
Using Specification and Description Language to define and implement discrete

simulation models

Pau Fonseca i Casas

Universitat Politècnica de Catalunya

Jordi Girona 1-3

08034, Barcelona, Catalunya, SPAIN

(+34)934017732

pau@fib.upc.edu

Abstract

The formal languages become important tools since

they allow the complete understanding of the model and

help in its implementation. However only a few simulation

tools allow an automatic execution of a simulation model

based in a formalization of the system.

Specification and Description Language is a modern

object oriented graphical formal language that allows the

definition of distributed systems. It has focused on the

modeling of reactive, state/event driven systems, and has

been standardized by the International Telecommunications

Union (ITU) in the Z.100. Since it is a graphical formalism

simplifies the understanding of the model.

In this paper we show how we can use Specification

and Description Language to represent a discrete

simulation model. We propose a solution, implemented in

SDLPS, regarding how to manage the time in Specification

and Description Language. Also, we show how SDLPS

infrastructure allows a distribute simulation of the models.

Keywords: SDL, Simulation, Formalisms.

1. INTRODUCTION

The construction of a simulation model sometimes

lacks in the formalization process needed to understand the

model before any implementation. This model relations and

hypotheses understanding helps in the implementation

process and in the communication between the different

personnel involved in the model construction. Also the

formalization of a system can be considered a product itself

[1]. Not only this representation of the model is useful for

communication purposes, but also simplifies the validation

process. As Sargent states [2], “Computerized model

verification ensures that the computer programming and

implementation of the conceptual model are correct. The

major factor affecting verification is whether a simulation

language or a higher level programming language such as

FORTRAN, C, or C++ is used. The use of a special-

purpose simulation language generally will result in having

fewer errors than if a general-purpose simulation language

is used, and using a general-purpose simulation language

will generally result in having fewer errors than if a general

purpose higher level programming language is used.”

Some tools have been implemented in order to

execute the model from its representation. As an example

we can cite simulation environments, like ATOM [3],

CoSmOs [4] or CD++ [5],[6] that allows the simulation

execution from a representation of a model based on DEVS

formalism. The proposed infrastructure allows the

definition (and execution) of a simulation model following

the Specification and Description Language (SDL). Since

SDL allows the definition of distributed systems the

resulting model can be executed over different computers

without any modification of the model definition.

Figure 1. Simplified version of the modeling process [2].

The infrastructure is implemented in C++ and the

models are represented using SDL (through XML files).

mailto:pau@fib.upc.edu

2. SPECIFICATION AND DESCRIPTION

LANGUAGE

SDL is the acronym of Specification and Description

Language; an object-oriented, formal language defined by

the International Telecommunication Union –

Telecommunication Standardization Sector (ITU–T)

(formerly Comité Consultatif International Télégraphique

et Téléphonique [CCITT]) as Recommendation Z.100 [7].

The language is designed to specify complex, event-driven,

real-time, interactive applications involving many

concurrent activities using discrete signals to enable

communication [8], [7].

SDL is a powerful and modern language widely used

in different areas, not only in simulation area. It has been

standardized by the International Telecommunications

Union (ITU) in the Z.100, and can be used easily in

combination with UML. The definition of the model is

based on different components:

Structure: system, blocks, processes and processes

hierarchy.

Behavior: defined through the different processes.

Data: based on Abstract Data Types (ADT).

Communication: signals, with the parameters and

channels that the signals use to travel.

Inheritances: to describe the relationships between,

and specialization of, the model elements.

The language has 4 levels (i) System, (ii) Blocks, (iii)

Processes and (iv) Procedures, as we can see in the next

figure.

Figure 2. SDL levels [9].

2.1 SDL system diagrams

System diagrams represent all of the objects that make

up a model and the communication channels between them.

A system is the outermost agent that communicates with

the environment. The next figure shows a system

containing three blocks [12].

Figure 3. System diagram [8].

2.2 SDL Blocks diagrams

The next stage in SDL specification is the

construction of a blocks diagram for each of the different

block defined in the system diagram.

The following is the blocks diagram for the block1

and block3 elements defined in Figure 3:

Figure 4. SDL Block diagram [8].

Each rectangle represents an object. The lines that join

the objects are the communication channels (bidirectional

or unidirectional communication elements). The channels

are joined to the objects through ports. Ports are very

important elements for implementing and reusing objects,

since they ensure the independence of the different objects.

