Optimal Supply Chain Strategy through Stochastic Programming

Publication TypeTesis de Grau i Màster // BSc and MSc Thesis
Year of Publication2016
AuthorsDaniel Ramon Lumbierres
DirectorF.-Javier Heredia
Tipus de tesiMSc Thesis
TitulacióMaster in Statistics and Operations Research
CentreFaculty of Mathematics and Statistics
Data defensa27/07/2016
Nota // mark9.5 Excel·lent MH (A+ with Honors)
Key Wordsteaching; supply chain; 3D printing; Postponment; stochastic programming; Accenture; MSc Thesis
AbstractIn this project, a new two-stage stochastic programming decision model has been developed to assess: (a) the convenience of introducing 3D printing into any generic manufacturing process, both single and multi-product; and (b) the optimal degree of postponement known as the customer order decoupling point (CODP) while also assuming uncertainty in demand for multiple markets. To this end, we propose the formulation of a generic supply chain through an oriented graph that represents all the deployable alternative technologies. These are defined through a set of operations for manufacturing, assembly and distribution, each of which is characterized by a lead time and cost parameters. Based on this graph, we develop a mixed integer two-stage stochastic program that finds the optimal manufacturing technology to meet the demand of each market, the optimal production quantity for each operation, and the optimal CODP for each technology. The results obtained from several case studies in real manufacturing companies are presented and analyzed. The work presented in this master’s thesis is part of an ongoing research project between UPC and Accenture.
DOI / handlehttp://hdl.handle.net/2117/88818
URLClick Here
ExportTagged XML BibTex
TFM MESIO Ramón Lumbierres.pdf2.28 MB