
SDL

Pau Fonseca i Casas (pau@fib.upc.edu)

Outline

 Introduction to SDL

 Purpose & Application

 Key SDL features

 SDL grammar

 SDL history

 Static SDL Components

 Description of the System Structure

 Concepts of System, Block and Process

 Communication Paths: Channels, Signals

 SDL to represent simulation models

 Discrete simulation models.

 Agent based models.

Why SDL exists?

Introduction to SDL

Why SDL exists ?

 The initial purpose of SDL is to be a language for
unambiguous specification and description of the
structure, behavior and data of telecommunications
systems.

 The terms specification and description are used with
the following meaning:

 a specification of a system is the description of its required
behavior

 a description of a system is the description of its actual
behavior, that is its implementation

SDL

 O.O Language.

 Defined by the International Telecommunications

Union–Telecommunications Standardization Sector

(ITU–T) (formerly Comité Consultatif International

Telegraphique et Telephonique [CCITT]) as

recommendation Z.100.

SDL

Where SDL may be used ?

 SDL may be used for producing

 Specification and Design of diverse applications: aerospace,
automotive control, electronics, medical systems,

 Telecommunications Standards and Design for (examples):

 Call & Connection Processing,

 Maintenance and fault treatment (for example alarms, automatic
fault clearance, routine tests) in general telecommunications systems,

 Intelligent Network (IN) products,

 Mobile handsets and base stations,

 Satellite protocols,

 Increasingly used to generate product code directly with
help of tools like ObjectGeode, Tau/SDT, Cinderella

System & Environment

 The SDL specification defines

how Systems reacts to events

in the Environment which are

communicated by Signals sent

to the System

 The only form of

communication of an SDL

system to environment is via

Signals

SDL

System

ENVIRONMENT

signals

SDL Overview - Process

 A process is an agent that contains an extended finite
state machine, and may contain other processes.

 A System is composed of a number of communicating
process instances

System Instance

Process

Instance
Process

Instance

signals

signals

signals

SDL Overview - Process Diagrams
process ATM

TIMER
 tCash := CashDelay,
 tCard := CardDelay;
SYNONYM
 CashDelay Duration = 30.0,
 CardDelay Duration = 30.0;
DCL
 accountNumber AccountNumber_T,
 cardPIN, userPIN PIN_T,
 amount Natural;

EjectCard

Ready

CardInserted_id
(accountNumber,

cardPIN)

Writeln
('Enter passw ord')

w _PIN

w _PIN

PIN_id(userPIN)

userPIN=
cardPIN

TRUE

Writeln
('Enter amount')

Code_OK

FALSE

Writeln
('Wrong code')

EjectCard

Ready

Code_OK

Withdraw al_rq
(amount)

'amount OK'

'yes'

EjectCard

TakeCash_rq
(amount)

SET(tCash)

AmountOK

'no'

Writeln
('Wrong amount')

EjectCard

Ready

SDL Overview - Blocks

 Large number of process without structure leads to loss of overview

 Blocks are used to define a system structure

 Signal routes transfer signal immediately while channels may be
delaying

Block System (or another block)

Process

Instance
Process

Instance

signal routes

Block

Block

channels

Block

Key SDL Features (1 of 2)

 Structure

 Concerned with the composition of blocks and process agents.

 SDL is structured either to make the system easier to understand or
to reflect the structure (required or as realised) of a system.

 Structure is a strongly related to interfaces.

 Behavior

 Concerns the sending and receiving of signals and the interpretation
of transitions within agents.

 The dynamic interpretation of agents and signals communication is
the base of the semantics of SDL.

 Data

 Data used to store information.

 The data stored in signals and processes is used to make decisions
within processes.

Key SDL Features (2 of 2)

 Interfaces

 Concerned with signals and the communication paths for signals.

 Communication is asynchronous: when a signal is sent from one agent
there may be a delay before it reaches its destination and the signal may
be queued at the destination.

 Communication is constrained to the paths in the structure.

 The behavior of the system is characterized by the communication on
external interfaces.

 Types

 Classes can be used to define general cases of entities (such as agents,
signals and data).

