of realizations
of the random vector. First-stage variables correspond to group k = 1 (the group of the
known current sale), while second-stage variables are associated to the (stochastic)
demand for groups k > 1 (“business”, “top-business”, “economy”, “top-economy”).
To simplify the notation and the model, parameter p1 (the real—and deterministic—
number of passengers of the current sale) will also be included in the random vector,
replicating the same value for all the scenarios. Accordingly, the first-stage variables
(those associated to k = 1) will be replicated by scenarios. Since they must have
the same value for all the scenarios (because they are the “today” decisions, thus
unique), they will be forced to be equal by a set of constraints which are named
“nonanticipativity constraints” in stochastic optimization. With these premises, the
only changes in the definition of parameters and variables respect to Model (1) are:

– pkl ,k ∈ K, l ∈ L: number of passengers in group k under scenario l. Parameters
p1l are equal for every scenario l, since they correspond to the real (and thus
deterministic) number of passengers for the current sale.

– βl ≥ 0, l ∈ L: probability of each scenario, such that ∑l∈L βl = 1.
– oikl ∈ {0,1},(0, i) ∈ O,k ∈ K, l ∈ L: flows through arcs in O. They start the as-

signment of seats for group k under scenario l.
– f j′kl ∈ {0,1},( j′,n+ 1) ∈ F,k ∈ K, l ∈ L: flows through arcs in F . They end the

assignment of seats for group k under scenario l.
– sii′kl ∈{0,1},(i, i′)∈ S,k∈K, l ∈ L: flows through arcs in S. If a unit flow traverses

arc sii′kl , seat i is selected for group k under scenario l.
– d j′ikl ∈ {0,1},( j′, i)∈D,k∈K, l ∈ L: flows through arcs in D. A unit flow travers-

ing arc d j′ikl means that, if a member of the group k is at seat j, the next member
will be at seat i, under scenario L.



An online optimization-based procedure for the assignment of airplane seats 11

The two-stage stochastic optimization model is:

min ∑
l∈L

(
βl ∑

k∈K

(
wO

k ∑
i∈I

cO
ikoikl +wD

k ∑
( j′,i)∈D

cD
j′ikd j′ikl + ∑

(i,i′)∈S
cS

ii′ksii′kl

))
(2a)

s. t. ∑
(i,i′)∈S

sii′kl = pkl k ∈ K, l ∈ L (2b)

∑
k∈K

sii′kl ≤ 1 (i, i′) ∈ S, l ∈ L (2c)

sii′kl ≤ ai i ∈ I,k ∈ K, l ∈ L (2d)

∑
i∈I

oikl = 1 k ∈ K, l ∈ L (2e)

∑
j′∈J′

f j′kl = 1 k ∈ K, l ∈ L (2f)

sii′kl = oikl + ∑
( j′,i)∈D

d j′ikl i ∈ I,k ∈ K, l ∈ L (2g)

s j j′kl = f j′kl + ∑
( j′,i)∈D

d j′ikl j′ ∈ J′,k ∈ K, l ∈ L (2h)

∑
( j′,i)∈D

d j′ikl = pkl−1 k ∈ K, l ∈ L (2i)

oikl ∈ {0,1}, f j′kl ∈ {0,1} i ∈ I, j′ ∈ J′,k ∈ K, l ∈ L (2j)
sii′kl ∈ {0,1},d j′ikl ∈ {0,1} (i, i′) ∈ S,( j′, i) ∈ D,k ∈ K, l ∈ L (2k)
oi1l = oi1(l+1) i ∈ I, l ∈ L\{λ} (2l)

f j′1l = f j′1(l+1) j′ ∈ J′, l ∈ L\{λ} (2m)

sii′1l = sii′1(l+1) (i, i′) ∈ S, l ∈ L\{λ} (2n)

d j′i1l = d j′i1(l+1) ( j′, i) ∈ D, l ∈ L\{λ}. (2o)

Equations (2a)–(2k) are the stochastic versions of (1a)–(1k), and they have the same
meaning. Equations (2l)–(2o) are the nonanticipativity constraints for first-stage vari-
ables.

We remark that this stochastic model is purely academic and experimental and it
was developed independently of any airline.

4 Computational results

Next two subsections present computational results for two different scenarios. In
Subsection 4.1 a pseudo-real flight was synthesized from the (confidential) Vueling
Airlines database. Subsection 4.2 presents results for instances generated as varia-
tions of the previous realistic flight.
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4.1 Results for pseudo-real synthetic flight

Based on the real database of flights by Vueling Airlines, we simulated all the pur-
chases and expected future demands for a pseudo-real flight. For reasons of con-
fidentiality, we will only provide an overview of the procedure—which was fully
performed by Vueling Airlines—for the generation of this pseudo-real flight.

From the real database, a sample of 19799 flights was extracted for one year.
These flights were clustered in 144 groups, according to factors such as the day of
the week of the flight, time of the flight, and route. Each of the 144 groups has a
distribution of economy, business, top-economy and top-business passengers. A par-
ticular type of flight (of the 144 available) was selected, and all the sales in this group
were considered; this amounted to 67782 sales. From these sales, values pk, k > 1,
(i.e., the expected number of passengers for each category on some particular flight)
were estimated by computing confidence intervals for the number of economy and
business passengers, and the expected number of passengers was the upper limit of
this interval. Note that using the upper limit of the interval is the worst case for our
approach based on (1), since it corresponds to a larger load factor for the flight, and
thus the optimization problems involve more variables and constraints. From these
data it was also estimated that the number of top-business and top-economy pas-
sengers were, respectively, 10% and 50% of the number of business and economy
passengers. The “synthetic” pseudo-real flight was finally generated from the above
mentioned 67782 sales (that is, a synthetic sequence of sales, each belonging to a
particular group—economy, business, etc.).

Once the pseudo-real flight was generated, the aircraft was filled according to the
procedure in Figure 1, using the optimization Model (1) to solve the several online
and offline seat assignments. The seat map configuration that was considered is shown
in Figure 4.a, which corresponds to an Airbus A320 (30 rows, 6 seats each, separated
by one aisle) and where different types of seats are marked with colors according
to the legend. It is worth noting that row 13, which is removed by many airlines
(including Vueling) due to superstitious reasons, is considered in Figure 4: without
loss of generality, our model uses the natural order of rows, not the numbering used
by airlines. The cost scheme considered below is consistent with the commercial
policy of companies such as Vueling Airlines. Costs cO

ik and cS
ii′k are given in Figure

4.b. Costs cO
ik are equal for seats i ∈ I in the same row, but they change with the type

of purchase k ∈ K (top-business, business, top-economy, economy), as was stated in
Section 3. Costs cS

ii′k are the same for all commodities k ∈ K, but change with seats
(i, i′) ∈ S. For the other cost coefficients in the objective function we used:

– The weighting factors wO
k were 1 if k = 1, and 1.5 for k > 1, thus giving priority

to expected future purchases.
– The weighting factors wD

k were 1 if k = 1, and 0.5 for k > 1, in an attempt to
contiguously seat all the passengers of the online purchase.

– Costs cD
j′ik depend only on j′ and i, and they are the same for all k ∈K. They were

computed as: cD
j′ik = 1nH + 1.5nV , where nH and nV denote the horizontal (i.e.,

within row) and vertical (i.e., between rows) “moves” to reach seat i from seat j.
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(a) (b)

Fig. 4 (a) Seats map of the Airbus A320. (b) Costs cO
ik for arcs O and different types of passengers (top-

business, business, top-economy, economy), and cS
ii′k for arcs S, that were used in the computational results.

All the executions in this Section were carried out on a DELL PowerEdge 6950
server with 4 AMD Opteron 8222 CPUs at 3.0GHz and 64 GB of RAM, using a
Linux operating system. It is worth noting that this hardware, from the year 2007,
is capable of approximately 360 Megaflops (millions of floating point operations per
second), while current processors (as the one used for the results of below Subsec-
tion 4.2) have about 4300 Megaflops. (We remark that, since the overall performance
does not depend only on the processor Megaflops, but also on the parallelism capabil-
ities, amount of memory, etc., speedups of 4300/360 ≈ 12 are hardly obtained). The
results in this section were obtained (by the second author) at an early stage of the
work on a computer which is no longer available; the results in below Subsection 4.2
were computed (by the first author) later. Replicating the first set of results in the new
computer is not immediate, since some some seats were assigned by the optimization
procedure, but others were simulated to be purchased by the passenger using some
rules. This explains why two different computers were used. Anyway, we can practi-
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cally consider that the times provided in this section could be roughly divided by 10
in a modern hardware.

