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1. Introduction  
 

The travelling salesman problem (TSP) is an NP-hard problem in which, given a list of cities and their 
pairwise distances, the task is to find a shortest possible tour that visits each place exactly once.  
The origins of the travelling salesman problem are unclear. A handbook for travelling salesmen from 1832 
mentions the problem and includes example tours through Germany and Switzerland, but contains no mathematical 
treatment. 

The travelling salesman problem was defined in the 1800s by the Irish mathematician W. R. Hamilton and 
by the British mathematician Thomas Kirkman. Hamilton’s Icosian Game was a recreational puzzle based on 
finding a Hamiltonian cycle. The general form of the TSP appears to have been first studied by mathematicians 
during the 1930s in Vienna and at Harvard, notably by Karl Menger, who defines the problem, considers the 
obvious brute-force algorithm, and observes the non-optimality of the nearest neighbour heuristic. 

The TSP has several applications even in its purest formulation, such as planning, logistics, and the 
manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing. 
In these applications, the concept city represents, for example, customers, soldering points, or DNA fragments, and 
the concept distance represents travelling times or cost, or a similarity measure between DNA fragments. In many 
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applications, additional constraints such as limited resources or time windows make the problem considerably 
harder. 

In this paper we are going to consider the solution of a symmetric travelling salesman problem on a 
complete graph G=(V,E) with n=12 vertices. 

We shall consider three different methods for solving the problem: the first one is an heuristic procedure 
based on a constructive part (nearest neighbour heuristic) and an improving part (local search). 

A second method we shall use is a Lagrangian Relaxation applied to the Mathematical Programming 
model. We shall solve the lagrangian problem by means of the sub-gradient algorithm. 

Finally, we shall consider solve it by Brunch & Cut, and see how generating new constrains each time the 
solution provided has sub-cycle. 

 
 

2. Data for a TSP on a complete graph 
 

The following data matrix constitutes the distance between points we are going to use along the overall documents. 

 
1 2 3 4 5 6 7 8 9 10 11 12 

1 0 750 431 402 133 489 310 566 302 214 785 762 

2 750 0 736 671 85 174 870 927 683 336 882 150 

3 431 736 0 117 934 65 939 305 422 291 88 507 

4 402 671 117 0 982 727 911 870 380 754 367 580 

5 133 85 934 982 0 956 834 118 795 633 447 446 

6 489 174 65 727 956 0 322 397 356 336 27 872 

7 310 870 939 911 834 322 0 127 262 821 776 81 

8 566 927 305 870 118 397 127 0 257 429 320 524 

9 302 683 422 380 795 356 262 257 0 555 244 290 

10 214 336 291 754 633 336 821 429 555 0 508 77 

11 785 882 88 367 447 27 776 320 244 508 0 293 

12 762 150 507 580 446 872 81 524 290 77 293 0 
 

 

 
3. Providing an upper bound of the optimal solution 

 

The word heuristic has a Greek root, Εὑρίσκω, which mean "to find" or "to discover". It refers to 
experience-based techniques for problem solving, learning, and discovery and is used to speed up the process of 
finding a good enough solution, where an exhaustive search is impractical. Examples of this method include using 
a "rule of thumb", an educated guess, an intuitive judgment, or common sense.  
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In what follows we are going to apply a 2-step heuristic procedure to the solution of a TSP with 12 vertices 
on a complete graph with the cost matrix defined in the previous session. The first step is to construct a feasible 
solution and the second is to improve this solution. 

The constructive part is based on the nearest neighbour algorithm, which was one of the first algorithm 
used to determine a solution to the TSP. In it, the salesman starts at a random city and repeatedly visits the nearest 
city until all have been visited. It quickly yields a short tour, but usually not the optimal one. 
The pseudo code of nearest neighbor algorithm is the following. 

 

1. stand on an arbitrary vertex as current vertex. 

2. find out the lightest edge connecting current vertex 

and an unvisited vertex V. 

3. set current vertex to V. 

4. mark V as visited. 

5. if all the vertices in domain are visited, then 

terminate. 

6. Go to step 2. 

 

The sequence of the visited vertices is the output of the algorithm, which we wish to improve by applying a 
second heuristic procedure: a local search. 