 Instances are based on the types, filling in parameters where they are
used.

 A type can also inherit from another type of the same kind, add and
(where permitted) change properties.

SDL Representations

 SDL has two representation forms

 SDL-GR - graphical representation

 SDL-PR - textual, phrase representation

 SDL-PR is conceived as for easily
processed by computers - common
interchange format (CIF)

 SDL-GR is used as a human interface

 SDL-GR has some textual elements which are
identical to SDL-PR (this is to allow specification
of data and signals)

 Z.106 recommendation defines CIF with
purpose of preserving all graphical
information

SDL-GR SDL-PR

Common

Syntax

SDL History (1)

 1976 Orange Book SDL

 Basic graphical language

 1980 Yellow Book SDL

 Process semantics defined

 1984 Red Book SDL

 Structure, data added.

 Definition more rigorous.

 Start of tools. User guide.

 1988 Blue Book SDL (SDL-88)

 Effective tools.

 Syntax well defined - formal definition.

 Language much as 1984.

SDL History (2)

 1992 White Book SDL-92

 Object SDL. Types for blocks, processes, services with inheritance
and parameterisation.

 Methodology guidelines.

 1995 SDL with ASN.1 (Z.105)

 1996 Addendum 1 to SDL-92

 Language stable. Some relaxation of rules.

 SDL+ Methodology.

 Tools offer SDL-92 features.

 1999 SDL-2000

 Object modeling support.

 Improved implementation support.

 Data model revised

SDL ITU Recommendations

 The ITU-T Specification and Description Language

(SDL) is defined by the following ITU-T

Recommendation publications

 Z.100 (11/99) Specification and description

language (SDL) including various annexes and

appendices

 Z.105 (11/99) SDL combined with ASN.1modules;

 Z.107 (11/99) SDL with embedded ASN.1;

 Z.109 (11/99) SDL combined with UML.

Static & Dynamic SDL

 SDL has a static component, and a dynamic component.

 The Static component describes/specifies system
structure

 Functional decomposition to sub-entities

 How they are connected

 What signals they use to communicate

 The Dynamic component describes/specifies system
operation - behavior

 SDL Transitions, Transitions Actions

 Communications

 Birth, Life and Death of Processes

Static SDL

 System is the highest level of abstraction

 A system can be composed of 1 or more blocks

 A block can be composed of processes and blocks

 Processes are finite state machines, and define

dynamic behavior
System
Block

Process

Static SDL Terms

 agent

 The term agent is used to denote a system, block or process that contains
one or more extended finite state machines.

 system:

 A system is the outermost agent that communicates with the environment.

 block

 A block is an agent that contains one or more concurrent blocks or
processes and may also contain an extended finite state machine that
owns and handles data within the block

 process:

 a process is an agent that contains an extended finite state machine,
and may contain other processes

 Procedure

 A procedure is a piece of programming code.

Static SDL Terms

 Source:

 http://www.iec.org/online/tutorials/sdl/topic04.html

http://www.iec.org/online/tutorials/sdl/topic04.html

System diagram

 Source (Reed 2000).

SDL Blocks diagram

 Source (Reed 2000).

System Decomposition

 When dealing with large and complex systems it is

best to decompose down to the manageable size

functional components: BLOCKs (“Divide and Rule”)

 Follow natural subdivisions: BLOCKs may correspond

to actual software/hardware modules

 Minimise interfaces between BLOCKs in terms of the

number and volume of signals being exchanged

Structuring of the System Description

Decomposition Rules:

No Limit in number of Block levels

Decomposition Rules: Blocks and

Process cannot share a level

Communication Related SDL Terms

 signal:

 The primary means of communication is by signals that

are output by the sending agent and input by the

receiving agent.

 stimulus:

 A stimulus is an event that can cause an agent that is in

a state to enter a transition.

 channel:

 A channel is a communication path between agents.

