

1

The Travelling Salesman Problem:

Introductory notes and computational analysis

Stefano Nasini

Dept. of Statistics and Operations Research

Universitat Politécnica de Catalunya

1. Introduction

The travelling salesman problem (TSP) is an NP-hard problem in which, given a list of cities and their
pairwise distances, the task is to find a shortest possible tour that visits each place exactly once.
The origins of the travelling salesman problem are unclear. A handbook for travelling salesmen from 1832
mentions the problem and includes example tours through Germany and Switzerland, but contains no mathematical
treatment.

The travelling salesman problem was defined in the 1800s by the Irish mathematician W. R. Hamilton and
by the British mathematician Thomas Kirkman. Hamilton’s Icosian Game was a recreational puzzle based on
finding a Hamiltonian cycle. The general form of the TSP appears to have been first studied by mathematicians
during the 1930s in Vienna and at Harvard, notably by Karl Menger, who defines the problem, considers the
obvious brute-force algorithm, and observes the non-optimality of the nearest neighbour heuristic.

The TSP has several applications even in its purest formulation, such as planning, logistics, and the
manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing.
In these applications, the concept city represents, for example, customers, soldering points, or DNA fragments, and
the concept distance represents travelling times or cost, or a similarity measure between DNA fragments. In many

http://en.wikipedia.org/wiki/NP-hard�
http://en.wikipedia.org/wiki/William_Rowan_Hamilton�
http://en.wikipedia.org/wiki/Thomas_Kirkman�
http://en.wikipedia.org/wiki/Icosian_Game�
http://en.wikipedia.org/wiki/Hamiltonian_cycle�
http://en.wikipedia.org/wiki/Karl_Menger�
http://en.wikipedia.org/wiki/Planning�
http://en.wikipedia.org/wiki/Logistics�
http://en.wikipedia.org/wiki/Integrated_circuit�
http://en.wikipedia.org/wiki/DNA_sequencing�

2

applications, additional constraints such as limited resources or time windows make the problem considerably
harder.

In this paper we are going to consider the solution of a symmetric travelling salesman problem on a
complete graph G=(V,E) with n=12 vertices.

We shall consider three different methods for solving the problem: the first one is an heuristic procedure
based on a constructive part (nearest neighbour heuristic) and an improving part (local search).

A second method we shall use is a Lagrangian Relaxation applied to the Mathematical Programming
model. We shall solve the lagrangian problem by means of the sub-gradient algorithm.

Finally, we shall consider solve it by Brunch & Cut, and see how generating new constrains each time the
solution provided has sub-cycle.

2. Data for a TSP on a complete graph

The following data matrix constitutes the distance between points we are going to use along the overall documents.

1 2 3 4 5 6 7 8 9 10 11 12

1 0 750 431 402 133 489 310 566 302 214 785 762

2 750 0 736 671 85 174 870 927 683 336 882 150

3 431 736 0 117 934 65 939 305 422 291 88 507

4 402 671 117 0 982 727 911 870 380 754 367 580

5 133 85 934 982 0 956 834 118 795 633 447 446

6 489 174 65 727 956 0 322 397 356 336 27 872

7 310 870 939 911 834 322 0 127 262 821 776 81

8 566 927 305 870 118 397 127 0 257 429 320 524

9 302 683 422 380 795 356 262 257 0 555 244 290

10 214 336 291 754 633 336 821 429 555 0 508 77

11 785 882 88 367 447 27 776 320 244 508 0 293

12 762 150 507 580 446 872 81 524 290 77 293 0

3. Providing an upper bound of the optimal solution

The word heuristic has a Greek root, Εὑρίσκω, which mean "to find" or "to discover". It refers to
experience-based techniques for problem solving, learning, and discovery and is used to speed up the process of
finding a good enough solution, where an exhaustive search is impractical. Examples of this method include using
a "rule of thumb", an educated guess, an intuitive judgment, or common sense.

3

In what follows we are going to apply a 2-step heuristic procedure to the solution of a TSP with 12 vertices
on a complete graph with the cost matrix defined in the previous session. The first step is to construct a feasible
solution and the second is to improve this solution.

The constructive part is based on the nearest neighbour algorithm, which was one of the first algorithm
used to determine a solution to the TSP. In it, the salesman starts at a random city and repeatedly visits the nearest
city until all have been visited. It quickly yields a short tour, but usually not the optimal one.
The pseudo code of nearest neighbor algorithm is the following.

1. stand on an arbitrary vertex as current vertex.