The optimization model was implemented in AMPL, and it was solved with
CPLEX 12.5. Since this procedure is to be used online, we set a time limit of 30
seconds for finding the solution to each integer optimization problem (1). When this
time limit is exhausted, the current incumbent (best seat assignment found so far) is
provided as a solution. An incumbent was always found within this time limit, and in
most cases, the optimal solution was found in much less than 30 seconds.

Table 2 shows the results for κ = 1 and κ = 3. For κ = 1 we have only one
commodity when solving the optimization model, which corresponds to the current
online purchase. For κ = 3, the three commodities are the current online purchase
and the two expected numbers of future business and economy passengers. Each row
in Table 2 simulates a particular online purchase. On this flight we have 78 sequential
online purchases, while the last row of the table corresponds to the offline assignment
of passengers without a seat. For each online purchase, the table shows: the sequen-
tial purchase number (column “Num. sale”); the number of available seats when the
purchase is completed (column “Available seats”); the number of passengers in this
group (column “p1”); the type of group (column “Group type”); the number of vari-
ables in problem (1) (columns “Num. var”); the number of MIP simplex iterations
performed (columns “MIP iter.”); the number of branch-and-bound nodes (columns
“B&B nodes”); the elapsed time in seconds (columns “total time”); the optimality
gap achieved (columns “gap%”); the objective function achieved (“Obj. f.”); and, for
κ = 3, the contribution of k = 1 (the group making the online purchase) to the ob-
jective function, so we can compare the solutions of κ = 1 and κ = 3 in terms of
objective functions. (Note that when κ = 3 the sum in the objective function (1a)
considers two more terms for k = 2 and k = 3, such that the objective function value
is much larger than when κ = 1. To compare the quality of the seats assignment for
the current online purchase when κ = 1 and κ = 3 we must focus only on the term for
k = 1 in the objective function, and this is why this term is provided in Table 2, and
the rest of similar tables of the paper.) As we can see, the two possible types of groups
in Table 2 are business and economy. Those in italics correspond to passengers that
paid for choosing their seats. In these cases, there is no need to solve the optimiza-
tion problem (1); this situation is marked with † in Table 2. For κ = 1 and p1 = 1,
the solution of (1) is trivial, and CPLEX preprocessing finds the solutions without
requiring any optimization, as is clearly marked with ‡ in Table 2. Finally, we note
that the last row of Table 2 does not provide the value of the objective function, since
it corresponds to the offline assignment.



A
n

online
optim

ization-based
procedure

forthe
assignm

entofairplane
seats

15
Table 2: Results for κ = 1 and κ = 3

κ = 1 κ = 3
Num. Available p1 Group Num. MIP B&B total gap% Obj. f. Num. MIP B&B total gap% Obj. f. Obj. f.

sale seats type var. iter. nodes time var. iter. nodes time k = 1
1 180 1 Business ‡ 1.1 33576 4013 34 12.85 0.04% 320.9 1.1
2 179 1 Economy † †

3 178 1 Business ‡ 1.1 32748 17264 730 18.95 0.00% 316.8 1.1
4 177 1 Business ‡ 1.1 32387 7977 565 10.07 4.49% 314.7 1.1
5 176 2 Economy † †

6 174 1 Economy † †

7 173 2 Economy † †

8 171 2 Business † †

9 169 1 Business ‡ 1.1 29571 4929 232 7.13 2.67% 286.3 1.1
10 168 1 Business ‡ 1.1 29228 7442 341 7.36 0.04% 284.2 1.1
11 167 3 Business 14360 274 0 1.05 0.00% 4.3 43080 11626 312 19.52 0.90% 276.9 14.3
12 164 1 Business ‡ 1.1 27876 1401 0 5.36 0.00% 262.8 2.1
13 163 1 Business ‡ 2.1 27543 2981 19 4.19 1.31% 260.5 2.1
14 162 2 Business 13525 250 0 0.75 0.00% 3.2 40575 3567 14 5.14 0.00% 258.4 4.2
15 160 2 Business 13198 128 0 0.85 0.00% 4.2 39594 6027 108 7.06 1.63% 255.2 5.2
16 158 1 Economy † †

17 157 2 Economy † †

18 155 2 Economy † †

19 153 1 Economy † †

20 152 2 Business 11930 162 0 0.88 0.00% 4.2 35790 6141 126 7.77 0.29% 241.4 5.2
21 150 1 Business ‡ 4.1 23396 2511 23 5.88 0.03% 236.2 2.1
22 149 1 Business ‡ 4.1 23091 2235 15 3.60 0.15% 234.6 1.1
23 148 1 Business ‡ 4.1 22788 2348 17 3.59 0.15% 234.5 3.1
24 147 1 Business ‡ 4.1 22487 2344 13 3.17 3.21% 232.9 2.1
25 146 1 Business ‡ 4.1 22188 1261 0 5.20 0.00% 232.8 4.1
26 145 2 Economy † †

27 143 1 Economy † †

28 142 2 Economy † †

29 140 2 Business 10148 202 0 0.50 0.00% 5.2 30444 40291 5021 11.60 1.12% 221.9 13.2
30 138 2 Business 9865 217 0 0.93 0.00% 6.2 29595 3378 56 5.36 2.88% 210.7 6.3
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Table 2 Results for κ = 1 and κ = 3 (continued)

κ = 1 κ = 3
Num. Available p1 Group Num. MIP B&B total gap% Obj. f. Num. MIP B&B total gap% Obj. f. Obj. f.

sale seats type var. iter. nodes time var. iter. nodes time k = 1
31 136 1 Business ‡ 4.1 19308 2274 7 3.30 3.03% 206.5 4.1
32 135 1 Economy † †

33 134 2 Economy † †

34 132 1 Business † †

35 131 1 Business ‡ 5.1 17943 2348 119 2.7 3.06% 194.6 2.7
36 130 1 Economy † †

37 129 1 Economy † †

38 128 2 Economy ‡ 1.1 25530 2599 4 2.92 2.42% 183.8 3.2
39 126 1 Business ‡ 5.1 16628 1785 4 2.15 2.46% 183.1 3.1
40 125 1 Business ‡ 5.1 16371 2058 4 2.06 0.02% 183 5.1
41 124 1 Economy ‡ 1.1 16116 2029 4 1.65 2.48% 176.9 1.1
42 123 1 Business ‡ 5.1 15863 1957 4 2.24 2.53% 178.8 5.1
43 122 1 Economy ‡ 1.1 15612 1703 4 2.45 2.54% 172.7 1.1
44 121 1 Economy † †

45 120 2 Economy ‡ 1.2 22494 3537 159 5.82 0.43% 175.5 4.2
46 118 1 Business ‡ 6.1 14628 2136 23 2.49 2.20% 172.8 10
47 117 2 Economy † †

48 115 2 Business † †

49 113 1 Business ‡ 6.1 13443 859 0 1.74 0.00% 151.1 5.1
50 112 1 Economy † †

51 111 2 Business † †

52 109 4 Economy † †

53 105 1 Economy † †

54 104 1 Business ‡ 6.1 11436 1053 0 1.58 0.10% 127.9 5.1
55 103 1 Economy ‡ 2.1 11223 746 0 1.35 0.00% 121.8 1.1
56 102 1 Business † †

57 101 1 Economy ‡ 2.1 10803 704 0 1.41 0.00% 117.7 2.1
58 100 1 Business ‡ 6.1 10596 736 0 1.57 0.00% 118.6 5.1
59 99 1 Business ‡ 6.1 10391 742 0 1.17 0.00% 117 4.1
60 98 1 Business † †
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Table 2 Results for κ = 1 and κ = 3 (continued)

κ = 1 κ = 3
Num. Available p1 Group Num. MIP B&B total gap% Obj. f. Num. MIP B&B total gap% Obj. f. Obj. f.

sale seats type var. iter. nodes time var. iter. nodes time k = 1
61 97 1 Economy † †

62 96 1 Economy † †

63 95 1 Economy † †

64 94 1 Economy † †

65 93 1 Economy † †

66 92 2 Economy 4651 146 0 0.36 0.00% 3.2 13380 718 0 1.49 0.00% 98.9 4.2
67 90 1 Economy ‡ 2.1 8636 627 0 0.87 0.00% 95.2 1.1
68 89 1 Economy ‡ 2.1 8451 463 0 0.81 0.00% 95.1 3.1
69 88 1 Economy † †

70 87 2 Business 4273 176 0 0.50 0.00% 9.6 12000 2796 860 1.60 0.82% 94.9 8.2
71 85 1 Business ‡ 8 7731 470 0 1.60 0.00% 91.2 5.1
72 84 1 Business ‡ 8 7556 556 0 1.24 0.00% 90.6 8
73 83 1 Economy ‡ 2.1 7383 344 0 0.90 0.00% 83.6 3.1
74 82 1 Economy † †