Text Symbol

 Text Symbol is used to group various textual

declarations

 It can be located on any type of diagram

Concrete graphical grammar

<text symbol> ::=

package defs

/* Signals betw een users
 * (internal) */
SIGNAL
 connReq,
 connFree,
 connBusy,
 connEstablish,
 connEnd;

/* Signals from a user (ENV) */
SIGNAL
 offHook,
 onHook,
 num (num_t);

Text Box Example

System Diagram

 Topmost level of abstraction - system level

 Has a name specified by SYSTEM keyword

 Composed of a number of BLOCKs

 BLOCKs communicate via CHANNELs

 Textual Descriptions/Definitions

 Signal Descriptions

 Channel Descriptions

 Data Type Descriptions

 Block Descriptions

Example System Diagram

SYSTEM s

SIGNAL S1, S2, S3,

 S4,S5 ;

B1

B1

C1 [S1,S2]

C4 [S5]

C2 [S3]

C3 [S4]

Blocks Channels

Signal Lists

Signal

Descriptions

in text

symbol

Frame symbol -

boundary between

system and

environment

Signals

 Signals are the actual messages sent between

entities

 Signals must be defined before they can be used:

<signal specification> ::= signal <signal name> [(<sort

name>{,<sort name>}*)]

 {, <signal name> [(<sort

name>{,<sort name>}*)]}*;

Example:

SIGNAL
doc (CHARSTRING), conf,
ind (MsgTyp), req (MsgTyp);

Signals with parameters

 Signals can have parameters known as a sortlist

 The signal specification identifies the name of the signal
type and the sorts of the parameters to be caried by
the signal

 Example: signal Status(Boolean);

 When signals are specified to be carried on certain
channels only signal names are required

 When signals are actually generated in the process the
actual parameters must be given

 Example:

 Status(True)

Signal Lists

 A signal lists may be used as shorthand for a list of

signal identifiers
system localExchange

/* Signals from a user (ENV) */
SIGNAL
 offHook, onHook,
 num (num_t);

SIGNALLIST userSigs =
 offHook, onHook,
 num;

/* Signals to a user (ENV) */
SIGNAL
 dialTone, ringTone, busyTone,
 shortBusyTone, connectTone,
 msg (CharString);

SIGNALLIST tones =
 dialTone, ringTone,
 busyTone, shortBusyTone,
 connectTone;

userCh

(tones),
msg(userSigs)

localExchange

Example:

Channel

 CHANNEL is connected between Blocks or Block and

the Environment.

 May be uni- or bi-directional

 It may have an identifier (C1) and may have list of

all signals it caries

 It is an FIFO queue which may introduce an variable

delay

Non-Delaying Channels

 Non delaying channels do not introduce any delay in
transmission of signals

C1 [S1,S2]

C2 [S1,S2] [S3,S4]

Uni-directional non-delaying

Channel

Bi-directional non-delaying

Channel

Delaying Channels

 Delaying channels introduce a delay in transmission

of signals.

 Delaying channel is specified by a channel symbol

with the arrows at the middle of the channel.

 The delay of signals is non-deterministic, but the

order of signals is maintained.

C1 [S1,S2]

C2 [S1,S2] [S3,S4]

Uni-directional delaying Channel

Bi-directional delaying Channel

Block Diagram

 Has a name specified by BLOCK keyword

 Contains a number of Processes

 May also possibly contain other BLOCKs (but not mixed
with Processes)

 Processes communicate via Signal Routes, which connect
to other Processes or to Channels external to the Block

 Textual Descriptions/Definitions

 Signal Descriptions for signals local to the BLOCK

 Signal Route Descriptions

 Data Type Descriptions

 Process Descriptions

Example Block Diagram

Process

Signal Routes

Signal Route

 SIGNALROUTE: provide a signal path between

processes

 similar to CHANNELs except there is no delay involved

 Can be bi-directional or unidirectional

 Contains a signal list, constraining what signals can

sent through it.

 In SDL2000 Signal-Route concept is obsolete. Signal

Routes are replaced by non-delaying Channels

PROCESS

 PROCESS specifies dynamic behaviour

 Process represents a communicating extended finite state
machine.

 each have a queue for input SIGNALs

 may output SIGNALs

 may be created with Formal PARameters and valid input
SIGNALSET

 it reacts to stimuli, represented in SDL by signal inputs.

 stimulus normally triggers a series of actions such as data
handling, signal sending, etc. A sequence of actions is described
in a transition.