A way of improving the current solution provided by the nearest neighbor algorithm is the  pairwise 
exchange. The pairwise exchange or 2-opt technique involves iteratively removing two edges and replacing these 
with two different edges that reconnect the fragments created by edge removal into a new and shorter tour.  

The following R code implements the constructive and improving heuristic method and applies it 
repeatedly for different initial vertices.  
 
 
> Distance <- read.table(“Distance.txt”, header = FALSE) 
> N <- sqrt(length(Distance) 
> X <- matrix(rep(0,N^2),N,N) 
> distance <- matrix(Distance,N,N) 
> objective_list <- list() 
>  
> for(initial in 1:N){ 
+  
+ i = initial 
+ DISTANCE[,i] <- 1000 
+ order <- i 
+  
+ for (i in 1:N){distance[i,i] = 10000} 
+  
+  #------------------------------------------------------------- 
+  # GREEDY 
+  #------------------------------------------------------------- 
+  
+  while( length(order)<12 ) { 
+  
+  degree <- TRUE 
+  DISTANCE <- distance 
+  
+  while( degree ) { 
+  
+   j <- which.min(DISTANCE[i,]) 
 
+   if (!(j %in% order)){ 
+    order <- c(order, j) 
+    degree <- FALSE 
+   } 
+   else { DISTANCE[i,j] <- 100000 } 
+  } 
+  
+  i = j 
+  print(j) 
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+ } 
+ order 
+  
+ #------------------------------------------------------------- 
+ # 
+ # PAIRWISE EXCHANGE 
+ # 
+ #------------------------------------------------------------- 
+  
+ adjacency_list <- list() # create adjacency list 
+ k <- 1 
+  
+ for(k in 1:(N-1)){ 
+  adjacency_list[[k]] <- c(order[k],order[k+1]) 
+ } 
+  
+ adjacency_list[[N]] <- c(order[N], order[1]) 
+ adjacency_list 
+  
+ objective <- function(graph, distance){ 
+  
+ cost <- 0 
+ for(y in 1:length(graph)){ 
+  cost <- cost + distance[graph[[y]][1], graph[[y]][2]] 
+ } 
+ cost 
+ } 
+ #------------------------------------------------------------------------------------------- 
+  
+ ADJACENCY_LIST <- adjacency_list 
+ OBJECTIVE_LIST <- objective(adjacency_list, distance ) 
+  
+ for (k in 1:(N-1)){ 
+  for(h in (k+1):N){ 
+  
+   #-------------------------------------------------------------------------- 
+   # EXCHANGE EDGES 
+   #-------------------------------------------------------------------------- 
+  
+   if ((ADJACENCY_LIST[[k]][1] != ADJACENCY_LIST[[h]][1]) && (ADJACENCY_LIST[[k]][1] != 
+    ADJACENCY_LIST[[h]][2])) {  
+  
+    ADJACENCY_LIST[[k]] <- c(adjacency_list[[k]][1], adjacency_list[[h]][1]) 
+    ADJACENCY_LIST[[h]] <- c(adjacency_list[[k]][2], adjacency_list[[h]][2]) 
+  
+   } 
+  
+   #-------------------------------------------------------------------------- 
+   # Check the goodness of the new adjacency list 
+   #-------------------------------------------------------------------------- 
+  
+   if ( objective(ADJACENCY_LIST, distance ) < objective(adjacency_list, distance ) ) { 
+  
+    OBJECTIVE_LIST <- c( OBJECTIVE_LIST, objective(ADJACENCY_LIST, distance )) 
+   
+ sub_order <- order[which(order==adjacency_list[[k]][2]): which(order== adjacency_list[[h]][1])] 
+  
+    position <- NULL 
+ 
+    for(i in sub_order){ 
+     position <- c(position, which(order == i)) 
+    } 
+  
+    rev_position <- rev(position) 
+    ORDER <- order 
+  
+    for (t in 1:length(position)){  
+     ORDER[position[t]] <- order[rev_position[t]] 
+     } 
+  
+    order <- ORDER 
+    for(k in 1:(N-1)){ 
+     adjacency_list[[k]] <- c(order[k],order[k+1]) 
+    } 
+    adjacency_list[[N]] <- c(order[N], order[1]) 
+   } 
+   ADJACENCY_LIST <- adjacency_list 
+  } 
+ } 
+ objective_list[[initial]] <- OBJECTIVE_LIST 
+ print(OBJECTIVE_LIST) 
+ } 
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The following results show the final Hamiltonian cycle obtained after applying the nearest neighbor 
methods, starting from each node. 
 