75 81 2 Economy 3736 151 0 0.45 0.00% 4.2 10443 506 0 0.93 0.00% 79.4 5.2
76 79 1 Business ‡ 8 6711 364 0 0.72 0.00% 79.2 6.1
77 78 1 Economy † †

78 77 3 Economy † 5842 324 0 0.65 0.00% 68.5 10.3
79 74 28∗ Economy 6448 5429 180 4.45 0.00% 3.1 22292 72864 6540 10.33 0.80% 124.4 §

† Customer purchased seat, no seat assignment required
‡ For κ = 1 and p1 = 1 only preprocessing is needed (no optimization performed)
∗ Number of passengers in offline assignment
§ Not applicable for last offline assignment
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Table 3: Results for κ = 4 and κ = 5
κ = 4 κ = 5

Num. Available p1 Group Num. MIP B&B total gap% Obj. f. Obj. f. Group Num. MIP B&B total gap% Obj. f. Obj. f.
sale seats type var. iter. nodes time k = 1 type var. iter. nodes time k = 1

1 180 1 Business 50124 7253 19 29.09 0.09% 316.90 1.1 Business 66772 10911 0 29.09 0.05% 312.90 1.1
2 179 1 Economy † Top-Econ †

3 178 1 Business 49033 34606 735 29.24 0.06% 314.80 1.1 Business 65318 4507 12 29.24 0.14% 336.50 1.1
4 177 1 Business 48492 18271 660 29.18 4.21% 315.90 1.1 Business 64597 10986 44 29.27 9.24% 318.50 1.1
5 176 2 Economy † Top-Econ †

6 174 1 Economy † Top-Econ †

7 173 2 Economy † Economy †

8 171 2 Business † Business †

9 169 1 Top-Busn 44789 45527 1870 29.48 10.72% 301.08 1.1 Top-Busn 59662 6946 5 29.48 12.88% 312.60 1.1
10 168 1 Business 44272 6550 102 15.14 0.01% 298.50 1.1 Business 58973 7606 64 29.01 0.08% 281.70 1.1
11 167 3 Business 58120 26192 889 29.24 7.42% 285.60 14.3 Business 72650 26977 462 29.03 6.45% 268.90 14.3
12 164 1 Business 42234 2012 0 10.67 0.00% 260.60 1.1 Business 56257 16035 198 17.62 1.51% 253.60 1.1
13 163 1 Business 41732 3784 15 13.34 0.00% 258.00 1.1 Business 55588 8358 64 17.97 0.18% 252.20 2.1
14 162 2 Business 54760 6306 55 15.04 0.00% 256.90 4.2 Business 68450 10055 231 20.27 0.16% 250.40 4.2
15 160 2 Business 53444 4058 12 6.26 0.03% 252.70 4.2 Business 66805 15363 189 28.89 8.98% 265.60 15
16 158 1 Economy † Economy †

17 157 2 Economy † Economy †

18 155 2 Economy † Top-Econ †

19 153 1 Economy † Economy †

20 152 2 Business 48340 6802 93 10.08 3.25% 239.90 5.2 Business 60425 25337 1364 22.92 0.77% 229.00 4.2
21 150 1 Business 35479 3215 13 9.83 0.03% 234.70 2.1 Business 47225 4923 17 12.70 0.04% 227.40 1.1
22 149 1 Business 35019 1910 0 7.43 0.00% 233.60 3.1 Business 46642 9970 355 12.17 4.01% 227.30 3.1
23 148 1 Top-Busn 34562 4311 17 5.25 0.15% 230.50 1.1 Top-Busn 46033 4534 22 10.88 3.44% 221.20 4.5
24 147 1 Business 34108 4213 15 5.93 0.15% 230.40 3.1 Business 45428 3526 16 8.15 1.69% 217.70 3.1
25 146 1 Business 33657 3226 25 8.99 3.30% 228.30 3.1 Business 44827 3661 5 8.21 1.76% 215.60 3.1
26 145 2 Economy † Top-Econ †

27 143 1 Economy † Top-Econ †

28 142 2 Economy † Top-Econ †

29 140 2 Business 31014 9920 319 9.98 3.35% 246.30 6.2 Business 51455 6212 122 9.64 0.74% 205.50 13
30 138 2 Business 40592 10901 321 11.10 0.39% 226.10 13 Business 50030 35522 748 12.42 1.37% 193.50 5.2
31 136 1 Business 29733 4214 234 4.62 2.86% 200.10 2.1 Business 39037 6269 14 6.11 2.27% 189.80 2.1
32 135 1 Economy † Top-Econ †

33 134 2 Economy † Economy †

34 132 1 Business † Business †

35 131 1 Business 27658 3351 150 4.30 2.88% 191.20 4.1 Business 36292 4725 76 4.70 0.44% 179.40 4.1
36 130 1 Economy † Economy †

37 129 1 Economy † Economy †

38 128 2 Economy 26449 2331 46 3.27 0.09% 181.30 2.1 Economy 43205 9596 389 9.80 2.69% 173.60 3.2
39 126 1 Business 26052 2314 30 3.32 0.41% 181.20 4.1 Business 33647 4933 85 7.14 0.59% 172.40 4.1
40 125 1 Business 25658 2848 92 3.67 0.04% 179.10 4.1 Business 33130 3452 169 5.06 0.02% 170.30 4.1
41 124 1 Economy 25267 2294 19 3.72 0.21% 174.00 1.1 Top-Econ 32617 5957 745 5.59 2.61% 165.20 1.1
42 123 1 Top-Busn 24879 3192 35 3.46 4.98% 172.90 1.1 Top-Busn 32108 5054 294 4.68 0.88% 164.10 1.1
43 122 1 Economy 24494 2285 38 2.77 3.90% 170.80 1.1 Top-Econ 31603 5276 376 6.23 2.88% 162.00 1.1
44 121 1 Economy † Economy †

45 120 2 Economy 31480 3366 108 4.28 4.09% 167.10 3.2 Top-Econ 38105 12017 1466 7.56 1.74% 164.80 3.2
46 118 1 Business 22984 2779 25 2.76 5.70% 166.90 5.1 Business 29623 9849 1091 7.24 4.99% 163.20 10.1
47 117 2 Economy † Economy †

48 115 2 Top-Busn † Top-Busn †
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Table 3 Results for κ = 4 and κ = 5 (continued)
κ = 4 κ = 5

Num. Available p1 Group Num. MIP B&B total gap% Obj. f. Obj. f. Group Num. MIP B&B total gap% Obj. f. Obj. f.
sale seats type var. iter. nodes time k = 1 type var. iter. nodes time k = 1

49 113 1 Business 14148 1985 91 2.03 1.34% 155.10 6.1 Business 20809 1552 0 2.10 0.01% 143.40 4.1
50 112 1 Economy † Top-Econ †

51 111 2 Business † Business †

52 109 4 Economy † Top-Econ †

53 105 1 Economy † Economy †

54 104 1 Business 12087 1272 0 0 1.64% 127.90 3.1 Business 17424 1256 31 2.07 0.20% 122.70 4.1
55 103 1 Economy 11868 1162 18 1.46 3.16% 123.80 1.1 Top-Econ 17102 1224 21 1.99 2.78% 117.60 1.1
56 102 1 Business † Business †

57 101 1 Economy 11436 1102 19 1.44 3.27% 119.70 2.1 Economy 16467 1652 22 2.07 2.89% 113.40 1.1
58 100 1 Business 11223 1202 88 1.41 3.45% 120.60 5.1 Business 16154 1577 11 2.09 2.85% 112.70 3.1
59 99 1 Business 11012 1022 15 1.57 2.95% 118.50 8 Business 15844 1177 13 2.05 2.80% 113.7 5.1
60 98 1 Business † Business †

61 97 1 Economy † Top-Econ †

62 96 1 Economy † Top-Econ †

63 95 1 Economy † Economy †

64 94 1 Economy † Economy †

65 93 1 Economy † Economy †

66 92 2 Economy 9591 547 0 0.92 0.00% 94.00 3.2 Economy 18220 24771 2255 5.06 2.06% 107.00 4.2
67 90 1 Economy 9396 486 0 1.24 0.00% 89.80 1.1 Economy 13189 6111 605 2.99 11.50% 101.80 1.1
68 89 1 Economy 9203 487 0 1.00 0.00% 88.70 2.1 Economy 12909 5171 521 2.33 10.36% 100.70 2.1
69 88 1 Economy † Top-Econ †

70 87 2 Business 13098 519 0 1.38 0.23% 88.50 8.2 Business 16360 5375 437 2.56 12.23% 99.50 7.2
71 85 1 Business 8451 396 0 0.69 0.00% 83.80 4.1 Business 11819 4802 468 2.32 12.69% 95.80 4.1
72 84 1 Business 8268 381 0 0.92 0.00% 83.70 5.1 Business 11554 8079 879 3.02 11.67% 95.70 5.1
73 83 1 Economy 8087 361 0 0.93 0.00% 81.10 3.1 Economy 11292 5707 588 2.56 14.50% 90.60 2.1
74 82 1 Economy † Top-Econ †

75 81 2 Economy 11469 531 0 1.28 0.00% 76.90 5.2 Economy 14260 11780 1195 3.88 16.25% 87.40 5.2
76 79 1 Business 7556 336 0 0.69 0.11% 75.70 5.1 Business 10274 5885 563 2.25 15.16% 86.20 5.1
77 78 1 Economy † Top-Econ †

78 77 3 Business 5842 545 0 0.78 0.00% 73.70 14 Business 7860 5749 645 2.43 16.46% 88.50 10.3
79 74 28∗ Economy 25177 35410 3537 10.92 2.38% 97.90 ‡ Economy 22855 12358 1403 6.30 2.89% 77.90 §

† Customer purchased seat, no seat assignment required
∗ Number of passengers in offline assignment
§ Not applicable for last offline assignment
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Fig. 5 Solution time of the optimization problem for each sale and κ > 1.