An object only knows its own ports, which are the doors

through which it communicates with its environment. An

object only knows that it sends and receives events using a

specific port.

Each block has a name specified by block keyword.

The blocks diagram contains a number of processes and

may also possibly contain other blocks (but not mixed with

processes). Processes communicate via signal routes,

which connect to other processes or to channels external to

the block

2.3 SDL processes

The processes describe more specifically the behavior

of the block. Each one of the processes of the block has one

or more states. For each one of the states of a process, SDL

describe how it behaves if different events occur. An object

may react differently to an event depending on the port that

sends it. The process is basically specified using graphical

elements that describe operations or decisions.

Table 1. Some important SDL process elements.

Start. Allows defining the first operations to

be executed that conducts to the initial state

of a process.

State. A state element contains the name of

a state. All diagrams start and end with state

elements. One process can start with the

start element.

 Input. These elements describe the kind of

signals that can be received depending on

the state and the numbers of the ports that

these events travel through. All branches of a

specific state start with an Input element,

since an object changes its state only after a

new signal is received.

Create. This element allows the creation of

an object.

Task. This element allows the definition of

assignments, assignments attempts or the

interpretation of informal texts.

Procedure call. These elements perform

actions that do not generate delays in the

model (delays are modeled through the event

processing time parameterization).

Output. These elements describe the kind of

signal to be sent and the port used. Other

attributes of the event can also be detailed

(priority, execution time, etc.).

Decision. These elements describe

bifurcations. Their behavior depends on how

the related question is answered.

Table 1 shows the elements used in the SDL

processes diagrams implemented in the system. The next

figure shows an example of a SDL process.

Figure 5. SDL process diagram[8].

2.4 SDL procedures

The last level of the SDL method is the description of

the different procedures that appear in the SDL diagrams.

These diagrams help describe and specify the model by

detailing its most important aspects at the needed level,

depending on the target of the specification requirements.

To know more about SDL the recommendation Z.100

[7] can be consulted, also a lot of information can be

reviewed in the www.sdl-forum.org website or in [10], [11]

or [8], among other sources.

2.5 SDLP-PR

A no graphical SDL exists (SDL/PR). SDL/PR is not

used in this paper. The power of the two SDL

representations is equivalent [7]. In SDLPS we use a XML

representation of SDL. We are using this instead SDL/PR

because it is easiest to manage, transform and represent

XML instead the plain text file that defines SDLP-PR. Also

XML allows defining special tags that are not part of the

model, useful to define representation model parameters

(position of the blocks in the layout, as example).

process P;

 start;

 nextstate idle;

 state idle;

 input s;

 output t;

 nextstate idle;

 endstate idle;

endprocess P;

Figure 6. This figure shows the relation between the no graphical

SDL (SDL/GR) and the graphical SDL (SDL/PR).

3. TIME MANAGEMENT IN SDLPS, DELAYING

SIGNALS

Different paradigms exists to implement a simulation

engine; the three more widely used are, (i) event

scheduling, (ii) activity scanning and (iii) process

interaction [12],[13], [14]. SDLPS uses an event scheduling

simulation engine; however this is transparent to the user,

since all the models are defined using SDL language.

In a discrete simulator, to completely define the

behavior of a model is needed to describe the time related

to the execution of each one of the different events that

manage its evolution. Usually each kind of event owns its

specific probability distribution, which manages when this

event must be executed. In an event scheduling simulator,

the engine manages the time of all the events, and decides

where and when all those events must be send (to other

simulation elements, agents in a SDL model).

SDL have two main structures to manage time,

Timers and Delaying Channels [7]. The problem

regarding how to manage time in SDL has been studied for

several authors [15], [16]. Specifically in [16] is presented

an extension that defines three kinds of transitions, (i)

eager, (ii) lazy and (iii) delayable. From a point of view of

a discrete simulator, all the transitions can be considered

delayable, since all the transitions have a time defined

(remark that an eager transition is equivalent to a delayable

transition with the temporal condition set to now=x [16]).

In SDLPS all the signals carry the parameter defined

in the structure represented in the Figure 7. The elements

are: (i) ExecutionTime, representing the time when the

event must be executed. (ii) Priority, the priority of the

event, used to break a possible simultaneity of events. (iii)

CreationTime, representing the time when the event is

created. (iv) Id, an identifier of the event. (v) Time, the

clock of the process. (vi) Destination, the final destination

(process PId) of the signal.

idle

t

s

idle

idle

1(1)process P

http://www.sdl-forum.org/

Figure 7. Structure related to the SDLPS signals.

