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Abstract 

The formal languages become important tools since 

they allow the complete understanding of the model and 

help in its implementation. However only a few simulation 

tools allow an automatic execution of a simulation model 

based in a formalization of the system. 

Specification and Description Language is a modern 

object oriented graphical formal language that allows the 

definition of distributed systems. It has focused on the 

modeling of reactive, state/event driven systems, and has 

been standardized by the International Telecommunications 

Union (ITU) in the Z.100. Since it is a graphical formalism 

simplifies the understanding of the model. 

In this paper we show how we can use Specification 

and Description Language to represent a discrete 

simulation model. We propose a solution, implemented in 

SDLPS, regarding how to manage the time in Specification 

and Description Language. Also, we show how SDLPS 

infrastructure allows a distribute simulation of the models. 
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1. INTRODUCTION 

The construction of a simulation model sometimes 

lacks in the formalization process needed to understand the 

model before any implementation. This model relations and 

hypotheses understanding helps in the implementation 

process and in the communication between the different 

personnel involved in the model construction. Also the 

formalization of a system can be considered a product itself 

[1]. Not only this representation of the model is useful for 

communication purposes, but also simplifies the validation 

process. As Sargent states [2], “Computerized model 

verification ensures that the computer programming and 

implementation of the conceptual model are correct. The 

major factor affecting verification is whether a simulation 

language or a higher level programming language such as 

FORTRAN, C, or C++ is used. The use of a special-

purpose simulation language generally will result in having 

fewer errors than if a general-purpose simulation language 

is used, and using a general-purpose simulation language 

will generally result in having fewer errors than if a general 

purpose higher level programming language is used.” 

Some tools have been implemented in order to 

execute the model from its representation. As an example 

we can cite simulation environments, like ATOM [3], 

CoSmOs [4] or CD++ [5],[6] that allows the simulation 

execution from a representation of a model based on DEVS 

formalism. The proposed infrastructure allows the 

definition (and execution) of a simulation model following 

the Specification and Description Language (SDL). Since 

SDL allows the definition of distributed systems the 

resulting model can be executed over different computers 

without any modification of the model definition. 

 

 
Figure 1. Simplified version of the modeling process [2]. 

 

The infrastructure is implemented in C++ and the 

models are represented using SDL (through XML files). 
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2. SPECIFICATION AND DESCRIPTION 

LANGUAGE 

SDL is the acronym of Specification and Description 

Language; an object-oriented, formal language defined by 

the International Telecommunication Union – 

Telecommunication Standardization Sector (ITU–T) 

(formerly Comité Consultatif International Télégraphique 

et Téléphonique [CCITT]) as Recommendation Z.100 [7]. 

The language is designed to specify complex, event-driven, 

real-time, interactive applications involving many 

concurrent activities using discrete signals to enable 

communication [8], [7]. 

SDL is a powerful and modern language widely used 

in different areas, not only in simulation area. It has been 

standardized by the International Telecommunications 

Union (ITU) in the Z.100, and can be used easily in 

combination with UML. The definition of the model is 

based on different components: 

Structure: system, blocks, processes and processes 

hierarchy. 

Behavior: defined through the different processes. 

Data: based on Abstract Data Types (ADT). 

Communication: signals, with the parameters and 

channels that the signals use to travel. 

Inheritances: to describe the relationships between, 

and specialization of, the model elements. 

The language has 4 levels (i) System, (ii) Blocks, (iii) 

Processes and (iv) Procedures, as we can see in the next 

figure. 

 

 
Figure 2. SDL levels [9]. 

 

2.1 SDL system diagrams 

System diagrams represent all of the objects that make 

up a model and the communication channels between them. 

A system is the outermost agent that communicates with 

the environment. The next figure shows a system 

containing three blocks [12]. 

 

 
Figure 3. System diagram [8]. 

 

2.2 SDL Blocks diagrams 

The next stage in SDL specification is the 

construction of a blocks diagram for each of the different 

block defined in the system diagram. 

The following is the blocks diagram for the block1 

and block3 elements defined in Figure 3: 

 

 
Figure 4. SDL Block diagram [8]. 

 

Each rectangle represents an object. The lines that join 

the objects are the communication channels (bidirectional 

or unidirectional communication elements). The channels 

are joined to the objects through ports. Ports are very 

important elements for implementing and reusing objects, 

since they ensure the independence of the different objects. 

An object only knows its own ports, which are the doors 

through which it communicates with its environment. An 

object only knows that it sends and receives events using a 

specific port. 

Each block has a name specified by block keyword. 