Table 3 shows the same information as Table 2, but for models with κ = 4 and
κ = 5 which include “top-business” (both for κ = 4 and κ = 5) and a “top-economy”
(only for κ = 5) customers. The meaning of the rows and columns is the same as in
Table 2, and customers that paid for seat selection are also marked in italics. Note that
the distribution of the type of groups is consistent with what was stated in previous
Section 3: the numbers of “economy”, “business”, “top-economy” and “top-business”
groups are, respectively, 21, 35, 19, 4. That is, “top-economy” (19) is approximately
a 50% of all economy (19+21) groups; and “top-business” (4) is roughly a 10% of all
business (35+4) groups.

From Tables 2 and 3 we can extract several conclusions. First, looking at the
total time, the model with κ = 1 is much easier to solve than with κ > 1: all prob-
lems with κ = 1 were solved in less than one second. For κ = 3, optimal solutions
were computed within the 30-second time limit, while this time limit was reached
in the first sales with κ = 4 and κ = 5. This is clearly seen in Figure 5 which pro-
vides the solution time of the optimization problem for every sale and κ > 1. It is
also observed that the optimization problems associated with the first sales are more
time-consuming, since the number of available seats (thus the number of variables,
number of constraints, and number of feasible solutions) is larger. On the other hand,
optimization problems for the last sales are quickly solved for any κ . If we added
more sales (beyond the 79 considered in the tables) to fill the aircraft, the extra op-
timization problems would be solved very quickly. For instance, we added six more
sales to fill the plane, and the total solution time for all new six optimization problems
was 3.5 seconds. The parameters that can significantly affect to the solution time are
pk,k > 1, that is, the future expected demand for each group (“economy”, “business”,
“top-economy”, “top-business”); these parameters appear in constraints (1b) and (1i).
If a highly (fully) booked flight is expected then ∑k>1 pk would be close (equal) to
180, and the optimization problems should compute seat assignments for large groups
(which in principle is more time consuming). In all the computational results of the
paper the values considered for pk,k > 1, were p2 = 80, p3 = 44, p4 = 9 and p5 = 44,
such that ∑k>1 pk = 177, so the flight is (practically) fully booked, which is the worst
case for the optimization procedure.
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Fig. 6 Seat assignments obtained for κ ∈ {1,3,4,5}. Seat numbers correspond to sales and different types
of groups are marked with different colors. Italic names in the legend refer to groups that paid for seat
selection.

Since the results of Tables 2 and 3 were obtained using a (quite) old hardware, it
would be worth knowing whether optimal solutions (or which gaps) could be found
with a recent and faster computer (as the one used in next Subsection 4.2). This
question can be answered by looking at the first rows of Tables 3 (for κ = 5) and
4–5: since no seat has been still purchased by any group of passengers, the rows
correspond to the same optimization problem, which is one of the largest and most
challenging of the paper. It can be seen that with the first old computer the time limit
of 30 seconds is exhausted with a solution of gap 0.05%. On the other hand, with the
faster computer an optimal solution of 0% gap is found in 9.58 seconds, and the first
incumbent of gap 43.1% was obtained in 3.23 seconds. Then we can conclude that
with a recent computer an optimal solution of 0% gap would be obtained for all the
optimization problems of Tables 2 and 3 within the 30 seconds time limit.

The model with κ = 1 is similar to the current simple rules used by some air-
lines, so it is not surprising that it can be easily solved. However, rather than com-
paring the solution time, it is far more interesting to compare the quality of the seat
assignments for the different κ , which is shown in Figure 6. The seat numbers in
Figure 6 correspond to the sale number (i.e., passengers of n-th sale were assigned
to seats numbered n). Different colors represent different types of groups: business,
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top-business, economy, top-economy. For each group, we have two possibilities, de-
pending on whether they paid for seat selection (the name of the groups that paid are
marked in italics in the legend). From Figure 6, we see that κ = 1 provided some bad
assignments: for instance, (1) the two business passengers of sale 70 were assigned
to different rows (5 and 6); and (2) the last business sale (number 78) was assigned
to row 19. In addition, κ = 1 filled the first rows earlier than κ > 1, thus avoiding
future sales able to pay for these seats. On the other hand, for κ = 3, κ = 4 and κ = 5
the model left some seats unassigned in, respectively, rows 5, 6 and 7, as it expected
last-minute business sales, which is a good policy. However, for κ = 5 the model
assigned business sale number 15 to the top first rows early.

4.2 Results for instances generated as variations of the realistic flight

Taking the realistic flight of previous section as a base case, alternative instances can
be generated by changing some of its parameters. In particular, we generated two
more flights, both for κ = 5, which is the most difficult situation from a computa-
tional point of view, and both considering all 79 sales of the realistic case. The first
generated flight only differs from the base case in that none of the 79 sales purchased
a seat, that is, 79 optimization problems had to be solved, one per sale, which is the
worst case for our optimization approach. In the second generated flight, in addition
to considering that no sale purchased a seat, we manually increased p1, the number
of passengers in the group (thus making the optimization problems harder). The dif-
ferences in p1 for the two generated flights can be seen in the respective columns p1
of Tables 4 and 5. Although the assumptions for these two generated flights are not
realistic, its main purpose is to validate the efficiency of the approach in a difficult
scenario.

The results for each flight are reported, respectively, in Tables 4 and 5, whose
columns have the same meaning than in previous tables. These runs were executed
on a recent Fujitsu Primergy RX2530 M4 server with two 2.3 GHz Intel Xeon Gold
6140 CPUs (48 cores) and 500 Gigabytes of RAM, under a GNU/Linux operating
system (opensuse 15.0), considerably faster than the hardware used for the base in-
stance. As in previous runs, AMPL and CPLEX 12.5 were used. The time limit was
set to 30 seconds and the optimality tolerance to 0.1%. We remark that, with this
faster hardware, a solution with a gap less than or equal to the optimality tolerance
was obtained for all the problems within the time limit. In addition, Tables 4 and
5 include two more columns than previous tables: column “1st inc time” shows the
time needed to compute the first incumbent, while “1st inc gap%” provides the gap%
of this incumbent. It is observed that, although a first solution is in general quickly
obtained for this model, it is worth waiting some few seconds to get a much bet-
ter seat assignment. At the end of the tables some summary statistics are provided:
number of problems solved (i.e., solution gap is less than or equal to the optimality
tolerance), average solution time (in seconds), average gap%, average solution time
to first incumbent, and average gap% of first incumbent. From these numbers, it can
be concluded that, in general, this model is efficient enough to be run online even on
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a difficult scenario where no passenger purchased a seat (i.e., the model is in charge
of the whole seat assignment).