Parameter event is needed by SDLPS engine in order

to delay or sort by priority the different signals. When a

signal is received SDLPS use its event parameter to manage

the time and the priorities of the signal. In SDLPS context

we can use extension elements to define this parameter

related to the signal, as we can see in Figure 8. Not all the

parameters of event structure must be defined, only those

needed to fully define the behavior of the model.

Figure 8. Defining the delay, and other parameters, of the signal

using SDL time extensions.

These extensions are now under discussion on the

ITU-T Study Group 17 (http://www.itu.int/ITU-

T/studygroups/com17/index.asp) to be included in the next

release of the standard.

4. SDL FORMALIZATION OF A SIMULATION

MODEL

As an example we formalize a GG2 model (two

servers and a single queue). The first level (Figure 9)

represents the interaction that users can do with the model.

In that case there is no interaction between the model and

the environment. Going inside the GG2 block we can see

its inner structure (Figure 10), two servers and a single

queue).

Figure 9. GG2 model system diagram. The GG2 model shows no

interaction with the environment.

Figure 10. GG2 model blocks diagram. This diagram shows the

inner structure of the model, two queues and a server.

The structure and the behavior for the server are

represented in the next two figures (Figure 11 and Figure

12).

Figure 11. Server1 block processes diagram.

Figure 12. PServer1 process

http://www.itu.int/ITU-T/studygroups/com17/index.asp
http://www.itu.int/ITU-T/studygroups/com17/index.asp

In server process diagram (Figure 12) the start

operation defines the initial state (IDLE). Two states are

defined (IDLE and BUSY). The events that modify the

state of the server are NewService (from IDLE to BUSY)

and EndService (from BUSY to IDLE).

The last level of the SDL formalism allows the

definition of the procedures of the model. As an example

the SDL representation for the procedure GetServiceTime

is:

Figure 13. Procedure GetServiceTime, considering service time

constant of 60 time units.

As we see in this section, SDL formalization of a

simulation model is divided in different diagrams. One of

the main advantages of the SDL language is that we don’t

need to show the complete specification to all the

specialists that are working in the model construction. For

instance in a large industry, the main process of the

industry can be represented by the system block (and its

inner blocks) showing the main elements of the model and

its relations. To understand the behavior of a specific

element, we can go further, to the process diagrams and the

procedures diagrams that show its complete definition.

5. XML REPRESENTATION OF THE MODEL,

SDL/XML

The XML markup language is used to represent the

model. This representation is named SDL/XML. Although

a no-graphical version of the SDL language exists

(SDL/PR), the use of XML simplifies the management of

the language structures and its transformation and

manipulation in the SDLPS infrastructure. Also SDL/XML

allows adding information about the graphical

representation of the different simulation elements

(represented by SDL agents).

System block is represented by the <system> element.

This is the root element of the SDL/XML file. Inside this

element we find the channels and the system blocks that

can be defined in this block. In our example no channels

are defined at this level, see Figure 9. For all the blocks

different channels can be defined. The channels allow the

communication between the different elements that can be

executed in different computers. The XML code

representing the channels is shown in the next lines. Note

that each channel have a name and a start and end attribute;

dual=”yes” means that the channel is bidirectional. All the

channels describe the kind of events that can travel through

it. At the moment SDL/XML do not describe if the event is

related to the input or output.

<channels>
 <channel name="MainS1" start="BlockServer1"
end="BlockQueue" dual="yes">
 <!--The events that use the channel.-->
 <event name="FinishService1"></event>
 <event name="NewService1"></event>
 </channel>
 <channel name="MainS2" start="BlockServer2"
end="BlockQueue" dual="yes">
 <!--The events that use the channel.-->
 <event name="FinishService2"></event>
 <event name="NewService2"></event>
 </channel>
</channels>

Figure 14. SDL/XML definition for the channels.

The <block> XML element allows the complete

description of the Block SDL element. As we can see in the

next code a block can contain a process. Each process can

define variables, <DCL> element, and procedures,

<procedures> element. The main elements of the process

are related with the process definition. Each process starts

in a state and defines the different operations. The <start>

element defines the initialization operations.