The blocks diagram contains a number of processes and 

may also possibly contain other blocks (but not mixed with 

processes). Processes communicate via signal routes, 

which connect to other processes or to channels external to 

the block 

 

2.3 SDL processes 

The processes describe more specifically the behavior 

of the block. Each one of the processes of the block has one 

or more states. For each one of the states of a process, SDL 

describe how it behaves if different events occur. An object 

may react differently to an event depending on the port that 

sends it. The process is basically specified using graphical 

elements that describe operations or decisions. 

 

Table 1. Some important SDL process elements. 

 

 

Start. Allows defining the first operations to 

be executed that conducts to the initial state 

of a process. 

 

State. A state element contains the name of 

a state. All diagrams start and end with state 

elements. One process can start with the 

start element. 

 Input. These elements describe the kind of 

signals that can be received depending on 



 

the state and the numbers of the ports that 

these events travel through. All branches of a 

specific state start with an Input element, 

since an object changes its state only after a 

new signal is received. 

 

Create. This element allows the creation of 

an object. 

 

Task. This element allows the definition of 

assignments, assignments attempts or the 

interpretation of informal texts. 

 

Procedure call. These elements perform 

actions that do not generate delays in the 

model (delays are modeled through the event 

processing time parameterization). 

 

Output. These elements describe the kind of 

signal to be sent and the port used. Other 

attributes of the event can also be detailed 

(priority, execution time, etc.). 

 

Decision. These elements describe 

bifurcations. Their behavior depends on how 

the related question is answered. 

 

Table 1 shows the elements used in the SDL 

processes diagrams implemented in the system. The next 

figure shows an example of a SDL process. 

 

 
Figure 5. SDL process diagram[8]. 

 

2.4 SDL procedures 

The last level of the SDL method is the description of 

the different procedures that appear in the SDL diagrams. 

These diagrams help describe and specify the model by 

detailing its most important aspects at the needed level, 

depending on the target of the specification requirements. 

To know more about SDL the recommendation Z.100 

[7] can be consulted, also a lot of information can be 

reviewed in the www.sdl-forum.org website or in [10], [11] 

or [8], among other sources. 

 

2.5 SDLP-PR 

A no graphical SDL exists (SDL/PR). SDL/PR is not 

used in this paper. The power of the two SDL 

representations is equivalent [7]. In SDLPS we use a XML 

representation of SDL. We are using this instead SDL/PR 

because it is easiest to manage, transform and represent 

XML instead the plain text file that defines SDLP-PR. Also 

XML allows defining special tags that are not part of the 

model, useful to define representation model parameters 

(position of the blocks in the layout, as example). 

 

 

 
 

 

process P; 

  start; 

  nextstate idle; 

  state idle; 

    input s; 

      output t; 

      nextstate idle; 

  endstate idle; 

endprocess P; 

 

Figure 6. This figure shows the relation between the no graphical 

SDL (SDL/GR) and the graphical SDL (SDL/PR). 

 

3. TIME MANAGEMENT IN SDLPS, DELAYING 

SIGNALS 

Different paradigms exists to implement a simulation 

engine; the three more widely used are, (i) event 

scheduling, (ii) activity scanning and (iii) process 

interaction [12],[13], [14]. SDLPS uses an event scheduling 

simulation engine; however this is transparent to the user, 

since all the models are defined using SDL language. 

In a discrete simulator, to completely define the 

behavior of a model is needed to describe the time related 

to the execution of each one of the different events that 

manage its evolution. Usually each kind of event owns its 

specific probability distribution, which manages when this 

event must be executed. In an event scheduling simulator, 

the engine manages the time of all the events, and decides 

where and when all those events must be send (to other 

simulation elements, agents in a SDL model).  

SDL have two main structures to manage time, 

Timers and Delaying Channels [7]. The problem 

regarding how to manage time in SDL has been studied for 

several authors [15], [16]. Specifically in [16] is presented 

an extension that defines three kinds of transitions, (i) 

eager, (ii) lazy and (iii) delayable. From a point of view of 

a discrete simulator, all the transitions can be considered 

delayable, since all the transitions have a time defined 

(remark that an eager transition is equivalent to a delayable 

transition with the temporal condition set to now=x [16]).  

In SDLPS all the signals carry the parameter defined 

in the structure represented in the Figure 7. The elements 

are: (i) ExecutionTime, representing the time when the 

event must be executed. (ii) Priority, the priority of the 

event, used to break a possible simultaneity of events. (iii) 

CreationTime, representing the time when the event is 

created. (iv) Id, an identifier of the event. (v) Time, the 

clock of the process. (vi) Destination, the final destination 

(process PId) of the signal.  
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Figure 7. Structure related to the SDLPS signals. 