2. find out the lightest edge connecting current vertex

and an unvisited vertex V.

3. set current vertex to V.

4. mark V as visited.

5. if all the vertices in domain are visited, then

terminate.

6. Go to step 2.

The sequence of the visited vertices is the output of the algorithm, which we wish to improve by applying a
second heuristic procedure: a local search.

A way of improving the current solution provided by the nearest neighbor algorithm is the pairwise
exchange. The pairwise exchange or 2-opt technique involves iteratively removing two edges and replacing these
with two different edges that reconnect the fragments created by edge removal into a new and shorter tour.

The following R code implements the constructive and improving heuristic method and applies it
repeatedly for different initial vertices.

> Distance <- read.table(“Distance.txt”, header = FALSE)
> N <- sqrt(length(Distance)
> X <- matrix(rep(0,N^2),N,N)
> distance <- matrix(Distance,N,N)
> objective_list <- list()
>
> for(initial in 1:N){
+
+ i = initial
+ DISTANCE[,i] <- 1000
+ order <- i
+
+ for (i in 1:N){distance[i,i] = 10000}
+
+ #---
+ # GREEDY
+ #---
+
+ while(length(order)<12) {
+
+ degree <- TRUE
+ DISTANCE <- distance
+
+ while(degree) {
+
+ j <- which.min(DISTANCE[i,])

+ if (!(j %in% order)){
+ order <- c(order, j)
+ degree <- FALSE
+ }
+ else { DISTANCE[i,j] <- 100000 }
+ }
+
+ i = j
+ print(j)

4

+ }
+ order
+
+ #---
+ #
+ # PAIRWISE EXCHANGE
+ #
+ #---
+
+ adjacency_list <- list() # create adjacency list
+ k <- 1
+
+ for(k in 1:(N-1)){
+ adjacency_list[[k]] <- c(order[k],order[k+1])
+ }
+
+ adjacency_list[[N]] <- c(order[N], order[1])
+ adjacency_list
+
+ objective <- function(graph, distance){
+
+ cost <- 0
+ for(y in 1:length(graph)){
+ cost <- cost + distance[graph[[y]][1], graph[[y]][2]]
+ }
+ cost
+ }
+ #---
+
+ ADJACENCY_LIST <- adjacency_list
+ OBJECTIVE_LIST <- objective(adjacency_list, distance)
+
+ for (k in 1:(N-1)){
+ for(h in (k+1):N){
+
+ #--
+ # EXCHANGE EDGES
+ #--
+
+ if ((ADJACENCY_LIST[[k]][1] != ADJACENCY_LIST[[h]][1]) && (ADJACENCY_LIST[[k]][1] !=
+ ADJACENCY_LIST[[h]][2])) {
+
+ ADJACENCY_LIST[[k]] <- c(adjacency_list[[k]][1], adjacency_list[[h]][1])
+ ADJACENCY_LIST[[h]] <- c(adjacency_list[[k]][2], adjacency_list[[h]][2])
+
+ }
+
+ #--
+ # Check the goodness of the new adjacency list
+ #--
+
+ if (objective(ADJACENCY_LIST, distance) < objective(adjacency_list, distance)) {
+
+ OBJECTIVE_LIST <- c(OBJECTIVE_LIST, objective(ADJACENCY_LIST, distance))
+
+ sub_order <- order[which(order==adjacency_list[[k]][2]): which(order== adjacency_list[[h]][1])]
+
+ position <- NULL
+
+ for(i in sub_order){
+ position <- c(position, which(order == i))
+ }
+
+ rev_position <- rev(position)
+ ORDER <- order
+
+ for (t in 1:length(position)){
+ ORDER[position[t]] <- order[rev_position[t]]
+ }
+
+ order <- ORDER
+ for(k in 1:(N-1)){
+ adjacency_list[[k]] <- c(order[k],order[k+1])
+ }
+ adjacency_list[[N]] <- c(order[N], order[1])
+ }
+ ADJACENCY_LIST <- adjacency_list
+ }
+ }
+ objective_list[[initial]] <- OBJECTIVE_LIST
+ print(OBJECTIVE_LIST)
+ }

5

The following results show the final Hamiltonian cycle obtained after applying the nearest neighbor
methods, starting from each node.