<block id="2" name="Server1" implementation="" IP="192.168.1.5"
portRead="8687">
 <channels>
 <channel name="S1Ch" start="BlockServer1" end="PServer1"
dual="yes">
 <!--The events that use the channel.-->
 <event name="FinishService1"></event>
 <event name="NewService1"></event>
 </channel>
 </channels>
 <process id="1" name="PServer1" implementation=""
IP="192.168.1.5" portRead="8687">
 <!—Process variable declarations.-->
 <DCLS>
 <DCL name="PServer1_t" type="double" value=""></DCL>
 </DCLS>
 <!--Procedures definition.-->
 <procedures>
 <procedure id="1" name="DelayTimeSrv1" implementation="">
 <params>
 <param name="TimeSrv1_t" type="double" defvalue=""
ref="yes"></param>
 </params>
 <body>
 <task id="1" name="">TimeSrv1_t=60;</task>
 </body>
 </procedure>
 </procedures>

 <!--Process operations definition.-->
 <start>
 <setstate id="1" name="IDLE"></setstate>
 </start>
 <state name="IDLE">
 <input id="1" name="NewService1"></input>
 <procedurecall id="2" name="DelayTimeSrv1">
 <param name="TimeSrv1_t" value="PServer1_t"></param>
 </procedurecall>
 <output id="3" name="EndService" self="yes" via="">
 <param name="delay" value="PServer1_t"></param>
 <param name="priority" value="0"></param>
 </output>
 <setstate id="4" name="BUSY"></setstate>
 </state>
 <state name="BUSY">
 <input id="1" name="EndService"></input>
 <output id="2" name="FinishService1" self="" via="S1Ch">
 <param name="delay" value="0"></param>
 <param name="priority" value="0"></param>
 </output>
 <setstate id="3" name="IDLE"></setstate>
 </state>
 </process>
</block>

Figure 15. SDL/XML definition for the blocks.

This XML code defines the Server1 block defined in

the Figure 11 and his process PServer1 defined in the

Figure 12.

All the elements can be hardcoded using the attribute

implemented. If implemented is set, the definition of the

element is ignored, and the events are received by this

piece of code (C++ code, program or DLL). This allows the

reuse of legacy simulation models or the implementation of

specific parts of the models that we do not what to

represent using SDL. IP attribute and port attribute must be

defined in order to specify where this block or process is

running.

6. SDLPS ARCHITECTURE

SDLPS is implemented in C++ and intended to allow

the distribute execution of different SDL blocks or

processes in different machines. Each one of the different

blocks implements a port and a set of input and output

channels that can be used to communicate with the other

model blocks.

In SDLPS each process and block of the model must

be assigned to a specific machine with a specific IP and

port. In Figure 16 a representation of the architecture is

shown. Each one of the different block are used to send the

signals to its correct destination. Finally, when a signal is

received by a process block the execution of the model

begins. Since the code represented by the user (embedded

in the tasks or decision SDL blocks) depends on the model,

this code must be compiled once the model is defined. This

compilation generates SDLCode.dll. This DLL, that is the

same for all the SDL process (hence equal in all the

machines), contains all the methods needed to execute the

model obtained from the SDL definition of the model. In

the current version of the infrastructure gcc compiler is

used. SDLPS allows the configuration of the compiler (the

location of gcc.exe), compile and link the DLL.

It is important to remark that although SDLPS

generates code (SDLCode.DLL) in order to be able to

execute the code contained in the task elements, is not a

code generator system. SDLPS is a simulator capable to

perform the simulation directly using the DLL that

represent the task code.

Figure 16. Distributed model architecture. Each process of the

model can be executed in a different machine.

As we said previously the processes and the

procedures can use native C++ functions defined in the

SDLPS environment. These functions can be used to send

information of the simulation execution to other

environments or to use legacy code of specific simulation

models. This is done through the specialization of the class

CSDLOperationTask that defines the structure for the Task

operation.

If we want to use C++ code inside our simulation

model, the implementation tag of the SDL/XML can define

the class that must be used to execute this piece of code. As

an example, if we have a class that allows sending

information to a remote server, we can use it in the model

defining its implementation tag as we can see next:

implementation=”CSDLOperationProcedureCallReport”

CSDLOperationProcedureCallReport class

implements the execute method that defines what to do

with the signals received. In this case sends statistical

information regarding the signal to a remote client that

manages this information.

Figure 17. SDLPS process architecture

This approach has two main advantages: (i) the

compiler is not needed and (ii) the execution can be faster.