Table 4: Results for 1st generated file with κ = 5

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

1 180 1 Business 66772 19 0 9.58 0.0 3.23 43.1 365.45 1.10
2 179 1 Top-Econ 66043 20 0 5.96 0.0 2.99 40.0 364.35 1.10
3 178 1 Business 65318 19 0 6.14 0.0 1.45 40.6 363.25 1.10
4 177 1 Business 64597 19 0 6.38 0.0 3.31 41.8 362.15 1.10
5 176 2 Top-Econ 79630 23 0 6.30 0.0 3.43 41.8 361.05 2.20
6 174 1 Top-Econ 62458 18 0 5.81 0.0 1.23 42.1 358.85 1.10
7 173 2 Economy 76975 87 0 5.79 0.0 3.70 43.9 357.75 2.20
8 171 2 Business 75230 204 0 5.79 0.0 3.60 40.4 356.55 3.20
9 169 1 Top-Busn 2742 49452 390 9.78 0.1 2.88 37.8 353.60 1.10

10 168 1 Business 58288 21 0 8.22 0.1 1.31 36.6 353.50 1.10
11 167 3 Business 4468 841436 5298 25.47 0.1 3.50 43.9 354.15 4.80
12 164 1 Business 2119 3571 0 10.36 0.1 2.64 42.6 350.10 1.10
13 163 1 Business 54923 379 0 6.96 0.1 2.76 41.3 350.00 1.10
14 162 2 Business 67625 1851 0 9.47 0.0 1.51 42.5 350.90 4.20
15 160 2 Business 12299 1036449 8113 24.32 0.1 3.16 43.3 349.20 3.70
16 158 1 Economy 4025 85968 655 11.70 0.1 1.12 41.2 345.50 1.10
17 157 2 Economy 11703 129239 1182 15.26 0.1 3.13 40.0 345.40 3.20
18 155 2 Top-Econ 3815 4481 3 15.17 0.1 3.08 46.3 343.20 3.20
19 153 1 Economy 48493 986 0 7.23 0.1 1.01 42.0 341.00 2.10
20 152 2 Business 59650 6354 0 12.91 0.1 1.25 44.9 341.40 4.70
21 150 1 Business 46642 370 0 5.56 0.0 0.85 39.6 338.45 2.10
22 149 1 Business 12169 2866 0 6.64 0.0 0.93 42.8 338.35 2.10
23 148 1 Top-Busn 1875 3077 0 7.32 0.1 1.97 41.7 336.75 1.10
24 147 1 Business 44827 3777 0 3.41 0.0 0.85 41.8 337.65 3.10
25 146 1 Business 44230 348 0 3.01 0.0 1.95 42.8 337.30 3.10
26 145 2 Top-Econ 54365 5823 0 7.03 0.0 2.18 40.8 335.70 3.20
27 143 1 Top-Econ 42463 343 0 2.32 0.0 0.74 42.3 333.50 1.10
28 142 2 Top-Econ 18879 60037 580 11.15 0.1 1.91 41.7 334.15 2.70
29 140 2 Business 1813 6977 3 9.15 0.1 1.81 44.8 334.45 4.70
30 138 2 Business 7219 24496 335 7.29 0.1 0.86 42.1 332.75 5.20
31 136 1 Business 38480 4541 0 2.84 0.0 1.52 40.6 330.55 3.10
32 135 1 Top-Econ 37927 20 0 2.68 0.0 0.62 37.3 329.45 2.10
33 134 2 Economy 5854 11746 148 6.05 0.1 0.82 42.7 329.35 4.20
34 132 1 Business 36292 4914 0 5.01 0.0 1.30 36.5 328.15 3.10
35 131 1 Business 35755 4792 0 5.61 0.0 1.51 40.4 328.05 4.10
36 130 1 Economy 35222 3592 0 2.11 0.0 1.23 36.5 324.95 1.10
37 129 1 Economy 34693 3344 0 1.52 0.0 0.52 38.0 324.85 1.10
38 128 2 Economy 42550 6389 0 6.58 0.0 1.52 40.9 326.25 3.70
39 126 1 Business 19949 93901 1984 7.90 0.1 0.53 40.6 325.80 4.10
40 125 1 Business 6592 198530 4286 7.14 0.1 0.55 39.5 324.95 4.10
41 124 1 Top-Econ 3129 243023 3541 4.75 0.1 0.52 41.8 323.85 4.10
42 123 1 Top-Busn 1522 4944 3 2.98 0.0 0.48 42.1 320.00 1.10
43 122 1 Top-Econ 3017 53697 947 3.86 0.1 0.46 41.7 321.90 4.10
44 121 1 Economy 1480 5164 5 3.26 0.0 0.98 40.2 319.55 1.10
45 120 2 Top-Econ 19131 122817 2520 8.41 0.1 1.28 43.9 322.45 6.20
46 118 1 Business 29138 3092 0 2.91 0.0 1.04 39.1 320.25 5.10
47 117 2 Economy 19287 415725 8703 11.16 0.1 0.64 41.7 318.15 3.70
48 115 2 Top-Busn 20749 265704 5301 11.15 0.1 0.56 41.9 316.20 3.60
49 113 1 Business 2464 16606 180 4.50 0.1 2.00 17.3 316.60 4.10
50 112 1 Top-Econ 17992 295200 8459 8.65 0.1 0.53 45.1 316.50 4.10
51 111 2 Business 2331 52256 736 5.73 0.1 0.52 39.3 316.40 6.20
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Table 4 Results for 1st generated file with κ = 5 (continued)

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

52 109 4 Top-Econ 8884 42408 566 4.30 0.1 0.48 42.1 314.70 8.90
53 105 1 Economy 23197 2474 0 1.25 0.0 1.12 0.0 308.55 2.10
54 104 1 Business 22768 3153 0 1.92 0.0 0.74 40.2 310.45 5.10
55 103 1 Top-Econ 22343 2206 0 1.82 0.0 1.01 17.4 309.35 4.10
56 102 1 Business 21922 2717 0 1.73 0.0 0.48 41.8 309.25 5.10
57 101 1 Economy 21505 2421 0 1.43 0.0 0.37 42.1 307.15 3.10
58 100 1 Business 3568 3736 0 2.09 0.1 0.71 17.9 309.05 5.10
59 99 1 Business 588 3582 0 2.19 0.0 1.05 38.2 309.70 8.00
60 98 1 Business 20278 3085 0 2.21 0.0 0.28 39.0 307.70 6.10
61 97 1 Top-Econ 8941 10543 250 4.05 0.1 0.31 43.0 306.60 5.10
62 96 1 Top-Econ 796 2937 0 1.71 0.1 0.85 17.0 306.50 5.10
63 95 1 Economy 956 3035 0 2.48 0.1 0.62 16.7 304.40 4.10
64 94 1 Economy 903 3501 1 2.46 0.1 0.90 36.5 303.30 4.10
65 93 1 Economy 4411 8079 202 2.37 0.0 0.32 40.3 302.20 4.10
66 92 2 Economy 859 3587 0 2.63 0.0 0.31 43.4 301.60 5.70
67 90 1 Economy 17182 2177 0 1.12 0.1 0.64 21.0 299.65 3.10
68 89 1 Economy 16813 2205 0 1.80 0.1 0.62 9.8 300.55 5.10
69 88 1 Top-Econ 16448 2167 0 1.22 0.1 0.88 39.6 300.45 6.10
70 87 2 Business 20000 2616 0 2.53 0.0 0.92 7.4 300.85 10.00
71 85 1 Business 316 2364 0 2.28 0.0 0.27 40.2 296.85 6.10
72 84 1 Business 468 3378 0 1.77 0.0 0.19 42.3 297.75 13.00
73 83 1 Economy 433 1938 0 0.86 0.0 0.78 0.0 288.75 4.10
74 82 1 Top-Econ 264 1571 0 1.00 0.0 0.90 3.6 286.15 6.10
75 81 2 Economy 17405 2077 0 1.28 0.0 0.89 7.7 284.05 6.20
76 79 1 Business 429 2060 0 1.20 0.0 0.40 39.0 284.85 8.00
77 78 1 Top-Econ 6294 3146 7 2.28 0.0 0.55 20.5 289.85 14.10
78 77 3 Business 1705 6325 207 1.15 0.1 0.68 1.8 282.75 25.00
79 74 28 Economy 3127 236 0 0.07 0.0 0.04 65.7 100.10 §

Number problems solved within opt. gap: 69 § Not applicable for last offline assignment
Average solution time (sec.): 5.56
Average gap%: 0.04
Average time to first incumbent (sec.): 1.28
Average gap% of first incumbent: 36.17

Table 5: Results for 2nd generated file with κ = 5

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

1 180 1 Business 66772 19 0 9.62 0.0 3.23 43.1 365.45 1.10
2 179 2 Top-Econ 82330 21 0 10.21 0.0 4.08 40.6 364.35 2.20
3 177 1 Business 64597 19 0 6.25 0.0 3.11 39.6 362.15 1.10
4 176 1 Business 63880 19 0 7.09 0.0 3.32 37.7 361.05 1.10
5 175 3 Top-Econ 12137 470253 2117 20.12 0.1 1.55 43.3 360.45 3.80
6 172 1 Top-Econ 61052 263 0 4.66 0.0 3.00 39.7 357.65 1.10
7 171 3 Economy 8637 1513 6 10.49 0.0 3.46 42.5 356.80 3.30
8 168 3 Business 11590 11158 67 15.87 0.1 3.37 46.2 354.50 4.30
9 165 1 Top-Busn 4562 44 0 9.41 0.1 2.82 41.9 350.45 1.10