1 7 
 
10,  12,  7,  8,  5,  2,  6,  11,  3,  4,  9,   
 
Objective function:  1790 
 

 
10,  12,  2,  5,  8,  9,  11,  6,  3,  4,  1,   
 
Objective function:  2673 2119 1951 

 
2 8 
 
10,  12,  7,  8,  5,  1,  9,  11,  6,  3,  4, 
 
Objective function:  2298 2128 2098 1951 

 

 
10,  12,  7,  9,  11,  6,  3,  4,  1,  5,  2, 
 
Objective function:  2849 2840 2415 2355 2354 

 

3 9 
 
10,  12,  7,  8,  5,  2,  6,  11,  9,  1,  4, 
 
Objective function:  2045 2015 

 
10,  12,  7,  8,  5,  2,  6,  11,  3,  4,  1 
 
Objective function:  2153 2045 2015 

 
4 10 
 
10,  12,  7,  8,  5,  2,  6,  11,  3,  9,  1, 
 
Objective function:  2657 2473 2468 2441 2078 

 

 
7,  12,  2,  5,  8,  9,  11,  6,  3,  4,  1, 
 
Objective function:  2581 2557 2240 2088 2083 

 
5 11 
 
10,  12,  7,  8,  9,  11,  6,  3,  4,  1,  2, 
 
Objective function:  2865 2648 2277 2276 

 

 
10,  12,  7,  8,  5,  2,  6,  3,  4,  9,  1 
 
Objective function:  2819 2564 2114 2038 

 
6 12 
 
10,  12,  7,  8,  5,  2,  4,  3,  11,  9,  1, 
 
Objective function:  2735 2656 2579 2480 2479 2122 

 

 
10,  1,  5,  2,  6,  11,  3,  4,  9,  8,  7,   
 
Objective function:  1790 

 

 

We have our best upper bound of the TSP, which we obtain starting the GREEDY from node 12 and improving 

such a solution by applying a pairwise exchange method. This upper bound is 1790. 

 

4. Lagrangian relaxation to obtain a lower bound 
 
In this session we are going to consider again a Mathematical Programming formulation of the TSP, but we 

are going to do it with the specific purpose of obtaining lower bound of such a problem by Lagrangian Relaxation. 
To understand this formulation consider a 1-spanning-tree, a connected graph with a unique cycle (or the graph we 
obtain by adding an edge to a tree) and ask which is the topology of a 1-tree which is forced to have all vertices 
with degree equal to 2.  
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Immediately, one realizes that the set of all 1-spanning-tree with n vertices which is forced to have a have 
all vertices with degree equal to 2 is exactly the set of all Hamiltonian cycles of a graph of n vertices. 
Let T be the set of all 1-spanning-tree of a graph with n nodes. Then the following Mathematical Programming 
problem has the same feasible set of the one shown in the previous session.  
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To apply Lagrangian relaxation to this problem, divide the constraints in two respective types: the ones 

which are easy to be solved and the other which cause higher complexity in computing the solution. 
In our case, the easy constrains are the ones which impose to the solution to be a 1-spanning-tree, since the 

problem of finding the minimum-spanning-one-tree of a given graph, under a given cost function, can be solved in 
polynomial time Kruscal or Prime algorithm. Prime algorithm continuously increases the size of a tree, one edge at 
a time, starting with a tree consisting of a single vertex, until it spans all vertices. 

 

 
1. Input: A non-empty connected weighted graph with vertices 

V and edges E. 