 

Parameter event is needed by SDLPS engine in order 

to delay or sort by priority the different signals. When a 

signal is received SDLPS use its event parameter to manage 

the time and the priorities of the signal. In SDLPS context 

we can use extension elements to define this parameter 

related to the signal, as we can see in Figure 8. Not all the 

parameters of event structure must be defined, only those 

needed to fully define the behavior of the model. 

 

 

Figure 8. Defining the delay, and other parameters, of the signal 

using SDL time extensions. 

 

These extensions are now under discussion on the 

ITU-T Study Group 17 (http://www.itu.int/ITU-

T/studygroups/com17/index.asp) to be included in the next 

release of the standard. 

 

4. SDL FORMALIZATION OF A SIMULATION 

MODEL 

As an example we formalize a GG2 model (two 

servers and a single queue). The first level (Figure 9) 

represents the interaction that users can do with the model. 

In that case there is no interaction between the model and 

the environment. Going inside the GG2 block we can see 

its inner structure (Figure 10), two servers and a single 

queue). 

 

 
 

Figure 9. GG2 model system diagram. The GG2 model shows no 

interaction with the environment. 

 

 
 

Figure 10. GG2 model blocks diagram. This diagram shows the 

inner structure of the model, two queues and a server. 

 

The structure and the behavior for the server are 

represented in the next two figures (Figure 11 and Figure 

12). 

 

 
 

Figure 11. Server1 block processes diagram. 

 

 
 

Figure 12. PServer1 process 
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In server process diagram (Figure 12) the start 

operation defines the initial state (IDLE). Two states are 

defined (IDLE and BUSY). The events that modify the 

state of the server are NewService (from IDLE to BUSY) 

and EndService (from BUSY to IDLE).  

The last level of the SDL formalism allows the 

definition of the procedures of the model. As an example 

the SDL representation for the procedure GetServiceTime 

is: 

 

 
 

Figure 13. Procedure GetServiceTime, considering service time 

constant of 60 time units. 

 

As we see in this section, SDL formalization of a 

simulation model is divided in different diagrams. One of 

the main advantages of the SDL language is that we don’t 

need to show the complete specification to all the 

specialists that are working in the model construction. For 

instance in a large industry, the main process of the 

industry can be represented by the system block (and its 

inner blocks) showing the main elements of the model and 

its relations. To understand the behavior of a specific 

element, we can go further, to the process diagrams and the 

procedures diagrams that show its complete definition. 

 

5. XML REPRESENTATION OF THE MODEL, 

SDL/XML 

The XML markup language is used to represent the 

model. This representation is named SDL/XML. Although 

a no-graphical version of the SDL language exists 

(SDL/PR), the use of XML simplifies the management of 

the language structures and its transformation and 

manipulation in the SDLPS infrastructure. Also SDL/XML 

allows adding information about the graphical 

representation of the different simulation elements 

(represented by SDL agents). 

System block is represented by the <system> element. 

This is the root element of the SDL/XML file. Inside this 

element we find the channels and the system blocks that 

can be defined in this block. In our example no channels 

are defined at this level, see Figure 9. For all the blocks 

different channels can be defined. The channels allow the 

communication between the different elements that can be 

executed in different computers. The XML code 

representing the channels is shown in the next lines. Note 

that each channel have a name and a start and end attribute; 

dual=”yes” means that the channel is bidirectional. All the 

channels describe the kind of events that can travel through 

it. At the moment SDL/XML do not describe if the event is 

related to the input or output. 

 
<channels> 
  <channel name="MainS1" start="BlockServer1" 
end="BlockQueue" dual="yes"> 
    <!--The events that use the channel.--> 
    <event name="FinishService1"></event> 
    <event name="NewService1"></event> 
  </channel> 
  <channel name="MainS2" start="BlockServer2" 
end="BlockQueue" dual="yes"> 
    <!--The events that use the channel.--> 
    <event name="FinishService2"></event> 
    <event name="NewService2"></event> 
  </channel> 
</channels> 

 
Figure 14. SDL/XML definition for the channels. 

 

The <block> XML element allows the complete 

description of the Block SDL element. As we can see in the 

next code a block can contain a process. Each process can 

define variables, <DCL> element, and procedures, 

<procedures> element. The main elements of the process 

are related with the process definition. Each process starts 

in a state and defines the different operations. The <start> 

element defines the initialization operations. 