10 164 2 Business 9823 317962 1059 18.41 0.1 3.16 44.4 351.10 2.20
11 162 3 Business 4730 816 0 13.12 0.1 2.91 46.6 350.90 5.30
12 159 1 Business 52303 20 0 6.47 0.0 2.36 42.0 346.60 1.10
13 158 1 Business 1899 48492 307 8.20 0.0 2.70 39.1 347.25 2.10
14 157 2 Business 63575 1159 0 8.09 0.0 3.02 43.1 347.15 4.20
15 155 2 Business 4144 160198 1300 15.56 0.0 3.16 41.6 345.45 4.70
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Table 5 Results for 2nd generated file with κ = 5 (continued)

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

16 153 1 Economy 48493 23 0 5.12 0.0 2.28 43.5 341.75 1.10
17 152 2 Economy 59650 862 0 7.44 0.0 1.24 44.1 341.65 3.20
18 150 2 Top-Econ 3638 7149 40 11.45 0.0 1.22 46.1 339.45 3.20
19 148 1 Economy 45428 185 0 5.76 0.0 0.85 39.6 337.25 1.10
20 147 2 Business 25525 3238 0 11.26 0.0 1.09 45.3 338.65 4.70
21 145 1 Business 43637 4449 0 3.23 0.0 1.77 38.4 335.95 2.10
22 144 2 Business 30379 6311 4 11.18 0.1 1.04 44.7 337.10 5.20
23 142 1 Top-Busn 3948 32710 306 6.01 0.1 0.76 40.8 332.15 1.10
24 141 2 Business 8395 33525 228 12.06 0.1 2.09 45.5 334.55 4.70
25 139 1 Business 40163 3759 0 3.12 0.1 0.90 40.7 331.85 2.10
26 138 2 Top-Econ 1898 4106 10 8.78 0.1 1.11 42.6 332.25 3.20
27 136 1 Top-Econ 3143 27387 501 6.77 0.1 0.68 44.6 329.30 1.10
28 135 2 Top-Econ 10017 110962 2147 8.20 0.1 0.90 45.3 331.20 5.20
29 133 2 Business 5783 7525 94 4.45 0.1 0.90 42.4 328.50 4.70
30 131 2 Business 3603 41332 596 3.58 0.1 0.77 46.5 327.80 6.20
31 129 1 Business 34693 3252 0 2.27 0.1 2.30 0.8 324.35 3.10
32 128 1 Top-Econ 34168 3515 0 2.53 0.1 0.61 42.0 323.25 2.10
33 127 3 Economy 41900 4656 0 5.05 0.1 1.64 44.7 322.65 4.80
34 124 1 Business 2803 4446 0 2.19 0.1 0.51 41.2 320.85 3.10
35 123 2 Business 3356 172163 2471 6.24 0.1 1.30 45.4 322.25 6.70
36 121 1 Economy 30605 3162 0 2.94 0.0 2.20 4.0 317.30 1.10
37 120 1 Economy 8510 5820 0 5.32 0.0 0.49 43.2 318.20 2.10
38 119 3 Economy 1489 10775 89 5.84 0.1 0.56 45.4 318.85 5.80
39 116 1 Business 6064 103131 1551 5.29 0.1 0.64 42.6 317.05 4.10
40 115 1 Business 5557 150311 3124 4.03 0.1 1.46 3.9 316.95 5.10
41 114 4 Top-Econ 2466 10057 57 4.64 0.1 0.60 45.2 315.85 8.40
42 110 1 Top-Busn 1021 8180 50 2.76 0.0 0.53 39.8 307.95 1.10
43 109 1 Top-Econ 2280 7570 94 3.67 0.1 1.75 39.9 310.85 4.10
44 108 2 Economy 6732 111356 1684 4.91 0.1 0.48 41.9 309.25 4.70
45 106 2 Top-Econ 29405 314786 5158 11.36 0.0 0.40 42.8 310.55 5.70
46 104 1 Business 1406 8348 182 2.64 0.1 0.39 42.2 308.85 4.10
47 103 2 Economy 8599 412761 8608 6.74 0.1 0.28 42.5 307.75 3.70
48 101 2 Top-Busn 1801 29868 1117 3.58 0.1 1.33 38.9 306.05 5.00
49 99 1 Business 7672 367620 7616 6.97 0.1 0.32 37.3 305.30 5.10
50 98 1 Top-Econ 2129 98040 2930 2.31 0.1 1.08 4.5 305.20 5.10
51 97 2 Business 6271 203690 4979 5.85 0.0 0.74 39.0 306.35 6.70
52 95 4 Top-Econ 17441 54549 1381 7.42 0.0 1.22 17.5 302.65 9.40
53 91 1 Economy 440 2374 0 2.27 0.1 0.32 41.1 296.00 2.10
54 90 1 Business 1987 4318 49 2.47 0.1 0.21 40.0 300.15 8.00
55 89 1 Top-Econ 6292 4413 32 1.56 0.1 0.44 10.8 305.15 14.10
56 88 2 Business 1420 7038 164 2.98 0.1 0.33 42.1 297.30 12.00
57 86 1 Economy 397 1860 0 1.45 0.0 0.85 39.8 288.30 3.10
58 85 2 Business 517 3261 0 1.18 0.0 0.74 11.9 292.20 14.00
59 83 1 Business 1314 12231 802 1.19 0.1 0.60 4.1 285.20 6.10
60 82 2 Business 1976 5303 47 2.73 0.1 1.12 41.3 285.60 19.00
61 80 1 Top-Econ 6217 4005 31 1.99 0.0 0.54 12.9 279.60 14.10
62 79 1 Top-Econ 4869 3560 13 2.09 0.0 0.38 10.2 278.50 14.10
63 78 2 Economy 1189 2913 5 1.77 0.0 1.13 5.4 266.40 5.20
64 76 1 Economy 419 1542 0 0.55 0.0 0.49 0.6 265.20 5.10
65 75 1 Economy 12067 1311 0 0.88 0.0 0.54 19.3 264.10 5.10
66 74 2 Economy 209 1690 0 0.73 0.0 0.20 42.6 263.00 6.20
67 72 1 Economy 320 1315 0 0.78 0.0 0.57 14.0 261.55 4.10
68 71 1 Economy 333 1375 0 0.59 0.0 0.48 3.0 262.45 6.10
69 70 1 Top-Econ 3661 5985 251 1.91 0.0 0.28 11.1 267.10 6.10
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A B C D E F
1
2
3 72 78 78 78
4
5 48 59 70 70 76
6 48 60 42 9 71 23
7 46 51 51 56 58 54
8 40 39 30 30 35 49
9 24 25 11 11 15 34

10 21 8 8 11 15 22
11 10 4 3 12 13 1
12
13
14
15 79 79 79 79 79 79
16 79 79 79
17 68 75 75 66 79
18 63 64 65 73 66 79
19 47 33 33 38 57 67
20 47 17 17 38 19 53
21 36 7 7 37 16 44
22 74 69 79 52 52 52
23 45 45 61 62 52
24 50 20 41 43 55 29
25 31 20 14 14 29
26 32 18 18 26 26 28
27 27 5 5 2 6 28
28 79 79 79 79 79 77
29 79 79 79 79 79 79
30 79 79 79 79 79
Business Economy Top-Busn Top-Econ

A B C D E F
1
2
3 70 70 72 60 60
4 58 58 76 56
5 48 48 71 54 56
6 51 23 35 9 59 42
7 51 49 35 40 30 30
8 20 46 39 22 22 24
9 20 34 11 11 11 24

10 13 25 8 8 8 21
11 10 10 4 12 3 1
12
13
14 78 78 78
15 79 79 79 79 79 79
16 68 75 75 79 79 79
17 64 65 66 66 79
18 63 63 38 38 44 67
19 47 33 33 38 44 57
20 47 37 33 17 17 53
21 16 19 7 7 7 36
22 52 52 52 52 69
23 50 41 41 41 41 45
24 43 28 28 15 29 45
25 31 14 14 15 29
26 32 18 18 5 26 26
27 2 2 6 5 5 27
28 74 74 73 62 61 55
29 79 79 79 77
30 79 79 79 79 79 79
Business Economy Top-Busn Top-Econ

Fig. 7 Seat assignments obtained for flights of Tables 4 (left picture) and 5 (right picture) . Seat numbers
correspond to sales and different types of groups are marked with different colors.