 PROCESS diagram is a Finite State Machine (FSM)
description

Example Process Diagram

PAGE 2(3)
PROCESS TYPE Game
fpar play PId

odd

T1 Probe

Set(Now
+1ms,T1)

even

Win to
player

count := count +1

odd

Packages & Libraries

 Since SDL 92 reusable components may be defined

as types and placed into libraries called packages

 This allow the common type specifications to be

used in more then a single system

 Package is defined specifying the package clause

followed by the <package name>

 A system specification imports an external type

specification defined in a package with the use

clause.

Package Example

system localExchange

USE defs;

userCh

(tones),
msg(userSigs)

localExchange

package defs

/* Signals from a user (ENV) */
SIGNAL
 offHook,
 onHook,
 num (num_t);

SIGNALLIST userSigs =
 offHook,
 onHook,
 num;

/* Signals to a user (ENV) */
SIGNAL
 dialTone,
 ringTone,
 busyTone,
 shortBusyTone,
 connectTone,
 msg (CharString);

SIGNALLIST tones =
 dialTone, ringTone,
 busyTone, shortBusyTone,
 connectTone;

Definition, Type & Instance

 Definitions introduce named
entities, which are either types or
instances with implied types. A
definition of a type defines all
properties associated with that
type.

 A type may be instantiated in any
number of instances. An instance of
a particular type has all the
properties defined for that type.

 An instance is defined either
directly or by the instantiation of a
type. An example of an instance is
a system instance, which can be
defined by a system definition, or
is an instantiation of a system type.

Implied type

definition

type

instance

instantiates as

specializes as

parameterized

type

with all context parameters
bound is

with some context
parameters bound is

definition

parameterizes
as

specifies

specifies

specifies

SDL Entity Visibility Rules

 Entities are

 Packages, agents (system, blocks, processes), agent types, channels,
signals, timers, interfaces, data types, variables, sorts, signal lists;

 Possible Scope Units are

 Agent diagrams (System, Block, Process), Data Type Definitions,
Package diagrams, task areas, interface definitions ...

 The Entity is visible in the scope unit if

 is defined in a scope unit

 the scope unit is specialisation and the entity is visible in base type

 the scope unit has a “package use clause” of a package where entity is
defined

 the scope unit contains an <interface definition> where entity is defined

 the entity is visible in the scope unit that defines that scope unit

Additional Structural Concepts in SDL

 A tree diagram can be constructed to illustrate the
hierarchy of the entire SYSTEM .

 Macros can be used to repeat a definition or a
structure. They are defined using the
MACRODEFINITION syntax .

 Paramaterised types exist using the generator construct

 Gates

 A gate represents a connection point for communication with
an agent type, and when the type is instantiated it
determines the connection of the agent instance with other
instances

MM1

ATM

Examples

MM1 Example

 4 Elements

 Generator

 Queue

 Server

 Terminate

Cua

Generador

Entitats

Terminal

FI SERVEI

0

0

1

0

NOU CLIENT

NOU CLIENT

FI SERVEI

PETICIÓ CLIENT
CUA BUIDA

CUA NO BUIDA

NOU CLIENT

2

1

Servidor0

2

1

1

ATM Example - System Diagram

system ATM

use bank_lib;
/* This model corresponds to an Automated
Teller Machine (ATM). Banking transactions
are performed by means of cash card.
This ATM allow s cash w ithdraw al only.
Withdraw als must be authorized by the
consortium, and in case of success, must
be reported to the consortium. */

Consortium

r_accept,
go_ATM,

stop_ATM

q_accept,
wdrok

ce_ui

display_wait,
print,
cash,
eject,

go_ATM,
stop_ATM

card,
entry,
cashtaken,
quit

Customer

card,
entry,
cashtaken,
quit

Central UI

ATM Example - Central Block Diagram

block Central

Consortium

ce_ui

co_spv

go_ATM,
stop_ATM

co_tr

q_accept,
wdrok

r_accept

spv_tr

tr_end

stop_tr

spv_ui

card

go_ATM,
stop_ATM

tr_ui

display_wait,
print, cash,

eject

entry,
cashtaken,
quit

Supervisor
(1,1)