 

<block id="2" name="Server1" implementation="" IP="192.168.1.5" 
portRead="8687"> 
  <channels> 
    <channel name="S1Ch" start="BlockServer1" end="PServer1" 
dual="yes"> 
      <!--The events that use the channel.--> 
      <event name="FinishService1"></event> 
      <event name="NewService1"></event> 
    </channel> 
  </channels> 
  <process id="1" name="PServer1" implementation="" 
IP="192.168.1.5" portRead="8687"> 
    <!—Process variable declarations.--> 
    <DCLS> 
      <DCL name="PServer1_t" type="double" value=""></DCL> 
    </DCLS> 
    <!--Procedures definition.--> 
    <procedures> 
      <procedure id="1" name="DelayTimeSrv1" implementation=""> 
        <params> 
          <param name="TimeSrv1_t" type="double" defvalue="" 
ref="yes"></param> 
        </params> 
        <body> 
          <task id="1" name="">TimeSrv1_t=60;</task> 
        </body> 
      </procedure> 
    </procedures> 
    



 <!--Process operations definition.--> 
    <start> 
      <setstate id="1" name="IDLE"></setstate> 
    </start> 
    <state name="IDLE"> 
      <input id="1" name="NewService1"></input> 
      <procedurecall id="2" name="DelayTimeSrv1"> 
        <param name="TimeSrv1_t" value="PServer1_t"></param> 
      </procedurecall> 
      <output id="3" name="EndService" self="yes" via=""> 
        <param name="delay" value="PServer1_t"></param> 
        <param name="priority" value="0"></param> 
      </output> 
      <setstate id="4" name="BUSY"></setstate> 
    </state> 
    <state name="BUSY"> 
      <input id="1" name="EndService"></input> 
      <output id="2" name="FinishService1" self="" via="S1Ch"> 
        <param name="delay" value="0"></param> 
        <param name="priority" value="0"></param> 
      </output> 
      <setstate id="3" name="IDLE"></setstate> 
    </state> 
  </process> 
</block> 

 
Figure 15. SDL/XML definition for the blocks. 

 

This XML code defines the Server1 block defined in 

the Figure 11 and his process PServer1 defined in the 

Figure 12. 

All the elements can be hardcoded using the attribute 

implemented. If implemented is set, the definition of the 

element is ignored, and the events are received by this 

piece of code (C++ code, program or DLL). This allows the 

reuse of legacy simulation models or the implementation of 

specific parts of the models that we do not what to 

represent using SDL. IP attribute and port attribute must be 

defined in order to specify where this block or process is 

running. 

 

6. SDLPS ARCHITECTURE 

SDLPS is implemented in C++ and intended to allow 

the distribute execution of different SDL blocks or 

processes in different machines. Each one of the different 

blocks implements a port and a set of input and output 

channels that can be used to communicate with the other 

model blocks. 

In SDLPS each process and block of the model must 

be assigned to a specific machine with a specific IP and 

port. In Figure 16 a representation of the architecture is 

shown. Each one of the different block are used to send the 

signals to its correct destination. Finally, when a signal is 

received by a process block the execution of the model 

begins. Since the code represented by the user (embedded 

in the tasks or decision SDL blocks) depends on the model, 

this code must be compiled once the model is defined. This 

compilation generates SDLCode.dll. This DLL, that is the 

same for all the SDL process (hence equal in all the 

machines), contains all the methods needed to execute the 

model obtained from the SDL definition of the model. In 

the current version of the infrastructure gcc compiler is 

used. SDLPS allows the configuration of the compiler (the 

location of gcc.exe), compile and link the DLL. 

It is important to remark that although SDLPS 

generates code (SDLCode.DLL) in order to be able to 

execute the code contained in the task elements, is not a 

code generator system. SDLPS is a simulator capable to 

perform the simulation directly using the DLL that 

represent the task code. 

 

 

 
 

Figure 16. Distributed model architecture. Each process of the 

model can be executed in a different machine. 

 

As we said previously the processes and the 

procedures can use native C++ functions defined in the 

SDLPS environment. These functions can be used to send 

information of the simulation execution to other 

environments or to use legacy code of specific simulation 

models. This is done through the specialization of the class 

CSDLOperationTask that defines the structure for the Task 

operation. 

If we want to use C++ code inside our simulation 

model, the implementation tag of the SDL/XML can define 

the class that must be used to execute this piece of code. As 

an example, if we have a class that allows sending 

information to a remote server, we can use it in the model 

defining its implementation tag as we can see next: 

 

implementation=”CSDLOperationProcedureCallReport” 

 

CSDLOperationProcedureCallReport class 

implements the execute method that defines what to do 

with the signals received. In this case sends statistical 

information regarding the signal to a remote client that 

manages this information. 