Table 5 Results for 2nd generated file with κ = 5 (continued)

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

70 69 2 Business 5696 5373 60 1.82 0.1 0.33 39.8 268.00 19.00
71 67 1 Business 5333 5516 90 2.50 0.1 0.14 43.7 256.00 8.00
72 66 1 Business 1715 5541 153 1.20 0.1 0.26 11.7 255.75 13.00
73 65 1 Economy 6677 22105 776 2.31 0.1 0.12 43.7 251.00 14.10
74 64 2 Top-Econ 4965 10676 257 2.67 0.1 0.28 27.1 250.15 15.20
75 62 2 Economy 858 2095 3 0.82 0.1 0.44 21.3 239.95 7.20
76 60 1 Business 1064 2558 52 0.94 0.0 0.22 12.4 240.25 10.50
77 59 1 Top-Econ 5034 12243 979 1.32 0.1 0.40 20.2 243.75 15.10
78 58 3 Business 1560 4117 112 1.13 0.1 0.65 3.5 236.65 14.00
79 55 19 Economy 1799 104 0 0.06 0.0 0.02 68.8 88.70 §

Number problems solved within opt. gap: 67 § Not applicable for last offline assignment
Average solution time (sec.): 5.30
Average gap%: 0.05
Average time to first incumbent (sec.): 1.21
Average gap% of first incumbent: 33.78

Figure 7 shows the resulting seat assignments for the flights of Tables 4 and 5.
Some of the “best” rows (i.e., first two rows, and rows with extra space for legs)
are empty because the weights used in the objective function give priority to future
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A B C D E F
1
2
3 78 78 76 70 70
4 78
5 48 58 59 60
6 48 71 9 23 42 72
7 40 49 51 51 54 56
8 29 29 30 30 39 46
9 20 11 11 11 35 34

10 20 8 8 10 24 25
11 13 3 21 12 4 1
12
13
14 79
15 79 79 79 79 79 79
16 75 75 79 79 79 79
17 66 66 73 79 79 79
18 64 47 47 65 79
19 63 37 38 38 68 67
20 44 33 17 17 53 57
21 19 33 36 16 7 7
22 62 52 52 74 79
23 61 45 52 52 55 79
24 50 45 43 41 15 69
25 31 22 14 14 15
26 32 18 18 28 28 26
27 27 6 2 5 5 26
28 79 79 79 79 79 77
29 79 79 79 79 79 79
30
Business Economy Top-Busn Top-Econ

A B C D E F
1
2
3 71 78 78 78 72
4 76
5 56 48 60 70 70
6 42 48 9 58 59 23
7 40 49 51 51 54 46
8 29 29 35 39 30 30
9 15 24 25 11 11 20

10 15 21 8 8 11 20
11 4 13 10 12 1 3
12
13
14
15 79 79 79 79 79 79
16 79 79 79 79 79 79
17 75 75 73 68 79
18 65 66 66 64 63 79
19 47 47 38 38 57 67
20 44 33 37 53 17 17
21 16 33 36 19 7 7
22 74 69 79 79 79
23 61 52 52 52 52 62
24 41 50 43 45 45 55
25 31 22 14 14 34
26 26 26 18 18 28 28
27 27 5 5 2 6 32
28 79 79 79 79 79 77
29 79 79 79 79 79 79
30
Business Economy Top-Busn Top-Econ

Fig. 8 Sensitivity analysis: seat assignments obtained for the flight of Table 4 using two sets of small
variations of the weights wO

k , wD
k and costs cD

j′ik . These seat assignments should be compared with those of
left picture of Figure 7.

(e.g., last minute) purchases. It is also observed that passengers of the same group are
sometimes in different rows; this may correspond to either an optimal solution due to
the current seats availability, or to a suboptimal one given the optimality tolerances
considered. In a realistic situation some of the empty and assigned seats would have
been previously purchased by some passengers, such that the final seat assignment
could have been considerably different (and likely easier to fill).

We performed an empirical sensitivity analysis by re-running the optimization
problems for the flight of Table 4 using two sets of small variations of the weights wO

k
and wD

k , and the costs cD
j′ik. The results are shown in Figure 8. For the optimizations

of left picture of Figure 8 we considered wO
k = 1.4 for k > 1 (instead of the default

value 1.5), wD
k = 0.6 for k = 1 (instead of 0.5) , and cD

j′ik = 1nH + 1.4nV (instead
of 1nH + 1.5nV ); that is, we give (slightly) more priority to the current sale, and
less importance to seating passengers of the same group in the same row. For the
runs of the right picture of Figure 8 we used wO

k = 1.6 for k > 1, wD
k = 0.4 for k =

1, and cD
j′ik = 1nH + 1.6nV , thus giving less priority to the current sale, but more

importance to seating passengers of the same group in the same row. Comparing these
seat assignments with those obtained in the left picture of Figure 7 with the default
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weights and costs, we observe slight variations. For instance, the three members of
the “business” group 78 are seated in two rows in the left picture of Figure 8 (likely
because it considers 1.4nV instead of 1.5nV in the definition of the costs), while they
are seated in the same row in the other two situations. However, a similar distribution
of the colors representing the different groups is observed in all the solutions, so
it can be concluded that small variations may slightly affect individually to some
passenger(s), but not significantly change the general map of seats. It is also worth
remarking that the solutions times for the flights of Figure 8 (not provided here) were
similar to those reported in Table 4 with the default weights.

4.3 Results for the stochastic optimization model

For the solution of Model (2), the probability distribution of pk, k > 1, is needed,
instead of just an estimation of their expected values. Since such a distribution was
not provided for this work, we generated the set of scenarios as follows. Five different
scenarios were considered, for “very low”, “low”, “medium”, “high” and “very high”
demands, with probabilities 0.05, 0.15, 0.5, 0.2 and 0.1, respectively. The values of
pk, k > 1, for the “very high demand” scenario were those used for the results of
Tables 3–4 (indeed the values of pk used in previous tables forecasted an almost fully
booked flight, which is a worst-case situation for the optimization problem). The
values of pk for the other scenarios were obtained by reducing the number of future
passenger for each group.

The resulting stochastic optimization problem had about five times the number of
variables and constraints of the expected value deterministic model. For this reason
the time limit was increased to 300 seconds, maintaining the optimality tolerance
of 0.1%. We used the same hardware and same version of AMPL and CPLEX as
for the instances of Tables 4 and 5. The results obtained with the stochastic model
are reported in Table 6. Each row provides the information for each group sale, and
the meaning of the columns is the same as in previous tables. The average solution
time for all the 79 sales was 187.6 seconds, and in many cases the time limit of 300
seconds was reached, and in two of them with a very large (> 46%) gap; the average
gap of the solutions was 1.93%. It can be concluded that this stochastic model, at
least using a generic state-of-the-art 0-1 solver such as CPLEX, is not practical for an
online system. In addition, the resulting seat assignments—shown in Figure 9—are
not better than the ones computed by the deterministic model (although they are not
totally comparable, since the deterministic model is not the expected value solution
of the stochastic one).

Table 6: Results for the stochastic optimization model

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

1 180 1 Business 333140 326794 663 299.40 6.0 30.17 53.0 287.82 1.10
2 179 1 Top-Econ 329499 398254 1476 300.78 3.3 27.91 53.5 278.85 1.10
3 178 1 Business 325878 535324 1635 300.99 2.4 28.01 53.6 275.20 1.10
4 177 1 Business 136084 753840 5710 299.03 0.1 29.01 54.5 268.10 1.10
5 176 2 Top-Econ 334446 295755 609 298.91 4.2 34.72 53.0 277.99 2.20
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Table 6 Results for the stochastic optimization model (continued)

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

6 174 1 Top-Econ 311594 449514 1968 302.15 1.4 27.29 53.2 267.84 1.10
7 173 2 Economy 323295 123535 133 299.94 2.7 39.98 55.2 270.48 3.20
8 171 2 Business 315966 85251 66 298.57 43.2 29.98 52.6 461.07 6.20
9 169 1 Top-Busn 128500 703288 5310 182.75 0.1 22.83 53.8 259.74 1.10