Tr (0,1):
Transaction

spv

cns

ui

ATM Example - UI Block Diagram

block UI

ce_ui Customer
ce_ui0

display_wait,
print,
cash,
eject,

go_ATM,
stop_ATM

card,
entry,
cashtaken,
quit

cu_ui

card,
entry,
cashtaken,
quit

Eco_UI

UI (1,1):
Eco_UIcent cust

ATM Example - Hierarchy Diagram

ATM

Pr Declaration Pr Declaration Central

Supervisor

Pr Declaration

Tr

UI

Eco_UI UI

ATM Example - Package Bank_lib

package bank_lib

/* This SDL components library
contains SDL block and process
types w hich are useful to
develop banking systems. */

/* Types used by the Transaction Process */
newtype CashCard
struct
 id Integer;
 expirDate Integer;
 pssw d Charstring;
operators
 checkCard: CashCard -> Boolean;
 checkPssw d: CashCard, Charstring -> Boolean;
operator checkCard;
 fpar cc CashCard;
 returns res Boolean;
 start;
 task res := (cc!expirDate > 9701) and (cc!id /= 0);
 return;
endoperator;
operator checkPssw d;
 fpar cc CashCard, cpw Charstring;
 returns res Boolean;
 start;
 task res := (cc!pssw d = cpw);
 return;
endoperator;
endnewtype ;

QuestConso::= sequence {
 cardData CashCard,
 amount Charstring};

RespConso ::= sequence {
 cardData CashCard,
 accept Boolean,
 amount Charstring optional};

/* This implements a
simplif ied banking
transaction. */

/* Signals received by the
Transaction Process Type */
signal
entry (Charstring),
cashtaken,
quit,
r_accept (RespConso),
stop_tr;

/* Signals sent by the
Transaction Process Type */
signal
display_w ait (Charstring),
print (Charstring),
cash (Charstring),
eject,
tr_end,
q_accept (QuestConso),
w drok (CashCard, Charstring);

/* Additional signals for
Basic_ATM_UI */
signal
card (CashCard),
go_ATM,
stop_ATM;

/* This implements a
basic terminal
interacting w ith the
customer. */

/* This package contains:
- ASN.1 declarations (QuestConso, RespConso)
mixed into SDL declarations
- Process types (Transaction, Basic_ATM_UI)
- Virtual transitions (in Transaction)
- Axioms (New type CashCard)
*/

Transaction

Basic_ATM_UI

Static SDL - Summary

 Structure of the system is hierarchically defined using
System, Block and Process diagrams connected via
channels (signal routes)

 Channels carry Signals which convey information
(stimulus) between agents (Environment, System, Blocks,
Processes)

 The ultimate goal of the SDL is to specify overall
behavior of the system - but this is not done on the
system level

 The system is defined by behavior of its constituent
blocks/processes

Dynamic SDL

Specification & Description

Language (SDL)

Outline

 Dynamic SDL Component

 State, Input, Output, Process, Task, Decision, Procedure

…

 Data in SDL

 Inheritance

 Block and Process Sets

 Examples

Dynamic Behavior

 A PROCESS exists in a state, waiting for an input
(event).

 When an input occurs, the logic beneath the current
state, and the current input executes.

 Any tasks in the path are executed.

 Any outputs listed are sent.

 The state machine will end up in either a new state,
or return to the same state.

 The process then waits for next input (event)

Process Diagram Example

 process calling 1/5

wait_for_connection

connectTone

reset (T1)

connectTone

VIA uG

connected

Connected

onHook

reset (T1)

connEnd

TO

otherPid

idle

T1

busyTone

VIA uG

connEnd TO

otherPid

set (NOW

+ T_10sec, T2)

wait_for_onHook

Process diagram

 Describes for each state of each object its

behavior on receiving different events.

 An object can react in a different way receiving the

same event, depending on the port used to receive

the event.