 
 

Figure 17. SDLPS process architecture 

 

This approach has two main advantages: (i) the 

compiler is not needed and (ii) the execution can be faster. 

However with this approach new programming is needed 

and also no specification of this piece of code is defined 

using SDLPS. In Figure 17 the architecture of the process 

SDLPS environment shown. 

The application GUI is shown in Figure 18. SDLPS is 

intended to capture the events and process it. Other 

applications can be connected to it in order to allow a 

representation of the simulation model or statistical 

acquisition. 

 

 
 

Figure 18. SDLPS GUI. 

 

Since SDLPS allows the execution of the SDL model 

in a distributed environment is needed to implement some 

time management mechanism. The proposed mechanism, 

which is implemented in SDLPS, uses a conservative 

approach, described in the next section. 

 

6.1 Time management 

The main objective of SDLPS is to allow the 

simulation of a model from an SDL specification; the 

second objective is to perform a distributed simulation of 

this model. To allow this a conservative approach for a 

distribute simulation model has been implemented. Each 

one of the different channels that connect the elements of 

the model implements an event list. The element (process 

or a block, or other computer program if have a specific 

implementation) takes the event that have the smallest 

timestamp in all the incoming channels. This method can 

be reviewed in [17]. The problem is that some cases can 

cause a deadlock. One of the common approaches to avoid 

the deadlock in a conservative algorithm is to send null 

events to other elements [17]. In our approach all the 

SDLPS’s instances send the events to a local CSDLEngine 

that manages the local time of each sub-model. All the 

different CSDLEngines have the main objective of maintain 

the knowledge of the time of all the channels of the model. 

With this knowledge we know the events with the smallest 

timestamp that are safe to be processed, avoiding the 

deadlocks. Looking more in detail the proposed algorithm, 

three different scenarios have been detected. 

First, no events exist in any of the different channels 

of a CSDLAgent (a CSDLProcess or CSDLBlock). In that 

case is needed to inform to the local CSDLEngine that no 

events exist in the object. Local CSDLEngine informs all 

the other CSDLEngine of the distributed model. 

Second, the channel with smallest timestamp has 

events. In that case it is safe to process the events. 

An Third, the channel with smallest timestamp does 

not have events, but other channels have events. In this 

case, the CSDLEngine decides if this event (the first event 

of the channel that do not have the smallest timestamp) is 

safe or not to be processed, since the CSDLEngine stores 

what is the time of the event with the smallest timestamp.  

Some different approaches exist to manage the 

problem stated in the third case. Some of the approaches to 

break this deadlock use some knowledge of the model [17].  

In the SDLPS system we use a conservative approach, 

meaning that we wait until CSDLEngine assures that the 

smaller timestamp to be processed in the local agent is one 

who belongs to one channel with events. The proposed 

conservative algorithm can be changed for other algorithms 

thanks the modular development of the tool. 

 

7. CONCLUSIONS AND FUTURE WORK 

This paper presents an infrastructure capable to 

perform a simulation of a model represented using 

Specification and Description Language. Also solution to 

manage time in SDL is proposed, adding event structure to 

all SDL signals.  

Since the program needs to manage the Specification 

and Description Language model representation, a XML 

representation of SDL is used. We use XML instead 

SDL/PR because XML simplifies the manipulation of the 

model representation in SDLPS. SDL/XML representation 

allows the definition of elements implemented using a DLL 

or C++ classes, allowing the use of legacy simulation 

Process 

SDL process 
blocks 

C++ native 
code 

Procedures 

SDL 
procedures 

blocks 

C++ native 
code 

Tasks and decisions code 

SDLCode.dll 



models or other elements that we don’t want to represent in 

the specification of the model.  

This infrastructure allows a distributed simulation of 

the different elements defined in SDL. SDLPS manages the 

time and the resources needed to execute the simulation. 

The user only must describe the behavior of the model 

following SDL, without the need of think if the execution 

will be local or shared over different computers. In this first 

release of SDLPS not all the structures are implemented. 

Specifically in SDLPS we do not have an implementation 

of Timers, and the events cannot carry other parameters 

than simple types (structures are not allowed yet, with the 

exception of event structure reviewed in this paper). In 

future releases of SDLPS we plan to add fully compliance 

to SDL 2000 and the future release of the standard SDL.  

This methodology and infrastructure has been used 

during several years successfully. As an example of the 

application of this methodology we can mention the 

simulation of the Almirall Prodesfarma enterprise [18], or 

the simulation of the Barcelona international Airport. More 

recently and using the infrastructure we can mention, in the 

environmental area, the wildfire [19] or slap avalanches 

[20] modeling.  
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