 

2. Initialize: Vnew = {x}, where x is an arbitrary node from 

V, Enew = {} 

 

3. Repeat until Vnew = V:  

i. Choose an edge (u, v) with minimal weight such 

that u is in Vnew and v is not.  

ii. Add v to Vnew, and (u, v) to Enew 

 

4. Output: Vnew and Enew describe a minimal spanning tree 
The idea is to relax constrains [1] adding a penalization in the objective function for the violation of them, 

and construct minimum-spanning-one-trees with a cost function which is parameterized by the above mention 
coefficient of penalizarion. 

In some sense, what we obtain is a family of optimization problem parameterized by the penalization 
coefficients, or a family of minimum-spanning-one-trees parameterized by the penalization coefficients. The cost 
function of each minimum-spanning-one-tree will be the following. 
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It could also be seen a parameterized mapping RR →nL : , which associate to each value of the 
penalization coefficients, known as Lagrange multipliers, the cost of the associated minimum-spanning-one-tree. 
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It can be proved that for each nR∈0λ  , *

0 )( fL ≤λ , where *f is the optimal value of problem 2, which 

means that the lagrangian function )(λL  provide lower bounds of the problem. This means that the problem to be 

solved would be to find the R∈0λ  which provide the best lower bound for problem 2, that is, )(maxarg λL .  

The problem would then be to build an efficient algorithm which allow solving )(maxarg λL . Here we are 

going to consider the sub-gradient algorithm, which is a generalization of the gradient algorithm to the case of non-
differentiable functions. 

Let RR →nL : be a convex function with domain 
nR . A classical subgradient method iterates 

 
t

t
tt ∇−=+ αλλ )()1(  

 

where t∇ denotes a subgradient of L at )(tλ . If L is differentiable, then its only subgradient is the gradient vector 

)( tL λ∇  itself. It may happen that t∇− is not a descent direction for L at )(tλ . We therefore maintain a list bestL  that 

keeps track of the lowest objective function value found so far, i.e. },min{ )()()( tt
best

t
best LLL = . The pseudocode for the 

subgradient algorithm applied to the TSP problem is the following. 
 
 
 
 

 

 

 

 

 

Initialization Take an initial point )(tλ and take the counter 0=t  

Iterative step  

compute t∇  by finding a and minimum-spanning-one-tree 

        if 0=∇t    ⇒ )(tλ  is the optimal 

        if 0≠∇t    ⇒  calculate 
tα  and update t

t
tt ∇−=+ αλλ )()1(   
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We implemented this procedure in Matlab. In function prim(C) we apply the Prim’s algorithm for 

constructing a minimum-spanning-one-tree to a square matrix C. 

 
function  [adjacency_list adjacency] = prim(distance) 
  
  
%------------------------------------------------------------------------- 
% PRIM ALGORITHM 
%--------------------------------------------------------------------------    
   
cost = distance(2:12,2:12);               % eliminate the first node 
  
n = length(distance); 
N = length(cost); 
T = 1; 
S = [2:N]; 
adjacency = zeros(12,12); 
adjacency_list = []; 
  
for i=1:N 
    cost(i,i) = 9999999;  
end 
for i=1:n 
    distance(i,i) = 9999999;  
end 
  
DISTANCE = distance; 
  
list = []; 
  
while length(T) < 11 
  
  
    list_distance = []; 
    list_position = []; 
     
    t = 1; 
     
    for i = T 
     
        j = find(cost(i,:) == min(cost(i,:))); 
         
        if length(j) > 1 
            j = j(1); 
        end 
  
        list_distance = [list_distance; cost(i,j)]; 
        list_position = [list_position; i j]; 
         
        t = t+1; 
         
    end %for 
     
    smallest_distance = find(list_distance == min(list_distance)); 
    edge = list_position(smallest_distance,:); 
     
    DISTANCE(edge(1), edge(2)) = 9999999; 
    DISTANCE(edge(2), edge(1)) = 9999999; 
     
    for i = T 
        cost(i, edge(2)) = 9999999; 
        cost(edge(2), i) = 9999999; 
    end %for 
         
    list = [list; edge(1)+1 edge(2)+1]; 
     
    adjacency(edge(1)+1, edge(2)+1) = 1; 
    adjacency(edge(2)+1, edge(1)+1) = 1; 
     