Process Diagram Components

 STATEs: point in PROCESS where input queue
is being monitored for arrived SIGNALs

 subsequent state transition may or may not have
a NEXTSTATE

 INPUT: indicates that the subsequent state
transition should be executed if the SIGNAL
matching the INPUT arrives

 INPUTs may specify SIGNALs and values within
those SIGNALs

 Inputs can also specify timer expiry

 OUTPUT: specifies the sending of a SIGNAL
to another PROCESS

state_a

sig_a

state_a

sig_c

Some Additional Process Diagram

Components

 TASK: description of operations on
variables or special operations

 The text within the TASK body can
contain assign statements.

DECISION: tests a condition to
determine subsequent PROCESS flow

 JOIN: equivalent to GOTO.

do_something

make_

decision

true false

A

A

More Process Diagram Components ...

 SAVE: specifies that the consumption of a
SIGNAL be delayed until subsequent
SIGNALs have been consumed

 the effect is that the SAVEd SIGNAL is not
consumed until the next STATE

 no transition follows a SAVE

 the SAVEd SIGNAL is put at the end of the
queue and is processed after other SIGNALs
arrive

 START: used to describe behavior on
creation as well as indicating initial state

 Similar shape to state only with semi-circular
sides

sig_c

Procedure

 PROCEDURE: similar to a subroutine

 allow reuse of SDL code sections

 reduce size of SDL descriptions

 can pass parameters by value (IN) or by reference

(IN/OUT)

sigA

stateC

ProcB

(SENDER)

PROCEDURE ProcB

fpar player PId;

Gameid to
player

Priority & Internal Inputs

 Priority inputs are inputs that are given priority in a
state

 If several signals exist in the input queue for a given
state, the signals defined as priority are consumed
before others (in order of their arrival)

sig_a

• Internal Input/Outputs signals are used for
signals sent/received within a same FSM or
SW component

• There is no formal definition when they
should be used.

sig_a

sig_c

Shorthands - All Other Input/Save

 The Save with an asterisk covers all
possible signals which are not explicitly
defined for this state in other input or
save constructs

*

*

• The input with an asterisk covers all
possible input signals which are not
explicitly defined for this state in other
input or save constructs

Comment Example

procedure EjectCard

Writeln
('Take your card')

TakeCard_rq

SET(tCard) This is a comment

CardEjected

One Very Simple FSM (VS-FSM)

VS-FSM Process Diagram

MM1 example

 Server states

Process Diagram Example
 process calling 2/5

wait_for_num

T1

busyTone
VIA uG

wait_for_onHook

num
(toNum)

reset (T1)

getUserPid (toNum, otherPid)

otherPid = NULL

True

msg ('Sorry,
wrong number')

wait_for_onHook

False

wait_for_connRepl

onHook

reset (T1)

A1

Shorthands - Same State

 When next state is same as
current state the “dash” symbol
may be used instead of state
name.

 This is particularly useful in
combination with * (any state)

-

process star_dash_combination

*

SendAlarm

Alarm

-

Shorthands Example

process Star_Input

Idle

Input1

Online

*

-

Online

Input2

Idle

*

-

Specification of Data in SDL

 SDL diagrams can contain variables

 Variables are declared using the DCL

statement in a text box.

 Variables can set in a task box and

read in decisions

 A data type is called a sort in SDL

DCL numthings INTEGER;

StateA

SigA

numthings =

numthings

+1;

numthings > 7

Predefined Sorts (types) in SDL

 INTEGER signed integer

 NATURAL positive integer

 REAL real, float

 CHARACTER 1 character

 CHARSTRING string of characters

 BOOLEAN True or False

 TIME absolute time, date (syntype of REAL)

 DURATION a TIME minus a TIME (syntype of REAL)

 PID to identify a process instance

Operators on Predefined Sorts

 Operations := (assignment) , = (equality) and /= (nonequality) are defined for all

sorts

 INTEGER -, +, *, /, >, <, >=, <=, Float (Integer to Real),

 Mod (modulo), Rem (remainder)

 REAL -, +, *, /, >, <, >=, <=, Fix (Real to Integer)

 NATURAL Like Integer

 CHARACTER Chr (Integer to Char), Num (Char to Integer),

 >,<,>=,<=

 CHARSTRING Mkstring (Char to Charstring), Length, First, Last,

 // (concatenation), Substring

 BOOLEAN True, False, NOT, AND, OR, XOR

 PID Self, Sender, Offspring, Parent

Creating new Data Types

 New data types can be defined in SDL.