10 168 1 Business 290768 1012247 5636 296.09 0.1 16.55 52.7 259.25 1.10
11 167 3 Business 301560 325799 2219 301.96 1.6 25.41 55.2 263.11 4.80
12 164 1 Business 277284 864199 5137 299.12 0.3 17.35 56.0 256.14 1.10
13 163 1 Business 91929 2414020 18900 281.41 0.1 21.04 54.1 255.69 1.10
14 162 2 Business 284025 92230 35 298.94 47.6 19.04 54.8 487.86 16.20
15 160 2 Business 181341 665730 5007 298.85 0.1 20.88 55.5 254.23 3.70
16 158 1 Economy 257658 1012081 7462 251.43 0.1 13.48 55.1 250.45 1.10
17 157 2 Economy 267015 894782 5316 298.88 0.2 16.44 56.0 250.85 3.20
18 155 2 Top-Econ 260358 540267 2462 301.40 0.4 20.04 54.3 248.86 3.20
19 153 1 Economy 87538 475088 4727 138.54 0.1 11.95 55.7 246.15 1.10
20 152 2 Business 250530 690558 2658 300.93 1.0 20.77 55.3 249.06 4.20
21 150 1 Business 232610 559615 4090 163.10 0.1 11.75 55.0 244.80 2.10
22 149 1 Business 229569 776226 7629 225.38 0.1 13.73 54.2 244.71 3.10
23 148 1 Top-Busn 226548 613598 6155 144.36 0.1 11.24 57.5 241.88 1.10
24 147 1 Business 223547 515816 4523 155.71 0.1 12.21 56.3 242.81 2.10
25 146 1 Business 54538 286446 4690 81.70 0.1 10.95 55.7 242.62 3.10
26 145 2 Top-Econ 228333 482331 4989 299.02 1.0 13.75 55.5 243.19 4.20
27 143 1 Top-Econ 211743 457841 3742 116.74 0.1 9.84 55.4 239.18 1.10
28 142 2 Top-Econ 219135 443028 4984 299.13 0.4 11.42 55.6 241.31 3.70
29 140 2 Business 213108 966756 11541 270.36 0.1 10.26 59.3 240.15 4.70
30 138 2 Business 207165 597628 7138 190.21 0.1 10.72 56.6 238.62 5.20
31 136 1 Business 191856 592763 5787 188.35 0.1 8.21 55.4 236.33 3.10
32 135 1 Top-Econ 189095 308122 4851 92.77 0.1 7.99 54.7 235.25 2.10
33 134 2 Economy 195531 570519 4815 169.69 0.1 9.41 56.2 234.80 2.70
34 132 1 Business 117096 606118 7054 143.54 0.1 8.24 56.2 234.93 3.10
35 131 1 Business 178251 795206 10503 164.55 0.1 7.88 56.4 234.23 4.10
36 130 1 Economy 50464 361110 4759 84.92 0.1 7.94 54.8 231.88 1.10
37 129 1 Economy 50811 292085 4508 59.07 0.1 8.01 55.1 232.28 2.10
38 128 2 Economy 178710 895714 12467 194.78 0.1 9.77 56.4 232.35 4.20
39 126 1 Business 165146 754395 11921 134.71 0.1 7.72 55.0 231.10 4.10
40 125 1 Business 50253 232947 4118 66.16 0.1 7.27 56.1 229.98 3.10
41 124 1 Top-Econ 46079 294079 4643 56.59 0.1 6.86 53.6 229.88 4.10
42 123 1 Top-Busn 157523 711023 10828 147.23 0.1 6.73 55.9 225.98 1.10
43 122 1 Top-Econ 35238 827424 9148 73.63 0.1 6.58 54.7 227.75 4.10
44 121 1 Economy 152541 530647 7212 109.59 0.1 6.50 57.8 225.62 2.10
45 120 2 Top-Econ 157458 425176 6688 102.56 0.1 12.40 55.1 226.99 5.70
46 118 1 Business 145218 411201 5215 100.25 0.1 5.77 54.2 225.37 5.10
47 117 2 Economy 149835 597604 9437 129.96 0.1 7.03 54.4 222.99 4.70
48 115 2 Top-Busn 138075 383540 5858 64.42 0.1 6.69 56.9 219.83 3.60
49 113 1 Business 78301 309861 4976 76.55 0.0 5.49 54.7 220.11 4.10
50 112 1 Top-Econ 124674 360801 5730 46.96 0.1 5.22 55.1 219.89 4.10
51 111 2 Business 128831 370876 5749 87.56 0.1 6.62 55.0 219.91 6.20
52 109 4 Top-Econ 124329 756805 14600 144.91 0.1 5.66 58.3 218.97 8.40
53 105 1 Economy 36127 201537 4780 37.32 0.1 5.23 55.7 213.32 2.10
54 104 1 Business 107862 591302 10322 86.21 0.1 5.49 52.9 215.24 5.10
55 103 1 Top-Econ 105846 500371 7291 87.07 0.1 4.02 55.7 212.81 4.10
56 102 1 Business 103849 851382 15061 99.29 0.1 5.01 53.7 212.78 5.10
57 101 1 Economy 101871 352512 4462 69.80 0.1 4.36 55.9 210.66 4.10
58 100 1 Business 58088 408899 5527 67.23 0.1 4.76 54.3 211.45 5.10
59 99 1 Business 97972 480273 8724 73.78 0.1 4.67 55.1 212.22 6.10
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Table 6 Results for the stochastic optimization model (continued)

Num. Available p1 Group Num. MIP B&B total gap% 1st inc 1st inc Obj. f. Obj. f.
sale seats type var. iter. nodes time time gap% k = 1

60 98 1 Business 61311 250810 5223 58.42 0.1 4.34 56.0 212.12 8.00
61 97 1 Top-Econ 94149 636535 12352 94.99 0.0 4.09 54.4 211.76 5.10
62 96 1 Top-Econ 92266 523196 10457 92.59 0.1 4.00 52.6 213.61 6.10
63 95 1 Economy 90402 872313 14765 115.08 0.1 3.64 55.2 210.41 3.10
64 94 1 Economy 88557 680670 17113 103.41 0.1 4.35 20.8 210.28 4.10
65 93 1 Economy 86731 689753 12811 85.26 0.1 3.51 51.3 208.50 4.10
66 92 2 Economy 89292 867796 19081 111.53 0.1 7.16 54.3 207.92 6.20
67 90 1 Economy 81367 1662181 47685 299.76 1.0 4.82 53.8 207.49 3.10
68 89 1 Economy 79617 1569093 47405 299.75 0.2 4.78 51.2 208.39 4.10
69 88 1 Top-Econ 77886 1718722 46497 299.76 1.4 4.96 52.8 213.12 6.10
70 87 2 Business 80087 2399842 47435 298.71 2.4 3.33 52.2 213.42 10.00
71 85 1 Business 72807 2277205 47678 299.78 2.3 2.82 53.0 210.08 6.10
72 84 1 Business 71152 4223043 71058 301.88 1.9 3.11 53.8 210.38 8.00
73 83 1 Economy 69516 2435950 47478 299.79 1.0 2.44 56.0 206.03 5.10
74 82 1 Top-Econ 67899 2111231 45670 299.80 5.3 3.79 54.8 210.05 6.10
75 81 2 Economy 69701 3701879 44974 302.40 3.5 2.67 54.4 208.07 6.70
76 79 1 Business 63162 3960867 47269 299.81 4.6 3.82 53.2 208.50 10.50
77 78 1 Top-Econ 61621 2187618 46469 299.83 3.2 3.29 53.9 207.13 6.10
78 77 3 Business 63177 3007508 49757 299.01 5.7 2.41 58.6 207.87 17.50
79 74 28 Economy 4338 248 0 0.07 0.0 0.07 75.6 101.60 §

Number problems solved within gap: 1 § Not applicable for last offline assignment
Average solution time (sec.): 187.56
Average gap%p: 1.93
Average time to first incumbent (sec.): 10.88
Average gap%p of first incumbent: 54.71

5 Conclusions

A new approach has been presented for the airplane seat assignment procedure. Un-
like current methods used by airlines, that are based on simple rules, the new approach
relies on a network optimization model, with either a single type or many types of
passenger groups (the latter resulting in a multicommodity network flow model).

In general, multicommodity models for κ > 1 provided better assignments by
considering (even in a simple way) expected future demands by types of passengers.
In addition, by modifying the cost scheme in Figure 4.a we can easily tune the be-
haviour of the optimization procedure, thus making it a very flexible tool.

In this work we considered a tentative stochastic optimization model for this prob-
lem, but it resulted to be computationally too difficult for an online system (solutions
took several minutes) using a generic solver such as CPLEX. The solution time could
be reduced by using specialized methods and optimization packages for 0–1 stochas-
tic optimization, including heuristics/metaheuristics/matheuristics. Exploring these
alternative methods would be part of the future work.
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A B C D E F
1
2
3
4 76 78 78 78
5 48 60 70 70 72
6 48 59 23 9 42 71
7 46 58 56 54 51 51
8 30 30 35 8 39 49
9 15 22 34 11 25 40

10 15 24 8 11 11 21
11 10 13 1 3 4 12
12
13
14
15 79 79 79 79 79 79
16 75 79
17 66 66 73 75 79
18 57 64 65 47 68 79
19 38 38 63 47 67 14
20 17 17 44 33 53 37
21 16 19 7 33 7 36
22 62 69 74 77 79
23 45 52 52 52 52 61
24 45 50 43 41 29 55
25 31 14 20 20 29
26 32 18 18 26 28 26
27 27 5 5 2 6 28
28 79 79 79 79 79 79
29 79 79 79 79 79 79
30 79 79 79 79 79 79
Business Economy Top-Busn Top-Econ

Fig. 9 Seat assignments obtained for flights of Table 6. Seat numbers correspond to sales and different
types of groups are marked with different colors.
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