1 7

10, 12, 7, 8, 5, 2, 6, 11, 3, 4, 9,

Objective function: 1790

10, 12, 2, 5, 8, 9, 11, 6, 3, 4, 1,

Objective function: 2673 2119 1951

2 8

10, 12, 7, 8, 5, 1, 9, 11, 6, 3, 4,

Objective function: 2298 2128 2098 1951

10, 12, 7, 9, 11, 6, 3, 4, 1, 5, 2,

Objective function: 2849 2840 2415 2355 2354

3 9

10, 12, 7, 8, 5, 2, 6, 11, 9, 1, 4,

Objective function: 2045 2015

10, 12, 7, 8, 5, 2, 6, 11, 3, 4, 1

Objective function: 2153 2045 2015

4 10

10, 12, 7, 8, 5, 2, 6, 11, 3, 9, 1,

Objective function: 2657 2473 2468 2441 2078

7, 12, 2, 5, 8, 9, 11, 6, 3, 4, 1,

Objective function: 2581 2557 2240 2088 2083

5 11

10, 12, 7, 8, 9, 11, 6, 3, 4, 1, 2,

Objective function: 2865 2648 2277 2276

10, 12, 7, 8, 5, 2, 6, 3, 4, 9, 1

Objective function: 2819 2564 2114 2038

6 12

10, 12, 7, 8, 5, 2, 4, 3, 11, 9, 1,

Objective function: 2735 2656 2579 2480 2479 2122

10, 1, 5, 2, 6, 11, 3, 4, 9, 8, 7,

Objective function: 1790

We have our best upper bound of the TSP, which we obtain starting the GREEDY from node 12 and improving

such a solution by applying a pairwise exchange method. This upper bound is 1790.

4. Lagrangian relaxation to obtain a lower bound

In this session we are going to consider again a Mathematical Programming formulation of the TSP, but we

are going to do it with the specific purpose of obtaining lower bound of such a problem by Lagrangian Relaxation.
To understand this formulation consider a 1-spanning-tree, a connected graph with a unique cycle (or the graph we
obtain by adding an edge to a tree) and ask which is the topology of a 1-tree which is forced to have all vertices
with degree equal to 2.

6

Immediately, one realizes that the set of all 1-spanning-tree with n vertices which is forced to have a have
all vertices with degree equal to 2 is exactly the set of all Hamiltonian cycles of a graph of n vertices.
Let T be the set of all 1-spanning-tree of a graph with n nodes. Then the following Mathematical Programming
problem has the same feasible set of the one shown in the previous session.


















=
∈

==+∑ ∑

∑

< >

<

]3[,...,1,,
]2[

]1[,...,12
s.t.

min

njibinaryx
x

nixx

xc

ij

ij ji
ijji

ij
ijijx

T

2)(problem

To apply Lagrangian relaxation to this problem, divide the constraints in two respective types: the ones

which are easy to be solved and the other which cause higher complexity in computing the solution.
In our case, the easy constrains are the ones which impose to the solution to be a 1-spanning-tree, since the

problem of finding the minimum-spanning-one-tree of a given graph, under a given cost function, can be solved in
polynomial time Kruscal or Prime algorithm. Prime algorithm continuously increases the size of a tree, one edge at
a time, starting with a tree consisting of a single vertex, until it spans all vertices.

1. Input: A non-empty connected weighted graph with vertices

V and edges E.

2. Initialize: Vnew = {x}, where x is an arbitrary node from

V, Enew = {}

3. Repeat until Vnew = V:

i. Choose an edge (u, v) with minimal weight such

that u is in Vnew and v is not.

ii. Add v to Vnew, and (u, v) to Enew

4. Output: Vnew and Enew describe a minimal spanning tree
The idea is to relax constrains [1] adding a penalization in the objective function for the violation of them,

and construct minimum-spanning-one-trees with a cost function which is parameterized by the above mention
coefficient of penalizarion.

In some sense, what we obtain is a family of optimization problem parameterized by the penalization
coefficients, or a family of minimum-spanning-one-trees parameterized by the penalization coefficients. The cost
function of each minimum-spanning-one-tree will be the following.

∑ ∑ ∑ ∑
< = < >









+−+

ij

n

i ij ji
ijjiiijijx xxxc

1
2min λ

7

It could also be seen a parameterized mapping RR →nL : , which associate to each value of the
penalization coefficients, known as Lagrange multipliers, the cost of the associated minimum-spanning-one-tree.

()














∈

−−

+==















∈









+−+

=

∑

∑

∑ ∑ ∑ ∑
<

=

< = < >

binaryx
x

xc

L

binaryx
x

xxxc

L

ij

ij
ij

jiijx

n

i
i

ij

ij

n

i ij ji
ijjiiijijx

TT
s.t.

min

2)(s.t.