 An example data definition is shown below

newtype even literals 0;

 operators

 plusee: even, even -> even;

 plusoo: odd, odd -> even;

 axioms

 plusee(a,0) == a;

 plusee(a,b) == plusee(b,a);

 plusoo(a,b) == plusoo(b,a);

endnewtype even; /* even "numbers" with plus–depends on odd */

operator plusee;

 fpar a even, b even;

 returns res even;

 start;

 task res:=a+b;

 return;

end operator;

Creating new Data Types

 A syntype definition introduces a new type name

which is fully compatible with the base type

 An enumeration sort is a sort containing only the

values enumerated in the sort

 The struct concept in SDL can be used to make an

aggregate of data that belongs together

 The predefined generator Array represents a set of

indexed elements

Data Types and Inheritance

 New Data types can inherit from other data types in SDL

newtype bit inherits Boolean

 literals 1 = True, 0 = False;

 operators ("not", "and", "or")

 adding

 operators

 Exor: bit,bit -> bit;

 axioms

 Exor(a,b) == (a and (not b)) or ((not a) and b));

endnewtype bit;

 Most SDL protocol specifications used ASN.1 to describe
data.

 Z.105 describes how SDL and ASN.1 can be used together.

True, False are

renamed to 1

& 0

Operators that

are perserved

From this point

new items are

defined

Specification of Timers in SDL

 Timer is an object capable
of generating an input
signal and placing this
signal to the input queue of
the process. Signal is
generated on the expiry of
pre-set time.

 SET(NOW+20ms,T7): sets
a T7 timeout in 20ms time.

 RESET(T7): cancels the
specified timeout.

Timer T7; SET(NOW

+20ms,T7)

T7 SigA

WaitForTimer

RESET(T7)

Dynamic Processes

 Processes can be created and destroyed in
SDL

 Each process has a unique process id. The
self expression returns the process id of the
current process.

 Processes are created within a SDL process
using the CREATE symbol. The Create body
contains the type of the process to create

 The offspring expression returns the process
id of the last process created by the
process.

 The PROCESS that is created must be in the
same block as the process that creates it.

 The Stop symbol is used within the SDL
PROCESS to signify that the process stops.

ProcessA

offspring

> 0

true false

Dynamic Processes

 Dynamically created processes become part of an

instance set.

 The instance set in the block diagram contains two

variables, the number initial process instances and

the maximum number of instances.

Process Sets

 The following Describes a set of Identical Processes

 Initially there are no members of the set

 Can be up to 7 members in the set

BLOCK ExampleProcessSet

bidders (0, 7) :

S2[***,***,****]

S1[***,***,****] C1

C2
Bidder

Block Sets

 The following Describes a set of Identical Blocks

 Initially there is one member of the set

 There is no limit to the number of members in the set

SYSTEM ExampleBlockSet

bidders (1,) :

C2[***,***,****]

C1[***,***,****]

Bidder

Formal Parameters

 Dynamic processes can have data passed into them

at creation time using Formal Parameters

 Similar to C++ constructor

PROCESS TYPE Proc1

fpar player PId,

numtries Integer;

Gameid to
player

Idle

Proc1

(offspring,3)

sig1

Idle

PROCESS Proc2

Addressing Signals

 The destination of an output can be defined in a number of

ways:

 Implicit when only one destination is possible

 An explicit destination can be named using the keyword to X,

where X is of type Pid.

 SELF, giving the address of the process itself

 SENDER, giving the address of the process from which the last consumed

signal has been sent;

 OFFSPRING, giving the address of the process that has been most

recently created by the process; and

 PARENT, giving the address of the creating process.

sig_c
sig_c

to X
Implicit Addressing Explicit Addressing

Addressing Signals

 The term “via” can be used followed by a

signal route or channel. This means it can

be sent to all process attached to a

particular channel or signal

route(multicasting).