    T = [T edge(2)]; 
        
end % while 
  
    j1 = find(DISTANCE(1,:) ==  min(DISTANCE(1,:))); 
    DISTANCE(1,j1) = 999999; 
     
    j2 = find(DISTANCE(1,:) ==  min(DISTANCE(1,:))); 
     
    if length(j1) > 1 
        j1 = j1(1); 
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    end 
  
    if length(j2) > 1 
        j2 = j2(1); 
    end 
     
    list = [list; 1 j1]; 
    list = [list; 1 j2]; 
  
    adjacency_list = list; 
  
    adjacency(1,j1) = 1; 
    adjacency(j1,1) = 1; 
  
    adjacency(1,j2) = 1; 
    adjacency(j2,1) = 1; 
  
end 
 

 

The following figure show a one-tree obtained by processing our data by means of the Matlab code shown above. 

 

Now, we try to iteratively obtain minimum-spanning-one-trees in accordance with a subgradient method, namely, 

by updating the costs of the edges.  

We implemented the subgradient method using two different criterions for computing the step-length: the first one 

is a linear descendent step-length (namely, it linearly decreases along the iterations) and the second one is to uses 

the information of the upper bound and the current gradient, as it is required in the assignment.  

 

where 

 

The following code implements the subgradient method for maximizing the lagrangian function using a linearly 

descendent step-length.  
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function  Subgradient(distance, alpha, initial_step, max_iter) 
  
    N = size(distance);  
    lambda = zeros(1,12);           % Initialize the lagrange multipliers 
    NewCosts = distance;            % Initial costes 
    iteration = 0;                  % iteration counter 
    e = ones(1,12); 
    max = max_iter; 
     
    step = initial_step; 
    alpha = 0.9; 
  
    %-------------------------------------------------------------------------- 
    % 
    % SUBGRADIENT ALGORITHM 
    % 
    %-------------------------------------------------------------------------- 
  
    while(iteration < max)  
         
       iteration = iteration + 1; 
  
       fprintf('--------------------------  ITERARION %d -------------------------\n', iteration ); 
                
       [adjacency_list X] = prim(NewCosts); % GENERATE A MINIMUM SPANNING ONE_TREE 
         
       lambda 
         
       Lagrangian = (sum(sum(distance.*X))/2) - lambda*(e*2-sum(X))' 
             
       gradient = (e*2-sum(X))'; 
        
       gradient_transpose = gradient' 
        
       if(gradient.*gradient)==0 
            break   
       end % if 
         
       lambda = lambda + step*gradient'; 
         
       step = step*alpha 
         
       adjacency_list 
         
       for i=1:N 
           for j=1:N 
               if i == j  
                   NewCosts(i,j)=0; 
               else 
                   NewCosts(i,j) = distance(i,j) - (lambda(i) + lambda(j));  
               end 
           end 
       end 
        
    end % while 
     
end % function 

 
 

The following table show the results for the problem we are considering: >> Subgradient(C, 0.9, 30, 9) 
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ITERARION 1 
 

 

lambda = 

     0     0     0     0     0     0     0     0     0     0     0     0 

 

Lagrangian = 

        1631 

 

gradient_transpose = 

     0     0     0     1     0    -1     0     0     0     0     0     0 

 

step = 

    27 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6    11 

     6     3 

     3     4 

    11     9 

     1    10 

     1     9 

 

            

 

ITERARION 2 
 

 

lambda = 

     0     0     0    30     0   -30     0     0     0     0     0     0 

 

Lagrangian = 

        1624 

 

gradient_transpose = 

     0     0     0     1     0     0     0     0     0     0    -1     0 

 

step = 

   24.3000 

 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6    11 

    11     3 

     3     4 

    11     9 

     1    10 

     1     9 
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ITERARION 3 
 

 

lambda = 

 

     0     0     0    57     0   -30     0     0     0     0   -27     0 

 

Lagrangian = 

 

        1584 

 

gradient_transpose = 

 

     0     0     0     1     0    -1     0    -1     0     0     1     0 

 

step = 

 

   21.8700 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6    11 

     6     3 

     3     4 

     8     9 

     1    10 

     1     9 

 

 

                  

 

ITERARION 4 
 

 

lambda = 

0      0      0   81.3000      0  -54.3000      0  -24.3000      0      0   -2.7000      0 