2min

)(
1

1

λλ

λλ

λ

λ .

It can be proved that for each nR∈0λ , *

0)(fL ≤λ , where *f is the optimal value of problem 2, which

means that the lagrangian function)(λL provide lower bounds of the problem. This means that the problem to be

solved would be to find the R∈0λ which provide the best lower bound for problem 2, that is,)(maxarg λL .

The problem would then be to build an efficient algorithm which allow solving)(maxarg λL . Here we are

going to consider the sub-gradient algorithm, which is a generalization of the gradient algorithm to the case of non-
differentiable functions.

Let RR →nL : be a convex function with domain
nR . A classical subgradient method iterates

t

t
tt ∇−=+ αλλ)()1(

where t∇ denotes a subgradient of L at)(tλ . If L is differentiable, then its only subgradient is the gradient vector

)(tL λ∇ itself. It may happen that t∇− is not a descent direction for L at)(tλ . We therefore maintain a list bestL that

keeps track of the lowest objective function value found so far, i.e. },min{)()()(tt
best

t
best LLL = . The pseudocode for the

subgradient algorithm applied to the TSP problem is the following.

Initialization Take an initial point)(tλ and take the counter 0=t

Iterative step

compute t∇ by finding a and minimum-spanning-one-tree

 if 0=∇t ⇒)(tλ is the optimal

 if 0≠∇t ⇒ calculate
tα and update t

t
tt ∇−=+ αλλ)()1(

8

We implemented this procedure in Matlab. In function prim(C) we apply the Prim’s algorithm for

constructing a minimum-spanning-one-tree to a square matrix C.

function [adjacency_list adjacency] = prim(distance)

%---
% PRIM ALGORITHM
%--

cost = distance(2:12,2:12); % eliminate the first node

n = length(distance);
N = length(cost);
T = 1;
S = [2:N];
adjacency = zeros(12,12);
adjacency_list = [];

for i=1:N
 cost(i,i) = 9999999;
end
for i=1:n
 distance(i,i) = 9999999;
end

DISTANCE = distance;

list = [];

while length(T) < 11

 list_distance = [];
 list_position = [];

 t = 1;

 for i = T

 j = find(cost(i,:) == min(cost(i,:)));

 if length(j) > 1
 j = j(1);
 end

 list_distance = [list_distance; cost(i,j)];
 list_position = [list_position; i j];

 t = t+1;

 end %for

 smallest_distance = find(list_distance == min(list_distance));
 edge = list_position(smallest_distance,:);

 DISTANCE(edge(1), edge(2)) = 9999999;
 DISTANCE(edge(2), edge(1)) = 9999999;

 for i = T
 cost(i, edge(2)) = 9999999;
 cost(edge(2), i) = 9999999;
 end %for

 list = [list; edge(1)+1 edge(2)+1];

 adjacency(edge(1)+1, edge(2)+1) = 1;
 adjacency(edge(2)+1, edge(1)+1) = 1;

 T = [T edge(2)];

end % while

 j1 = find(DISTANCE(1,:) == min(DISTANCE(1,:)));
 DISTANCE(1,j1) = 999999;

 j2 = find(DISTANCE(1,:) == min(DISTANCE(1,:)));

 if length(j1) > 1
 j1 = j1(1);

9

 end

 if length(j2) > 1
 j2 = j2(1);
 end

 list = [list; 1 j1];
 list = [list; 1 j2];

 adjacency_list = list;

 adjacency(1,j1) = 1;
 adjacency(j1,1) = 1;

 adjacency(1,j2) = 1;
 adjacency(j2,1) = 1;

end

The following figure show a one-tree obtained by processing our data by means of the Matlab code shown above.

Now, we try to iteratively obtain minimum-spanning-one-trees in accordance with a subgradient method, namely,

by updating the costs of the edges.

We implemented the subgradient method using two different criterions for computing the step-length: the first one

is a linear descendent step-length (namely, it linearly decreases along the iterations) and the second one is to uses

the information of the upper bound and the current gradient, as it is required in the assignment.

where

The following code implements the subgradient method for maximizing the lagrangian function using a linearly

descendent step-length.