However with this approach new programming is needed

and also no specification of this piece of code is defined

using SDLPS. In Figure 17 the architecture of the process

SDLPS environment shown.

The application GUI is shown in Figure 18. SDLPS is

intended to capture the events and process it. Other

applications can be connected to it in order to allow a

representation of the simulation model or statistical

acquisition.

Figure 18. SDLPS GUI.

Since SDLPS allows the execution of the SDL model

in a distributed environment is needed to implement some

time management mechanism. The proposed mechanism,

which is implemented in SDLPS, uses a conservative

approach, described in the next section.

6.1 Time management

The main objective of SDLPS is to allow the

simulation of a model from an SDL specification; the

second objective is to perform a distributed simulation of

this model. To allow this a conservative approach for a

distribute simulation model has been implemented. Each

one of the different channels that connect the elements of

the model implements an event list. The element (process

or a block, or other computer program if have a specific

implementation) takes the event that have the smallest

timestamp in all the incoming channels. This method can

be reviewed in [17]. The problem is that some cases can

cause a deadlock. One of the common approaches to avoid

the deadlock in a conservative algorithm is to send null

events to other elements [17]. In our approach all the

SDLPS’s instances send the events to a local CSDLEngine

that manages the local time of each sub-model. All the

different CSDLEngines have the main objective of maintain

the knowledge of the time of all the channels of the model.

With this knowledge we know the events with the smallest

timestamp that are safe to be processed, avoiding the

deadlocks. Looking more in detail the proposed algorithm,

three different scenarios have been detected.

First, no events exist in any of the different channels

of a CSDLAgent (a CSDLProcess or CSDLBlock). In that

case is needed to inform to the local CSDLEngine that no

events exist in the object. Local CSDLEngine informs all

the other CSDLEngine of the distributed model.

Second, the channel with smallest timestamp has

events. In that case it is safe to process the events.

An Third, the channel with smallest timestamp does

not have events, but other channels have events. In this

case, the CSDLEngine decides if this event (the first event

of the channel that do not have the smallest timestamp) is

safe or not to be processed, since the CSDLEngine stores

what is the time of the event with the smallest timestamp.

Some different approaches exist to manage the

problem stated in the third case. Some of the approaches to

break this deadlock use some knowledge of the model [17].

In the SDLPS system we use a conservative approach,

meaning that we wait until CSDLEngine assures that the

smaller timestamp to be processed in the local agent is one

who belongs to one channel with events. The proposed

conservative algorithm can be changed for other algorithms

thanks the modular development of the tool.

7. CONCLUSIONS AND FUTURE WORK

This paper presents an infrastructure capable to

perform a simulation of a model represented using

Specification and Description Language. Also solution to

manage time in SDL is proposed, adding event structure to

all SDL signals.

Since the program needs to manage the Specification

and Description Language model representation, a XML

representation of SDL is used. We use XML instead

SDL/PR because XML simplifies the manipulation of the

model representation in SDLPS. SDL/XML representation

allows the definition of elements implemented using a DLL

or C++ classes, allowing the use of legacy simulation

Process

SDL process
blocks

C++ native
code

Procedures

SDL
procedures

blocks

C++ native
code

Tasks and decisions code

SDLCode.dll

models or other elements that we don’t want to represent in

the specification of the model.

This infrastructure allows a distributed simulation of

the different elements defined in SDL. SDLPS manages the

time and the resources needed to execute the simulation.

The user only must describe the behavior of the model

following SDL, without the need of think if the execution

will be local or shared over different computers. In this first

release of SDLPS not all the structures are implemented.

Specifically in SDLPS we do not have an implementation

of Timers, and the events cannot carry other parameters

than simple types (structures are not allowed yet, with the

exception of event structure reviewed in this paper). In

future releases of SDLPS we plan to add fully compliance

to SDL 2000 and the future release of the standard SDL.

This methodology and infrastructure has been used

during several years successfully. As an example of the

application of this methodology we can mention the

simulation of the Almirall Prodesfarma enterprise [18], or

the simulation of the Barcelona international Airport. More

recently and using the infrastructure we can mention, in the

environmental area, the wildfire [19] or slap avalanches

[20] modeling.

References

[1] Brade, D. (2000). Enhancing modeling and

simulation accreditation by structuring verification and

validation results. In J. A. Joines, R. R. Barton, K. Kang, &

P. A. Fishwick (Ed.), Winter Simulation Conference.

[2] Sargent, R. G. (2007). VERIFICATION AND

VALIDATION OF SIMULATION MODELS. In S. G.

Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, &

R. R. Barton (Ed.), Proceedings of the 2007 Winter

Simulation Conference. IEEE.

[3] De Lara, J., & Vangheluwe, H. (2002). ATOM³: A

Tool for Multi-formalism Modelling and Meta-modelling.

4th International Conference on Enterprise Information

Systems ICEIS 2002.

[4] Sarjoughian, H. S., & Elamvazhuthi, V. (2009).

CoSMoS: A Visual Environment for Component-Based

Modeling, Experimental Design, and Simulation.

International Conference On Simulation Tools And

Techniques. Rome, Italy.

[5] Wainer, G., & Chen, W. (2003, November). A

framework for remote execution and visualization of Cell-

DEVS models. Simulation: Transactions of the Society for

Modeling and Simulation International , 626-647.

[6] Wainer, G. (2002). CD++: a toolkit to develop

DEVS models. Software, Practice and Experience , 32 (3),

pp. 1261-1306.

[7] Telecommunication standardization sector of ITU.

(1999). Specification and Description Language (SDL).

Retrieved April 2008, from Series Z: Languages and

general software aspects for telecommunication systems.:

http://www.itu.int/ITU-

T/studygroups/com17/languages/index.html

[8] Doldi, L. (2003). Validation of Communications

Systems with SDL: The Art of SDL Simulation and

Reachability Analysis. John Wiley & Sons, Inc.

[9] IEC. (n.d.). SDL Tutorial. Retrieved May 2010,

from IEC:

http://www.iec.org/online/tutorials/sdl/topic04.html

[10] SDL Tutorial. (n.d.). Retrieved January 2009,

from IEC International Enginyeriing Consortium:

http://www.iec.org/online/tutorials/sdl/

[11] Reed, R. (n.d.). Re: SDL-News: Request for

Help: Initialisation of Pids. Retrieved April 2009, from

SDL- FORUM: http://www.sdl-

forum.org/Archives/SDL/0032.html

[12] Law, A. M., & Kelton, W. D. (2000). Simulation

Modeling and Analysis. McGraw-Hill.

[13] Guasch, A., Piera, M. À., Casanovas, J., &

Figueras, J. (2002). Modelado y simulación. Barcelona,

Catalunya/Spain: Edicions UPC.

[14] Fishman, G. S. (2001). Discrete-Event

Simulation: Modeling, Programming and Analysis. Berlin:

Springer-Verlag.

[15] Bozga, M., Graf, S., Mounier, L., Kerbrat, A.,

Ober, I., & Vincent, D. (2000). SDL for Real-Time: What

Is Missing ? SAM'2000. Grenoble, France.

[16] Bozga, M., Graf, S., Mounier, L., Ober, I., Roux,

J.-L., & Vincent, D. (2001). Timed Extensions for SDL.

Proceedings of SDL-Forum'01. Copenhagen, Denmark.

[17] Fujimoto, R. M. (2001). Parallel simulation:

parallel and distributed simulation systems. Winter

Simulation Conference, (pp. 147-157).

[18] Casanovas, J., Perez, W., Montero, J., & Fonseca,

P. (1999). Simulation of reception, expedition and picking

areas of a pharmaceutical products plant. In J. Fuertes

(Ed.), Emerging Technologies and Factory Automation,

(pp. 321-328). Barcelona, Catalunya, SPAIN.

[19] Fonseca i Casas, P., & Casanovas, J. (2005).

Simplifying GIS data use inside discrete event simulation

model through m_n-AC cellular automaton. Proceedings

ESS 2005.

[20] Fonseca i Casas, P., & Rodríguez Fontoba, S.

(2007). Using GIS data in a m:n-ACk cellular automaton to

perform an avalanche simulation. Geographical

Information Science Research UK Conference 2007.

National University of Ireland Maynooth.

Biography

Pau Fonseca i Casas is a Professor of the Department

of Statistics and Operational research of the Technical

University of Catalonia. He obtained his degree and master

degree in computer engineering on 1999 and his Ph.D. on

2007 from Technical University of Catalonia. He works in

the LCFIB (Barcelona informatics school laboratory)

developing Simulation projects since 1998, also is member

of LogiSim, group dedicated to the research and simulation

tools and projects development. His website is http://www-

eio.upc.es/~pau/.

http://www-eio.upc.es/~pau/
http://www-eio.upc.es/~pau/