 

Lagrangian = 

  1.6173e+003 

 

gradient_transpose = 

     0    -1     0     1     0     0     1     1     0     0    -1    -1 

 

step = 

   19.6830 

 

adjacency_list = 

 

     2     5 

     5     8 

     2    12 

    12    10 

    12     7 

     2     6 

     6    11 

    11     3 

     3     4 

    11     9 

     1    10 

     1     9 
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ITERARION 5 
 

lambda = 

0  -21.8700    0  103.1700     0  -54.3000   21.8700   -2.4300     0     0  -24.5700  -21.8700 

 

 

Lagrangian = 

  1.6206e+003 

 

 

gradient_transpose = 

     0     0     0     1     0     0    -2     0     1     0     0     0 

 

 

step = 

   17.7147 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     7     9 

     2     6 

     6    11 

    11     3 

     3     4 

     1    10 

     1     7 

 

 

            

 

TERARION 6 
 

 

lambda = 

0  -21.8700    0   122.8530   0  -54.3000  -17.4960   -2.4300   19.6830    0  -24.5700  -21.8700 

 

Lagrangian = 

  1.7777e+003 

 

gradient_transpose = 

  0     1     0     0    -1     1     0    -1     0     0     0     0 

 

step = 

   15.9432 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     8     9 

     9     4 

     4     3 

     3    11 

    11     6 

     1     5 

     1    10 
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ITERARION 7 
 

 

lambda = 

0   -4.1553   0  122.8530  -17.7147  -36.5853  -17.4960  -20.1447   19.6830   0  -24.5700  -21.8700 

 

Lagrangian = 

  1.7550e+003 

 

 

gradient_transpose = 

     0     0     0     0     0    -1     0     0     0     0     1     0 

 

step = 

   14.3489 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6    11 

     6     3 

     3     4 

     4     9 

     1    10 

     1     9 

 

 

 

 

ITERARION 8 
 

lambda = 

0   -4.1553  0  122.8530  -17.7147  -52.5285  -17.4960  -20.1447  19.6830  0   -8.6268  -21.8700 

 

Lagrangian = 

 

  1.5225e+003 

 

 

gradient_transpose = 

     0     0     0     1     0     0     0     0     0     0    -1     0 

 

step = 

   12.9140 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6    11 

    11     3 

     3     4 

    11     9 

     1    10 

     1     9 
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ITERARION 9 
 

lambda = 

0   -4.1553   0  137.2019  -17.7147  -52.5285  -17.4960  -20.1447   19.6830   0  -22.9757  -21.8700 

 

Lagrangian = 

        1790 

 

 

gradient_transpose = 

     0     0     0     0     0     0     0     0     0     0     0     0 

 

 

step = 

   11.6226 

 

adjacency_list = 

 

     2     5 

     5     1 

     1     10 

     10    12 

     12    7 

     7     8 

     8     9 

     9     4 

     4     3 

     3     11 

     11    6 

     6     2 

 

           
 

 

We now consider the case of a step length with computed as a function of the current distance from the 
upper bound and the current gradient. The following MatLab code implement such a case, which constitute a 
modified version of the previous code. 
 

 

 

function  CorrectedSubgradient(distance,delta,lmax,alfa,UB, max_iter) 
  
    N = size(distance);  
    LB = 0;                         % Lower bound 
    l = 0;                          % Number of iterations without improving the lower bound 
    lambda = zeros(1,12);           % Initialize the lagrange multipliers 
    subgradient = zeros(1,12);      % Initialize subgradient vector 
    NewCosts = distance;            % Initial costes 
    iteration = 0;                  % iteration counter 
    e = ones(1,12); 
    max = max_iter; 
  
    %-------------------------------------------------------------------------- 
    % 
    % SUBGRADIENT ALGORITHM 
    % 
    %-------------------------------------------------------------------------- 
  
     
    while(iteration < max)  
         
       iteration = iteration + 1; 
  
       fprintf('---------------------------  ITERARION %d -------------------------\n', iteration ); 
                