10

function Subgradient(distance, alpha, initial_step, max_iter)

 N = size(distance);
 lambda = zeros(1,12); % Initialize the lagrange multipliers
 NewCosts = distance; % Initial costes
 iteration = 0; % iteration counter
 e = ones(1,12);
 max = max_iter;

 step = initial_step;
 alpha = 0.9;

 %--
 %
 % SUBGRADIENT ALGORITHM
 %
 %--

 while(iteration < max)

 iteration = iteration + 1;

 fprintf('-------------------------- ITERARION %d -------------------------\n', iteration);

 [adjacency_list X] = prim(NewCosts); % GENERATE A MINIMUM SPANNING ONE_TREE

 lambda

 Lagrangian = (sum(sum(distance.*X))/2) - lambda*(e*2-sum(X))'

 gradient = (e*2-sum(X))';

 gradient_transpose = gradient'

 if(gradient.*gradient)==0
 break
 end % if

 lambda = lambda + step*gradient';

 step = step*alpha

 adjacency_list

 for i=1:N
 for j=1:N
 if i == j
 NewCosts(i,j)=0;
 else
 NewCosts(i,j) = distance(i,j) - (lambda(i) + lambda(j));
 end
 end
 end

 end % while

end % function

The following table show the results for the problem we are considering: >> Subgradient(C, 0.9, 30, 9)

11

ITERARION 1

lambda =

 0 0 0 0 0 0 0 0 0 0 0 0

Lagrangian =

 1631

gradient_transpose =

 0 0 0 1 0 -1 0 0 0 0 0 0

step =

 27

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 11

 6 3

 3 4

 11 9

 1 10

 1 9

ITERARION 2

lambda =

 0 0 0 30 0 -30 0 0 0 0 0 0

Lagrangian =

 1624

gradient_transpose =

 0 0 0 1 0 0 0 0 0 0 -1 0

step =

 24.3000

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 11

 11 3

 3 4

 11 9

 1 10

 1 9

12

ITERARION 3

lambda =

 0 0 0 57 0 -30 0 0 0 0 -27 0

Lagrangian =

 1584

gradient_transpose =

 0 0 0 1 0 -1 0 -1 0 0 1 0

step =

 21.8700

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 11

 6 3

 3 4

 8 9

 1 10

 1 9

ITERARION 4

lambda =

0 0 0 81.3000 0 -54.3000 0 -24.3000 0 0 -2.7000 0

Lagrangian =

 1.6173e+003

gradient_transpose =

 0 -1 0 1 0 0 1 1 0 0 -1 -1

step =

 19.6830

adjacency_list =

 2 5

 5 8

 2 12

 12 10

 12 7

 2 6

 6 11

 11 3

 3 4

 11 9

 1 10

 1 9

13

ITERARION 5

lambda =

0 -21.8700 0 103.1700 0 -54.3000 21.8700 -2.4300 0 0 -24.5700 -21.8700

Lagrangian =

 1.6206e+003

gradient_transpose =

 0 0 0 1 0 0 -2 0 1 0 0 0

step =

 17.7147

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 7 9

 2 6

 6 11

 11 3

 3 4

 1 10

 1 7

TERARION 6

lambda =

0 -21.8700 0 122.8530 0 -54.3000 -17.4960 -2.4300 19.6830 0 -24.5700 -21.8700

Lagrangian =

 1.7777e+003

gradient_transpose =

 0 1 0 0 -1 1 0 -1 0 0 0 0

step =

 15.9432

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 8 9

 9 4

 4 3

 3 11

 11 6

 1 5

 1 10

14

ITERARION 7

lambda =

0 -4.1553 0 122.8530 -17.7147 -36.5853 -17.4960 -20.1447 19.6830 0 -24.5700 -21.8700

Lagrangian =

 1.7550e+003

gradient_transpose =

 0 0 0 0 0 -1 0 0 0 0 1 0

step =

 14.3489

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 11

 6 3

 3 4

 4 9

 1 10

 1 9

ITERARION 8

lambda =

0 -4.1553 0 122.8530 -17.7147 -52.5285 -17.4960 -20.1447 19.6830 0 -8.6268 -21.8700

Lagrangian =

 1.5225e+003

gradient_transpose =

 0 0 0 1 0 0 0 0 0 0 -1 0

step =

 12.9140

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 11

 11 3

 3 4

 11 9

 1 10

 1 9

15

ITERARION 9

lambda =

0 -4.1553 0 137.2019 -17.7147 -52.5285 -17.4960 -20.1447 19.6830 0 -22.9757 -21.8700

Lagrangian =

 1790

gradient_transpose =

 0 0 0 0 0 0 0 0 0 0 0 0

step =

 11.6226

adjacency_list =

 2 5

 5 1

 1 10

 10 12

 12 7

 7 8

 8 9

 9 4

 4 3

 3 11

 11 6

 6 2

We now consider the case of a step length with computed as a function of the current distance from the
upper bound and the current gradient. The following MatLab code implement such a case, which constitute a
modified version of the previous code.