 Or it can be sent everywhere it possibly

can using the “via all” qualifier

(broadcasting).

sig_c

via G3

sig_c
via all

Daemon Game Example

Examples

Daemon Game Example

 The Z.100 standard partially defines an example

of SDL in the form of a game called DaemonGame.

A modified version is described here.

 The game consists of a quickly oscillating state

machine, oscillating between odd and even.

 At random intervals the player queries the state

machine.

 If the machine is in the odd state the player wins

 If the machine is in the even state the player looses.

System Diagram

SYSTEM Daemongame

NewGame,

Probe,

Result,

Endgame

Gameid,

Win,

Lose,

Score

SIGNAL

NewGame,

Probe,

Result,

Endgame,

Gameid,

Win,

Lose,

Score(Integer);

Gameserver.in Gameserver.out

GameBlock

Block Diagram

BLOCK GameBlock

game (0, 7) :

Game

Monitor

R4
[Gameover]

[NewGame]

R1

Probe,

Result,

Endgame
R2

R3 Gameid,

Win,

Lose,

Score

signal

Gameover(Pid);

Gameserver.in Gameserver.out

Game

T1

Set(Now
+1ms,T1)

odd

Probe

PAGE 1(3) PROCESS TYPE Game

fpar player PId;

dcl count Integer := 0;
/* counter to keep track of score */
Timer T1;

Gameid to
player

even

Set(Now
+1ms,T1)

Lose to
player

count := count -1

even

PAGE 2(3)
PROCESS TYPE Game

odd

T1 Probe

Set(Now
+1ms,T1)

even

Win to
player

count := count +1

odd

PAGE 3(3) PROCESS TYPE Game

*

Result Endgame

Score(count)
 to player

-

Gameover
(player)

Transition Table

 State Input Task Output NextState

even T1 Set(Now+1ms T1) odd

even Probe count := count -1 Lose to player even

odd T1 Set(Now +1ms T1) even

odd Probe count := count +1 Win to player odd

odd Result Score(count) to player odd

odd Endgame Gameover STOP

even Result Score(count) to player even

even Endgame Gameover STOP

Notes on Example

 SDL is case insensitive

 One Block Diagram for each Block in System Diagram

 One Process Diagram for each Process in Block

Diagram

 Only Signals listed on SignalRoute used in Process

Diagram

 * State used to represent any state

 - NextState means return to the previous state (i.e. no

state change)

Notes on Example

 To transition out of state requires input

 Process Diagrams are of type PROCESS TYPE
rather than PROCESS because they are part of a
Process Set

 Gameover message always sent to Monitor so no
need for explicit destination address

 Lose, Score, Win GameId require explicit
destination address

 player passed in as a formal parameter, like a
C++ constructor.

Using SDL to represent the behavior of the

simulation model elements.

SDL for simulation

Preliminary comments

 No all the elements of the SDL formalism can be

used in all the diagrams.

 The simulation engine manages all the delays:

 The timers cannot be used inside the process diagrams.

 The channels cannot be delayed channels.

Start. Allows defining the initial state of a process.

State. A state element contains the name of a state. All diagrams

start and end with state elements. One process can start with the

start element.

Input. These elements describe the kind of events that can be

received depending on the state and the numbers of the ports

that these events travel through. All branches of a specific state

start with an Input element, since an object changes its state only

after a new event is received.

Procedure call. These elements perform actions that do not

generate delays in the model (delays are modeled through the

event processing time parameterization).

Process diagram useful elements for

simulation

Create. This element allows the creation of an object.

Task. This element allows the definition of assignments,

assignments attempts or the interpretation of informal texts.

Output. These elements describe the kind of event to be sent and

the port used. Other attributes of the event can also be detailed

(priority, execution time, etc.).

Decision. These elements describe bifurcations. Their behavior

depends on how the related question is answered.

Process diagram useful elements for

simulation

