
SDLPS, a SDL distributed simulator.
Pau Fonseca i Casas (pau@fib.upc.edu - http://www-eio.upc.es/~pau/)

Abstract
Formalisms allows the complete understanding of a simulation model and helps in its implementation. However only few simulation tools allows an automatic construction of a simulation model based in a formalization of

the system. SDL is a modern object oriented formalism that allows the definition of distributed systems. It has focused on the modeling of reactive, state/event driven systems, and has been standardized by the International

Telecommunications Union (ITU) in the Z.100 recommendation Since it is a graphical formalism simplifies the understanding of the model. In this poster we show an implementation of a simulation infrastructure that fol-

lows SDL formalization language. This infrastructure allows a distributed simulation of the models without any modification to the model definition. Since this infrastructure follows the SDL language formalism it is useful

not only for a production use, but to teach formalisms and distributed simulation concepts.

1. Formalization of a simulation model
The construction of a simulation model sometimes lacks in the formalization process needed to under-

stand the model before any implementation. This understanding of the model behavior helps in the im-

plementation process and in the communication between the different personnel involved in the model

construction. Also can be considered a product itself (Brade D. 2000). Different formalisms exists in or-

der to represent a simulation model, like Petri Nets or DEVS among others. Some tools have been build

in order to allows help the model implementation from the specification (Praehofer and Pree 1993, De

Lara and Vangheluwe 2002) and some allows the distribute execution of the models like CD++ (Wainer

and Chen. 2003). The proposed infrastructure allows the implementation of a simulation model follow-

ing the SDL language. Since SDL language allows the definition of distribute systems the resulting

model can be executed over different computers without any modification of the model specification.

The infrastructure is implemented in C++.

The formalization of the model can be consid-

ered as a product itself (Brade D. 2000).

2. Why SDL
SDL is a powerful and modern language widely used in differ-

ent scopes, not only in simulation area. It has been standardized

by the International Telecommunications Union (ITU) in the

Z.100, and can be used easily with UML.

Anyway is not our purpose to argue about what is the best for-

malism to be used to represent a simulation model. We think

that all the formalization languages are good if are useful to

simplify and understand the modeling process. Also, exists

methods to transform from DEVS to SDL formalism (Fonseca

and Casanovas 2005) and vice versa (Fonseca 2006), allowing

the use of this infrastructure to models that use DEVS to repre-

sent its behavior.

3. SDL formalism
SDL is an acronym of Specification and Description Language. Is an object-oriented, formal language defined by the International Tele-

communication Union – Telecommunication Standardization Sector (ITU–T) (formerly Comité Consultatif International Télégraphique et

Téléphonique [CCITT]) as Recommendation Z.100 (ITU-T Z.100 1999). The language is designed to specify complex, event-driven, real-

time, interactive applications involving many concurrent activities using discrete signals to enable communication (Reed 2000, Sanders

2000, IEC).
The definition of the model is based on different components:

1. Structure: system, blocks, processes and processes hierarchy.

2. Communication: signals, with the parameters and channels that the signals use to travel.

3. Behavior: defined through the different processes.

4. Data: based on Abstract Data Types (ADT).

5. Inheritances: to describe the relationships between, and specialization of, the model elements.

The language has 4 levels (i) System, (ii) Blocks, (iii) Processes and (iv) Procedures

SDL system diagrams

System diagrams represent all of the objects that make up a model and the communication channels between them. A system is the outer-

most agent that communicates with the environment

SDL Blocks diagrams

The next stage in SDL specification is the construction of a blocks diagram for each of the different block defined in the system diagram.

Each rectangle represents an object. The lines that join the ob-

jects are the communication channels (bidirectional or unidirec-

tional communication elements). The channels are joined to the

objects through ports. Ports are very important elements for im-

plementing and reusing objects, since they ensure the independ-

ence of the different objects. An object only knows its own ports,

which are the doors through which it communicates with its envi-

ronment. An object only knows that it sends and receives events

using a specific port. Each block has a name specified by

BLOCK keyword. The blocks diagram contains a number of Processes and may also possibly contain other BLOCKs (but not mixed with

Processes). Processes communicate via Signal Routes, which connect to other Processes or to Channels external to the Bloc

SDL processes

The processes describe more specifically the behavior of the block. Each one of the processes of the block has one or more states. For each

one of the states of a process, SDL describe how it behaves if different events occur. An object may react differently to an event depending

on the port that sends it. The process is basically specified using graphical elements that

describe operations or decisions.

SDL procedures

The last level of the SDL method is the description of the different procedures that ap-

pear in the SDL diagrams. These diagrams help describe and specify the model by detail-

ing its most important aspects at the needed level, depending on the target of the specifi-

cation requirements.

4. SDLPS model formalization
In this section we present a formalization of a simple GG3 model, following the Kendall

notation (general distribution for the arrivals and for the services times, and three serv-

ers). In our approach the signals that are send from one element to other always have a

parameter, with the time representing when this event must be executed. Other parame-

ters can be defined, like priority. In this example however no priorities are defined, hence

only the time parameter is needed. The representation of the SDL formalization of the

model is done through XML. Although a no graphical version of the SDL language ex-

ists, (SDL/GR is the abbreviation for the graphical

SDL and SDL/PR for the textual SDL), the use of

XML simplifies the management of the language

structures and its transformation and manipulation in

the infrastructure . Implementation tag in XML file

allows the reuse of legacy simulation elements.