function CorrectedSubgradient(distance,delta,lmax,alfa,UB, max_iter)

 N = size(distance);
 LB = 0; % Lower bound
 l = 0; % Number of iterations without improving the lower bound
 lambda = zeros(1,12); % Initialize the lagrange multipliers
 subgradient = zeros(1,12); % Initialize subgradient vector
 NewCosts = distance; % Initial costes
 iteration = 0; % iteration counter
 e = ones(1,12);
 max = max_iter;

 %--
 %
 % SUBGRADIENT ALGORITHM
 %
 %--

 while(iteration < max)

 iteration = iteration + 1;

 fprintf('--------------------------- ITERARION %d -------------------------\n', iteration);

 [adjacency_list X] = prim(NewCosts); % GENERATE A MINIMUM SPANNING ONE_TREE

 lambda

16

 Lagrangian = (sum(sum(distance.*X))/2) - lambda*(e*2-sum(X))'

 gradient = (e*2-sum(X))';

 gradient_transpose = gradient'

 if(gradient'*gradient)==0
 break
 end % if

 adjacency_list

 % UPDATE LOWER BOUND
 if (Lagrangian > LB)
 LB = Lagrangian;
 l = 0;
 else
 l = l+1; % update the counter of the number of iteration without improving
 end

 % UPDATE THE STEP-LENGH
 if(l == lmax)
 delta = alfa*delta;
 l=0;
 end

 delta

 gradient'*gradient

 step = abs(Lagrangian-UB)/(gradient'*gradient)

 % UPDATE LAGRANGE MULTIPLYERS
 lambda = lambda + step*gradient';

 % UPDATE COSTS
 % NewCosts(i,j) = PreviousCosts(i,j) - (lambda(i) + lambda(j));

 for i=1:N
 for j=1:N
 if i == j
 NewCosts(i,j)=0;
 else
 NewCosts(i,j) = distance(i,j) - (lambda(i) + lambda(j));
 end
 end
 end

 end % while

end % function

The result we obtain with the parameters δ0 = 3, α = 0.1 and lmax=3 are shown in the following tables:

>>CorrectedSubgradient(C,3,3,0.1,1790, 50)

17

ITERARION 1

lambda =

0 0 0 0 0 0 0 0 0 0 0 0

Lagrangian =

 1631

gradient_transpose =

 0 0 0 1 0 -1 0 0 0 0 0 0

delta =

 3

step =

 79.5000

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 11

 6 3

 3 4

 11 9

 1 10

 1 9

ITERARION 2

lambda =

0 0 0 79.5000 0 -79.5000 0 0 0 0 0 0

Lagrangian =

 1.5745e+003

gradient_transpose =

 0 0 0 1 0 0 0 0 0 0 -1 0

delta =

 3

step =

 107.7500

18

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 11

 11 3

 3 4

 11 9

 1 10

 1 9

ITERARION 3

lambda =

0 0 0 187.2500 0 -79.5000 0 0 0 0 -107.7500 0

Lagrangian =

 1.9358e+003

gradient_transpose =

0 0 -1 0 0 0 0 0 0 0 1 0

delta =

 3

step =

 72.8750

adjacency_list =

 2 5

 5 8

 8 7

 7 12

 12 10

 2 6

 6 3

 3 4

 4 9

 3 11

 1 10

 1 9

19

ITERARION 4

lambda =

0 0 -72.8750 187.2500 0 -79.5000 0 0 0 0 -34.8750 0

Lagrangian =

 1790

delta =

 3

gradient_transpose =

 0 0 0 0 0 0 0 0 0 0 0 0

adjacency_list =

 2 5

 5 1

 1 10

 10 12

 12 7

 7 8

 8 9

 9 4

 4 3

 3 11

 11 6

 6 2

Both algorithms (the one with linearly decreasing step-length and the other which computes the step-length
in accordance with the distance of the current solution from the upper bound) converge to the same Hamiltonian
cycle, but the second one needs only 4 iterations whereas the first needs 9 iterations.

It is interested to see that after obtaining the best lower bound, by maximizing the dual function, one realize
that such an maximum is 1790, which is exactly the value of the best upper bound we obtained by the heuristic
methods.

This means that by duality, we prove that the solution provided by the Local Search we applied in the
beginning of this document to our instance of the TSP is the optimal one.