       [adjacency_list X] = prim(NewCosts); % GENERATE A MINIMUM SPANNING ONE_TREE 
         
       lambda 
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 Lagrangian = (sum(sum(distance.*X))/2) - lambda*(e*2-sum(X))' 
  
       gradient = (e*2-sum(X))'; 
        
       gradient_transpose = gradient' 
        
       if(gradient'*gradient)==0 
            break   
       end % if 
         
             
       adjacency_list 
  
        % UPDATE LOWER BOUND 
        if (Lagrangian > LB)  
            LB = Lagrangian; 
            l = 0;    
        else 
            l = l+1; % update the counter of the number of iteration without improving 
        end 
  
        % UPDATE THE STEP-LENGH 
        if(l == lmax) 
            delta = alfa*delta;   
            l=0;  
        end 
         
        delta 
         
        gradient'*gradient 
         
        step = abs(Lagrangian-UB)/(gradient'*gradient) 
         
         
        % UPDATE LAGRANGE MULTIPLYERS 
        lambda = lambda + step*gradient';                   
     
        % UPDATE COSTS 
        % NewCosts(i,j) = PreviousCosts(i,j) - (lambda(i) + lambda(j)); 
     
        for i=1:N 
           for j=1:N 
               if i == j  
                   NewCosts(i,j)=0; 
               else 
                   NewCosts(i,j) = distance(i,j) - (lambda(i) + lambda(j));  
               end 
           end 
        end 
  
        
    end % while 
     
end % function 
 

 

 

The result we obtain with the parameters δ0 = 3, α = 0.1 and  lmax=3 are shown in the following tables: 

>>CorrectedSubgradient(C,3,3,0.1,1790, 50) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

17 

 

 

ITERARION 1 
 

 

lambda = 

0     0     0     0     0     0     0     0     0     0     0     0 

 

Lagrangian = 

        1631 

 

gradient_transpose = 

 0     0     0     1     0    -1     0     0     0     0     0     0 

 

delta = 

     3 

 

step = 

 

   79.5000 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6    11 

     6     3 

     3     4 

    11     9 

     1    10 

     1     9 

 

 

            

 

ITERARION 2 
 

 

lambda = 

0      0      0   79.5000      0  -79.5000      0      0      0      0      0      0 

 

Lagrangian = 

  1.5745e+003 

 

 

gradient_transpose = 

     0     0     0     1     0     0     0     0     0     0    -1     0 

 

delta = 

     3 

 

step = 

 

  107.7500 
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adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6    11 

    11     3 

     3     4 

    11     9 

     1    10 

     1     9 

 

 

 

  

               
                   

 

ITERARION 3 
 

 

 

lambda = 

0      0      0  187.2500      0  -79.5000      0      0      0      0 -107.7500      0 

 

Lagrangian = 

  1.9358e+003 

 

 

gradient_transpose = 

0     0    -1     0     0     0     0     0     0     0     1     0 

 

delta = 

     3 

 

step = 

   72.8750 

 

 

adjacency_list = 

 

     2     5 

     5     8 

     8     7 

     7    12 

    12    10 

     2     6 

     6     3 

     3     4 

     4     9 

     3    11 

     1    10 

     1     9 
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ITERARION 4 
 

 

lambda = 

0     0  -72.8750  187.2500    0  -79.5000     0     0     0     0  -34.8750     0 

 

Lagrangian = 

        1790 

 

delta = 

     3 

 

gradient_transpose = 

     0     0     0     0     0     0     0     0     0     0     0     0 

 

adjacency_list = 

 

     2     5 

     5     1 

     1     10 

     10    12 

     12    7 

     7     8 

     8     9 

     9     4 

     4     3 

     3     11 

     11    6 

     6     2 

 

            
 

 

     

Both algorithms (the one with linearly decreasing step-length and the other which computes the step-length 
in accordance with the distance of the current solution from the upper bound) converge to the same Hamiltonian 
cycle, but the second one needs only 4 iterations whereas the first needs 9 iterations.  

It is interested to see that after obtaining the best lower bound, by maximizing the dual function, one realize 
that such an maximum is 1790, which is exactly the value of the best upper bound we obtained by the heuristic 
methods. 

This means that by duality, we prove that the solution provided by the Local Search we applied in the 
beginning of this document to our instance of the TSP is the optimal one. 