XML representation of GG3 block

<block name="GG3" implementation="">

 <channels>

 (..)

 </channels>

 <block name="Queue" implementation="">

 (..)

 </block>

 <block name="Server1" implementation="">

 (..)

 </block>

 <block name="Server2" implementation="">

 (..)

 </block>

 <block name="Server3" implementation="">

 (..)

 </block>

</block>

5. System architecture
The system, implemented in C++,

allows the distribute execution of

different SDL blocs or processes in

different machines. The communi-

cation is defined through the blocks

channels. Each one of the different

blocs implements a port and a set of

input and output events that can be

used to communicate with the other

model blocs. Inside each block oth-

ers blocks or processes can be de-

fined, following SDL formalism.

Time management

In our system a conservative approach for a distribute simulation model has

been implemented. Each one of the different channels that connect the elements

of the model implements an event list. This method can be reviewed in

(Fujimoto 2001).

The compiler

Since the SDL diagrams allows the use of TASK blocs or PROCEDURE

blocks, the system must use a C++ compiler in order to allow the execution of

the code that the user adds in the specification. We are using MinGw (http://

www.mingw.org/) compiler to generate a DLL containing the code related to

the specification.

6. Conclusions and future work
This poster presents an infrastructure based in SDL language. This infrastruc-

ture allows a distributed simulation of the different elements defined in the SDL

formalism. Also an specification of a GG3 simulation model using SDL lan-

guage is presented. A XML representation of this model is shown. This repre-

sentation allow the easy use of the SDL model in the system. Also the XML

allows the definition of where is the implementation of some elements, allow-

ing the use of legacy simulation models or specific implementation that not fol-

low this infrastructure. Since the infrastructure manages the time and the re-

sources needed to execute the simulation, the user only must describe the be-

havior of the model without the need of thing if the execution will be local or

over different computers. Once the model is constructed each one of the differ-

ent SDL elements can be executed in a different machine with no more devel-

opment cost. Also, this infrastructure is very useful to teach the principles of

distributed simulation and formalization.

7. References
 Brade D. 2000, Enhancing modeling and simulation accreditation by

structuring verification and validation results, Proceedings of the 2000 Winter

Simulation Conference J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick,

eds.

 De Lara, J., Vangheluwe, H. 2002, ATOM³: A Tool for Multi-formalism

Modelling and Meta-modelling, Procediings of the 4th International Confer-

ence on Enterprise Information Systems ICEIS 2002

 Fonseca P., Casanovas J. 2005. Using SDL diagrams in a DEVS specifi-

cation, The Fifth IASTED International conference on Modeling Simulation and

Optimization, MSO 2005.

 Fonseca i Casas, Pau; Casanovas, Josep; Montero, Jordi. 2004 Adaptación

de modelos de simulación estándar a modelos virtuales y/o sistemas de entre-

namiento distribuidos, con representación del movimiento continúo de enti-

dades Revista Iberoamericana de Sistemas, Cibernética e Informática. Num 2.

Vol 2. Available via http://www.iiisci.org/Journal/riSCI/

Abstracts.asp? [accessed April 2008]

 Fonseca, P. 2006, Transforming SDL diagrams in a DEVS specificaction.

Proceedings of Modelling, Simulation, and Optimization - MSO 2006

 Fujimoto, R. M., 2001, Parallel simulation: parallel and distributed simu-

lation systems, Proceedings of the 33nd conference on Winter simulation,

Pages: 147 - 157, ISBN:0-7803-7309-X

 ITU-T Z.100. 1999 International Telecommunication Union, Telecommu-

nication standardization sector of ITU, Specification and Description Language

(SDL), Series Z: Languages and general software aspects for telecommunica-

tion systems. Available via http://www.itu.int/ITU-T/

studygroups/com17/languages/index.html [Accessed April

2008].

 Praehofer, H. Pree, D. 1993. Visual modeling of DEVS-based multifor-

malism systems based on higraphs. In Proceedings of the 25th Conference on

Winter Simulation (Los Angeles, California, United States, December 12 - 15,

1993). G. W. Evans, M. Mollaghasemi, E. C. Russell, and W. E. Biles, Eds.

WSC '93. ACM, New York, NY, 595-603. DOI= http://

doi.acm.org/10.1145/256563.256737

 Reed, R. 2000. SDL-2000 form New Millenium Systems, Telektronikk

4.2000 p. 20-35

 Sanders, R. 2000 Implementing from SDL, Telektronikk 4.2000 p 120-

129

 Wainer G., Chen. 2003 W.A framework for remote execution and visuali-

zation of Cell-DEVS models. Simulation: Transactions of the Society for Mod-

eling and Simulation International. November 2003. pp. 626-647.

http://www.iiisci.org/Journal/riSCI/Abstracts.asp?
http://www.iiisci.org/Journal/riSCI/Abstracts.asp?
http://www.itu.int/ITU-T/studygroups/com17/languages/index.html
http://www.itu.int/ITU-T/studygroups/com17/languages/index.html
http://doi.acm.org/10.1145/256563.256737
http://doi.acm.org/10.1145/256563.256737

